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RESUMO

Amostragem de grandezas na Física e seus espectros
de Fourier – um curso para o Ensino Médio

Gabriel Torreão Dias da Silva

Orientador: Helio Salim de Amorim

Resumo da Dissertação de Mestrado submetida ao Programa de Pós-Gradua-
ção em Ensino de Física, Instituto de Física, da Universidade Federal do Rio
de Janeiro, como parte dos requisitos necessários à obtenção do título de
Mestre em Ensino de Física.

Apresentamos o desenvolvimento de um curso e seus materiais instrucio-
nais para realização de amostragem de grandezas, cálculo e interpretação do
espectro de Fourier por meio de uma adaptação da apresentação típica do
ensino superior para uma forma de série finita trigonométrica adequada ao
Ensino Médio. O curso tem objetivo de compor disciplina eletiva da parte
diferenciada de itinerários formativos de Matemática e suas tecnologias ou de
Ciências da Natureza e suas tecnologias, visando atividades interdisciplina-
res de aprofundamento de Física, Matemática e Programação e envolvendo
temas de tecnologia e Processamento de Sinais. A aplicação da proposta foi
realizada em grupos de estudo formados na Escola Naval e no Colégio Naval
e validou sua viabilidade para emprego como disciplina eletiva nos últimos
anos do Ensino Médio.

Palavras chave: Ensino de Física, Espectro de Fourier, Amostragem.

Rio de Janeiro
Dezembro de 2024
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ABSTRACT

Sampling of quantities in Physics and its Fourier
sprectra – a course for high school

Gabriel Torreão Dias da Silva

Supervisor: Helio Salim de Amorim

Abstract of master’s thesis submitted to Programa de Pós-Graduação em
Ensino de Física, Instituto de Física, Universidade Federal do Rio de Janeiro,
in partial fulfillment of the requirements for the degree Mestre em Ensino de
Física.

We present the development of a course and its instructional materials
for sampling quantities, calculating and interpreting the Fourier spectrum
by adapting the typical college presentation to a trigonometric finite series
form suitable for High School level. The course aims to compose an elective
discipline of the “differentiated part” of “formative itineraries” in Mathema-
tics and its technologies or in Natural Sciences and its technologies, legal
subdivisions of high school in Brazil, aiming at interdisciplinary activities
of in-depth study of Physics, Mathematics and Programming and involving
themes of technology and Signal Processing. The application of the propo-
sal was carried out in study groups formed at the Brazilian Naval School
(Escola Naval) and Brazilian Navy high school course (Colégio Naval) which
validated its viability for use as an elective discipline in the last years of high
school.

Keywords: Physics education, Fourier spectrum, Sampling.

Rio de Janeiro
Dezembro de 2024
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Capítulo 1

Introdução

As ideias de decomposição de uma grandeza em termos de componentes é
um antigo e importante método de análise e modelagem da Física, o que se
observa, pelo menos, desde o estudo de decomposição da luz em suas com-
ponentes espectrais realizada por Newton e publicado em seu livro Opticks
em 1704.

A decomposição de uma grandeza variável no tempo em termos de com-
ponentes harmônicas senoidais é um importante uso desta estratégia. Ela
não só auxilia a modelar fenômenos ondulatórios complexos em termos de
uma série de oscilações com frequências que são múltiplas inteiras de uma
frequência fundamental, como possibilita interpretações que designamos aná-
lise no domínio da frequência que seriam impossíveis em sua contrapartida,
aquela no domínio do tempo.

Embora representações por componentes trigonométricas tenham sido
amplamente empregadas ao longo da história da Matemática e da Física,
foi o trabalho de Jean-Baptiste Joseph Fourier publicado em 1822 que inse-
riu definitivamente as análises em componentes harmônicas como estratégia
fundamental na descrição de fenômenos físicos [1]. O importante papel de
Fourier lhe garantiu o empréstimo de seu nome nas análises no domínio da
frequência que passaram, predominantemente, a ser designadas análises de
Fourier. Como é a composição por diferentes frequências que permite a de-
composição da luz no seu espectro, a análise de Fourier também é chamada
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Capítulo 1. Introdução

de análise de espectro.
Além de sua presença significativa na Matemática e na Física, a análise

de Fourier é tópico mandatório no estudo de tecnologias das áreas das En-
genharias Elétrica, da Computação, de Telecomunicações, de Automação e
Controle e Biomédica, na análise de sistemas e no processamento de sinais
como suporte às tecnologias cujos projetos dependem da análise no domínio
da frequência.

O caso mais simples da aplicação do espectro de Fourier é na medição de
frequência. Um exemplo simples consiste na medição da frequência com que
as asas de um beija-flor batem. Este problema não é tão fácil de resolver por
meio do vídeo pois exige uma frequência de captura de quadros elevada e o
correto ajuste dos parâmetros da câmera, caso contrário, o que se observa
é apenas o borrão resultante do rápido movimento das asas. Este problema
não ocorre com o áudio, que é bem preservado na captura com equipamentos
comerciais comuns. A análise da física desta situação nos indica que o som
emitido pelo bater das asas do beija-flor é resultante da perturbação que
suas asas causam na atmosfera na vizinhança da asa. A frequência desta
perturbação coincide com o a origem da perturbação, o próprio movimento
ordenado das asas. Desta forma, a frequência do som emitido, deve coincidir
com a frequência do bater das asas.

A figura 1.1 apresenta um trecho de aproximadamente 800 ms do áudio
captado na batida das asas do beija-flor. No gráfico, é possível ver que, de
fato, o fenômeno parece ser aproximadamente periódico e que a variação de
pressão apresenta vales acentuados. O intervalo entre dois vales foi tomado
como referência aproximada de um período e de onde se pode estimar a
frequência de 44 Hz. Esta é a estimativa realizada no domínio do tempo, já
que nosso problema foi representado pelas relações das variação de pressão
× tempo.

O mesmo problema pode ser levado ao domínio da frequência se obser-
varmos o espectro de Fourier do mesmo trecho de áudio da figura 1.2. Agora,
ao observar a intensidade dos componentes de pressão × frequência, obser-
vamos que o efeito das asas possuem alguns componentes com intensidades
relativamente acentuadas nas frequências de 43,75, 86,25, 128,75, 171,25 e
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Figura 1.1: Trecho de áudio do batida de asas de um beija-flor.
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Figura 1.2: Espectro do trecho de áudio emitido pelas asas.

215 Hz, o que também caracteriza uma oscilação em aproximadamente 44 Hz,
uma vez que se observam componentes, aproximadamente, nesta frequência
e em seus múltiplos inteiros, ou harmônicos.

Ao propor um problema relacionado à medida de frequência, se observa
que o domínio da frequência é mais apropriado para a coleta dos dados, uma
vez que a medição é feita diretamente sobre o gráfico do espectro por meio
leitura da frequência relativa ao primeiro pico, a da frequência fundamental.
Este exemplo é o mais simples e apenas ilustrativo. Em alguns fenômenos e
tecnologias, como modulação em amplitude (AM), há um afastamento ainda
maior com relação às informações apresentadas quando se compara o domínio
do tempo com o da frequência.

O presente trabalho de dissertação, que ora passamos a descrever, foi

3



Capítulo 1. Introdução

fortemente motivado pela possibilidade da antecipação de tópicos de tecno-
logia típicos do Ensino Superior em disciplinas eletivas previstas nos, assim
chamados, Itinerários Formativos, orientados ao aprofundamento em Ciên-
cias Exatas. Estes itinerários figuram na redação das diretrizes e bases da
educação nacional, estabelecida pela Lei no 9.394/1996, desde a modificação
proposta pela Medida Provisória no 746/2016. A redação mais atual deste
tópico é dada pela pela Lei no 14.945/2024.

Considerando a importância do tópico e essa previsão legal, começamos
a desenvolver, em 2022, um curso de análise de Fourier em grandezas amos-
tradas e sua aplicação a problemas de Física e tecnologia com a finalidade
de aplicá-lo no Colégio Naval (CN), curso de Ensino Médio e preparatório
para a formação superior na Escola Naval. A proposta do curso considera
uma aplicação sob a forma de disciplina eletiva da parte diversificada de seu
Itinerário Formativo de Ciências da Natureza e suas de Tecnologias.

A presente dissertação foi organizada em quatro capítulos. No Capítulo
2, analisamos o estudo, ou a possibilidade de estudo, de tópicos de tecnologia
no Ensino Médio. Procuramos focar, em particular, na aplicabilidade des-
ses tópicos no Colégio Naval, instituição com a qual mantenho um vínculo
por meu trabalho na Escola Naval. Naturalmente, essa vinculação tem um
caráter estratégico na medida em que possibilita aplicações das ideias aqui
desenvolvidas diretamente com nossos alunos. Consideramos o caráter inter-
disciplinar das tecnologias e a centralidade da Física na apresentação destes
tópicos como um fato básico e procuramos desenvolver uma metodologia,
ou mais simplesmente, uma linha de argumentação envolvendo, especifica-
mente, o uso dos conceitos de análise de espectro e de amostragem para o
nível médio. Veremos mais adiante, como conclusão, que esses conceitos são
acessíveis neste nível.

Ainda no Capítulo 2, consideramos outras finalidades para o curso, pois
esperamos que ele possa servir de contribuição geral tanto no nível médio
como para fundamentar alterações curriculares no início do Ensino Superior.

Como já indicamos, os conceitos que esperamos introduzir são típicos do
Ensino Superior. No Capítulo 3, detalhamos os diversos formatos de análise
de Fourier empregados nos cursos de Engenharia e, mais especificamente,
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Capítulo 1. Introdução

adaptamos uma de suas modalidades, a série de Fourier de tempo discreto,
para se adequar ao nível e aos conceitos usualmente explorados no Ensino
Médio e, em particular, no nível do Colégio Naval. Com a apresentação dessa
adaptação, vamos encaminhar a proposta de curso.

Formamos grupos de estudo no 3o ano do Colégio Naval e no 1o ano da Es-
cola Naval1 com a finalidade de desenvolver o curso de forma extracurricular
e verificar a sua aplicabilidade como disciplina eletiva, conforme objetivo ori-
ginal do trabalho. Os resultados da aplicação são apresentados no Capítulo
4. Apesar do alto nível de complexidade dos tópicos e da interdisciplinari-
dade exigida, os trabalhos dos grupos de estudo foram bem sucedidos, razão
pela qual concluímos pela viabilidade da integração do curso como disciplina
eletiva, a ser incluída na estrutura curricular do CN em um futuro próximo.

O desenvolvimento do curso fez uso de apostila, videoaulas e de uma lista
de pequenos projetos no formato de problemas para aplicação da análise
de espectro, bem como suas soluções. Estes materiais integram o produto
educacional desenvolvido nesta dissertação e são apresentados nos apêndices
A, B, C e D. Enquanto a apostila garante um texto escrito de referência, as
videoaulas foram elaboradas por demanda dos próprios alunos. Os projetos
concluem a aplicação das competências a desenvolver no curso com questões
envolvendo tópicos de Física e de Tecnologia.

1A Escola Naval é uma instituição de Ensino Superior que adota a divisão anual em
sua periodicidade.
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Capítulo 2

Análise de espectro no Ensino
Médio

O desenvolvimento de competências e de uma visão de mundo que contribua
para a formação de um cidadão e profissional capaz de compreender e fazer
bom uso das tecnologias é papel, no ensino básico, das disciplinas de Ciências
no Ensino Fundamental e de Química, Física e Biologia no Ensino Médio.
Subjacente, como ferramenta de descrição auxiliar ao estudo, estas disciplinas
são conduzidas pelo emprego abundante da Matemática [2–4].

Aparatos tecnológicos, porém, costumam ser fruto de projetos interdis-
ciplinares. Os fenômenos e disciplinas são abarcados como contribuição nos
projetos a medida que surtam um efeito desejado, ou seja, que deem aos apa-
ratos a finalidade imaginada pelo projetista [4]. A tecnologia não olha para
as disciplinas, mas para seus efeitos. Não olha para o aparato, mas para sua
finalidade. Desta maneira, o uso desta ou daquela disciplina ou fenômeno
se subordina ao cumprimento da finalidade do aparato tecnológico e não das
preferências do projetista ou mesmo do usuário das tecnologias.

Tomemos como exemplo um eletrocardiógrafo digital [5]. O conhecimento
da bioeletricidade e da anatomia do sistema nervoso e cardiovascular humano
determina pontos sobre o tórax do paciente em que devem ser posicionados
os eletrodos. A anatomia humana é tópico da biologia. A bioeletricidade, em
si, já é um tópico da Biofísica e interdisciplinar por definição. Tem origem
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no transporte de íons dissolvidos nos fluidos do paciente. São interpretados
biologicamente como a ação do sistema nervoso, quimicamente como efeitos
de difusão e fisicamente como movimento de cargas elétricas.

Os eletrodos captam as flutuações da diferença de potencial devido ao
deslocamento destes íons no processo de excitação nervosa do coração e as
trata em um circuito eletrônico, cujos fundamentos de funcionamento se re-
lacionam com os tópicos de eletricidade da Física. Muito provavelmente os
circuitos são ricos em componentes integrados fabricados sobre materiais se-
micondutores dopados propositalmente com impurezas em processos que en-
volvem Química, Física Quântica e Ótica em plantas robotizadas preparadas
para realizar operações mecânicas finas [6, 7].

Por fim, os sinais cardíacos são convertidos em variáveis tratadas em uma
abstração numérica, permitindo o emprego de números em base binária em
algum pequeno processador do eletrocardiógrafo e, portanto, empregando a
Matemática. Ele, então, exibe a onda característica do processo de excitação
cardíaca e cumpre sua finalidade de subsidiar um profissional da saúde, for-
necendo informações para a tomada de decisões da atuação médica em um
paciente sob monitoramento.

Os fundamentos das disciplinas básicas de Física, Química, Biologia e
Matemática serviram apenas de meio para se obter como finalidade a exibição
de informação de dados do paciente. Podemos ir ainda mais longe e afirmar
que a finalidade última só é atingida quando estes dados são efetivamente
observados e interpretados por um profissional.

Ora, o desenvolvimento das disciplinas do ensino básico costuma ser con-
duzido pela exploração isolada de fenômenos, e, por esta razão, tipicamente
se afastam de aplicações finalísticas como as desejadas em tecnologias, mesmo
as mais simples. Como discutimos, as tecnologias não precisam se deter em
um fenômeno ou disciplina, ou pior, não podem fazê-lo sob a pena de res-
tringir as possibilidades de conduzi-la ao cumprimento de uma finalidade.

É bem verdade que no processo de aprendizagem seria muito difícil englo-
bar todos os aspectos de tecnologias atuais nas disciplinas fundamentais de
ciências. Isto não significa, porém, que elas não sejam os fundamentos destas
tecnologias e o caminho inicial pelo qual os estudantes se interessaram em
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carreiras da área tecnológica.
Podemos considerar pelo menos três caminhos através dos quais é reali-

zada a aproximação de alunos do ensino básico aos tópicos de tecnologia e
das carreiras de tecnologia. O primeiro deles é pela exploração segmentada
de aparatos tecnológicos de modo a limitar a abordagem a um fenômeno
associado a um tópico de aula. Ou seja, o aparato dificilmente é explorado
integralmente, mas apenas de forma fracionada tal que cada fração caiba no
enquadramento de cada aula específica. Neste caminho, cabe ao aluno unir
as observações isoladas para compreender o todo depois de estudar vários
segmentos em aulas distintas.

O segundo caminho é por meio do desenvolvimento de trabalhos ou pro-
jetos mais complexos e interdisciplinares que se estendem por várias aulas, às
vezes de várias disciplinas, sob o acompanhamento de mais de um professor,
e até em atividades extraclasse. Esta abordagem foi adotada nas políticas
públicas vinculadas ao chamado Novo Ensino Médio e, consequentemente, no
Programa Nacional do Livro e do Material Didático (PNLD) que licitou no
Edital no 03/2019, referente ao PNLD 2021, obras sobre o título de “Projetos
Integradores”.

O último é pela integração com profissionais das áreas de tecnologia, o
que tipicamente é desenvolvido por meio de atividades de extensão junto a
instituições de Ensino Superior.

Vamos considerar estes caminhos, principalmente os dois últimos, nova-
mente, ao fim da seção 2.2 para melhor delinear os objetivos deste trabalho.

2.1 Física – a porta para as carreiras em tec-
nologia

Dentre as três disciplinas que delineamos no Ensino Médio como fundamentos
das áreas de tecnologia, a Física tem um papel central na descrição dos
fenômenos naturais. Em última instância, vários dos fenômenos de outras
áreas são estudados a fundo em algum dos ramos interdisciplinares da Física,
como a bioeletricidade que discutimos na descrição do eletrocardiógrafo.
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Apenas como uma referência da centralidade da Física como fundamento
das carreiras de tecnologias, vamos tomar o processo seletivo para ingresso
no Ensino Superior da USP promovido pela FUVEST em 2022 (para in-
gresso em 2023) [8]. A organização divide os cursos em três grandes áreas
que designam ciências humanas, biológicas e exatas. Estas, por sua vez, são
subdivididas em carreiras que englobam cursos afins de um mesmo campus e
define quais provas específicas devem ser feitas na segunda fase do processo
seletivo. Como a segunda fase possibilita a seleção de disciplinas, a tendên-
cia é que o estudante realize provas de áreas que tem mais aderência como
fundamento das técnicas e tecnologias que ele estudará para se tornar um
profissional e que são espécies de prerrequisitos importantes para realizar o
respectivo curso.

Dentre as ciências exatas, que cobrem a maior parte das profissões da
área de tecnologia, apenas o ingresso em Engenharia Ambiental (apenas no
campus de São Carlos), Engenharia Bioquímica, Licenciatura em Ciências
Exatas, Licenciatura em Geociências e Educação Ambiental, Oceanografia,
Bacharelado e Licenciatura em Química (apenas para o campus de Ribeirão
Preto) não determinaram a realização da prova de Física na segunda fase
do processo seletivo. O total de vagas que exigiram a prova de Física para
ingresso é de aproximadamente 92% nesta área.

Nas ciências biológicas, os cursos de Ciências Biomédicas, Fonoaudiolo-
gia, Medicina, Medicina Veterinária, Nutrição e Metabolismo, Odontologia,
Educação Física e Fisioterapia consideraram a Física na segunda fase. Estes
cursos totalizam aproximadamente 46% das vagas desta área.

Mesmo na área do que foi classificada como ciências humanas e que estaria
mais afastada das tecnologias, a prova de Física é mandatória para os cursos
de Arquitetura e de Design, totalizando aproximadamente 5% das vagas nesta
área.

A abrangência das áreas profissionais e, consequentemente, das técnicas
e tecnologias que podemos considerar relacionadas à Física é tão vasta que
inclui uma nova dificuldade no ensino da Física básica – a abrangência de
aplicações correlatas.
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2.2 Espectro de Fourier no Ensino Médio –
oportunidade de aprofundamento em te-
mas de tecnologia

As Leis no 13.415/2017 e no 14.945/2024, que modificam a Lei no 9.394/1996
de diretrizes e bases da educação, instituiu no Ensino Médio o emprego de
uma parte diversificada nos currículos do ensino para o atendimento de “ca-
racterísticas regionais e locais da sociedade, da cultura, da economia e dos
educandos” considerando Itinerários Formativos que “serão compostos de
aprofundamento das áreas do conhecimento”. Para os alunos e instituições
que promovem ou identificam um direcionamento para seus alunos voltado
para seu emprego em atividades relacionadas à tecnologia, a parte diversifi-
cada pode servir como oportunidade para aprofundamento, antecipação ou
melhor preparação para os tópicos avançados em tecnologia e de certa forma
pode auxiliar a resolver o problema da grande abrangência de aplicações
relacionadas à Física.

Isto se observa no caso específico do Colégio Naval, estabelecimento de
Ensino Médio localizado em Angra dos Reis e que prepara os alunos para
o Curso de Graduação da Escola Naval. A Escola Naval é a academia mi-
litar responsável pela formação em nível superior dos oficiais considerados
operativos na Marinha do Brasil. A principal forma de entrada na Escola
Naval é pelo êxito no Curso de Preparação de Aspirantes, como é chamada
a proposta de ensino básico promovida pelo Colégio Naval.

Uma vez cursando a Escola Naval, o aluno, designado Aspirante nesta
instituição, deverá escolher em que corpo servirá. Os corpos realizam ativi-
dades distintas dentro da Marinha e são uma primeira forma de diferenciação
da especialização. Os oficiais dos Corpos da Armada e de Fuzileiros Navais
trabalham na linha de frente na operação e gestão dos meios navais (navios,
submarinos e aeronaves) e de fuzileiros navais (veículos terrestres e aerona-
ves). Estes meios são complexos, compostos de estruturas, equipamentos
para propulsão, governo, geração e distribuição de energia, combate a incên-
dio e controle de avarias, armazenamento, distribuição e tratamento de água
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e esgoto, comunicação, navegação e detecção, além de armamentos e de seus
sistemas de controle. Por esta razão, espera-se alto grau de especialização
em tecnologias diversas, garantindo as competências necessárias para as ati-
vidades de operação, manutenção e assessoramento na modernização destes
meios.

A estatística que considera a turma formada no ano de 2023 e as três
turmas subsequentes mostra que 89% dos Aspirantes integrarão os Corpos
da Armada e de Fuzileiros Navais. Com estes números, podemos estimar
que em torno de nove de cada dez alunos, e portanto quase a totalidade, do
Colégio Naval tendem a ser encaminhados para áreas onde a demanda pelo
desenvolvimento de competências da área tecnológica é certa. Os alunos res-
tantes optam pelo Corpo de Intendentes da Marinha, cujo enfoque é no apoio,
logística e administração, menos orientado à área de tecnologia. Fica claro
com esta estatística que a parte diversificada é uma excelente oportunidade
para o desenvolvimento embrionário de competências de áreas da tecnologia
no Colégio Naval.

O exemplo deste caso específico destaca o surgimento de uma oportuni-
dade para a estruturação de cursos eletivos ocupando as partes diversificadas
do ensino básico, uma vez que pode-se observar alta probabilidade de que
os alunos do CN sigam uma carreira tecnológica. Conforme detalhado na
seção 3.1, o estudo do espectro de Fourier e, de forma mais ampla, do pro-
cessamento digital de sinais, é um tópico relevante na formação de grande
quantidade de profissionais.

Mostramos no Capítulo 3 de forma geral que, embora seja hoje um tó-
pico exclusivo do Ensino Superior, a amostragem e o espectro de Fourier de
sinais amostrados é passível de uma abordagem empregando prerrequisitos
do Ensino Médio presentes nos currículos atuais e em particular no currículo
do CN [9]. Este tópico pode ser um caso relevante para apresentação de
forma introdutória no Ensino Médio como uma antecipação ou preparação
para seu aprofundamento no Ensino Superior. Um curso cobrindo tópicos
de amostragem e de espectro de sinais no curso básico se encaixa ao caso
específico do Colégio Naval na proposta da parte diversificada do currículo.

Delineado o caso específico podemos considerar o caso geral. Pode-se pro-
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por o emprego de um curso de amostragem e análise de espectro empregando
prerrequisitos do Ensino Médio para pelo menos os seguintes casos do ensino
básico:

• em escolas de maior porte que possam reunir alunos suficientes para
apresentação dos referidos tópicos de forma eletiva na parte diversifi-
cada de seu currículo;

• em instituições de educação profissional técnica de nível médio em cur-
sos como eletrônica, instrumentação industrial, mecatrônica ou teleco-
municações em que a amostragem e o processamento de sinais é tecno-
logicamente relevante; ou,

• em escola menores nas quais se possa estruturar a parte diversificada
por meio de cursos a distância, conforme previsto na Lei no 9.394/1996,
como forma de atender a alunos interessados neste tópico como eletivo.

A simplificação da abordagem que torna a amostragem e análise de espec-
tro viáveis no Ensino Médio discutida no Capítulo 3 pode também subsidiar
mudanças curriculares nos próprios cursos superiores das áreas de tecnolo-
gia, uma vez que estes cursos poderiam ser apresentados desde a entrada do
aluno nesta fase da formação pois os prerrequisitos para o curso são de nível
médio.

Por fim, podemos considerar que o formato simplificado pode ser impor-
tante também como aprofundamento para profissionais das áreas específicas
de onde são coletados os dados mas que não tenham formação aprofundada
em tópicos típicos das carreiras de tecnologia no nível superior, como o cál-
culo diferencial e álgebra linear. Isto ocorre, por exemplo, para músicos,
artista e editores que trabalham com áudio no formato digital ou com pro-
fissionais da saúde que operem instrumentos de medida e diagnóstico digital
ou ainda que desejem fazer pesquisa com análise mais detalhada de sinais de
origem biológica.

Conforme verificaremos nos Capítulos 3 e 4, embora possível, o desenvol-
vimento do curso exigirá emprego de recursos de programação, e dos limites
da Matemática e Física do Ensino Médio, sendo considerado, portanto, um
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curso avançado nesse nível e recomendado apenas para alunos com bom de-
senvolvimento nos seus prerrequisitos. Desta forma, não parece adequado
que o mesmo seja um curso obrigatório ou aplicável em qualquer contexto.

O caso específico do Colégio Naval e da possível antecipação destes tópicos
no Ensino Superior da Escola Naval, porém, são razões suficientes para a
estruturação de um curso de amostragem e análise de Fourier empregando
prerrequisitos do Ensino Médio e é o que tomamos como objetivo para este
trabalho. A previsão de possibilidades diversas de demanda por um curso
de espectro de Fourier apenas aumenta o interesse no desenvolvimento desta
abordagem, embora entendamos que se trata de uma proposta de vanguarda
e de aceitação limitada.

Para tal, vamos considerar os caminhos que delineamos no início deste
capítulo e promover atividades de extensão por professores da Escola Naval
junto aos professores do Colégio Naval consistindo na realização de ativida-
des extracurriculares em análise de espectro de Fourier aos alunos de ambas
as instituições. Esperamos conseguir, em médio prazo, converter a ativi-
dade extracurricular experimental em um curso curricular eletivo da parte
diversificada do currículo.

2.3 Apresentação de amostragem e análise de
espectro no Ensino Médio

Os resultados deste trabalho serão aplicados a fenômenos em que a descri-
ção se faz por meio da conexão de duas grandezas, uma independente e uma
dependente. Este é o caso da cinemática, por exemplo, em que se busca estu-
dar as relações da posição (dependente) ao longo do tempo (independente).
De fato, a maior parte de nosso trabalho considerará implicitamente que a
variável independente é o tempo t para uma variável dependente qualquer x.
Em nossos estudos, chamaremos por convenção x(t) de sinal.

Não nos importa grandes formalismos na ideia de sinais, embora façamos
uma introdução das noções de sinais nos materiais instrucionais apresentados
nos apêndices A e B. Sem muito rigor, podemos dizer que há certa similari-
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dade entre os conceitos de função na Matemática, grandeza dependente de
outra grandeza na Física e de sinais na tecnologia. As principais diferen-
ças se encontram no interesse de cada disciplina. Enquanto a Matemática
enfoca na relação entre x e t, em que ambos são apenas números reais, a
Física se importa com o estudo de x e t quando ambos são, necessariamente,
grandezas físicas, desejando com isso tirar conclusões sobre a natureza da
relação entre as grandezas ou fornecer uma descrição detalhada da relação.
Já na interpretação tecnológica, importa que se x(t) é um sinal, ele carrega
informação relevante que pode ser observada no valor de x a medida que o
tempo t passa.

Como o estudo de relações do tipo x(t) coincide com o caso da cinemática,
que é amplamente estudado na maior parte dos currículos de Física desde o
primeiro ano de um curso do nível médio, espera-se que um aluno dedicado
nesta disciplina no fim de 2o ano ou início do 3o já esteja familiarizado com
este tipo de descrição.

Há uma característica interessante no ensino de Física do nível médio
na descrição de fenômenos que envolvem a relação entre duas grandezas.
Enquanto que o ensino se baseia na apresentação da relação entre x e t,
tratando-os como contínuos, raramente, inclusive por razões tecnológicas,
serão observados registros contínuos da associação destas grandezas. Ou
seja, a forma mais comum é a observação de amostras das grandezas.

x

θ

x = 0
t = 0

x = ∆x
t = ∆t

ińıcio

fim

∆x,∆t

x = 0

Figura 2.1: Amostras de posição e tempo no experimento de Galileo.

Este é o caso, por exemplo, do famoso experimento do rolamento inclinado
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realizado por Galileo [10] que ilustramos na figura 2.1. Em termos modernos,
se o eixo x é o eixo no qual marcamos as posições da esfera que rola no sulco,
Galileo sabia apenas que a esfera rola uma distância ∆x num tempo ∆t. O
primeiro ele mediu em proporção ao tamanho total da rampa e o segundo
em proporção com a massa da água que ele coletava do início ao fim do rola-
mento. Ora, isto corresponde exatamente a conhecer apenas duas amostras
da relação x(t): x(0) = 0 e x(∆t) = ∆x – assumindo arbitrariamente que o
início ocorre quando ambos, x e t, são nulos.

Vemos que, neste experimento, seria impossível, com os instrumentos
disponíveis, ter conhecimento da relação x(t) para uma faixa contínua de t.
Desta forma, a coleta do que interpretamos como duas amostras foi necessária
pelas dificuldades tecnológicas inerentes ao experimento. O estabelecimento
da relação entre x e t contínuos só é possível a posteriori considerando que
as repetições do experimento seguem uma regra e de onde Galileo concluiu
que em qualquer rolamento x ∝ t2 e que hoje estudamos como

x = a

2 t2, (2.1)

em que a é a aceleração da esfera. A equação 2.1 é tópico certo da literatura
do ensino básico sob a denominação de equação horária do espaço para o caso
em que a velocidade e posição iniciais são nulas e estabelece uma relação entre
as duas grandezas contínuas x e t. Seu estudo dá ao aluno a impressão de
que seria trabalho fácil observar e registrar o desenvolvimento do movimento
considerando um tempo contínuo.

Caso ainda mais evidente do emprego da amostragem é feito por Newton
em suas argumentações a respeito da segunda lei de Kepler, o que o faz por
meio da figura 2.2 [11]. Nela, o estudo da trajetória de um corpo sobre ação
de uma força centrípeta (em direção a S) proporcional ao inverso do quadrado
da distância (do corpo até S) é feita por um conjunto de segmentos de reta de
A até F . Os segmentos são justamente porções descritas em tempos iguais,
o que coincide com o conceito de período de amostragem Ts.

Neste caso amostrado, as áreas varridas pelo raio num mesmo tempo coin-
cidem com os triângulos ASB, BSC, CSD etc. Pela geometria, ele prova
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Figura 2.2: Amostras de posição de corpo sobre ação de força centrípeta
proporcional ao inverso do quadrado da distância.

Fonte: Newton [11].

que estas áreas são iguais, mostrando a segunda lei de Kepler. É apenas
após esta constatação do caso amostrado que Newton propõe “aumentar a
quantidade de triângulos” de modo que a distância entre os pontos consecu-
tivos diminua, assim como diminuirá o tempo decorrido entre as amostras,
implicando no que poderíamos considerar hoje como a diminuição do período
de amostragem. Com isso, o conjunto de segmentos tende a uma curva suave
e a observação do progresso de amostras de tempo tende ao tempo contínuo.

Além do emprego da amostragem na elaboração da argumentação, observa-
se repetidamente que os registros de experimentos na Física são quase em sua
totalidade compostos de observações discretas ou amostras das grandezas en-
volvidas. Esta realidade se agravou com o emprego de aparatos tecnológicos
como o estroboscópio, câmeras e o computador digital. Sensores eletrônicos
e sinais digitalizados por meio de conversores analógico-digitais se tornaram
baratos e abundantes e uma fonte de registro de amostras nos experimentos
da Física.

Apesar da abundância do uso de observações discretas ou amostras, os
livros didáticos consultados [12–15] não tratam das características da amos-
tragem, e raramente empregam este termo atualmente difundido para des-
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crever o emprego de observações discretas. Por esta razão, nossa proposta
de sequência didática tratará de amostragem com detalhe matemático sufi-
ciente para seu uso na análise de espectro conforme apresentamos na seção
3.2. A necessidade do emprego de amostragem, além da abundância de sinais
reais amostrados, se dá pela simplificação do cálculo do espectro de Fourier
em sinais amostrados conforme vemos na seção 3.1. De fato, o cálculo do
espectro de Fourier no nível do Ensino Médio só é possível em sinais finitos
ou periódicos amostrados, situação em que se evitam o cálculo diferencial e
os somatórios infinitos.

Já em relação a noção de espectro, observamos que o caso mais comum
de sua apresentação no Ensino Médio se dá no estudo da composição da luz
visível por componentes de acordo com o comprimento de onda. Os textos
em geral associam comprimento de onda, velocidade e frequência, de sorte
que pode-se associar com facilidade os componentes de onda eletromagnética
no espectro visível à noção de espectro de frequências.

Como no espectro visível os componentes do espectro estão associados às
cores, a apresentação é facilitada, inclusive, com a possibilidade de abordar
as noções de cores primárias e de espectros de emissão e absorção que são
argumentos passíveis de demonstrações visuais e associados ao cotidiano.

Não foram observadas discussões específicas ou detalhadas a respeito da
decomposição em componentes de frequência ou de suas representações grá-
ficas nos livros didáticos consultados [12–15]. É comum que seja apresentada
a ideia de harmônicos, especialmente nos casos das cordas fixas em ambas
as extremidades e na ressonância em tubos, abertos em uma extremidade ou
em ambas.

Alguma ideia rudimentar de espectro e de componentes de frequência
é apresentada, também, em tópicos relativos às qualidades do som quando
tratando do timbre. Vários textos empregam a composição de harmônicos
na onda sonora como traço distintivo entre os timbres como se observa, por
exemplo, no livro adotado no Colégio Naval [15] que reproduzimos na figura
2.3. Ela ilustra brevemente a composição de uma onda periódica complexa
chamando a apresentação dos diversos componente de “análise”.

Encontramos resultados similares aos que queremos reproduzir apenas na
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Figura 2.3: Sinal original a) e suas componentes senoidais de b) a e).
Fonte: Doca, Biscuola e Bôas [15].

obra de Tipler e Mosca [16] dentre os textos de Física. Eles estão reproduzidos
na figura 2.4. Esta obra, porém, é indicada para o curso superior e o espectro
é apresentado como ilustrativo do timbre. Os autores trazem estes dados
em seção do livro designada “Tópicos adicionais” sob o título de “Análise e
síntese harmônicas” e indicam no texto que a ponderação da intensidade de
harmônicos é realizada pela técnica designada “análise de Fourier”, mas não
detalha como esta análise é realizada.

Figura 2.4: Análise de Fourier apresentada em Tipler e Mosca [16] em tópico
de análise de harmônicos.

Fonte: Tipler e Mosca [16].

Embora a análise de espectro não seja claramente definida nos textos tí-
picos do Ensino Médio, a ideia de componentes de frequência, sua represen-
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tação gráfica e algumas de suas consequências e conceitos derivados podem
ser observados em exercícios propostos em processos seletivos recentes, o que
passamos a analisar a seguir.

2.3.1 Análise de espectro em processos seletivos

O fato de serem observadas noções de análise de espectro em exercícios de
processos seletivos serve de evidência de que a esta ideia pode ser intuída
ou deduzida a partir dos conceitos deste nível de ensino, embora não esteja
formalizada. Esta proximidade do conceito de espectro com os conceitos do
ensino básico são delineados em detalhes na seção 3.6.1.

Nos exames, a noção de espectro de frequências aparece diretamente ou
em conceitos derivados. Como exemplo do emprego direto da noção de espec-
tro de frequências, podemos citar a questão 9 da prova da 2a fase do ITA de
2022. Ela trata do som emitido por cordas percutidas no piano e apresenta
o gráfico do espectro de frequências da figura 2.5, chamado no enunciado de
“decomposição espectral”.

Figura 2.5: Espectro de frequência no exame do ITA na 2a fase de 2022.
Fonte: ITA 2022 (2a fase).

Nenhuma descrição do que é esta decomposição espectral é dada, o que
corrobora o entendimento de que o elaborador do exercício considera que
os alunos têm conhecimento suficiente para concluir do que se trata apenas
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pelo gráfico e pela compreensão do fenômeno (estímulo de uma corda presa
nas extremidades). Como resultado, o gráfico fornecido é um exemplo muito
próximo do que desejamos que o aluno seja capaz de produzir com exatidão
a partir de amostras. Nota-se pelo gráfico não haver grande preocupação
com os valores exatos de amplitude e de frequência. Podemos considerar que
trata-se de um esboço.

Figura 2.6: Gráfico de um instantâneo da pressão × posição de uma onda
sonoral para obtenção do espectro da figura 2.7 no exame da 2a fase da
FUVEST 2005.

Fonte: FUVEST 2005 (2a fase).

Ainda dentre os exercícios que abordam diretamente o conceito de análise
de espectro, a questão 8 da prova de Física da 2a fase da FUVEST de 2005
apresenta componentes de frequência do som pela representação das inten-
sidades de três componentes senoidais e da onda resultante da superposição
por meio de um gráfico de um instantâneo de intensidade × distância repro-
duzido na figura 2.6. Pede-se no enunciado o preenchimento do gráfico da
figura 2.7 sem que seja detalhado o gráfico. Para facilitar o candidato, um
dos componentes vem preenchido no exercício (conforme se observa na figura
2.7). Quando completo, ele é o espectro de frequências da onda S também
nos moldes do que desejamos desenvolver no curso.

Como um último caso em que se observa o conceito de espectro de frequên-
cias diretamente é o da questão 19 da 2a fase do exame da UFU no processo de
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Figura 2.7: Espectro de frequências à preencher no exame da 2a fase da
FUVEST 2005.

Fonte: FUVEST 2005 (2a fase).

Figura 2.8: Espectro de frequência no exame da UFU 2021.2.
Fonte: UFU 2021.2 [17].

2021 do segundo semestre. O espectro reproduzido de [17] é dado no exame
e também o reproduzimos na figura 2.8. Neste caso, é interessante notar que
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o gráfico é extraído de um livro de Ensino Superior, e, ainda assim, o elabo-
rador da questão também considera que o aluno é capaz de compreender o
gráfico pois o mesmo não é detalhado no enunciado.

Partindo para alguns exemplos do uso de conceitos secundários, podemos
observar os conceito de resposta em frequência na questão 55 da prova azul
da 2a aplicação do ENEM em 2016. Este gráfico, reproduzido na figura 2.9,
indica a relação entre a intensidade da resposta de um sistema a um estímulo
em termos da frequência do estímulo. Uma definição formal da resposta em
frequência pode ser dada pelo módulo da razão

H(f) = Ay

Ax

entre as amplitudes das entradas e saídas do sistema, em que a entrada tem
o formato

x(t) = Ax cos(2πft + θx)

e a saída
y(t) = Ay cos(2πft + θy).

Ou seja, o efeito do sistema é apenas sobre a amplitude e a fase quando se
considera um estímulo senoidal. A razão Ay/Ax não é constante, ela depende
da frequência, o que possibilita a elaboração do gráfico |H(f)| × f que é o
que é apresentado no problema.

Podemos ver que o conceito formal de resposta em frequência não é sim-
ples. Sua apresentação costuma se dar apenas no curso superior em tópicos
de sistemas lineares, vibração, circuitos lineares, filtros etc. Dentre os cursos
que delineamos na seção 3.1, a primeira vez que este conceito costuma apa-
recer é nos cursos de Circuitos Elétricos onde a sua definição pode ser vista
em sua bibliografia típica [18–23]. Apesar disto, o elaborador explica apenas
superficialmente o significado do gráfico e exige sua compreensão ao fim do
nível médio, momento para o qual o ENEM é indicado.

Por fim, no ENEM de 2011, encontramos dois exemplos de conceitos se-
cundários, o de espectro de absorção e o de espectro de reflectância (chamado
no enunciado de curva de comportamento espectral ou assinatura espectral
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Figura 2.9: Resposta em frequência no ENEM 2016.
Fonte: ENEM 2016.

Figura 2.10: Gráfico do espectro de absorção no ENEM 2011.
Fonte: ENEM 2011.

do objeto), respectivamente nas questões 63 e 67 da prova azul. Ambos os
conceitos expressos por meio de gráficos e reproduzidos nas figuras 2.10 e
2.11. Neles, a variável independente é o comprimento de onda, de onde se
pode obter a frequência pela relação

f = c

λ
,

em que c é a velocidade de propagação da onda e λ é o comprimento de onda.
Nos enunciados destes exercícios, há explicações sobre os fenômenos com
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Figura 2.11: Curva de comportamento espectral ou assinatura espectral de
um objeto no ENEM 2011.

Fonte: ENEM 2011.

os quais eles estão relacionados, mas as características específicas dos gráficos
não são comentadas.

A tabela 2.1 resume os exemplos de exercícios e mostra que, de forma
geral, os elaboradores assumiram que as representações envolvendo compo-
nentes de frequência não precisam de explicações adicionais. A compreensão
pode ser depreendida do conhecimento prévio do aluno e da análise das ca-
racterísticas do gráfico. Fenômenos secundários como harmônicos em cordas
e em ondas sonoras e a emissão, absorção e reflexão de radiação são resu-
midas em gráficos do tipo grandeza × frequência (ou comprimento de onda)
sem grandes floreios.

Esta evidência nos auxilia a assumir que a noção de espectro, neste nível,
é relativamente intuitiva e que basta a apresentação detalhada dos procedi-
mentos para o cálculo do espectro de Fourier com a finalidade de se obter
exatidão na representação. Isto possibilitará o emprego da análise de espec-
tro como instrumento para medir frequência e para realização da análise no
domínio da frequência.
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Tabela 2.1: Resumo das características de exercícios envolvendo espectro de
frequências.

Variável

Processo Conceito Independente Dependente Detalhamento

ITA 2022
(2a fase)

espectro de
frequências
do som

frequência
em hertz

amplitude
em decibel

não

FUVEST
2005 (2a

fase)

espectro de
frequências
do som

frequência
em hertz

intensidade não

UFU 2021.2 espectro de
frequências
da radiação
térmica

frequência
sem escala

intensidade não

ENEM 2016
(2a

aplicação)

resposta em
frequência
de microfone

frequência
em hertz

intensidade
em decibel

parcial

ENEM 2011 espectro de
absorção

comprimento
de onda em
nanometro

intensidade
absorvida

não

ENEM 2011 espectro de
reflectância

comprimento
de onda em
micrometro

percentual
de radiação
refletida

não

2.4 Espectro de frequências como instrumen-
tação para medida de frequência

Consideramos até agora que a análise de espectro é importante por seu em-
prego no processamento de sinais e, portanto, para um tópico de tecnologia.
A Física era envolvida aqui apenas por ser, no ensino básico, a principal
porta para introdução de temas de tecnologia. A realização de medidas e a
instrumentação, porém, são tópicos da Física e um gráfico como o da figura
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2.5 fornece informações fundamentais a respeito de medidas de frequência do
fenômeno observado.

Este aspecto será utilizado como principal conector entre o ensino básico,
os problemas da Física e os problemas de tecnologia quando da determinação
de aplicações no formato de problemas que propomos na seção 3.7.
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Capítulo 3

Proposta de Curso de Análise
de Espectro para o Ensino
Médio

O curso que queremos propor é uma adaptação dos cursos de processamento
digital de sinais realizados no Ensino Superior, a ser introduzido por meio de
problemas da Física. Por esta razão, vamos partir de uma análise breve de
como estes cursos são apresentados em seu nível típico e realizar, ao longo
deste capítulo, as adaptações necessárias para torná-lo apresentável no nível
médio. Vamos, também, delinear os prerrequisitos específicos para um curso
desta natureza de modo a facilitar o seu encaixe nas instituições que desejem
aplicá-lo.

3.1 Cursos com amostragem e análise de es-
pectro no ensino regular

Análise de espectro e amostragem são tópicos apresentados formalmente em
cursos das engenharias eletrônica (ou elétrica, de forma mais geral), da com-
putação, de comunicações (ou telecomunicações), de automação e controle,
biomédica etc. em disciplinas de análise e processamento de sinais e siste-
mas lineares e, portanto, apenas no Ensino Superior. Costuma ser tópico de
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Tabela 3.1: Exemplos de cursos e suas referências bibliográficas.

IE Curso Código Disciplina Referências

MIT Engenharia Elé-
trica

6.003 Signals and Systems [27]

LSJU Engenharia Elé-
trica

EE 102A Signals and Systems I [27]

EPFL Engenharia Ele-
trônica

EE-205 Signaux et systèmes [27]

USP Eng. de Teleco-
municações e Con-
trole

PTC3007 Sistemas e Sinais [27]

USP Eng. Eletrônica e
da Computação

SEL0383 Sinais e Sistemas em Enge-
nharia Elétrica

[27–29]

UFAM Eng. Eletrônica FTL023 Sinais e Sistemas [28–33]

UFRGS Eng. de Energia ENG10017 Sistemas e Sinais [27, 28, 30,
33,34]

componente curricular obrigatório nestes cursos.
Reunimos apenas alguns exemplos de disciplinas deste tópico oferecidas

em instituições do Brasil e do exterior na tabela 3.1. Elas foram selecionadas
tomando por base os resultados do ENADE [24], e os rankings QS [25] e
RUF [26] e para os quais foram encontradas páginas ou documentos como
currículos e ementas contendo a bibliografia sugerida, que também é apresen-
tada na tabela. Ala nos auxilia a estabelecer a obra de Oppenheim, Willsky
e Nawab [27] como bom representante do tópico.

Nela, observamos que os principais resultados que desejamos adaptar ao
Ensino Médio estão detalhadamente demonstrados e aplicados por meio do
uso do cálculo diferencial e integral. As noções de sinais e sistemas linea-
res são introduzidos nos dois capítulos iniciais, a série de Fourier de tempo
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discreto é apresentada na seção 3.6 em sua forma exponencial e a amostra-
gem está descrita no seu Capítulo 7. Isto significa que os objetivos do curso
que desenvolvemos para Ensino Médio neste trabalho estão completamente
contidos em um curso de análise de sistemas lineares baseados nessa obra.

Os cursos de engenharia são subdivididos em conteúdos básicos, profis-
sionais e específicos e os tópicos de processamento de sinais são típicos da
parte profissional ou específica [35]. É comum que, quando cursando discipli-
nas referentes a processamento de sinais, principalmente de processamento
digital de sinais, o aluno já esteja familiarizado com a série de Fourier (SF),
válida para funções periódicas ou limitadas, de variável independente contí-
nua e resultado de seus estudos de Matemática ou Cálculo da parte básica
da formação.

Ainda nos cursos de Cálculo e motivados pela solução de equações di-
ferenciais no domínio s por meio de equações algébricas, o aluno típico do
Ensino Superior dessa área também tem contato com a transformada de La-
place (TL). Esta transformada, com um domínio amplo, já que s ∈ C, pode
ser interpretada como o cálculo de componentes de frequência se se restringe
o domínio de s ao eixo imaginário, ou seja, se

s = jω

para ω ∈ R.
Apesar das interpretações tanto a série de Fourier como da transformada

de Laplace fornecerem informações relativas ao espectro de sinais, o foco
no estudo destas entidades matemáticas nos cursos dos conteúdos básicos,
conforme revela análise de considerável bibliografia dos cursos iniciais de
Cálculo e Equações Diferenciais [36–43], é a ampliação de possibilidades de
manipulação algébrica para a solução de problemas já representados no for-
mato matemático, e não na capacidade que as séries ou transformadas têm
de representar componentes de frequência.

Guidorizzi [36] desenvolve a série apenas para frequência angular unitária,
ou com período 2π, com enfoque na convergência da série e abordando apenas
a solução de equações diferenciais lineares de 2a ordem em um apêndice. Já
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a transformada de Laplace é apresentada também para solução de equações
diferenciais e como exemplo de aplicação do cálculo de integrais. Hass, Heil e
Weir [39] e Spivak [42] comentam em seus textos que consideram as séries de
Fourier como “cálculo avançado” e não tratam da transformada de Laplace
enquanto Stewart [37, 38] apresenta a série de Fourier e de Laplace apenas
em exercícios de aplicação de integrais.

Esta opção curricular e de abordagem dos textos de Matemática superior
introdutório é explícita no delineamento dado por Boyce, Diprima e Meade
[43], por exemplo, após a exposição da série de Fourier de tempo contínuo,
para o objetivo de sua obra:

Neste livro, as séries de Fourier aparecem, principalmente, como
um meio para resolver determinados problemas em equações dife-
renciais parciais. No entanto, tais séries têm uma aplicação muito
mais ampla em ciência e Engenharia, e, em geral, são ferramentas
valiosas na investigação de fenômenos periódicos. Um problema
básico consiste em decompor um sinal de entrada em seus compo-
nentes harmônicos, o que corresponde a construir sua represen-
tação em série de Fourier. Em algumas bandas de frequência, os
termos separados correspondem a cores diferentes ou a tons au-
díveis diferentes. O módulo do coeficiente determina a amplitude
de cada componente. Este processo é conhecido como análise
espectral [43, seção 10.2].

Os autores reconhecem a importância tecnológica da série de Fourier, ex-
plicitando o recurso da análise de espectro, mas optam por explorar apenas
os aspectos operacionais da mesma. É importante observar que esta última
obra já trata de um tópico específico, as equações diferenciais, e pode já não
ser considerado um texto introdutório de Cálculo.

É comum o emprego da série de Fourier de tempo contínuo e da transfor-
mada de Laplace com interpretações de espectro de frequências nos cursos de
circuitos elétricos que precedem ou são concomitantes aos cursos de sistemas
lineares e processamentos de sinais de tempo contínuo. Isto porque os cir-
cuitos lineares estão entre os mais simples e abundantes sistemas capazes de
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realizar filtragem, fenômeno cuja interpretação emprega a noção de espectro.
A bibliografia típica das disciplinas de circuitos elétricos [18–23] contempla
capítulos para análise de circuitos considerando estímulos representados por
sua série de Fourier ou por sua transformada de Laplace e os conceitos de
função de transferência e de resposta em frequência como representantes dos
circuitos lineares.

O estudo de sinais amostrados e sistemas digitais de tempo discreto con-
cluem estes estudos. A figura 3.1 resume esta sequência típica das trilhas
de aprendizado nos cursos de engenharia em que os tópicos de amostragem
e análise de espectro são relevantes. Observa-se que a análise de sistemas
digitais figura ao fim do curso, depois de adquirida maturidade na análise de
sistemas de tempo contínuo.

3.1.1 Abordagem da amostragem no Ensino Superior

Apesar da apresentação formal tardia nos cursos de graduação, os sinais digi-
tais, em função da miniaturização e redução dos custos proporcionados pela
eletrônica digital, se tornaram abundantes e de fácil emprego. Quando se
soma o baixo custo, a facilidade de realizar projetos por meio de soluções se-
quenciais programadas e os aspectos teóricos simplificados dos sinais digitais
com relação aos analógicos, é de se estranhar que os cursos de processamento
de sinais mantenham uma trilha que privilegia a exposição de sinais analó-
gicos de tempo contínuo com relação aos sinais digitais, uma vez que estes
últimos se tornaram mais baratos e mais fáceis de manipular.

Uma das consequências é que parte das simplificações promovidas pelo
trabalho com tempo discreto não são aproveitadas nestes cursos, principal-
mente nas demonstrações. Como se espera um aluno com uma base mate-
mática sólida, potencialmente experiente em cálculo diferencial e integral, na
solução de equações diferenciais, e até mesmo com aptidão em cálculo com
variáveis complexas, não é necessário recorrer às simplificações na aborda-
gem. Apresenta-se, então, a amostragem com um altíssimo nível de abstração
– o produto entre um trem de impulsos e a função contínua original. Mate-
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conteúdo
básico

conteúdo profissional e
espećıfico

disciplinas de
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disciplinas de
análise de
circuitos
lineares
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sinais e sistemas
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série de Fourier
de Tempo
cont́ınuo

transformada de Laplace

amostragem

série de Fourier de tempo
discreto

transformadas de Fourier

solução de
problemas

matemáticos

disciplinas de
análise e

processamento de
sinais digitais

análise de espectro

análise de sistemas lineares

análise de
circuitos

Fase do curso

Disciplinas

Ferramentas matemáticas

Objetivos e abordagens

desenvolvimento do curso de engenharia

análise de sistemas digitais

Figura 3.1: Esquema do desenvolvimento do estudo de amostragem e análise
de espectro no Ensino Superior.

32



Capítulo 3. Proposta de Curso de Análise de Espectro para o Ensino Médio
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x(−2Ts)

Figura 3.2: Representação teórica da amostragem no tempo.

maticamente, este processo é expresso por

xa(t) = x(t)pδ(t)

em que
pδ(t) =

∞∑

n=−∞
δ(t − nTs)

e xa(t) é a versão amostrada de x(t) com período de amostragem Ts.
A figura 3.2 ilustra a obtenção de xa(t) a partir de um x(t) genérico e

de pδ(t). Nela, esboçamos o comprimento das setas que convencionam a
representação da função δ na proporção da intensidade do impulso. Veja
que resta para xa(t), com relação a x(t), apenas informação relativa aos
pontos em que t = nTs, os instantes de amostragem, contida na intensidade
dos impulsos localizados nestes instantes de tempo. Qualquer informação de
x(t) fora dos instantes de amostragem são perdidas em xa(t).

Já a figura 3.3 ilustra os espectros de x(t) e pδ(t) dados respectivamente
por X(f) e Pδ(f) e obtidos pela transformada de Fourier (TF) destes sinais.
Consideramos que X(f) tem banda limitada em fmáx, ou seja, x(t) não car-
rega componentes de frequência para qualquer frequência maior do que fmáx,
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f

Pδ(f)

fs 2fs−2fs −fs

1/Ts

f

X(f)

f

Xa(f)

fmáx−fmáx

Xmáx

Xmáx/Ts

fmáx−fmáx fs 2fs−2fs −fs

Figura 3.3: Representação teórica da amostragem na frequência.

de modo que X(f) = 0 para |f | > fmáx. Já o espectro do trem de pulsos
unitários com pulsos a cada Ts, é dado também por um trem de impulsos de
intensidade 1/Ts e centrado em múltiplos inteiros de fs = 1/Ts, a frequência
de amostragem. Analiticamente,

Pδ(f) = 1
Ts

∞∑

k=−∞
δ(f − kfs). (3.1)

Pelas propriedade da convolução, se

y(t) = x1(t)x2(t) TF⇔ Y (f) = X1(f) ∗ X2(f), (3.2)

ou seja, a multiplicação no tempo resulta na convolução na frequência. Desta
forma, Xa(f) é dado pela convolução entre X(f) e Pδ(f), conforme também
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apresentado na figura 3.3. Analiticamente, temos

Xa(f) = X(f) ∗ Pδ(f)

=
∫ ∞

−∞
X(f)Pδ(f − ϕ)dϕ

= 1
Ts

∫ ∞

−∞
X(f)

∞∑

k=−∞
δ(f − ϕ − kfs)dϕ

= 1
Ts

∞∑

k=−∞

∫ ∞

−∞
X(f)δ(f − ϕ − kfs)dϕ

Xa(f) = 1
Ts

∞∑

k=−∞
X(f − kfs)

Ou seja, Xa(f) é dado pela superposição de várias repetições de X(f) esca-
ladas em 1/Ts e deslocadas de múltiplos inteiros de fs, assim como mostrado
na figura 3.3. Ora, se fmáx < fs/2, não há coincidência entre os trechos não-
nulos das várias repetições de X(f), e, por esta razão, pode-se dizer que ao
observar o espectro de Xa(f) entre −fs/2 e fs/2, é possível constatar a pre-
servação da “informação” do espectro de X(f). Idealmente, isto significa que
se poderia recuperar x(t) pela filtragem de xa(t) com um filtro passa-baixas
com frequência de corte em fs/2.

Esta argumentação é conhecida como o Teorema de Nyquist – se x(t) é
limitado na frequência fmáx, e ele é amostrado com frequência de amostra-
gem fs, com fmáx < fs/2, não haverá perda de informação no processo de
amostragem e x(t) pode ser recuperado de sua versão amostrada por meio de
filtragem. É um tópico fundamental no estudo de sistemas digitais e abor-
dado em profundidade na literatura e em especial no Capítulo 7 da obra de
Oppenheim, Willsky e Nawab [27], referência para este tópico como vimos
na tabela 3.1.

Este método de representação da amostragem traz uma elegância aos re-
sultados uma vez que por ele é possível determinar o espectro de um sinal
amostrado pela propriedade da convolução e com esta metodologia o Teo-
rema da Amostragem é facilmente verificável. Vemos, porém, que se trata
de um caminho matematicamente pesado, mesmo para o aluno do Ensino
Superior, empregando a função impulso, uma função generalizada, integrais
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impróprias, somatórios infinitos e convolução.

3.1.2 Abordagem da análise de espectro no Ensino Su-
perior

O caminho para representação do espectro no Ensino Superior também não
considera uma trilha que vá dos resultados mais simples ao resultado mais
complexo já que se costuma contar com uma formação comum básica entre
todas as engenharias que garante ao aluno uma base sólida em Matemática.
Não é necessário se preocupar com o nível de complexidade da representação
matemática do espectro.

Como consequência, o caminho típico da apresentação das representações
em frequência costuma figurar dentre os conteúdos básicos com a transfor-
mada de Laplace (TL) e a série de Fourier (SF) e em disciplinas iniciais de
análise de circuitos lineares com a transformada de Fourier de tempo contí-
nuo (TFTC). Outras representações em frequência como a série de Fourier
de tempo discreto (SFTD) e a transformada de Fourier de tempo discreto
(TFTD) ficam reservadas às disciplinas de processamento de sinais como as
que listamos na tabelas 3.1.

A tabela 3.2 resume as principais representações em frequência estudadas
num curso típico de engenharia com processamento de sinais. Empregamos
a terminologia convencional que designa a obtenção dos componentes (ou
coeficientes) representantes da frequência a partir do sinal no tempo como a
relação de análise e a que constrói o sinal no tempo a partir de seus compo-
nentes de frequência como a de síntese.

É importante enfatizar a ocorrência de operações elaboradas em ambas
as relações nas representações mais comuns como a TL, SF e TFTC. Há uso
de integral, inclusive impróprias ou o emprego de somatórios infinitos em
todas elas. O caso mais crítico é a síntese da TL que consiste no emprego de
integral no plano complexo [27,44], não é apresentada nos cursos mais básicos
e, com frequência, nem mesmo nos de processamento de sinais. Para evitar
este complicante, a inversão do domínio s para o domínio t costuma ser feita
pelo uso de propriedades até a identificação por inspeção de transformadas
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conhecidas com o auxílio de tabelas.
Apesar de não ser tão comum, a TFTD emprega somatório infinito na

análise e integral na síntese, de sorte que a amostragem, neste caso, não traz
grandes vantagens computacionais.

Ainda na tabela 3.2, observamos que a série de Fourier de tempo dis-
creto, aplicável à descrição de sinais amostrados limitados ou periódicos no
tempo, tem como representação uma quantidade finita de componentes de
frequência. Os cálculos necessários tanto para a análise como para a síntese
são dados por somatórios finitos. Computacionalmente é o caso mais simples
dentre as representações em frequência listadas.

Embora possa parecer que o emprego de sinais limitados ou periódicos
seja demasiadamente restritivo com relação ao universo de sinais, isto não é
verdade quando se considera que:

• os sinais de tempo discreto, amostrados, são os sinais típicos nos siste-
mas digitais modernos;

• os sistemas digitais abundam devido à diminuição no custo e a minia-
turização; e

• a coleta de dados num sistema digital, num experimento etc. é sempre
limitada no tempo (tem início e tem fim) ou são limitadas (quando a va-
riável independente não é o tempo) devido a incapacidade de realização
de variações até o infinito nas grandezas observadas em experimentos
reais.

Fica claro, na verdade, que os sinais discretos limitados compreendem a maior
parte dos sinais ou dos registros de dados nas ciências ou em aplicações
tecnológicas.

Por esta razão, destacamos a relevância de propor a inversão das trilhas
típicas do estudo da análise de espectro, privilegiando a antecipação do estudo
sobre grandezas amostradas e a vantagem que o curso que propomos pode
representar. Desta forma, nosso interesse se volta para a adaptação da SFTD
ao nível médio.
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Tabela 3.2: Representações em frequência típicas no Ensino Superior.
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3.2 Adaptação das noções de amostragem para
o Ensino Médio

Como a representação em frequência mais simples é a que emprega tempo
discreto, torna-se necessário o emprego de amostragem para o estudo da
análise de Fourier no nível do Ensino Médio. Mais do que uma simples
técnica, ela costuma ser uma necessidade quando se trata da observação e
registro de grandezas como discutimos na seção 2.3, ainda mais por meio de
instrumentação eletrônica.

As tecnologias digitais e o computador impulsionaram o registro de gran-
dezas por meio de amostras. Exceto quando empregando álgebra simbólica,
que não se aplica a dados amostrados, todo o funcionamento do computador
se baseia em grandezas quantizadas e amostradas.

Tabela 3.3: Conceitos de amostragem e abordagem de ensino

Conceito Abordagem

Noção de
amostragem

Recorrer à noção intuitiva e aos usos típicos. Apresen-
tação da terminologia. Apresentação de exemplos em
geral. Construção de gráficos em computador. Variação
do período de amostragem e seu efeito. Observação qua-
litativa de que grande quantidade de amostras é difícil
de distinguir do caso contínuo. Apresentação do exem-
plo específico do áudio digital.

Representação
matemática da
amostragem

Limitar a apresentação ao caso mais simples de taxa
de amostragem fixa em que a variável independente t é
amostrada como t = nTs. Apresentar a notação x[n] e a
noção de frequência angular normalizada.

Teorema de
Nyquist

Demonstração pela lógica necessária para evitar repre-
sentações ambíguas de sinais senoidais de frequências
distintas. Verificação gráfica da ocorrência da ambi-
guidade. Demonstração analítica por trigonometria da
relação de ambiguidade.

Considerando o alto nível de complexidade da apresentação da amostra-
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gem no nível superior, é necessário elaborar uma abordagem inédita ade-
quada ao nível médio. Para isso, resumimos na tabela 3.3 alguns conceitos
fundamentais para emprego da amostragem a partir dos conceitos de domínio
do aluno e a abordagem que vamos desenvolver para consolidar o uso desta
técnica.

Conforme veremos no Capítulo 4, a noção de amostragem é bem conso-
lidada no senso comum do aluno nos últimos anos do Ensino Médio. Ele
já a empregou tanto na Matemática, no esboço de gráficos, por exemplo,
quando se recorre a marcação de amostras do gráfico antes do traçado con-
tínuo aproximado à mão livre, quanto em diversos casos da Física. Nesta
última matéria, é comum a apresentação de dados na forma de amostras,
por vezes tabeladas, para o estudo dos diversos fenômenos. Se o aluno teve
oportunidade de realizar atividades laboratoriais, é ainda mais provável que
ele tenha colhido amostras de grandezas.

Tabela 3.4: Amostras de pontos notáveis de y = x3 − 3x2 − 144x + 432.

x y tipo

−12 0 raíz

−6 972 máximo

0 432 interseção com eixo y

3 0 raíz

8 −400 mínimo

12 0 raíz

Pode-se propor, então, atividades progressivas com elaboração de gráficos
a partir de pontos notáveis (amostras). Para a função, y = x3 − 3x2 −
144x+432, por exemplo, fornecemos 7 amostras de pontos notáveis na tabela
3.4. Mesmo sem grandes conhecimentos a respeito de cúbicas, um aluno
de Ensino Médio pode elaborar um esboço do seu gráfico a mão livre a
partir destas amostras tal como ilustrado no gráfico superior da figura 3.4.
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y

x

Figura 3.4: Esboço a mão livre (superior) e gráfico elaborado por computador
a partir de 99 segmentos de reta ou 100 amostras (inferior).

Embora imperfeito, o esboço com estas amostras não difere demasiadamente
no comportamento geral do gráfico mais preciso elaborado no computador e
também exibido na figura 3.4 em sua parte inferior.

Neste simples exemplo, uma série de questões relacionadas à amostragem
podem ser discutidas:

• O próprio computador costuma construir gráficos por amostras, o da
figura 3.4, por exemplo, é composto de 100 amostras ligadas por seg-
mentos de reta. A quantidade de amostras é tão grande que não é
possível identificar visualmente o caráter amostrado.

• A própria exibição em telas e impressão de mídias digitais é feita por
amostras, designadas pixels.

• O efeito no traçado a mão dos gráficos realizado sem que todos os
pontos notáveis fossem fornecidos.
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Figura 3.5: Zoom sobre gráfico de um áudio gravado no Audacity detalha
cada amostra.

• O uso dos termos amostra, período de amostragem e frequência de
amostragem.

• Os limites nas quantidades de amostras para que se possa representar
o comportamento aproximado da função.

Nesta fase, a introdução de um recurso computacional para a elaboração de
gráficos permite a exploração das nuances da amostragem. Recomendamos o
uso do Python [45] com os recursos básicos disponíveis na instalação padrão
e as bibliotecas NumPy e Matplotlib. Espera-se que o aluno compreenda o
conceito de amostragem e conclua que a amostragem não tem capacidade
ilimitada de representar o comportamento de uma função, principalmente se
a quantidade de amostras for muito pequena para expressar a variação da
função em um trecho.

Para os exercícios específicos que pretendemos desenvolver, é útil apre-
sentar áudios digitais diversos em um software que permita a distinção das
amostras. Isto é possível, por exemplo, no Audacity [46], software livre e
de código aberto para edição de áudio conforme ilustramos na figura 3.5.
Cada amostra é isoladamente apresentada neste tipo de gráfico chamado de
gráfico de ramos (stem) amplamente empregado na comunidade acadêmica
e comercial para explicitar o caráter amostrado em um gráfico.

Apesar das nuances e detalhes do emprego da amostragem, sua represen-
tação matemática neste nível é muito simples. Se a variável independente
real de um determinado problema é t, sua amostragem pode ser representada
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pela troca da variável t ∈ R pela variável n ∈ Z pela substituição

t = nTs, (3.3)

em que a constante Ts é definida como o período de amostragem, dado em
unidades de tempo por amostra, e define um intervalo regular entre as coletas
de amostra sobre a variável independente. Como amostra pode ser conside-
rado um adimensional, Ts pode ser medido em unidades de tempo – segundos
no SI. Seu recíproco,

fs = 1
Ts

, (3.4)

é a frequência de amostragem dada em amostras por unidade de tempo, ou
pelo recíproco da unidade de tempo – hertz no SI. Uma unidade comercial
comum para esta medida é sps (sigla de samples per second), do inglês para
amostras por segundo, e seus múltiplos decimais ksps e Msps.

Com a substituição definida na equação 3.3, nos interessará num sinal
x(t), apenas os casos x(nTs), que convencionaremos chamar

x(nTs) ≡ x[n], (3.5)

em que os colchetes são empregados para designar que a variável indepen-
dente é inteira e que x é um sinal amostrado.

Com a substituição t = nTs sobre uma função trigonométrica represen-
tante de um movimento harmônico simples de frequência f = 1/T como
em

cos(2πft),

obtemos
cos(2πft) = cos(2πfTsn)

em que o multiplicador 2πfTs = 2πf/fs = 2πTs/T é um adimensional, ou,
considerando os adimensionais radiano e amostra, uma frequência angular
dada em radianos por amostra, definida como

w ≡ 2πfTs = 2πf/fs = 2πTs/T (3.6)
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e designada frequência angula normalizada, já que ela é normalizada por um
parâmetro dimensional associado à amostragem.

3.2.1 Ambiguidade da amostragem de senoides e o Te-
orema de Nyquist no Ensino Médio

Pela abordagem até aqui, fica bem estabelecida a noção de amostragem e
sua representação matemática. Resta o estudo das restrições da amostragem
que vimos na seção 3.1.2 ser resolvida pelo teorema de Nyquist ao custo de
uma demonstração demasiadamente avançada para o nível médio. Por esta
razão, vamos observar o efeito da amostragem sobre o cosseno cos(2πft),
supondo que ele seja a componente de um sinal qualquer. Ao amostrar esse
componente, pela substituição t = nTs, obtemos

cos(2πfnTs) = cos(−2πfnTs)
= cos(−2πfnTs + 2πn)

= cos
[
2π
( 1

Ts

− f
)

nTs

]

cos(2πfnTs) = cos [2π (fs − f) nTs] .

Ou seja, apenas pelo emprego da paridade e periodicidade da função cosseno
e por manipulação algébrica, conclui-se que

cos(2πfnTs) = cos(2πf ′t) = cos [2π (fs − f) nTs] , (3.7)

em que a frequência f ′ = fs − f se apresenta igual a frequência f quando
amostrada. Isto significa que ao observar amostras de cossenoides de frequên-
cia f ou f ′, elas se apresentam iguais e há, portanto, uma ambiguidade na
distinção entre as amostragens destas duas frequências. Tendo conhecimento
apenas das amostras, o que se observa é uma oscilação na frequência f ou
f ′?

A solução deste problema de ambiguidade também leva ao teorema de
Nyquist. A figura 3.6 mostra a localização de f e f ′ quando f é pequeno.
Vamos considerar que em um sinal de interesse não poderiam haver, como
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fs0 f fs

2

f −f

fs − f

frequências da
componente
senoidal

f ′

=

Figura 3.6: Localização no eixo de frequências de um componente f qualquer
e de sua contraparte f ′ a medida que o valor de f cresce.

componentes, as frequências f e f ′ ao mesmo tempo, pois elas teriam a
mesma representação, e, certamente, o sinal amostrado não seria uma boa
representação do sinal original.

Desta forma, podemos propor a noção de limitação em banda para um
sinal. Um sinal limitado teria componentes de frequência até um valor má-
ximo, que vamos identificar como fmáx. Dentre f e f ′, apenas f poderia
existir como componente nos sinais sob estudo, pois é uma frequência menor
e que estaria dentro do limite de fmáx. A frequência ambígua, f ′, deveria ser,
com certeza, maior do que fmáx.

Ora, pela figura 3.6 observamos que a medida que f cresce partindo da
frequência 0 e sua contraparte f ′ diminui a partir de fs, a região ocupada
por possíveis valores de f e possíveis valores de f ′ atinge um ponto limítrofe
em fs/2. Assim, se houver garantia de que qualquer componente de um sinal
tem frequência máxima fmáx < fs/2, garantimos que apenas f precisará ser
representada, sua contraparte f ′, estaria fora da região limitada do espectro
do sinal e não haveria ambiguidade na representação das componentes de
frequência.

Este resultado, sugerido pela eliminação da ambiguidade na representação
de cossenoides na forma cos(2πft) amostrados com frequência de amostragem
fs, é exatamente o teorema de Nyquist. Como ele pode ser demonstrado
apenas por propriedades de trigonometria e argumentação, ele é mais viável
para apresentação no Ensino Médio.

Para os alunos mais detalhistas, pode-se observar que o mesmo raciocínio
pode ser desenvolvido considerando que o componente em questão é tomado
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pela função seno, caso em que se encontraria

sen(2πfnTs) = − sen(2πf ′t) = − sen [2π (fs − f) nTs] . (3.8)

Aqui seria necessário argumentar que nossa intenção é ponderar os compo-
nentes de frequência por meio de coeficientes, e, por esta razão, sen(2πfnTs) =
− sen(2πf ′t) diferem apenas no sinal do coeficiente e também seriam conside-
rados ambíguos levando ao mesmo resultado do teorema de Nyquist, afinal,
as funções seno e cosseno diferem apenas na fase.

Como exercício complementar, e ainda considerando o emprego de ferra-
mentas de elaboração de gráfico, a visualização dos gráficos das cossenoides
ambíguas é um bom argumento para esclarecer o problema da representação.
Como um caso específico, consideremos a amostragem com Ts = 5 ms que
equivale a fs = 200 Hz e um componente com frequência f = 80 Hz. Esta
frequência está abaixo de fs/2 = 100 Hz e, portanto, seria uma frequência
válida para ser representada nesta taxa de amostragem. Sua contraparte,
f ′ = fs − f = 120 Hz teria a mesma representação que f . Ao fazer o gráfico
da figura 3.7 de f (preto contínuo) junto ao de f ′ (vermelho tracejado) ao
longo de dois períodos de f ou três de f ′, vemos que, nesta região, se obtém
5 amostras que coincidem perfeitamente entre cos(2π80t) e cos(2π120t). As
amostras de f são tomadas no gráfico do tipo stem com um ramo amarelo e
as de f ′ com um ramo verde tracejado, de modo que o que se observa, devido
a coincidência das amostras, são ramos listrados em verde e amarelo.

É importante observar que 120 Hz é um sinal com variação rápida demais
para que seja representado com amostragem a 200 Hz, o que se observa pela
perda de um trecho importante de sua variação que é o segundo vale do
gráfico. Pareceria muito mais intuitivo tentar traçar a senoide de 80 Hz sobre
as amostras dadas do que a de 120 Hz.

Outra questão importante mas mais aprofundada é observar que existe,
na verdade, uma infinidade de frequências ambíguas com relação a 0 ≤ f ≤
fs/2. Elas são todas as frequências distantes de f com relação a qualquer
frequência no formato mfs, para qualquer m ∈ Z. Nenhuma delas deve estar
presente em um sinal cujas componentes estejam garantidas estar limitadas
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Figura 3.7: Gráfico ilustrativo da coincidência entre cossenoides de 80 e
120 Hz quando amostrados a 5 ms.

a fmáx < fs/2.
Com estas observações, conseguimos concluir os conceitos propostos na

tabela 3.3 suficientes para estabelecer a noção, a representação matemática
e as limitações da amostragem num nível de Ensino Médio.

3.3 Adaptação da série de Fourier para o En-
sino Médio

Um sinal ou função de tempo discreto x[n] que seja periódico com período
N ou limitado com N amostras tem, nas obras de Ensino Superior, comu-
mente, a definição de sua série de Fourier de tempo discreto em termos de
exponenciais complexas no formato

x[n] =
∑

k∈IN

Ckej 2π
N

kn. (3.9)

Nestas expressões, três generalidades costumam ser empregadas. A pri-
meira é que a variável k que faz o percurso pelas diferentes frequências dis-
cretas pode estar em um subconjunto qualquer IN de N números inteiros
consecutivos. Ela surge da periodicidade da exponencial complexa expressa
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como
ej 2π

N
kn = ej 2π

N
(k+mN)n

para qualquer m ∈ Z. Isto significa que são necessários apenas N valores
consecutivos de k para cobrir todas as exponenciais complexas distintas com
argumento na forma dada. Ao se escolher um conjunto com N números
inteiros quaisquer, ganha-se em liberdade e generalidade mas se perde no
significado da variável k. Podemos fazer k corresponder exatamente às ordens
dos harmônicos, dando-lhe significado, fazendo 0 ≤ k ≤ N −1 ou −(⌈N/2⌉−
1) ≤ k ≤ ⌊N/2⌋, ou seja, forçando o uso de

IN = IN0 = {0, 1, . . . , N − 2, N − 1}

ou

IN = INS = {−(⌈N/2⌉ − 1), −(⌈N/2⌉ − 2), . . . , ⌊N/2⌋ − 1, ⌊N/2⌋}.

O intervalo IN0 parte do harmônico 0, atribuído à exponencial ej 2π
N

·0·n =
1, que é o componente constante, e segue para o 1o harmônico ej 2π

N
·1·n =

cos(2π
N

· 1 · n) + j sen(2π
N

· 1 · n), associado a frequência angular normalizada
fundamental

w0 = w1 = 2π

N
.

Já o intervalo INS é aproximadamente simétrico com relação à k = 0. Ele
não é exatamente simétrico pois quando N é par, há um valor a mais para
k > 0, que é aquele em que k = N/2, do que há para k < 0. Com estes
intervalos, escrevemos

x[n] =
N−1∑

k=0
Ckej 2π

N
kn, (3.10)

ou

x[n] =
⌊N/2⌋∑

k=−(⌈N/2⌉−1)
Ckej 2π

N
kn. (3.11)

Esta última expressão pode ser reescrita de forma simplificada para cada caso
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da paridade de N , resultando em

x[n] =





⌊N/2⌋∑

k=−⌊N/2⌋
Ckej 2π

N
kn, para N ímpar

N/2−1∑

k=−(N/2−1)
Ckej 2π

N
kn + CN/2e

jπn, para N par
, (3.12)

ficando evidente o termo não simétrico do caso par.
A segunda generalidade é o emprego de um coeficiente Ck complexo e

a última é o uso de exponenciais complexas. Ambas têm a finalidade de
obter uma função trigonométrica qualquer contemplando as características de
frequência e fase quando se considera a interação entre o coeficiente complexo
Ck e a função a exponencial complexa ej 2π

N
kn.

O uso de números complexos pode ser dispensado pois, se x[n] é real, ele
deve ser igual ao seu complexo conjugado, ou seja,

x[n] = x∗[n].

Utilizando a expressão para x[n] para N par da equação 3.12 que contém
mais complicantes, obtemos

N/2−1∑

k=−(N/2−1)
Ckej 2π

N
kn + CN/2e

jπn =
N/2−1∑

k=−(N/2−1)
C∗

ke−j 2π
N

kn + C∗
N/2e

−jπn.

Mudando a variável k → −k no somatório do membro direito, e desenvol-
vendo ejπn = e−jπn = cos(πn),

N/2−1∑

k=−(N/2−1)
Ckej 2π

N
kn + CN/2 cos(πn) =

N/2−1∑

k=−(N/2−1)
C∗

−kej 2π
N

kn + C∗
N/2 cos(πn),

que, pela ortogonalidade de ej 2π
N

kn para quaisquer valores de k num intervalo
de comprimento N , implicam

Ck = C∗
−k. (3.13)
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Considerando
Ck = Ak + jBk, (3.14)

a equação 3.13 implicará em Re{Ck} = Ak par com k e Im{Ck} = Bk ímpar
com essa variável, ou seja

A−k = Ak, e (3.15)
B−k = −Bk. (3.16)

Retomando a expressão para x[n] para N par da equação 3.12, podemos
agora desenvolver

x[n] =
N/2−1∑

k=−(N/2−1)
Ckej 2π

N
kn + CN/2e

jπn

=
−1∑

k=−(N/2−1)
Ckej 2π

N
kn + C0 +

N/2−1∑

k=1
Ckej 2π

N
kn + CN/2e

jπn.

Fazendo, novamente, a mudança de variável k → −k apenas no primeiro
somatório, teremos

x[n] = C0 +
N/2−1∑

k=1
C−ke−j 2π

N
kn +

N/2−1∑

k=1
Ckej 2π

N
kn + CN/2e

jπn

= C0 +
N/2−1∑

k=1

[
C−ke−j 2π

N
kn + Ckej 2π

N
kn
]

+ CN/2e
jπn

= C0 +
N/2−1∑

k=1

{
(Ak − jBk)

[
cos

(2π

N
kn
)

− j sen
(2π

N
kn
)]

+(Ak + jBk)
[
cos

(2π

N
kn
)

+ j sen
(2π

N
kn
)]}

+ CN/2 cos(πn)

x[n] = C0 +
N/2−1∑

k=1

[
2Ak cos

(2π

N
kn
)

− 2Bk sen
(2π

N
kn
)]

+ CN/2 cos(πn).

(3.17)

Desta última expressão, podemos ver que como x[n] ∈ R, tanto C0 como
CN/2 devem ser reais pois a expressão no somatório é real. Podemos concluir
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que

C0 = A0, (3.18)
B0 = 0, (3.19)

CN/2 = AN/2, e (3.20)
BN/2 = 0. (3.21)

Podemos observar que os termos e funções da equação 3.17 já estão ade-
quadas ao Ensino Médio, uma vez que todos os valores são reais ou inteiros,
o único operador utilizado é o somatório e as únicas funções empregadas são
as trigonométricas. Todas essas entidades e ferramentas são parte dos cur-
rículos comuns até o Ensino Médio e, em especial, do currículo do Colégio
Naval para o qual nosso curso será direcionado [9].

Podemos agora determinar os coeficientes A0, 2Ak, −2Bk e AN/2 a partir
do coeficiente complexo Ck dado nos livros de Ensino Superior por

Ck = 1
N

∑

n∈IN

x[n]e−j 2π
N

kn. (3.22)

Ao desenvolvê-la e adotando IN = IN0, teremos

Ck = 1
N

N−1∑

n=0
x[n]

[
cos

(2π

N
kn
)

− j sen
(2π

N
kn
)]

= 1
N

N−1∑

n=0
x[n] cos

(2π

N
kn
)

− j
1
N

N−1∑

n=0
x[n] sen

(2π

N
kn
)

,

de onde se obtém pela separação das partes real e imaginária

Ak = 1
N

N−1∑

n=0
x[n] cos

(2π

N
kn
)

, e (3.23)

Bk = − 1
N

N−1∑

n=0
x[n] sen

(2π

N
kn
)

. (3.24)

Vemos, também, que os coeficientes, compostos por Ak e Bk também
utilizam apenas o operador somatório e funções trigonométricas, verificando
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que tanto a expressão de Fourier adaptada da equação 3.17 como as equações
3.23 e 3.24 para cálculo dos coeficientes se restringe à matemática do nível
de Ensino Médio.

Para evitar o uso de multiplicadores nos coeficientes, vamos reescrever em
nossa proposta o formato para a equação 3.17 empregando apenas coeficientes
distintos entre os termos de seno e cosseno, obtendo

x[n] = a0 +
⌊N/2⌋∑

k=1

[
ak cos

(2π

N
kn
)

+ bk sen
(2π

N
kn
)]

(3.25)

que chamaremos de equação de síntese seguindo a convenção da literatura
para a equação que expressa x[n] em termos do somatório de seus compo-
nentes de frequência.

Pela comparação entre as equações 3.17, 3.25, e pelos valores obtidos nas
equações 3.18 a 3.21 podemos verificar que

ak = 2Ak, k ̸= 0 e k ̸= N/2 (3.26)
bk = −2Bk, k ̸= 0 e k ̸= N/2 (3.27)
a0 = C0 = A0, (3.28)
b0 = B0 = 0, (3.29)

aN/2 = CN/2 = AN/2, e, (3.30)
bN/2 = 0, (3.31)

de onde podemos obter as equações de análise que determinam os coeficientes
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da equação de síntese em termos do sinal x[n] como

ak = 2
N

N−1∑

n=0
x[n] cos

(2π

N
kn
)

, para k ̸= 0, k ̸= N/2; (3.32)

bk = 2
N

N−1∑

n=0
x[n] sen

(2π

N
kn
)

, para k ̸= 0, k ̸= N/2; (3.33)

a0 = 1
N

N−1∑

n=0
x[n]; (3.34)

b0 = 0, (3.35)

aN/2 = 1
N

N−1∑

n=0
x[n] cos (πn) , e (3.36)

bN/2 = 0. (3.37)

Uma das grandes desvantagens da transposição da série de Fourier de
tempo discreto para sua forma trigonométrica é a obtenção de uma equação
de síntese com grande quantidade de termos e a impossibilidade de expressar
a análise por uma única equação.

3.4 Outros suportes para a construção da sé-
rie de Fourier de tempo discreto e suas
equações de análise

3.4.1 Rearranjo das equações de síntese e análise na
forma matricial

Considerando a possibilidade de emprego repetitivo das equações de síntese
e análise e o seu cálculo por meio de computadores, é importante garantir
a possibilidade de uso de cálculo matricial com a finalidade de diminuir o
tempo de processamento. Para tal, é possível reorganizar as equações 3.25 e
de 3.32 até 3.37 por meio de três equações matriciais.

Para realizar a análise, descrita pelas equações de 3.32 até 3.37, precisa-
mos definir a matriz dos coeficientes dos cossenos, a matriz coluna a(⌊N/2⌋+1)×1
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que contém os coeficientes ak que multiplicam o cos(wkn); a matriz dos coe-
ficientes dos senos, a matriz coluna b(⌊N/2⌋+1)×1 que contém os coeficientes bk

que multiplicam o sen(wkn); e a matriz das amostras, a matriz coluna xN×1

que contém as N amostras do sinal x[n], ou seja,

a =




a0

a1

a2
...

a⌊N/2⌋−1

a⌊N/2⌋




; b =




b0

b1

b2
...

b⌊N/2⌋−1

b⌊N/2⌋




; e x =




x[0]

x[1]

x[2]
...

x[N − 2]

x[N − 1]




.

Nas equações de 3.32 até 3.37, estas grandezas estão relacionadas, pois
obtém-se a e b por meio dos valores de x relacionando-os com a matriz dos
cossenos da análise a matriz Ca (⌊N/2⌋+1)×N das amostras de cossenoides cujos
elementos são dados por

Caij =





1
N

, i = 1
1
N

cos[wi−1(j − 1)], i = ⌊N/2⌋ + 1, N par
2
N

cos[wi−1(j − 1)], caso contrário

, (3.38)

em que wk = w0k = 2π
N

k é a frequência angular normalizada do k-ésimo
harmônico representável com N amostras, e pela matriz dos senos da análise,
a matriz Sa (⌊N/2⌋+1)×N das amostras de senoides cujos elementos são dados
por

Saij =





0,
i = 1, ou

i = ⌊N/2⌋ + 1, N par
2
N

sen[wi−1(j − 1)], caso contrário

. (3.39)

Dadas as matrizes x, Ca e Sa, os coeficientes ak e bk da SFTD do sinal
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x[n] podem ser extraídos das matrizes a e b obtidas pelas equações

a = Cax, e,
b = Sax.

(3.40)

Já a equação 3.25 pode ser obtida com as mesmas matrizes a, b e x, e
pela matriz dos cossenos da síntese, a matriz Cs N×(⌊N/2⌋+1) das amostras de
cossenoides, cujos elementos são dados por

Csij = cos[wj−1(i − 1)], (3.41)

e pela matriz dos senos da síntese, a matriz Ss N×(⌊N/2⌋+1) das amostras de
senoides, cujos elementos são dados por

Ssij = sen[wj−1(i − 1)]. (3.42)

Dadas as matrizes a, b, Cs e Ss, as amostras do sinal x[n] podem ser
recuperados da matriz x dada pela equação

x = Csa + Ssb. (3.43)

Assim, todos os cálculos dos coeficientes de Fourier, ou o inverso, o cálculo
do sinal a partir dos coeficientes de Fourier, podem ser realizados pelas três
equações matriciais dadas em 3.40 e 3.43.

3.4.2 A SFTD compacta e o espectro de Fourier

A SFTD definida na equação 3.25 é um primeiro passo na explicitação das
intensidades dos componentes de frequência de um sinal. Com isso queremos
dizer que não é óbvia a intensidade de uma frequência angular normalizada
wk pois ela está dividida em ak e em bk, o que pode ser resolvido ao se adotar
uma única função trigonométrica, já que

ak cos
(2π

N
kn
)

+ bk sen
(2π

N
kn
)

= ck cos
(2π

N
kn + ϕk

)
, (3.44)
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ou
ak cos

(2π

N
kn
)

+ bk sen
(2π

N
kn
)

= ck sen
(2π

N
kn + θk

)
, (3.45)

onde

ck =
√

a2
k + b2

k,

ϕk = − arctg
(

bk

ak

)
, e,

θk = arctg
(

ak

bk

)
,

(3.46)

conforme se pode provar pelas equações de seno e cosseno de soma de arco
ao multiplicar o membro esquerdo das equações 3.44 e 3.45 por ck/ck.

Esta identidade permite definir as SFTD compactas

x[n] = a0 +
⌊N/2⌋∑

k=1
ck cos

(2π

N
kn + ϕk

)
, (3.47)

ou

x[n] = a0 +
⌊N/2⌋∑

k=1
ck sen

(2π

N
kn + θk

)
. (3.48)

Pelas SFTD compactas, as intensidades de cada frequência estão evi-
dentes. A intensidade ck, amplitude de uma cossenoide, está relacionada à
frequência wk. Esta observação será fundamental na definição de espectro
que daremos na seção 3.5.

3.4.3 Componentes de um sinal periódico a partir da
relação básica de periodicidade

Nesta fase dos estudos, nenhuma ideia comprobatória relativa à existência de
componentes de frequência está bem desenvolvida. É raro o estudo da soma
de senoides e o estudo de equações de onda. Algumas noções de superposi-
ção de ondas costuma ser ilustrada e exercitada, principalmente considerando
ondas de propagação em uma dimensão, como ocorre no deslocamento trans-
versal em uma corda.

Propomos uma demonstração breve sobre componentes de uma função
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periódica partindo da relação que define periodicidade em que se g(t) é pe-
riódica com período fundamental T , então

g(t) = g(t + T ).

A substituição sucessiva de t → t + T leva a relação

g(t) = g(t + T ) = g(t + 2T ) = g(t + 3T ) = . . .

e, por indução, a relação geral

g(t) = g(t + kT ).

Ora, kT é um múltiplo inteiro do período fundamental. Isto significa que
se é sabido que h(t) é periódica e que h(t) = h(t + U), para um número U

qualquer, então a frequência fundamental Th de h deve ser submúltiplo de
U , ou seja,

Th = U

k
,

para algum k ∈ Z.
Vamos considerar, agora, que g(t) é formado por funções componentes

g1(t) e g2(t) por meio da soma, tal como na superposição de ondas. Assim,
g1(t) e g2(t) serão parcelas de g(t),

g(t) = g1(t) + g2(t).

Pela periodicidade de g,




g(t) = g(t + T )

g(t) = g1(t) + g2(t)
⇒ g1(t) + g2(t) = g1(t + T ) + g2(t + T ).

Ora, a igualdade da direita não implica periodicidade de g1 ou de g2,
implica apenas periodicidade da sua soma. Mas podemos propor, arbitrari-
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amente, a periodicidade de g1 e de g2, fazendo




g1(t) = g1(t + T )

g2(t) = g2(t + T )
.

Isto significa que as frequências fundamentais de g1 e g2, dadas respectiva-
mente por T1 e T2, devem ser submúltiplos de T , ou seja





T1 = T/k1

T2 = T/k2
,

e, invertendo estas relações, obtemos




f1 = k1f

f2 = k2f
,

em que f , f1 e f2 são as respectivas frequências de g, g1 e g2. Isto significa que
se quisermos interpretar g com componentes periódicas, as frequências das
componentes deverão ser, necessariamente, múltiplos inteiros da frequência
de g.

Este é um importante resultado e, como vimos, fácil de demonstrar. Por
indução, o que provamos para g composto por duas componentes, pode ser
provado para uma quantidade qualquer de componentes.

3.4.4 Obtenção dos coeficientes da SFTD por sistema
de equações

Como ferramenta de convencimento adicional com relação a existência e uni-
cidade dos coeficientes e a possibilidade de obter seus valores, pode-se, tam-
bém, mostrar que a substituição de cada um dos N valores de n na equação
3.25 de síntese resultará em N equações lineares com as incógnitas ak e bk.
Como no total, há também N coeficientes considerando os ak e bk para to-
dos os valores de k, temos um sistema com N equações e N incógnitas e,
portanto, uma possível solução única que determina todos os coeficientes.
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A razão pela qual os coeficientes não são calculados pela solução do sis-
tema de equações, é meramente computacional. Contemporaneamente, os
coeficientes da SFTD são calculados empregando o algoritmo de Cooley-
Tookey [47], baseado no desenvolvimento do cálculo matricial dos coeficien-
tes de série similar a da equação 3.9. Este método é chamado de transfor-
mada rápida de Fourier e conhecido por sua sigla FFT do inglês fast Fourier
transform. Nossa proposta sugere inicialmente o uso do cálculo matricial
para familiarização com as equações de síntese e análise e o significado dos
coeficientes da SFTD, muito difíceis de extrair dos coeficientes da SFTD
exponencial, principalmente devido ao uso de coeficientes complexos, o que
tentaremos contornar com a maior simplicidade possível e sem entrar nos
detalhes e deduções. Detalhamos a proposta de uso da FFT na seção 3.8.

3.4.5 Senoides como base de um espaço vetorial do RN

Um curso de Ensino Médio que consiga tratar aspectos de geometria analítica
ou álgebra linear, mesmo que de forma introdutória, como é o caso do Colégio
Naval [9], e que trate do produto interno ou produto escalar entre vetores
apresentando-o como

v⃗ · u⃗ = v0u0 + v1u1 + v2u2 (3.49)

e como
v⃗ · u⃗ = |v⃗||u⃗| cos θ, (3.50)

em que v0, v1, v2 são os componentes de v⃗ e u0, u1 e u2 são os componentes
de u⃗, também pode tratar a definição de projeção e de apresentação de um
vetor numa base qualquer.

Para tal, é necessário conectar as ideias de projeção e de base ortogonal
e que um vetor qualquer u⃗ pode ser representado numa base com vetores e⃗1,
e⃗2 e e⃗3 como

v⃗ = ve1e⃗1 + ve2e⃗2 + ve3e⃗3 (3.51)
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desde que os vetores e⃗j sejam ortogonais entre si, ou seja

e⃗i · e⃗j = 0, para i ̸= j, (3.52)

que é o mesmo que o ângulo θ = π
2 entre os vetores da base. A projeção do

vetor v⃗ sobre o vetor u⃗ é o vetor v⃗u dado por

v⃗u = u⃗ · v⃗

u⃗ · u⃗
u⃗ = vuu⃗ (3.53)

que representa o vetor na direção de u⃗ que é a projeção geométrica de v⃗ ou
que mais se aproxima de v⃗.

Apresentamos as relações acima em R3, mas pode-se mostrá-las, antes,
para R2, e, só então, para R3. Este processo, inclusive, ajuda a sugerir por
indução o caso de N valores amostrados. As N amostras de um sinal podem
ser interpretadas como as N coordenadas de um vetor no RN . Neste caso,
as equações 3.49 e 3.51 são generalizadas como

v⃗ · u⃗ =
N−1∑

k=0
vkuk, (3.54)

e,

v⃗ =
N−1∑

k=0
veke⃗k, para e⃗i · e⃗j = 0, i ̸= j. (3.55)

Daqui, pode-se mostrar que N amostras de cosseno e de seno de frequência
angular normalizada 2π

N
são todos ortogonais entre si. Vamos designar como

c⃗k e s⃗k os vetores com coordenadas ckn = cos(2π
N

kn) e skn = sen(2π
N

kn),
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respectivamente. Assim, considerando 1 ≤ i,j ≤ ⌊N/2⌋, teremos

c⃗i · c⃗j =
N−1∑

n=0
cos

(2π

N
in
)

cos
(2π

N
jn
)

= 1
2

N−1∑

n=0

{
cos

[2π

N
n(i + j)

]
+ cos

[2π

N
n(i − j)

]}

= 1
2

{
N−1∑

n=0
cos

[2π

N
n(i + j)

]
+

N−1∑

n=0
cos

[2π

N
n(i − j)

]}

= 0, para i ̸= j,

c⃗i · s⃗j =
N−1∑

n=0
cos

(2π

N
in
)

sen
(2π

N
jn
)

= 1
2

N−1∑

n=0

{
sen

[2π

N
n(i + j)

]
+ sen

[2π

N
n(i − j)

]}

= 1
2

{
N−1∑

n=0
sen

[2π

N
n(i + j)

]
+

N−1∑

n=0
sen

[2π

N
n(i − j)

]}

= 0,

e

s⃗i · s⃗j =
N−1∑

n=0
sen

(2π

N
in
)

sen
(2π

N
jn
)

= 1
2

N−1∑

n=0

{
cos

[2π

N
n(i − j)

]
− cos

[2π

N
n(i + j)

]}

= 1
2

{
N−1∑

n=0
cos

[2π

N
n(i − j)

]
−

N−1∑

n=0
cos

[2π

N
n(i + j)

]}

= 0, para i ̸= j.

Vemos que vetores c⃗k e s⃗k são sempre ortogonais entre si e resta estudar
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o módulo destes vetores. Para c⃗k, temos

c⃗k · c⃗k =
N−1∑

n=0
cos

(2π

N
kn
)

cos
(2π

N
kn
)

= 1
2

N−1∑

n=0
cos2

(2π

N
kn
)

= 1
2

N−1∑

n=0

[
cos

(2π

N
2kn

)
+ 1

]

= 1
2

N−1∑

n=0
cos

(2π

N
2kn

)
+ 1

2

N−1∑

n=0
1

c⃗k · c⃗k = 1
2

N−1∑

n=0
cos

(2π

N
2kn

)
+ N

2 .

O somatório ∑N−1
n=0 cos

(
2π
N

2kn
)

para 0 ≤ k ≤ ⌊N/2⌋, resulta sempre em
0, exceto quando k = 0 ou quando N é par e k = N/2, caso em que
∑N−1

n=0 cos
(

2π
N

2kn
)

= N . Desta forma,

c⃗k · c⃗k =





N, k = 0 ou N é par e k = N/2

N

2 , caso contrário
.

Já para s⃗k, temos

s⃗k · s⃗k =
N−1∑

n=0
sen

(2π

N
kn
)

sen
(2π

N
kn
)

= 1
2

N−1∑

n=0
sen2

(2π

N
kn
)

= 1
2

N−1∑

n=0

[
1 − cos

(2π

N
2kn

)]

= 1
2

N−1∑

n=0
1 − 1

2

N−1∑

n=0
cos

(2π

N
2kn

)

s⃗k · s⃗k = N

2 − 1
2

N−1∑

n=0
cos

(2π

N
2kn

)
.
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Pela mesma razão do que observamos no cálculo de c⃗k · c⃗k, teremos

s⃗k · s⃗k =





0, k = 0 ou N é par e k = N/2

N

2 , caso contrário
.

Desta forma, considerando o vetor x⃗ a ser representado como composto
pelas amostras do sinal x[n], ou seja, xk = x[k], e tomando e⃗0 = c⃗0, e⃗2k−1 = c⃗k

e e⃗2k = s⃗k, para 1 ≤ k ≤ ⌊N/2⌋, a equação 3.55 toma a forma da equação
de síntese 3.25 com a0 = xc0, ak = xck e bk = xsk e as equações de análise de
3.32 a 3.37 coincidem exatamente com a projeção de x⃗ sobre os vetores de
base c⃗k e s⃗k.

Efetivamente, tomemos como exemplo o cálculo de ak para 1 ≤ k < N/2.
Pelas equações 3.32, 3.54 e 3.53 e pela relação ak = xck, teremos

ak = xck

2
T

N−1∑

n=0
x[n] cos

(2π

N
kn
)

= x⃗ · c⃗k

c⃗k · c⃗k

2
T

N−1∑

n=0
x[n] cos

(2π

N
kn
)

= 1
c⃗k · c⃗k︸ ︷︷ ︸

N/2

· x⃗ · c⃗k︸ ︷︷ ︸∑N−1
n=0 x[n] cos( 2π

N
kn)

de onde se observa claramente que o multiplicador 2/N da equação 3.32 pode
ser interpretado como vindo do termo 1/(c⃗k · c⃗k) e o somatório nada mais é
que o produto interno entre x⃗ · c⃗k, ambos os fatores são os componentes do
cálculo do coeficiente xck da projeção de x⃗ sobre o vetor c⃗k.

Ou seja, pode-se concluir que um sinal x[n] com N amostras é análogo
a um vetor no RN , que há N senoides amostradas que formam uma base
ortogonal deste espaço e a que a SFTD nada mais é do que a expressão do
vetor que representa este sinal neste espaço nesta base.
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3.4.6 Cálculo das equações de síntese e análise da SFTD
com Python

Apenas como exemplo do que se espera na elaboração dos cálculos para
obter o espectro, vamos apresentar alguns códigos em Python, linguagem
empregada na aplicação descrita no Capítulo 4. O primeiro deles calcula x[n]
a partir dos coeficientes da SFTD, implementando a equação 3.25 por meio
de duas iterações com o comando de controle de fluxo for, um para correr
os valores de n e outro os de k de modo que se some, para todos os valores
de n, todas as parcelas ak cos(2πnk/N) e bk sen(2πnk/N) que o compõem.
Esta estratégia é mostrada no código 3.1. Nele, consideramos importado o
módulo NumPy, que os coeficientes ak e bk estão nos vetores a e b e que a
quantidade de amostras se encontra na variável N. Estas considerações serão
feitas em todos os códigos que se seguem.

1 w0 = 2∗ pi /N
2 x = ze ro s (N)
3 for n in range (N) :
4 for k in range ( int (N/2) ) :
5 x [ n ] = x [ n ] + a [ k ] ∗ cos (w0∗k∗n) + b [ k ] ∗ s i n (w0∗k∗n)

Código 3.1: Implementação da equação 3.25 de síntese com dois laços for.

O código 3.1 é computacionalmente ineficiente. Em geral, laços for ani-
nhados não são o melhor caminho para aproveitamento dos recursos de para-
lelismo disponíveis nos computadores contemporâneos. O laço que percorre
os valores de n pode ser dispensado se empregarmos um vetor com os valores
de n e recorrermos à operações matriciais elemento-a-elemento, resultando
no código 3.2.
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1 w0 = 2∗ pi /N
2 n = arange (N)
3 x = ze ro s (N)
4 for k in range ( int (N/2) ) :
5 x = x + a [ k ] ∗ cos (w0∗k∗n) + b [ k ] ∗ s i n (w0∗k∗n)

Código 3.2: Implementação da equação 3.25 de síntese com um laços for e
operações elemento a elemento.

Uma próxima abordagem faz uso do produto matricial descrito na equa-
ção 3.43, construindo as matrizes Cs e Ss pelas regras dadas nas equações
3.41 e 3.42, obtendo como resultado o código 3.3. As linhas de 2 a 7 criam as
matrizes Cs e Ss, o que só precisa ser realizado uma vez no programa, com
a vantagem do cálculo da síntese com uma única linha, como a linha 8, de
aritmética matricial cujo cálculo é extremamente eficiente nos computadores
contemporâneos. O programa será tão mais eficiente, quanto mais a equação
de síntese for realizada.

1 w0 = 2∗ pi /N
2 Cs = empty ( (N, int (N/2)+1) )
3 Ss = empty ( (N, int (N/2)+1) )
4 for i in range (N) :
5 for j in range ( int (N/2)+1) :
6 Cs [ i , j ] = cos (w0∗ j ∗ i )
7 Ss [ i , j ] = s i n (w0∗ j ∗ i )
8 x = Cs@a + Ss@b

Código 3.3: Implementação da equação 3.43 de síntese pela construção das
matrizes em laços for.

Uma última abordagem apresentada no código 3.4 leva ao extremo o em-
prego de matrizes partindo de uma matriz matrizIJ em que seus elementos
matrizIJ[i,j] = i*j, o que se obtém pelo produto matricial entre uma
matriz coluna com os valores de i por uma matriz linha com os valores de j

e aplicando a função trigonométrica elemento a elemento sobre esta matriz
de base. Como resultado, nenhum laço é empregado, sendo toda atividade
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repetitiva relegada às operações matriciais.

1 w0 = 2∗ pi /N
2 i = reshape ( arange (N) , (N, 1 ) )
3 j = reshape ( arange ( int (N/2)+1) , ( 1 , int (N/2)+1) )
4 matr iz IJ = i@j
5 Cs = cos (w0∗ matr i z IJ )
6 Ss = s i n (w0∗ matr i z IJ )
7 x = Cs@a + Ss@b

Código 3.4: Implementação da equação 3.43 de síntese apenas com operações
matriciais.

Os códigos 3.1 a 3.4 encerram o que esperamos que seja obtido na apli-
cação para a equação de síntese da SFTD. Vemos que os códigos são muito
curtos. Nenhum deles emprega mais de 7 linhas na preparação e a operação
matricial chega ao resultado ótimo de executar efetivamente a síntese com
uma única linha de operação matricial que é exatamente igual à sua definição
matemática (exceto pelo uso dos símbolos específicos da sintaxe do Python).

Ideias progressivas e similares as que utilizamos para a síntese podem ser
empregadas para desenvolver as equações de análise. O código 3.5 imple-
menta as equações 3.32 a 3.37 empregando dois laços for, enquanto que o
código 3.6 o faz com um único laço.
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1 w0 = 2∗ pi /N
2 a = ze ro s ( int (N/2)+1)
3 b = ze ro s ( int (N/2)+1)
4 for n in range (N) :
5 for k in range ( int (N/2) ) :
6 a [ k ] = a [ k ] + x [ n ] ∗ cos (w0∗k∗n)
7 b [ k ] = b [ k ] + x [ n ] ∗ s i n (w0∗k∗n)
8 a = (2/N) ∗a
9 b = (2/N) ∗b

10 a [ 0 ] = 0 .5∗ a [ 0 ]
11 i f N%2==0:
12 a [ int (N/2) ] = 0 .5∗ a [ int (N/2) ]

Código 3.5: Implementação das equações 3.32 a 3.37 de síntese com dois
laços for.

1 w0 = 2∗ pi /N
2 n = arange (N)
3 a = ze ro s ( int (N/2)+1)
4 b = ze ro s ( int (N/2)+1)
5 for k in range ( int (N/2) ) :
6 a [ k ] = sum( x∗ cos (w0∗k∗n) )
7 b [ k ] = sum( x∗ s i n (w0∗k∗n) )
8 a = (2/N) ∗a
9 b = (2/N) ∗b

10 a [ 0 ] = 0 .5∗ a [ 0 ]
11 i f N%2==0:
12 a [ int (N/2) ] = 0 .5∗ a [ int (N/2) ]

Código 3.6: Implementação das equações 3.32 a 3.37 de síntese com um laço
for.

Já o código 3.7 constrói as matrizes Ca e Sa dos cossenos e senos para aná-
lise a partir das regras construtivas dadas nas equações 3.38 e 3.39 preenchendo-
a por meio de laços for que percorrem todos os elementos destas matrizes.
As matrizes a e b são calculadas pelo par de relações dado na 3.40.
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1 w0 = 2∗ pi /N
2 Ca = empty ( ( int (N/2) +1,N) )
3 Sa = empty ( ( int (N/2) +1,N) )
4 for i in range ( int (N/2)+1) :
5 for j in range (N) :
6 Ca [ i , j ] = cos (w0∗ i ∗ j )
7 Sa [ i , j ] = s i n (w0∗ i ∗ j )
8 Ca = (2/N) ∗Ca
9 Sa = (2/N) ∗Sa

10 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
11 i f N%2==0:
12 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
13 a = Ca@x
14 b = Sa@x

Código 3.7: Implementação do par de relações matriciais da equação 3.40
empregando laços for para construir as matrizes auxiliares.

Por fim, o código 3.8 emprega apenas matrizes com mesma abordagem
do código 3.4 evitando o uso de qualquer laço.

1 w0 = 2∗ pi /N
2 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
3 j = reshape ( arange (N) , ( 1 ,N) )
4 matr iz IJ = i@j
5 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
6 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
7 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
8 i f N%2==0:
9 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]

10 a = Ca@x
11 b = Sa@x

Código 3.8: Implementação do par de relações matriciais da equação 3.40
apenas com operações matriciais.

Vemos que, por haver algumas exceções nas equações 3.32 a 3.37, os
códigos para realização da análise possuem poucas linhas adicionais para
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preparação do resultado final considerando os casos especiais. Ainda assim,
podemos resumir que as operações de síntese e análise exigem menos de uma
dezena de linhas cada para preparação das operações e as operações matrici-
ais são realizadas em uma única linha na síntese e em duas linhas na análise.
Além disso, estes códigos, uma vez aplicados a um caso, podem ser copiados
para novas aplicações, tornando-se trechos com excelente reusabilidade.

Na abordagem matricial, os coeficientes e a defasagem da SFTD compacta
dados na equação 3.46 podem ser obtidos a partir das matrizes a e b em duas
linhas mostradas no código 3.9 em que uma linha adicional é empregada para
contemplar as duas possibilidade de fase (a que toma o seno como função
trigonométrica e a que toma o cosseno).

1 c = sq r t ( a∗∗2+b∗∗2)
2 phi = −arc tg (b/a )
3 theta = arc tg ( a/b)

Código 3.9: Obtenção dos coeficientes e defasagens da SFTD compacta das
relações da equação 3.46.

Com o código 3.9, trouxemos trechos de códigos suficientes para o com-
pleto estudo do espectro de um sinal amostrado, restando para a seção 3.5 a
realização da representação gráfica e para a seção 3.8 a simplificação destes
procedimentos pelo uso das FFT já implementadas no módulo NumPy.

3.5 Noção e definição de sinais, espectro e
conversores

Já discutimos na seção 2.3 a ideia de sinais tal como nos interessa e em
nível suficiente para realizar as primeiras inferências a respeito de seu uso
na tecnologia. Lá, consideramos um sinal x(t) similar a uma função x(t)
(Matemática) ou a uma grandeza x dependente da grandeza t (Física), com
a diferença de que maior importância recai na possibilidade de que se possa
extrair informação ao se observar a variação de x ao longo de t.
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Nos interessa agora discutir as ideias de espectro de frequência e de banda
de frequências. Também na seção 2.3, discutimos a introdução, no Ensino
Médio, dos conceitos de espectro pelo espectro de emissão, pelo espectro ele-
tromagnético e pelo fato de que as relações entre intensidade de componentes
de frequência versus frequência são considerados compreensíveis no nível do
Ensino Médio.

As noções de altura de um som também estão bem definidas neste nível,
de onde se pode inferir noções de ordem de grandeza de frequências funda-
mentais e de seus harmônicos. Na literatura, são comuns as discussões acerca
da noção de timbre recaírem na existência de harmônicos e suas intensida-
des relativas, o que implica observação de componentes em altas frequências
nos múltiplos inteiros da frequência fundamental em uma emissão periódica,
mesmo que sua frequência fundamental seja baixa. Na seção 3.4.3, mostra-
mos que é fácil apresentar no nível médio ser possível decompor uma função
periódica qualquer em componentes periódicos. Estes terão, necessariamente,
frequência dada por um múltiplo inteiro da frequência fundamental da função
original.

Desta forma, há aspectos suficientes para argumentar que quando se ob-
serva os componentes de frequência num fenômeno aproximadamente perió-
dico, eles se distribuirão em uma faixa de frequências associada às potenciali-
dades e limitações físicas do sistema emissor. Esta característica é visível na
escolha dos sistemas físicos preparados para emissão. Pequenos sinetes soam
agudos, enquanto grandes sinos soam graves. Instrumentos elaborados para
emitir em tessitura aguda são pequenos, enquanto que os que devem emitir
nos tons mais baixos são grandes e volumosos. As características físicas não
estão dissociadas da região de emissão de um sistema físico.

As noções de banda de emissão podem ser introduzidas seguindo esta
linha. A banda de emissão é importante para estabelecer com o mínimo de
racionalidade uma frequência de amostragem funcional. Saber, por exemplo,
que os tons audíveis se encontram aproximadamente entre 20 Hz e 20 kHz,
permitem concluir que o estudo do som não precisará ser amostrado acima
40 kHz de acordo com o teorema de Nyquist.

A banda de emissão é a região de frequências em que uma fonte emite
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Figura 3.8: Noção de banda de frequências, estimativa de frequência máxima
e de uma frequência de Nyquist razoável.

as suas componentes de frequência. Para definir a frequência de Nyquist
é importante considerar o maior valor das componentes. Este valor pode
ser estimado considerando a maior frequência de uma emissão multiplicado
por um fator inteiro k que indique aproximadamente o maior harmônico
relevante. Esta ideia está ilustrada na figura 3.8. A frequência fundamental
máxima emitida pela fonte é mostrada como f0máx, a frequência máxima da
banda de emissão é estimada como fmáx = kf0máx. Embora teoricamente
justo de acordo com critério de Nyquist, não é boa prática fazer fmáx = fs/2.
Chamamos a diferença fs/2 − fmáx de margem de segurança da proposta de
amostragem.

Um sistema de amostragem emprega um conversor analógico para digital
(conversor A/D), que amostra a grandeza de entrada em intervalos regulares.
O exemplo mais simples de uma conversor A/D é a entrada para microfone
de um computador ou de um celular moderno. Ele converte a onda de pres-
são do som em amostras de som que, como vimos na figura 3.5 da seção
3.2, encontram-se amostrados internamente no computador. Este esquema é
apresentado na figura 3.10 em que destacamos também o papel do elemento
sensor responsável por converter a grandeza captada x(t) em uma grandeza
do tipo elétrica que chamamos de v(t). Como os conversores A/D recebem
em sua entrada uma grandeza do tipo elétrica, o sensor é necessário para
realizar esta transformação.

Um último aspecto importante com respeito a conversão de sinais é a
possibilidade de que x(t) não contenha apenas componentes de frequência
na região de interesse para o estudo. É o caso, por exemplo, da existência
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Figura 3.9: Esquema geral da conversão e a específica realizada sobre áudio
em um computador.
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Figura 3.10: Esquema geral do conversor A/D com filtragem.

de ultrassom no ambiente em que se deseja estudar apenas o som. Neste
caso, os componentes de ultrassom interferem na grandeza de pressão que
será amostrada. Este problema pode ser superado pelo uso de filtros que
removam as componentes indesejadas fora da região de frequências do estudo
como ilustra o esquema da figura 3.10. O uso do filtro, além de eliminar
informação indesejada para o estudo, garantirá que o sinal que será convertido
no conversor A/D respeitará o critério de Nyquist.

Por fim, a exata quantificação dos componentes de frequência pode ser
feita pela análise da SFTD compacta das equações 3.47 e 3.48 de onde se
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pode observar que a frequência angular normalizada

wk = 2π

N
k

está associada a intensidade ck. Um gráfico ck × fk, em que

fk = 1
NTs

k

é a frequência em hertz associada a wk, fornece graficamente a relação entre
frequência das componentes e suas intensidades e é uma boa definição do
espectro (de amplitude) de Fourier de um sinal. A construção e interpretação
deste gráfico é o grande objetivo do curso.

Empregando o Python, o código 3.10 mostra como pode ser feito o gráfico
do espectro considerando dado o vetor c dos coeficientes da SFTD compacta
calculada na código 3.9 e que o módulo Pyplot do Matplotlib foi importado
como plt.

1 f = 1/(N∗Ts) ∗ arange ( int (N/2) + 1)
2 p l t . p l o t ( f , c )
3 p l t . show ( )

Código 3.10: Apresentação gráfico do espectro dados os coeficientes ck.

Com os códigos para cálculo das equações de síntese e análise sugeridos
na seção 3.4.6 e este último código, consideramos concluídas as ferramentas
computacionais necessárias para realização da análise de espectro no nível do
Ensino Médio. O código 3.11 apresenta o que se espera obter em um código
curto de apenas 34 linhas para análise de dois áudios de uma flauta irlandesa
soando as notas ré (D) e sol (G). As três primeiras linhas apenas importam os
módulos empregados, sendo o NumPy para uso das funções trigonométricas
e matrizes, o Matplotlib para elaborar o gráfico e o Soundfile para leitura do
áudio como uma matriz. As linhas que se seguem até a 11 apenas carregam
o áudio e extraem as suas informações de período de amostragem e limitam
o estudo a um total de N = 5000 amostras. As linhas de 12 a 26 são uma
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cópia dos códigos 3.9 e 3.8 que realizam o cálculo dos coeficientes de Fourier,
e, portanto, a análise do espectro.

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 import s o u n d f i l e
4 x1 , f s 1 = s o u n d f i l e . read ( " f lautaD . wav" )
5 x2 , f s 2 = s o u n d f i l e . read ( " f lautaG . wav" )
6 Ts1 = 1/ f s 1
7 Ts2 = 1/ f s 2
8 N = 5000
9 k = arange ( int (N/2)+1)

10 x1 = x1 [ 0 :N]
11 x2 = x2 [ 0 :N]
12 w0 = 2∗ pi /N
13 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
14 j = reshape ( arange (N) , ( 1 ,N) )
15 matr iz IJ = i@j
16 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
17 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
18 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
19 i f N%2==0:
20 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
21 a1 = Ca@x1
22 b1 = Sa@x1
23 c1 = sq r t ( a1∗∗2+b1 ∗∗2)
24 a2 = Ca@x2
25 b2 = Sa@x2
26 c2 = sq r t ( a2∗∗2+b2 ∗∗2)
27 f 1 = 1/(N∗Ts1 ) ∗k
28 f 2 = 1/(N∗Ts2 ) ∗k
29 p l t . subplot ( 2 , 1 , 1 )
30 p l t . p l o t ( f1 , c1 )
31 p l t . subplot ( 2 , 1 , 2 )
32 p l t . p l o t ( f 1 [ : int (N/5) ] , c1 [ : int (N/5) ] )
33 p l t . p l o t ( f 2 [ : int (N/5) ] , c2 [ : int (N/5) ] )
34 p l t . show ( )

Código 3.11: Análise do espectro de Fourier de dois áudios de uma flauta
irlandesa.

As linhas restantes do código 3.11 apenas estabelecem os eixos da frequên-
cia em hertz e plotam dois gráficos mostrados na figura 3.11. A identificação
dos eixos foi adicionada por meio de edição posterior por simplificação, mas
poderia ser adicionado ao código. O eixo horizontal em ambos os gráficos
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Figura 3.11: Espectros de Fourier de áudios de flauta irlandesa obtidos pelo
código 3.11.

é a frequência em hertz obtida de fk. O vertical é a intensidade dos co-
eficientes ck obtidos na frequência fk correspondente. Embora traçado em
linha contínua por haver grande quantidade de pontos (2500 no primeiro e
1000 no segundo), temos conhecimento apenas de alguns valores discretos de
frequência e sua intensidade correspondente.

No primeiro gráfico (superior) da figura 3.11, o espectro completo é exi-
bido para o primeiro áudio, onde se pode observar até a frequência máxima
de

fs

2 = 44100
2 Hz = 22050 Hz,

pois o áudio utiliza a frequência de amostragem padrão de 44100 Hz. Fi-
cam muito bem definidos os picos de intensidades em múltiplos inteiros de
frequência fundamental f0 ≈ 608 Hz emitida pela flauta quando soando a
nota ré, de acordo com a expectativa da Física da ressonância em um tubo
com ambas as extremidades abertas. Fora das regiões em que se tem as
frequências dos harmônicos, as intensidades das componentes é praticamente
nula.
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O segundo gráfico sobrepõe os espectros devido a ambos os áudios, sendo o
da nota sol (G) acrescentado em laranja, e destaca apenas as frequências mais
baixas onde há harmônicos mais relevantes até a frequência aproximada de
8820 Hz. O mesmo fenômeno de ressonância no tubo da flauta é observado em
ambos os traçados, mas para a nota sol temos uma frequência fundamental
de aproximadamente 829 Hz1.

O código 3.12 é posposto ao código 3.11 e recupera o sinal x1 no sinal
x1rec a partir da equação de síntese matricial implementada no código 3.4.
Ao fim da recuperação de x1, comparamos ambos pela diferença entre o sinal
original e o recuperado e apresentamos o gráfico desta diferença que reprodu-
zimos na figura 3.12. O algoritmo ainda indica o desvio absoluto máximo de
2,9581892491137296×10−13 e um desvio médio de 5,816073594955285×10−14

entre as amostras originais e a recuperada. Um desvio próximo da 14a casa
decimal, neste caso, é compatível com a precisão de pronto flutuante de dupla
precisão, ou seja, a diferença entre o sinal original e recuperado é pratica-
mente nula.

1 i = reshape ( arange (N) , (N, 1 ) )
2 j = reshape ( arange ( int (N/2)+1) , ( 1 , int (N/2)+1) )
3 matr iz IJ = i@j
4 Cs = cos (w0∗ matr i z IJ )
5 Ss = s i n (w0∗ matr i z IJ )
6 x1rec = Cs@a1 + Ss@b1
7 p l t . p l o t ( x1rec−x1 )
8 p l t . show ( )
9 print ( "Máximo desv io : " ,max( abs ( x1rec−x1 ) ) )

10 print ( " Desvio médio : " ,mean( abs ( x1rec−x1 ) ) )

Código 3.12: Recuperação do sinal x1 do código 3.11 a partir de seus coefi-
cientes de Fourier.

Um último conceito associado à análise de espectro de Fourier é o de
espectro de fase que complementa o espectro de amplitudes e dado pela
relação θk×fk ou ϕk×fk entre a defasagem e a frequência de cada componente

1Para uma afinação padrão em que a nota lá está em 440 Hz, a flauta empregada
encontra-se desafinada emitindo frequências acima das esperadas.
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Figura 3.12: Diferença entre x1rec e x1 para cada uma das 5000 amostras.

da SFTD compacta. Os espectros de amplitude e fase, juntos, descrevem
completamente um sinal pois ilustram todos os valores de ck e ϕk ou θk que,
como vimos na definição da SFTD e da SFTD compacta, são suficientes para
obter x[n].

De forma resumida, as noções de sinais e de sua banda de frequências, o
emprego do conversor A/D e de possível filtragem para limitação da banda
da gradeza às frequências sob estudo, e a definição do espectro como a relação
fk ×ck, são conceitos e questões tecnológicas suficientes para empregar dados
reais, principalmente de áudio, no estudo do espectro de Fourier de sinais,
como mostramos por meio do código 3.11.
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3.6 Construção de uma sequência didática para
obtenção da série de Fourier de tempo
discreto para Ensino Médio

Conseguimos obter na equação 3.25 e nas equações de 3.32 a 3.37 expres-
sões que empregam Matemática ao nível de Ensino Médio para a síntese e
análise da SFTD. Quando nós as obtivemos, porém, seguimos um caminho
em que consideramos dadas a série e as equações de análise empregando co-
eficientes complexos e componentes de frequência exponenciais complexas e
tomamos como fonte dos desenvolvimentos a literatura disponível para o ní-
vel superior. Ora, o emprego e os desenvolvimentos realizados pressupõem
o conhecimento de resultados que não estão disponíveis no nível do Ensino
Médio, principalmente a relação de Euler,

ejθ = cos θ + j sen θ,

cuja demonstração exige cálculo diferencial.
Desta forma, o conhecimento de nível superior não pode ser considerado

como dado, restando a adaptação, também, de uma sequência na qual se
derive a equação para a SFTD a partir de outras premissas. Nos materiais
didáticos dos apêndices A e B demonstramos que as equações 3.32 a 3.37
podem ser feitas:

• Realizando o somatório para n de 0 até N − 1 em ambos os membros
da equação 3.25 para obter a0;

• Multiplicando ambos os membros da equação 3.25 pelo cos(2π
N

k′n) e
realizando o somatório para n de 0 até N − 1, também em ambos os
membros, para obter ak′ ; e,

• Multiplicando ambos os membros da equação 3.25 pelo sen(2π
N

k′n) e
realizando o somatório para n de 0 até N − 1, também em ambos os
membros, para obter bk′ .
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Tabela 3.5: Propriedades empregadas na demonstração das equações de 3.32
a 3.37.

Formulação

Somatório de constante
b∑

k=a

C = C(b − a + 1)

Somatório de uma soma
b∑

k=a

[ak + bk] =
b∑

k=a

ak +
b∑

k=a

bk

Somatório de termo multiplicado por constante
b∑

k=a

Cak = C
b∑

k=a

ak

Comutação de somatório duplo
b∑

i=a

d∑

j=c

ai,j =
d∑

j=c

b∑

i=a

ai,j

Produto de cossenos
cos α cos β = 1

2[cos(α + β) + cos(α − β)]

Produto de senos
sen α sen β = 1

2[cos(α − β) − cos(α + β)]

Produto de cosseno por seno
cos α sen β = 1

2[sen(α + β) + sen(α − β)]

O desenvolvimento também exige apenas o emprego de propriedades e identi-
dades do nível do Ensino Médio, em especial as propriedades trigonométricas
e de somatório listadas na tabela 3.5.

O único resultado que não está expresso tipicamente em textos do nível
do Ensino Médio e que também é necessário para demonstrar as equações de
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3.32 a 3.37, é o das relações

N−1∑

n=0
cos

(2π

N
kn
)

=





N, k = 0

0, 1 ≤ k ≤ N − 1

N, k = N, N par
N−1∑

n=0
sen

(2π

N
kn
)

= 0

(3.56)

para 0 ≤ k ≤ N . Apesar disso, empregando a geometria do ciclo trigono-
métrico e simetria, estas expressões são fáceis de demonstrar. Isto ocorre
pois o argumento das funções trigonométricas no somatório são sempre N

arcos múltiplos inteiros do arco 2π
N

k, de sorte que para grande parte dos
valores de k, os pontos de onde se observa o cosseno e seno (abscissa e orde-
nada) são simétricos radialmente sobre o ciclo e o somatório dos N termos é
nulo. Eles sempre se distribuem sobre os vértices de um polígono regular de
N/mdc(N,k) lados. Isto não ocorre apenas para k = 0 e k = N , caso em que
o arco 2π

N
k é sempre congruente com o arco que mede 0 radianos, de cosseno

unitário, e o somatório dos N termos unitários resulta em N .

3.6.1 Análise de prerrequisitos para uso da SFTD no
Ensino Médio

Desta forma, observamos pela análise das equações 3.25, de 3.32 a 3.37, 3.38,
3.39, 3.43, 3.47, 3.48, pelas propriedades da tabela 3.5 e da equação 3.56, que
os seguintes tópicos são prerrequisitos primários para o curso:

• funções e identidades trigonométricas;

• somatório e suas propriedades (em especial as listadas na tabela 3.5);

• matrizes e as operações de produtos por constante, soma e produto de
matrizes; e,
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• emprego de matrizes (arrays) e comandos de controle de fluxo em pro-
gramação para realização dos cálculos.

Secundariamente, usamos a simetria do ciclo trigonométrico e a SFTD
compacta tem como argumento em seu cosseno um termo identificável com a
posição num movimento circular uniforme e cada parcela desta série coincide
com uma equação da posição no movimento harmônico simples. Com isso,
é importante associar as funções trigonométricas à projeção de um ponto
sobre o ciclo trigonométrico. Por outro lado, nossas aplicações, mesmo as
que tenham maior relação com questões tecnológicas, estão fortemente co-
nectadas a ocorrência de fenômenos ondulatórios, de sorte que o domínio dos
tópicos de ondas e acústica do nível do Ensino Médio é fundamental para
o sucesso no desenvolvimento dos problemas do apêndice C. Devemos, com
isso, acrescentar os seguintes tópicos como prerrequisitos:

• movimento circular uniforme;

• movimento harmônico simples; e

• ondas e acústica.

Estes prerrequisitos estão ilustrados de forma esquemática na figura 3.13
em blocos escritos com fonte direita. Devido ao caráter interdisciplinar da
empreitada, destacamos as regiões que acreditamos terem maior aderência
aos prerrequisitos como estando nas disciplinas de Matemática (vermelho),
Física (azul) e Computação/Programação (amarelo). Estamos considerando
que se trate de um curso em que um mínimo de conhecimento de Programação
é garantido ainda no nível médio, o que é o caso de nossa aplicação específica,
realizada no Colégio Naval. Dentre os tópicos do Ensino Médio no esquema,
o único que pusemos mas ainda não tratamos em detalhe é o emprego de
números complexos que discutiremos na seção 3.8.
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Figura 3.13: Esquema da sequência didática do curso de análise de espectro.
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3.6.2 Resumo de tópicos relevantes para análise de es-
pectro de Fourier

Os tópicos que completam nossa aplicação estão em grande parte numa “dis-
ciplina” inteiramente nova no esquema da figura 3.13, que identificamos como
engenharia/tecnologia (verde). Todos os tópicos do curso que não são típicos
do Ensino Médio foram grafados em itálico nos blocos e são os tópicos que
exploramos nas seções 3.3, 3.4 e 3.5 e englobam a ideia de sinais, o cálculo
da SFTD, sua representação gráfica e as aplicações específicas de análise de
áudio.

3.6.3 Desenvolvimento do curso

Considerando a experiência da aplicação apresentada no Capítulo 4, as dis-
cussões com os docentes participantes da aplicação e a experiência compar-
tilhada com os alunos, resumimos na tabela 3.6 a estimativa da duração
das etapas do curso proposto. Nela, propusemos uma classificação para a
apresentação como sendo opcional ou obrigatória. A classificação reflete a
importância para o curso com o tema de “análise de Fourier em gradezas
amostradas”.

Desta forma, os tópicos que comumente compõem um currículo regular
do Ensino Médio, foram considerados como opcionais. É o caso daqueles as-
sociados à Matemática (itens 1, 2 e 5), a Física (itens 3 e 4) e Programação
(itens 6, 7 e 8) no nível médio. Os tópicos muito avançados (como demostra-
ções do item 12 e uso da FFT do item 13) também foram classificados como
opcionais. Neste caso, trata-se de tópico específico de análise de Fourier, mas
que pode ser deixado para os alunos com um nível de interesse e maturidade
em Matemática suficientes para não interferir na condução do curso.

Os temas inéditos e que dificilmente figurariam em um currículo típico do
Ensino Médio foram considerados como obrigatórios para o desenvolvimento
do curso, o que é o caso dos itens 9, 10 e 11. Como motivação final e
pelo amplo interesse demonstrado pelos alunos e professores participantes,
a resolução dos problemas finais do item 14 também figura como tópico
obrigatório.
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Tabela 3.6: Sugestão de desenvolvimento do curso

CH Estimada [hora-aula]

Item Aula Opcional Obrigatória

1 Revisão de somatório 1 -

2 Revisão de funções trigonométricas 2 -

3 Revisão de movimento circular
uniforme

1 -

4 Revisão de ondas e acústica 3 -

5 Revisão de matrizes 1 -

6 Comandos de controle de fluxo no
Python

4 -

7 Funções matemáticas no Python com o
módulo NumPy

4 -

8 Gráficos no Python com o módulo
Matplotlib

4 -

9 Noções de Amostragem - 4

10 Noções de espectro - 2

11 Série de Fourier de Tempo Discreto - 6

12 Demonstrações da SFTD 2 -

13 Espectro por FFT 2 -

14 Projetos finais - 20

Total 24 32

No caso de nossa aplicação, as revisões foram realizadas e, mesmo a Pro-
gramação sendo competência curricular no CN e na EN, a linguagem empre-
gada não é o Python. Isto implicou na necessidade de apresentação desta
linguagem, permitindo a devida familiarização antes do uso da mesma como
ferramenta para o cálculo e apresentação do espectro.
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3.7 Definição de problemas para aplicação
Como proposta metodológica, vamos direcionar a aplicação à solução de al-
guns problemas ou pequenos projetos resumidos no material instrucional do
apêndice C. Listamos algumas características dos problemas na tabela 3.7.
Ela ajuda a explicar a escolha dos problemas. Tentamos seguir um crescente
na complexidade da solução e dos conceitos envolvidos, partindo daqueles que
são mais familiares no nível do Ensino Médio para aqueles mais propriamente
associados a tecnologia e engenharia. As soluções e sugestões para resolução
destes problemas estão detalhados no material instrucional do apêndice D.

3.7.1 Problemas direcionados à SFTD como instru-
mentação na medida de frequências

Nos primeiros problemas, o objetivo principal é familiarizar o aluno com a
SFTD como instrumento de medida de frequência, explorando fenômenos
periódicos, efeito Doppler e altura das ondas sonoras. Os quatro primeiros
problemas, por exemplo, se resumem a estas questões e são fortemente in-
fluenciados por propostas como a de Souza [48]. A grande diferença entre
estes problemas se encontra no tema e na área de aplicação, mas as com-
petências gerais para solução são as mesmas. Ela se inicia com a obtenção
das amostras, e segue para a seleção de trechos em que os fenômenos de in-
teresse se desenvolvem e estão aproximadamente isolados. Neles, a análise
do espectro e realização das medidas das frequências estão melhor associa-
das ao fenômeno, possibilitando tirar conclusões em direção à solução dos
problemas. Sugerimos o uso do Audacity [46] para os cortes de trechos dos
áudios muito extensos associado aos scripts em Python para análise como
ferramentas suficientes para o estudo.

O problema de identificação de dígitos em dual-tone já é o primeiro as-
sociado a questões tecnológicas, em particular ao processo de transmissão
numérica por linhas de áudio telefônicas. Embora o problema de identificar
os tons seja relacionado com a mera medida de frequências, a solicitação da
proposição de uma forma de automatizar a identificação pode demandar o
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Tabela 3.7: Lista dos problemas para aplicação e suas características.

Problema Competência Conteúdo

Quão rápido batem as
asas

Medida de frequência Instrumentação

Estimativa de velocidade
na F1

Medida de frequência Instrumentação e efeito Doppler

Velocidade do chute ao
gol

Medida de frequência Instrumentação e efeito Doppler

Identificação da altura
de som monofônico

Medida de frequência Escala temperada e ondas pe-
riódicas

Identificação de dígitos
no dual-tone

Medida de frequência Codificação eletrônica

Pêndulo, ângulo de par-
tida e MHS

Medida de frequência e
simulação

Modelagem de sistemas dinâmi-
cos e MHS

Comportamento massa-
mola com 2 graus de
liberdade

Medida de frequência e
simulação

Modelagem de sistemas dinâmi-
cos e mecânica clássica

Filtragem da voz Filtragem no domínio
da frequência

Processamento digital de sinais

Flauta sintética Filtragem no domínio
da frequência

Síntese de áudio digital

Reconhecimento de al-
tura (pitch) automático

Filtragem no domínio
da frequência

Escala temperada e processa-
mento digital de sinais

Transmissão simultânea
empregando AM

Análise no domínio da
frequência

Modulação AM

Separação de sinais AM Filtragem no domínio
da frequência

Modelagem de telecomunicações

Demodulação AM Análise no domínio da
frequência

Demodulação AM

Amortecedor massa-
mola com atrito viscoso

Análise no domínio da
frequência e simulação

Modelagem de sistemas dinâ-
micos, resposta em frequência e
resposta ao impulso
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uso de recursos de lógica adicionais. Por esta razão, o docente pode realizar
as medidas dos valores codificados em dual-tone e concluir a automatização
deste problema mais adiante, quando os alunos estiverem mais maduros com
a lógica da programação e até podendo empregar filtros para eventualmente
facilitar a solução.

Seguimos com dois problemas de dinâmica longe do trivial para solução
no Ensino Médio. O primeiro, associado ao pêndulo, devido a aproximação

sen θ ≈ θ (3.57)

tipicamente feita para se obter um MHS no movimento do pêndulo com
frequência fundamental de oscilação independente do ângulo inicial. Ambas
as características só são observadas enquanto a aproximação da equação 3.57
for verdadeira, o que só acontece para θ pequeno. A medida da frequência
fundamental da oscilação é um problema de instrumentação para a SFTD,
enquanto que a oscilação não-harmônica pode ser vista na SFTD pelo surgi-
mento de harmônicos de ordem maior. Propomos a simulação do movimento
do pêndulo pelo estudo aproximado de amostras de sua posição tal como já
documentado por Sousa [49]. Em nossa notação, o menor intervalo de tempo
entre amostras é o período de amostragem Ts, de modo que a velocidade
instantânea pode ser aproximada por

v[n + 1] ≈ ∆x

∆t
= x[n + 1] − x[n]

Ts

. (3.58)

Seguindo o mesmo raciocínio, a aceleração instantânea pode ser aproximada
por

a[n + 1] ≈ ∆v

∆t
= v[n + 1] − v[n]

Ts

=
x[n+1]−x[n]

Ts
− x[n]−x[n−1]

Ts

Ts

a[n + 1] ≈ x[n + 1] − 2x[n] + x[n − 1]
T 2

s

. (3.59)

Com algumas amostras iniciais da posição x[n], pode-se obter equações recur-
sivas para o cálculo das posições sucessivas empregando a Física do sistema e
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as equações 3.58 e 3.59, o que possibilita o estudo tanto do pêndulo como do
sistema de duas massas acopladas por molas. A formulação para o pêndulo
é mais simples e tem algumas soluções aproximadas propostas por Beléndez
et al. [51] e Quirino [50], a solução completa para o sistema de duas massas
acopladas com dois graus de liberdade é discutido em livros de vibrações [52],
permitindo a verificação do estudo realizados com estes problemas.

3.7.2 Problemas orientados ao uso de filtros no domí-
nio da frequência

Os problemas que se seguem são todos mais associados a questões de tecno-
logia e engenharia. Nos três primeiros dentre eles ainda tratamos de questões
mais básicas como uso de filtros e síntese e análise associados à música. A
filtragem de voz tem o objetivo de familiarizar os alunos a operarem sobre
os componentes de frequência no domínio da frequência. Neste nível, suge-
rimos, apenas, a alteração das intensidades dos coeficientes por um artifício
que podemos designar de máscara. Esse processo é ilustrado na figura 3.14.
O espectro Y (f) do sinal filtrado é obtido a partir do espectro X(f) pela
operação

Y (f) = X(f)H(f).

Este processo é similar ao efeito da resposta em frequência H(f) de um
sistema sobre a entrada X(f) para obter a saída Y (f).

O perfil da máscara pode ser escolhido arbitrariamente nesta metodologia
de trabalho no domínio da frequência. Ela deve ser montada considerando
que valores relativamente altos em uma região de frequências de H(f) acentu-
arão as respectivas frequências com relação àquelas em que H(f) tem valores
menores. No exemplo da figura 3.14, mostramos a filtragem passa-baixas, ou
seja, as baixas frequências passam e as altas frequências são filtradas. Para
tal, nas frequências abaixo de fc, que designamos frequência de corte, fizemos
H(f) ≈ 1, enquanto que para frequências acima de fc, fizemos H(f) ≈ 0.
Próximo de fc há uma transição suave. Desta forma, para frequências baixas
Y (f) ≈ X(f) e para frequências altas Y (f) ≈ 0, os seja, os componentes de
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Figura 3.14: Aplicação da máscara do filtro sobre o sinal original.

alta frequência são atenuados enquanto que os de baixa passam inalterados
pelo processo de filtragem.

Para o nível médio, propomos perfis de filtragem sigmoides

H(f) = 1
1 + eα(f−fc) (3.60)

para filtragem passa-baixas e

H(f) = 1
1 + e−α(f−fc) (3.61)

para passa-altas. O perfil

H(f) = e−α|f−f0| (3.62)

é estreito, unitário em f0, se aproxima de 0 por um arco exponencial ao
se afastar de f0 e é empregado para uma filtragem muito seletiva de uma
frequência próxima de f0. Em todos os perfis de filtro que sugerimos, o parâ-
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metro α diz respeito à velocidade da transição. Valores altos de α significam
uma transição abrupta enquanto pequenos valores de α fazem transições mais
suaves.

Seguem-se aos problemas de áudio, três problemas associados à transmis-
são AM que são discutidos em textos introdutórios de comunicações, pois se
trata da mais antiga técnica de transmissão no meio eletromagnético [31,53].
Sendo um problema da área de tecnologia e engenharia, instruções detalha-
das são dadas para que se obtenham os resultados desejados. Como efeito,
se observa o deslocamento do espectro na frequência.

3.7.3 Problema orientado a noções de resposta em frequên-
cia e resposta ao impulso

O último problema é o que trata de um tópicos mais avançado na engenha-
ria – a resposta em frequência ou ao impulso. Já definimos esta medida
na seção 2.3.1 como a razão entre a intensidade da entrada com relação a
saída. Sugerimos a simulação de uma excitação de um sistema massa-mola
com atrito viscoso, resultando em um sistema de 2a ordem, por uma força
senoidal e indicamos que a resposta será, também, senoidal e solicitamos que
sejam registradas as razões entre a amplitude da saída e da entrada após a
acomodação do sistema.

Solicitamos a seguir que o sistema seja simulado com uma entrada do
tipo impulso e que seja levantado o espectro da saída quando o sistema é
estimulado pelo impulso. Verifica-se que o espectro da resposta ao impulso
é idêntica à resposta em frequência do sistema, resultado que é amplamente
empregado em análise de sistemas lineares e provado desde as disciplinas de
análise de circuitos até as de processamento de sinais em sistemas lineares.

Trata-se de um resultado avançado e que não queremos que seja detalha-
damente demonstrado e trabalhado. Esperamos apenas que o resultado cause
espanto e desperte curiosidade, mostrando que há ainda uma grande quanti-
dade de fenômenos e interpretações a serem exploradas quando se emprega
o domínio da frequência.

Este último conceito pode ainda ser empregado para mostrar o surgimento
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natural em sistemas físicos do fenômeno da filtragem e ressonância, uma vez
que a razão entre as intensidade da entrada e da saída podem ser identificadas
aproximadamente com o H(f) que sugerimos empregar como máscara de
filtro nos exercícios com filtragem.

3.8 Uso e interpretação da transformada rá-
pida de Fourier (FFT) no Ensino Médio

Com certos cuidados, é possível trabalhar os problemas propostos apenas
empregando as formulações de somatório implementados com iterações ou
matrizes que sugerimos na seção 3.4.6.

O uso destes recursos mais simples, porém, tem um custo. As implemen-
tações com iterações costumam ser ineficientes em termos de processamento,
tornando-se excessivamente lentas quando a quantidade de amostras N é em
torno de alguns milhares de amostras. Já as operações matriciais são especial-
mente otimizadas nos computadores contemporâneos, principalmente aqueles
com processamento paralelo em muitos núcleos, e poderiam ser ainda mais
aceleradas se fossem empregados artifícios para delegar as operações matri-
ciais para a placa gráfica. O NumPy, porém, emprega como padrão números
com ponto flutuante de dupla precisão que ocupam 64 bits ou 8 bytes cada.
As matrizes Ca e Sa de análise, tem, juntas, aproximadamente N2 elementos.
Isto significa que a memória empregada apenas para armazenar estas matri-
zes é 8N2 bytes. A ordem da memória principal dos computadores atuais é
de gibibytes ou 230 bytes. Isto significa que se N for da ordem de dezenas
de milhares de amostra as matrizes já ocuparão um espaço proibitivo na me-
mória. Ocorre que um áudio com amostragem padrão de 44100 Hz tem esta
ordem de amostras em um trecho que não chega a totalizar um segundo, o
que pode impedir o cálculo pela formulação matricial.

Uma solução para estes problemas é empregar os algoritmos que otimizam
o cálculo dos coeficientes, ou dos termos da transformada. Eles são conhe-
cidos genericamente como transformadas rápidas de Fourier e implementam
as transformadas de Fourier discretas (TFD). Estão disponíveis em biblio-
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tecas matemáticas em linguagens de programação populares e identificadas
pela sigla FFT de fast Fourier transform, transformada rápida de Fourier no
inglês. Há, porém, uma pequena diferença entre a série de Fourier de tempo
discreto descrita pela equação 3.9 e a formulação chamada transformada. Na
série, estuda-se o sinal como composto por uma ponderação de exponenciais
complexas e o cálculo dos coeficientes, enquanto que na transformada os co-
eficientes são interpretados como uma nova entidade independente. Há neste
último caso uma relação entre o sinal x[n] do domínio da variável n e a sua
transformada X[k] existente no domínio da variável k. Uma das formulações
desta relação é dada pelo par de equações

x[n] = 1
N

N−1∑

k=0
X[k]ej 2π

N
kn, e (3.63)

X[k] =
N−1∑

n=0
x[n]e−j 2π

N
kn. (3.64)

A primeira é conhecida como transformada de Fourier discreta ou equação
de síntese e a segunda como transformada de Fourier discreta inversa ou
equação de análise. Ambas as variáveis são compostas de N amostras com
0 ≤ n ≤ N −1 e 0 ≤ k ≤ N −1. Podemos observar na documentação [54] que
as formulações da transformada rápida de Fourier implementada no NymPy
como numpy.fft.fft, por exemplo, coincidem exatamente com a dada pelas
equações 3.63 e 3.64.

Comparando as equações 3.63 com 3.9 e 3.64 com 3.22, vemos que ambas
são equivalentes quando

Ck = 1
N

X[k]. (3.65)

e considerando que o conjunto IN = IN0 definido na equação 3.3. Isto sig-
nifica que podemos achar uma relação entre os termos X[k] da TFD e os
coeficientes ak e bk ou o coeficiente ck e a fase ϕk da SFTD, com a vantagem
de que o cálculo para obter X[k] é otimizado tanto em termos de velocidade
como de memória.
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Pela manipulação das equações 3.14, 3.26 a 3.31, 3.46 e 3.65 chegamos a

ak = 2
N

Re(X[k]), k ̸= 0 e k ̸= N/2 (3.66)

bk = − 2
N

Im(X[k]), k ̸= 0 e k ̸= N/2 (3.67)

a0 = c0 = 1
N

Re(X[k]) = 1
N

X[k], (3.68)

b0 = 0, (3.69)

aN/2 = cN/2 = 1
N

Re(X[N/2]) = 1
N

X[N/2], e, (3.70)

bN/2 = 0, (3.71)

ck = 2
N

|X[k]| k ̸= 0 e k ̸= N/2, e, (3.72)

ϕk = arg(X[k]). (3.73)

Com estas relações, o código 3.11 que calcula e plota o espectro de um
áudio e é realizado em 34 linhas, é reproduzido em apenas 17 linhas no
código 3.13 com o emprego da FFT. Na comparação, considere o fato de que
no primeiro código são feitos os espectro para dois áudios e no segundo para
apenas o primeiro deles. Em particular, o cálculo do espectro matricial do
código 3.11 emprega das linhas 13 até 20 para preparação das matrizes da
análise, totalizando 8 linhas, e o cálculo dos coeficientes ck é feito das linhas
21 a 23, totalizando 3 linhas. Já com a FFT, como no código 3.13, a análise
é feita das linhas 11 até 15, totalizando 5 linhas.

Esta operação é ainda mais simplificada no código 3.14 por meio do em-
prego da definição da função analise que recebe o sinal x e retorna os co-
eficientes de sua SFTD. Com isto, a função para cálculo dos coeficientes da
SFTD é definida nas linhas de 4 até 11 empregando FFT, totalizando 8 li-
nhas, para que a analise possa ser feita em uma única linha sempre que for
necessário. No código 3.14 a análise é feita na linha 19.

O uso de funções não é tão simples para o cálculo matricial e muito lento
para o cálculo por iterações. No caso matricial, a necessidade de preparação
das matrizes de análise é um dificultante, principalmente se o valor de N

mudar em um programa de análise de espectro mais elaborado.
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1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 import s o u n d f i l e
4 x , f s = s o u n d f i l e . read ( " f lautaD . wav" )
5 Ts = 1/ f s
6 N = 5000
7 k = arange ( int (N/2)+1)
8 x = x [ 0 :N]
9 w0 = 2∗ pi /N

10 f = 1/(N∗Ts) ∗k
11 X = f f t . f f t ( x )
12 c = 2∗abs (X[ k ] ) /N
13 c [ 0 ] = 0 .5∗ c [ 0 ]
14 i f N%2==0:
15 c [ int (N/2) ] = 0 .5∗ c [ int (N/2) ]
16 p l t . p l o t ( f , c )
17 p l t . show ( )

Código 3.13: Análise do espectro de Fourier de um dos áudios do código 3.11
empregando FFT.

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 import s o u n d f i l e
4 def a n a l i s e ( x ) :
5 N = len ( x )
6 X = f f t . f f t ( x )
7 c = 2∗abs (X[ 0 : int (N/2) +1]) /N
8 c [ 0 ] = 0 .5∗ c [ 0 ]
9 i f N%2==0:

10 c [ int (N/2) ] = 0 .5∗ c [ int (N/2) ]
11 return c
12 x , f s = s o u n d f i l e . read ( " f lautaD . wav" )
13 Ts = 1/ f s
14 N = 5000
15 k = arange ( int (N/2)+1)
16 x = x [ 0 :N]
17 w0 = 2∗ pi /N
18 f = 1/(N∗Ts) ∗k
19 c = a n a l i s e ( x )
20 p l t . p l o t ( f , c )
21 p l t . show ( )

Código 3.14: Simplificação do código 3.13 empregando uma função definida
pelo usuário.
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Aplicação

Organizamos no 3o ano do Colégio Naval e no 1o ano da Escola Naval gru-
pos de estudo para aplicar o curso considerando o planejamento descrito na
seção 3.6.3. Os grupos contaram com, respectivamente, 8 e 9 alunos destas
instituições.

Embora tentativas tenham sido feitas para realizar o curso em 2022 e
em 2023, os grupos de estudo se desenvolveram na forma de atividade ex-
tracurricular, o que diminui a disponibilidade dos alunos. Nestas tentativas
iniciais, com a finalidade de facilitar o trabalho e agilizar as interações, os
alunos demandaram videoaulas para o acompanhamento das atividades. As
videoaulas desenvolvidas estão listadas no apêndice B.

Com as videoaulas disponíveis, no ano de 2024, as reuniões dos grupos
se iniciaram em 5 de março na EN e em 14 de março no CN. A maior
disponibilidade de material e o início ainda no segundo mês letivo possibilitou
a condução dos trabalhos a contento neste ano. Os encontros dos grupos de
estudo ocorreram em salas reservadas das respectivas instituições em horário
livre, acompanhando a disponibilidade dos alunos. Não foram marcadas
atividades nas semanas de avaliações ou nas que as antecedia.

O acompanhamento das atividades no CN foi encerrado em 15 de agosto,
após a conclusão do segundo problema do apêndice C (Estimativa de velo-
cidade na F1). As atividades da EN foram encerradas em 21 de outubro
após a conclusão do sexto problema do mesmo apêndice (Pêndulo, ângulo de
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partida e MHS).
Apesar do término prematuro antes da realização de todos os projetos

propostos, a aplicação foi suficiente para observar a validade do curso nesta
fase e com os objetivos propostos conforme observaremos na seção 4.7.

As observações e discussões descritos neste capítulo foram amplamente
debatidas com os docentes do CN participantes. Para tal, foram-lhes apresen-
tadas versões preliminares do texto do capítulo para garantir a concordância
e de modo que o texto pudesse representar com fidelidade as impressões da
aplicação em ambas as instituições, o Colégio Naval e a Escola Naval.

4.1 Treinamento de docentes e acompanha-
mento das atividades

As tratativas com os docentes do Colégio Naval foram iniciadas em setembro
de 2021. As primeiras reuniões para treinamento e qualificação foram reali-
zadas em maio de 2022 por meio de videoconferência. Nas reuniões, foram
discutidos os objetivos do trabalho e apresentados os materiais instrucionais
e a forma de apresentação da análise de Fourier nesta fase experimental.
A decisão pelo estabelecimento dos grupos de estudo como caminho viável
para desenvolver o curso ainda em fase extracurricular foi fruto das discussões
nesta fase entre o autor e os docentes do CN.

Os docentes do CN solicitaram a inclusão da aplicação da análise de es-
pectro em tecnologias de emprego naval como uma demanda constante dos
alunos. Esta demanda foi atendida em parte nos materiais dos apêndices de
A a C e em parte pela descrição de exemplos específicos encaminhados dire-
tamente aos docentes daquela instituição nas reuniões de acompanhamento
de modo que os materiais elaborados como produto desta dissertação não
perdessem a generalidade.

Foram necessários por volta de 6 horas de treinamento para apresentação
completa dos objetivos do curso e da abordagem teórica antes do início das
atividades dos grupos de estudo.

A partir destes encontros iniciais, as orientações e treinamentos se segui-
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ram de modo a acompanhar os encontros do grupo de estudo. Os docentes
foram orientados com relação às atividades específicas a desenvolver a cada
semana seguindo aproximadamente o planejamento descrito na seção 3.6.3
durante o desenvolvimento das atividades dos grupos de estudo. Em média,
para cada 4 horas de reunião do grupo de estudos, os docentes tiveram 1
hora de orientação junto ao autor, em que foram discutidos os aspectos es-
pecíficos, os detalhes foram aprofundados e as dúvidas que poderiam surgir
no encontro da semana foram esclarecidas.

4.2 Motivação dos alunos
Foi observado que as duas principais motivações dos alunos na participação
no grupo de estudos foram

• o uso do Python, que já se tornou uma linguagem suficientemente po-
pular para atrair o desejo dos alunos em dominá-la, e

• a oportunidade de antecipar aspectos das tecnologias navais com as
quais esperam ter maior contato na formação superior e profissional.

Enquanto o primeiro aspecto motivacional é geral e deverá ser encon-
trado em qualquer instituição de ensino, o segundo mostra uma necessidade
de conhecimento dos anseios profissionais em cada instituição de ensino. No
Colégio Naval, como o caminho mais natural é o prosseguimento da carreira
para incorporação na Marinha, esta tarefa é mais fácil. Uma escola que deseje
introduzir este curso, poderá buscar motivação nos interesses de formação de
seus alunos que tenham propensão aos cursos de engenharia elétrica, eletrô-
nica, de telecomunicações e de controle e automação etc. entre os candidatos
que poderão ter maior interesse no curso.
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4.3 Emprego do computador e programação
em Python

Tanto na Escola Naval como no Colégio Naval, os alunos participantes pre-
feriram utilizar seus computadores pessoais para estudo e nas reuniões do
grupo de estudo. Foram utilizados apenas o Python, seus módulos e o Au-
dacity. Neste formato, nenhum aluno considerou relevante a “pegada” dos
recursos do curso em seus computadores quando consideraram o peso da
instalação dos programas necessários para o desenvolvimento das atividades.

Também não houve dificuldade em instalar e utilizar os programas. A
configuração utilizada, em todos os programas, foi a padrão. Todos os alunos
empregaram o sistema operacional Windows. Neste sistema operacional, o
IDLE, programa que facilita o desenvolvimento e execução dos códigos em
Python, compõe a instalação padrão. Não foi necessário nem recomendamos
a instalação de nenhuma IDE mais avançada (como Anaconda, PyCharm
etc.), sendo o Python padrão e o IDLE suficientes para o nível do curso.

Nos casos em que os alunos não tenham computadores pessoais disponí-
veis para uso acadêmico, é necessária a instalação e preparação dos recursos
empregados em laboratório de informática previamente. Isto requer testes
prévios e a verificação das políticas da administração dos computadores da
escola. Também é especialmente delicado no caso do emprego de módulos
do Python que deverão estar instalados antes das reuniões. Neste caso, o
suporte dos técnicos da escola é fundamental para o sucesso da aplicação.

4.4 O que os alunos acharam da experiência
Durante as reuniões com os grupos de estudo as impressões dos alunos foram
observadas com a finalidade de acompanhar o desenvolvimento dos objetivos.
Destacamos

• a manutenção do interesse geral no grupo de estudos ao longo de todo
o período de reuniões dos grupos;
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• o bom desempenho dos alunos na interpretação das situações físicas
subjacentes aos problemas propostos e ao longo dos estudos;

• a dificuldade de realizar as conversões entre linguagem matemática e a
linguagem computacional; e

• a necessidade de interação com o docente intermediário em quase todas
as fases do estudo.

Ao fim das atividades dos grupos, solicitamos aos alunos expressar sua
opinião sobre as seguintes questões:

• Se considerou a experiência proveitosa de forma geral.

• Se indicaria o curso a outros alunos caso o curso fosse eletivo da parte
diferenciada do currículo.

• Se o curso influenciou positivamente em sua forma de observar as ques-
tões interdisciplinares de Física, Matemática, Programação e tecnolo-
gia.

Dos 17 alunos participantes 7 responderam às perguntas. As respostas po-
sitivas foram unânimes. A inclinação de indicar o curso a outros alunos foi
considerada um parâmetro fundamental para o futuro desenvolvimento de
uma disciplina eletiva, uma vez que um curso eletivo só faz sentido se houver
voluntários e os voluntários só aparecerão se a experiência for considerada
positiva pelos participantes anteriores, fortalecendo uma espécie de indicação
boca a boca.

Também foi unânime a observação de dificuldades no desenvolvimento
do grupo de estudos no formato extracurricular, uma inconveniência inevi-
tável nesta fase experimental que deverá ser contornada quando da eventual
formalização do curso como integrante do currículo.
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4.5 O que os docentes acharam da experiên-
cia

Os docentes consideraram excelente o tema escolhido para um curso de apro-
fundamento – a análise de Fourier de grandezas amostradas – já que traz
aplicações reais fortemente associadas às matérias típicas do Ensino Médio.
Funções trigonométricas, matrizes, números complexos, ondas e acústicas
não são considerados temas simples ou fáceis de trabalhar e de expor com
aplicações quando se acompanha um curso curricular típico. O tema oferece
uma oportunidade de facilitar estas questões.

A integração entre as diferentes áreas do conhecimento – em especial de
Programação, Física e Matemática – impõem desafios aos docentes, uma vez
que são, em geral, especialistas em apenas uma destas áreas. Isto implica em
uma necessidade de tempo para qualificação e familiarização com as formas
de abordagem e com os problemas típicos que aparecem na SFTD e em
fenômenos e tecnologias típicas que esta ferramenta auxilia a descrever.

O material instrucional escrito do apêndice A foi considerado suficiente
para compreensão dos objetivos propostos tendo sido amplamente empregado
como fonte de consulta durante o desenvolvimento das atividades.

Em materiais escritos é habitual encontrar temas mais densos que podem
ser dominados aos poucos com a releitura e com a depuração do apresentado.
Isto já não é tão fácil no formato de vídeo. Por esta razão, nas videoaulas, há
um conflito difícil de resolver entre complexidade do tema, que exige tempo
e detalhamento, e a dinâmica esperada em materiais desta mídia.

Enquanto o autor optou por vídeos detalhados, os docentes participantes
consideraram necessários, também, videoaulas mais curtas e diretas, mesmo
que isto pudesse limitar a amplitude do que é apresentado a cada vídeo.
Apesar desta demanda, os docentes participantes consideraram que não é
fácil a exposição em vídeo do tema do trabalho, devido a sua complexidade,
nos formatos mais curtos e diretos. Isto significa que o material instrucional
pode ser melhorado, ampliado ou modificado para usos posteriores, mas estas
modificações exigem adaptações que precisam de estudo mais aprofundado.

Os docentes participantes também solicitaram acesso aos trechos dos có-
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digos fonte para facilitar a cópia e reuso de maneira a dinamizar a condução
dos encontros. Consideram que tê-los à disposição antes das aulas acelera
partes consideradas mais tediosas do processo de programação e auxiliam a
disponibilização de tempo na solução dos problemas e na lógica subjacente
aos trechos do código.

Nesta primeira experiência, o acompanhamento do autor as atividades foi
considerada indispensável pelos docentes participantes, devido às próprias
dificuldades relacionadas a novidade do tema e da interdisciplinaridade que
exige empregar técnicas e conteúdos que não são especialidades de suas áreas
de formação. Apesar disto, consideram que em um futuro próximo a condu-
ção das aulas deste curso correrá independente do auxílio ou participação do
autor.

Por fim observando o desenvolvimento da aplicação, o desempenho dos
alunos foi considerado satisfatório mas suficientemente desafiador para difi-
cultar o desenvolvimento ostensivo da proposta para além do público volun-
tário e preparado.

4.6 Dificuldades, melhorias futuras e obser-
vações

Foi observado que o trabalho com “problemas abrangentes”, tais como os
propostos no apêndice C, foge do habitual para os alunos. O ensino das
ciências exatas emprega exercícios que costumam enquadrar algum aspecto
e exigir o desenvolvimento de um raciocínio simples e relativamente direto
na sua solução.

Já os problemas propostos para o fim do curso envolvem dados reais, a
necessidade de uma modelagem, e com ela, realizar considerações e aproxi-
mações. Tomemos como exemplo o problema mais simples proposto, o da
estimativa da frequência do bater das asas de um beija-flor. A solução que
sugerimos no apêndice D recorre ao som produzido pelo bater das asas. Para
que o som possa ser empregado como fonte da estimativa da frequência do
bater, é necessário uma modelagem dos fenômenos: a batida das asas agita
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os gases nas proximidades das asas que se propagam na forma de som. Como
o estímulo para a propagação do som é a agitação das asas, espera-se que as
ondas de pressão oscilem na mesma frequência que as asas. Assim, a frequên-
cia medida no som, pode ser tomada como igual a frequência do bater das
asas.

Este raciocínio é apenas a primeira parte do problema, pois agora surge
o problema de medir componentes de frequência no som, o que se pode
resolver com a SFTD. Por fim ainda há duas outras etapas a cumprir – isolar
o fenômeno, o que pode ser feito pela segmentação de um trecho do áudio em
que esteja claro o som do bater das asas e interpretar a SFTD para extrair
a medida. Nesta última etapa, a SFTD deve apresentar picos de amplitude
em frequências que são múltiplos inteiros da frequência fundamental, e a
frequência fundamental coincide com o bater das asas.

Este encadeamento de modelagens, considerações, emprego de técnicas
e interpretações é muito distinto do problema típico disponível no Ensino
Médio.

Os docentes participantes e o autor observaram, porém, que ao mesmo
tempo que os problemas são difíceis – e talvez a melhor palavra para descrevê-
los seja desafiadores – eles são o grande diferencial do curso proposto e con-
siderados parte indispensável de todo o trabalho.

Nos debates que se realizaram após a conclusão desta primeira aplicação,
foi considerada a mudança de ritmo nas reuniões com relação ao proposto
na seção 3.6.3. Uma sugestão é encurtar o tempo dedicado exclusivamente
às revisões de Física e Matemática. Elas poderiam ser feitas aos poucos sob
demanda a medida que fossem necessárias no desenvolvimento da SFTD ou
dos problemas. O tempo economizado pode ser empregado para aprofundar
os conceitos da série e de amostragem.

Uma segunda demanda é o emprego de exercícios para repetição e ope-
racionalização da SFTD, amostragem e dos conceitos correlatos. A proposta
inicial visou um curso sem os elementos tradicionais de fixação por meio de
exercícios, motivo pelo qual o curso é concluído com pequenos projetos. As
ideias de coeficientes de termos da série, taxa de amostragem, resolução em
frequência etc. tinham sempre que ser consultados e revisados pois ainda
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não eram naturais para os alunos participantes. A insistência nesses concei-
tos poderá agilizar a realização dos problemas finais.

4.7 Conclusão
Desde a concepção do trabalho, consideramos que a proposta de um curso
com análise de espectro de Fourier e amostragem para o Ensino Médio não
seria simples. A garantia de que apenas conhecimentos desta fase do ensino
eram suficientes para introduzir com rigor estas competências foi o único
suporte para a consideração da proposta.

A aplicação confirmou o caráter desafiador do curso mas mostrou, tam-
bém, que alunos voluntários e bem preparados conseguem acompanhar o
seu desenvolvimento com motivação. Isto reforça a premissa de que um
curso desta natureza deva ser eletivo e orientado a alunos com este perfil,
cumprindo a parte diversificada do currículo com a finalidade de aprofunda-
mento.

Nossas expectativas com relação às vantagens da apresentação prematura
de tópicos de tecnologia integrados com as diversas disciplinas do nível médio
em um formato interdisciplinar se confirmaram pela observação da motivação
dos alunos e docentes participantes. Em particular, a confirmação por parte
dos docentes participantes da introdução do curso como disciplina eletiva no
Colégio Naval, com previsão de início em 2026, é suficiente para validar a
proposta do trabalho.
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Apêndice A

Material Instrucional –
Apostila

Este material instrucional é constituído de uma Apostila empregada como
material de suporte e referência para o curso de “Amostragem de grandezas
na Física e seus espectros de Fourier” proposto nesta dissertação e desen-
volvido para os últimos anos do Ensino Médio. Ele é composto de revisão
teórica, exercícios de Matemática, Física e Programação e pelo suporte ofere-
cido por alguns exercícios, além da demonstração das teorias de amostragem
e espectro de Fourier de sinais amostrados limitados.
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Apresentação

Caros professores,
Esta obra é parte da dissertação “Amostragem de grandezas na Física e seus

espectros de Fourier – um curso para o Ensino Médio”, apresentada ao Pro-
grama de Pós-Graduação em Ensino de Física do Instituto de Física da UFRJ,
formulada com o objetivo de orientar a condução do trabalho das instituições
de Ensino Médio em disciplina de aprofundamento para a parte diversificada de
itinerário formativo de matemática e suas tecnologias ou de ciências da natureza
e suas tecnologias empregando, para tal, um tópico especialmente relevante para
a Matemática, a Física e amplamente utilizados com finalidades tecnológicas –
a análise de Fourier. Trata-se, portanto, de um curso interdisciplinar que utili-
zará amplamente programação e recursos computacionais, tendo sido escolhido
o Python para basear os exemplos do texto.

O curso foi projetado visando prover aprofundamento para os alunos do Co-
légio Naval que cursarão o Bacharelado em Ciências Navais na Escola Naval e
que tenham interesse em compor os corpos da armada ou de fuzileiros navais.
Este tema também é de grande interesse para alunos vocacionados a continuar
seus estudos em cursos das engenharias elétrica, da computação, de telecomu-
nicações, de automação e controle, biomédica etc. pois o curso trata de tema
fundamental na análise de sistemas e no processamento de sinais como suporte
às tecnologias cujos projetos dependem da análise no domínio da frequência.

Na elaboração do curso, selecionamos as aplicações de medida (instrumenta-
ção) de frequência, filtragem e análise no domínio da frequência. Consideramos
os contextos de fenômenos cotidianos, experimentos físicos, música, modela-
gem de sistemas, processamento e síntese de sinais, e aplicações de codificação
e comunicação eletrônica. Grande ênfase é dada em sinais de áudio que são
facilmente manipuláveis nos computadores comerciais.

Ao fim da apostila, disponibilizamos três materiais que também podem ser
empregados no desenvolvimento do curso:

• O link e a lista das videoaulas elaboradas com o conteúdo do curso;

• Os enunciados para “Projetos para Análise de Espectro”, contendo uma
série de pequenos projetos para aplicação da análise de espectro; e

• As suas respectivas soluções nas “Sugestões para Solução dos Projetos
para Análise de Espectro”.

Todos os materiais adicionais acompanham o documento digital da apostila,
principal referência para o curso.

Tratando-se de um tema considerado avançado, recomendamos o curso para
alunos com bom desempenho em Matemática, Física e Programação e com
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interesses nas áreas supramencionadas sejam orientados a realizar este curso,
oferecido no formato eletivo.

Maiores detalhes sobre o espectro de Fourier e o desenvolvimento deste curso
podem ser encontrados na dissertação, disponibilizada no formato digital na
seção de dissertações dentre as produções acadêmicas do site do Programa de
Pós-Graduação em Ensino de Física da UFRJ.



Capítulo 1

Introdução

Quando se escuta música em um dispositivo com tela, é comum a exibição de
alguma forma de imagem que acompanhe a música. Um dos efeitos visuais
mais comuns acompanha a intensidade da música nas diferentes frequências que
compõem o som. Em sua forma mais simples, este efeito tem a forma de um
gráfico de barras do espectro do áudio. A figura 1.1 mostra o gráfico de barras
do espectro da execução de um áudio no tocador VLC [1] para ilustrar do que
estamos falando.

Nestes aplicativos tocadores de áudio estes gráficos costumam apenas distrair
o ouvinte que está realmente interessado apenas em ouvir a música. Por esta
razão, não há grande preocupação com relação a fidelidade entre os componentes
de frequência da música em execução e uma medida quantitativa clara de sua
intensidade, tanto é que estes gráficos quase nunca exibem as escalas de seus
eixos vertical e horizontal. Se prestar bem atenção ao comportamento do gráfico
ao longo das batidas e a dinâmica com a qual a execução de notas graves e agudas
modifica o gráfico, o ouvinte poderá inferir que o eixo vertical é a intensidade
do som e o eixo horizontal é a frequência.

Profissionais produtores musicais, que, dentre outras atividades, realizam a
mixagem e masterização de gravações de áudio, utilizam o termo cheias como
um dos qualificantes de boa mixagem. Este termo explica de forma figurada o
completamento com som das várias faixas de frequências no espectro de frequên-
cias do áudio. Neste caso, é importante identificar estas frequências com alguma
precisão e, caso o som ainda não esteja cheio, utilizar algum artifício como a

Figura 1.1: Espectro disponível em visualização do VLC [1].

115



116 CAPÍTULO 1. INTRODUÇÃO

gravação de sons adicionais ou a mudança da equalização de modo a preencher
as frequências faltantes.

Este texto trata de uma ferramenta matemática – a série de Fourier de tempo
discreto – que possibilita a análise detalhada e precisamente quantificada das
diferentes frequências que compõem um sinal e de algumas de suas aplicações,
que, diga-se de passagem, parecem intermináveis. Quanto mais se estuda dife-
rentes campos da ciência, mas se observa a prevalência de vibrações e fenômenos
periódicos e com isso se ampliam as possibilidades da aplicação desta série. O
exemplo da música e do som que utilizamos como motivação inicial para ilustrar
do que vamos tratar é apenas um caso popular e simples da aplicação de análise
de frequências.

1.1 Abrangência das aplicações

As aplicações da análise por meio de frequências se tornou de tal forma popular
que ganhou um nome especial – a análise no domínio da frequência – e com-
plementa a prática mais comum e básica que passa a ser chamada análise no
domínio do tempo para diferenciá-la.

Em alguns casos, a análise no domínio da frequência é capaz de simplificar
a aplicação de algumas ferramentas matemáticas. Ela pode, também, quebrar
o paradigma de como os dados são registrados e interpretados pois os sinais
podem deixar de ser representados como funções do tempo para serem repre-
sentados como funções da frequência. Mesmo que um sinal não seja periódico, a
série de Fourier de tempo discreto é capaz de reinterpretá-lo como oscilações su-
perpostas. Em outros casos, ela consegue evidenciar e caracterizar oscilações e
periodicidade típicas de uma física subjacente a fenômenos que podem até não
parecer periódicos em uma visualização preliminar dos dados. Vamos trazer
mais alguns exemplos da importância da análise do espectro de frequências.

1.1.1 Processamento de Sinais

O nome do campo amplo que estuda o as informações contidas nos sinais, que
vamos trabalhar em mais detalhes no capítulo 4, é chamado de Processamento
de Sinais. Quando os dados são amostrados, estamos no que chamamos ainda
mais especificamente do processamento digital de sinais. Ele abrange cálculos e
métodos que se prestam a qualquer campo em que a observação e tratamento
de grandezas é fundamental para que se obtenha ou se interprete as informações
que podem ser obtidas no sinal.

As fronteiras das técnicas de processamento de sinais abrangem muito mais
do que as análises no domínio da frequência. Identificação de voz, síntese de
voz, reconhecimento facial e deep fake são algumas das técnicas do estado da
arte do processamento digital de sinais.

Embora a série de Fourier, em si, auxilie a identificar as diferentes frequências
de um sinal, seu uso é muito mais abrangente. Vai além da mera possibilidade
de se observar o espectro de um sinal amostrado qualquer.
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Figura 1.2: Gráfico dos servidores de wi-fi com potência e ocupação de canais
gerado no LinSSID [2].

1.1.2 Telecomunicações
Um exemplo quase onipresente em nosso planeta diz respeito às telecomuni-
cações e transmissão de informações por meio de ondas eletromagnéticas. Na
televisão, por exemplo, diferentes informações são transmitidas em diferentes
canais. A verdade é que praticamente qualquer transmissão sem fio utiliza o
conceito de canais – redes de wi-fi têm canais, redes celulares e de Internet móvel
também.

A figura 1.2 mostra o gráfico de canais da rede de wi-fi observados por meio
do software LinSSID. Neste gráfico, o eixo horizontal está enumerando os canais,
mas poderia, sem grandes alterações, ser um eixo de frequências. Isto é verdade
pois um canal nada mais é do que um conjunto de frequências (ou uma banda
de frequências, em que o termo banda é usado significando pedaço como em
banda de maçã) reservado para organizar comunicações simultâneas, o que visa
impedir as interferências na comunicação. No nosso gráfico, vemos várias redes
empregando os mesmos canais. Isto significa que neste local a transmissão na
rede wi-fi não será ideal pois haverá interferência de uma rede sobre a outra.

As análises no domínio da frequência são essenciais para a transmissão de
dados e é um tópico predominante nas engenharias elétrica, eletrônica e de
telecomunicações.

1.1.3 Vibrações mecânicas
As ondas produzidas por instrumentos musicais são vibrações mecânicas. Além
da importância na produção de músicas e sons agradáveis, matéria prima para
artistas, as vibrações mecânicas costumam ser tópico importante nas estrutu-
ras de construções, em máquinas, no estudo da geologia, dentre vários outros
fenômenos vibratórios de natureza mecânica.

Nas máquinas as vibrações podem tanto ser empregadas como forma de
transmissão de energia e movimento como surgem como consequência do em-
prego de máquinas rotativas como motores. É comum que se empregue as vi-
brações do maquinário como um parâmetro para identificar seu funcionamento
normal. Uma das primeiras alterações percebidas pelo condutor de um veí-
culo que indica problemas é a ocorrência de sons anormais resultantes do mal
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funcionamento.
A observação de vibrações em estruturas é fundamental e está associada a

sua ressonância. Dois casos interessantes podem ser vistos hoje em plataformas
de compartilhamento de vídeo, pois estes exemplos modernos possuem registros
impressionantes de ressonância – as pontes de Tacoma Narrows e Millenium
Brigde. A primeira colapsou devido às vibrações descontroladas. A segunda
não chegou a colapsar mas precisou de correções estruturais para frear as altas
amplitudes de suas oscilações laterais.

1.1.4 Biofísica, biomedicina e engenharia biomédica
Algumas atividades biológicas como os batimentos cardíacos e a respiração são
essencialmente cíclicas. Como consequência, a análise da periodicidade destas
atividades funcionam como indicativos da situação de um paciente. Eletro-
cardiografia e eletroencefalografia são dois exemplos de exames cujo objetivo
é observar as ondas associadas às variações das grandezas elétricas resultantes
das atividades do sistema nervoso. Na eletroencefalografia, por exemplo, as ob-
servações costumam ser classificadas como ondas teta, delta, alfa e beta, o que
também evidencia o aparecimento de oscilações das grandezas elétricas fruto da
atividade cerebral.



Capítulo 2

Bases matemáticas e físicas
para análise de espectro

Nosso estudo do espectro de frequências é feito pela soma de várias funções
trigonométricas diferentes (mas todas do mesmo tipo, que chamamos generica-
mente de funções senoidais). Assim, cada função é uma parcela em uma grande
quantidade de adições, o que chamamos de somatório.

Por esta razão, para cumprirmos nosso objetivo, vamos revisar as noções de
somatório na seção 2.1 e as funções senoidais na seção 2.3.

O produto de matrizes é dado por um somatório para cada elemento da
matriz produto. Como faremos mais de um somatório, podemos representá-los
todos de uma vez como um produto de matrizes que revisaremos na seção 2.4.

O produto de matrizes facilitará significativamente o cálculo da nossa série
se quisermos realizá-la em um computador (o que é indispensável quando esti-
vermos trabalhando com uma grande quantidade de números). Exploraremos
o uso do computador para realizar cálculos com grande quantidade de números
no capítulo 3.

2.1 Somatórios
Considere as somas S1 e S2 dadas por

S1 = 23 + 30 + 35 + 36 + 39 + 49 + 59 + 72 + 74 + 77, e,
S2 = 11 + 15 + 19 + 23 + 27 + 31 + 35 + 39 + 43 + 47.

Ambas são relativamente longas, contendo dez parcelas cada uma. Na primeira
soma, a S1, é difícil encontrar um padrão que relacione as parcelas. De fato,
se você encontrou um padrão, considere um bom indício de paranoia (ou de
genialidade), pois eu gerei as parcelas em um gerador de números aleatórios
verdadeiros (existem sequências chamadas pseudo-aleatórias que, de fato, têm
uma regra de formação).

Já na segunda, há uma certa regularidade nas parcelas. Vemos que qualquer
parcela em S2 tem o formato 7 + 4i, com i inteiro variando de 1 a 10.

Esta regularidade nos permite adotar uma simbologia sintética para não
precisarmos expressar S2 pelo detalhamento de cada parcela numericamente.

119



120 CAPÍTULO 2. BASES MATEMÁTICAS E FÍSICAS

Ela consiste em empregar uma letra sigma (
∑

) indicando que será expresso um
somatório (a letra sigma equivale, no alfabeto grego, ao s do alfabeto latino).
Na parte inferior do sigma indicamos o valor inicial da variável inteira capaz
de expressar as parcelas e acima o valor final. Com esta regra, o somatório S2
poderia ser expresso como

S2 =
10∑

k=1
(7 + 4k).

De forma geral, o símbolo de somatório pode ser utilizado se tivermos uma
regularidade nas parcelas possível de expressar pela função f(i), com i inteiro
variando de um valor a até b. O significado de seu uso será

b∑

k=a

f(k) = f(a) + f(a + 1) + f(a + 2) + · · · + f(b − 1) + f(b).

Exercícios de revisão
Questão 2.1. Expanda os somatórios abaixo possibilitando a visualização de todas

as parcelas.

(a) Soma dos oito primeiros números pares.
7∑

k=0

(2k).

(b) Soma dos oito primeiros números ímpares.
7∑

k=0

(2k + 1).

(c)
6∑

k=0

(k + 1)2.

(d)
5∑

k=0

ak cos
(2π

11 kn
)

.

Questão 2.2. As parcelas abaixo tem uma lei de formação. Descubra a lei e reescreva
a expressão na forma de somatório.
(a) 1

4 + 1
9 + 1

16 + 1
25 + 1

36 .

(b) 12 + 3 + 3
4 + 3

16 + 3
64 + 3

256 .
(c) 1 + cos(ωt) + cos(2ωt) + cos(3ωt) + cos(4ωt).

(d) b1 sen
(2π

10 n
)

+ b2 sen
(4π

10 n
)

+ b3 sen
(6π

10 n
)

+ b4 sen
(8π

10 n
)

+ b5 sen (πn).

Questão 2.3. Expanda os somatórios abaixo possibilitando a visualização de cinco
de suas parcelas, sendo as três primeiras e as duas últimas.

(a)
1000∑

k=0

(2k + 3)2.

(b)
30∑

k=1

1
24k−1 .

(c)
100∑

k=1

bk sen
( 2π

200kn
)

.

(d)
512∑

k=0

ak cos
( 2π

1024kn
)

.
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Questão 2.4. Somatórios infinitos. As expressões abaixo empregam somatório com
infinitos termos e possibilitam o cálculo de alguns valores conhecidos. Faça o
cálculo truncado (com uma quantidade finita de termos) com os dez primeiros
termos empregando uma calculadora. Verifique o erro percentual cometido com
o truncamento.

(a) π2

8 =
∞∑

k=0

1
(2k + 1)2 .

(b) π

4 =
∞∑

k=0

(−1)k

2k + 1.

(c) 3
2 =

∞∑

k=0

(1
3

)k

.

2.1.1 Propriedades de somatórios
Somatório de uma constante

Pela definição de multiplicação – uma soma de parcelas iguais – o somatório

b∑

k=a

C = C(b − a + 1). (2.1)

O valor (b − a + 1) é a quantidade de parcelas da soma da constante C.

Exemplo 2.1. Calcule o valor exato do somatório

20∑

k=1
12.

Solução. Como temos termos constantes a medida que k varia,

20∑

k=1
12 = 12

k=1
+ 12

2
+ 12

3
+ · · · + 12

19
+ 12

20
= 12 · 20 = 240,

onde vemos que a fórmula proposta acima é válida neste caso, já que

20∑

k=1
12 = 12 · (20 − 1 + 1) = 12 · 20 = 240.

Exemplo 2.2. Considerando que k é uma constante, simplifique o somatório
de modo a evitar o uso da notação do sigma,

15∑

n=5
k.

Solução. Podemos utilizar imediatamente a propriedade da equação 2.1
para obter

15∑

n=5
k = (15 − 5 + 1)k = 11k.
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Somatório de uma soma

Pela associatividade e comutatividade da soma, o somatório de uma adição pode
ser a adição dos somatórios, ou seja,

b∑

k=a

[f(k) + g(k)] =
b∑

k=a

f(k) +
b∑

k=a

g(k). (2.2)

Ou seja, pode-se somar primeiro todas as parcelas de f(k) e em seguida as
parcelas de g(k) já que pela associatividade e comutatividade a ordem em que
se realizam as adições não importa.

Somatório de uma função multiplicada por constante

Se realizarmos o somatório
b∑

k=a

Cf(k) = C
b∑

k=a

f(k) (2.3)

devido à propriedade distributiva. A simbologia pode não facilitar, mas do
membro esquerdo para o direito “pusemos o C em evidência”.

Exemplo 2.3. Sabendo que
N∑

k=1
k = N(N + 1)

2 , e,

N∑

k=1
k2 = N(N + 1)(2N + 1)

6 ,

Calcule o valor exato do somatório
20∑

k=1
[k(k + 3)].

Solução. Podemos reescrever o somatório como
20∑

k=1
[k(k + 3)] =

20∑

k=1
[k2 + 3k],

que usando a propriedade da equação 2.2, resulta em
20∑

k=1
[k(k + 3)] =

20∑

k=1
k2 +

20∑

k=1
3k,

e utilizando a propriedade da equação 2.3
20∑

k=1
[k(k + 3)] =

20∑

k=1
k2 + 3

20∑

k=1
k.

Agora podemos utilizar as fórmulas dadas para obter
20∑

k=1
[k(k + 3)] = 20(20 + 1)(2 · 20 + 1)

6 + 3 · 20(20 + 1)
2 = 3500.
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Comutação de somatório duplo

Devido às propriedades comutativa e associativa, não importa a ordem em que
uma soma é feita, de modo que

b∑

i=a

d∑

j=c

ai,j =
d∑

j=c

b∑

i=a

ai,j . (2.4)

Exemplo 2.4. Expanda os somatórios, reorganize os termos e mostre que a
igualdade é válida para

4∑

i=1

2∑

j=0
(2i + j) =

2∑

j=0

4∑

i=1
(2i + j).

Solução. Expandindo os somatórios, teremos
4∑

i=1

2∑

j=0
(2i + j) =

4∑

i=1
[(2i + 0) + (2i + 1) + (2i + 2)]

= [(2 · 1 + 0) + (2 · 1 + 1) + (2 · 1 + 2)]+
+ [(2 · 2 + 0) + (2 · 2 + 1) + (2 · 2 + 2)]+
+ [(2 · 3 + 0) + (2 · 3 + 1) + (2 · 3 + 2)]+
+ [(2 · 4 + 0) + (2 · 4 + 1) + (2 · 4 + 2)]

= [(2 · 1 + 0) + (2 · 2 + 0) + (2 · 3 + 0) + (2 · 4 + 0)]+
+ [(2 · 1 + 1) + (2 · 2 + 1) + (2 · 3 + 1) + 2 · 4 + 1)]+
+ [(2 · 1 + 2) + (2 · 2 + 2) + (2 · 3 + 2) + (2 · 4 + 2)]

=
2∑

j=0
[(2 · 1 + j) + (2 · 2 + j) + (2 · 3 + j) + (2 · 4 + j)]

=
2∑

j=0

4∑

i=1
(2i + j).

É visível que todas as parcelas do primeiro somatório se encontram no
segundo somatório se observarmos que as parcelas que estão organizadas
em linhas na segunda igualdade, encontram-se nas colunas da terceira,
esclarecendo que se trata apenas de um reordenamento das parcela, que é
livre devido à comutação e associação da operação de adição.

Exemplo 2.5. Sabendo que
N∑

k=1
k = N(N + 1)

2 ,

N∑

k=1
k2 = N(N + 1)(2N + 1)

6 , e,

15∑

k=1
ak = 120,



124 CAPÍTULO 2. BASES MATEMÁTICAS E FÍSICAS

calcule o valor exato do somatório
15∑

k=1

20∑

i=1

30∑

j=1
5ij2ak.

Solução. Vamos pôr o termo constante em evidência e reordenar os so-
matórios, obtendo

15∑

k=1

20∑

i=1

30∑

j=1
5ij2ak = 5

20∑

i=1

30∑

j=1

15∑

k=1
ij2ak.

Neste último somatório, o termo ij2 é constante com relação a k, de modo
que podemos colocá-lo em evidência, resultando em

5
20∑

i=1

30∑

j=1

15∑

k=1
ij2ak = 5

20∑

i=1

30∑

j=1
ij2

15∑

k=1
ak,

já i, é constante com relação a j, e podemos colocá-lo em evidência nova-
mente, resultando em

5
20∑

i=1

30∑

j=1
ij2

15∑

k=1
ak = 5

20∑

i=1
i

30∑

j=1
j2

15∑

k=1
ak.

Podemos agora resolver as somas para seus valores numéricos sucessiva-
mente, obtendo

15∑

k=1

20∑

i=1

30∑

j=1
5ij2ak = 5

20∑

i=1
i

30∑

j=1
j2

15∑

k=1
ak

= 5
20∑

i=1
i

30∑

j=1
j2120

= 5 · 120
20∑

i=1
i

30∑

j=1
j2

= 5 · 120
20∑

i=1
i
30(30 + 1)(2 · 30 + 1)

6

= 5 · 120 · 945520(20 + 1)
2

= 5 · 120 · 9455 · 210
15∑

k=1

20∑

i=1

30∑

j=1
5ij2ak = 1 191 330 000.

Exemplo 2.6. Sabendo que

N−1∑

n=0
cos

(
2π

N
kn

)
= 0,
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para k inteiro e 1 ≤ k ≤ N − 1, calcule o somatório

8∑

n=0

4∑

k=1
ak cos

(
2π

9 kn

)

Solução. Vamos começar invertendo a ordem dos somatórios

8∑

n=0

4∑

k=1
ak cos

(
2π

9 kn

)
=

4∑

k=1

8∑

n=0
ak cos

(
2π

9 kn

)
.

Agora, ak é constante com relação a n (pois, como o índice indica, ele
varia apenas com k) e podemos colocá-lo em evidência obtendo

4∑

k=1

8∑

n=0
ak cos

(
2π

9 kn

)
=

4∑

k=1
ak

8∑

n=0
cos

(
2π

9 kn

)
,

de modo que evidenciamos o somatório que sabemos ser nulo, pois os
valores de k estão entre 1 e 4, e portanto também estão entre 1 e 8,
respeitando a necessidade de 1 ≤ k ≤ N − 1, pois por inspeção vemos que
no nosso caso específico podemos considerar N = 9. Logo,

8∑

n=0

4∑

k=1
ak cos

(
2π

9 kn

)
=

4∑

k=1
ak

8∑

n=0
cos

(
2π

9 kn

)

=
4∑

k=1
ak · 0

8∑

n=0

4∑

k=1
ak cos

(
2π

9 kn

)
= 0.

Exercícios de revisão
Questão 2.5. Realize os somatórios abaixo:

(a)
15∑

k=1

8.

(b)
82∑

k=13

10.

(c)
2a−1∑

n=a

5.

(d)
N−1∑

n=0

a0, considerando a0 constante.

(e)
10∑

k=0

5ak, sabendo que
10∑

k=0

ak = 50.

(f)
10∑

j=0

[aj + bj ], sabendo que
10∑

j=0

aj = 95 e
10∑

j=0

bj = 110.
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O

R

O′

móvel

ω

θ0

trajetória

θ = 0
semi-eixo de
referência

θ

Figura 2.1: Esquema para descrição da cinemática do movimento circular.

(g)
10∑

j=0

8∑

i=0

aibj , sabendo que
8∑

i=0

ai = 75 e
10∑

j=0

bj = 110.

(h)
8∑

n=0

4∑

k=1

bk sen
(2π

8 kn
)

, sabendo que
N−1∑

n=0

sen
(2π

N
kn

)
= 0.

2.2 Movimento circular uniforme
Revisaremos mais adiante nas seções 2.3.1 e 2.3.3, a relação entre oscilações
harmônicas e a cinemática do movimento circular uniforme. Conhecer as carac-
terísticas básicas deste tipo de movimento auxilia sobremaneira a compreensão
das grandezas e da álgebra envolvida nas funções trigonométricas.

Tratamos como movimento circular aquele que pode ser descrito por um
único número, designado posição angular, e em que o móvel esteja restrito à
girar sobre uma trajetória circular conhecida. Para localizar o objeto, basta
saber sua posição angular θ definida a partir de um semi-eixo partindo do centro
da circunferência onde convencionamos adotar a posição angular como sendo
nula, como ilustrado na figura 2.1. Nesse esquema, o semi-eixo

−−→
OO′ define a

posição angular em que θ = 0.
Duas outras convenções são empregadas. Na primeira, há dois sentidos de

giro – horário e anti-horário. É comum que uma medida de posição feita a partir
do eixo de referência no sentido anti-horário seja considerada uma medida de
posição angular positiva (θ > 0). Nesta convenção a medida feita no sentido
horário seria negativa. É possível, mas não muito comum, adotar a convenção
inversa.

Além da questão relacionada ao sinal, a medida que gira, um móvel pode
passar por um mesmo ponto diversas vezes ao das mais de uma volta. Isto
admite medidas, por exemplo, de θ1 = π/4 e θ2 = 9π/4 = π/4 + 2π, que a rigor
registrariam uma mesma posição (posições congruentes), mas que na cinemática
do giro significa que de θ1 para θ2 o móvel deu uma volta completa no sentido
anti-horário (considerando a convenção mais comum para o sinal do giro)

Há total analogia entre esta forma de movimento e o movimento retilíneo,
com a única diferença de que, aqui, as posições são angulares e medidas pelo
comprimento do arco dado em radianos (ou pelo ângulo central medido em
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graus). Já no movimento retilíneo, a posição é medida pelo comprimento, que
no si é dado em metros.

Como consequência, as velocidades também são análogas e medem o quão
rápido muda a posição do móvel. Porém, enquanto no movimento retilíneo esta
medida é de comprimento por unidade de tempo (metro por segundo no si), no
movimento circular ela é dada em comprimento de arco por unidade de tempo
(que no si é dada em radianos por segundo).

Para nossas aplicações, nos interessa o movimento circular uniforme, em que
a velocidade angular (análoga à velocidade instantânea) é constante e, portanto,
igual a velocidade angular média (análoga à velocidade média). Se ω é a veloci-
dade angular instantânea, ωm é a velocidade angular média, o móvel passa pelo
θ0 quando t = 0, e θ é uma posição angular qualquer por onde o móvel passa
num instante t genérico, então

ω = ωm = ∆θ

∆t
= θ − θ0

t − 0 ,

que resulta em
θ = ωt + θ0. (2.5)

Como esperado, esta equação é análoga a equação horária do espaço para o
movimento uniforme (dada por expressões como s = s0+vt ou x = x0+vt), com
os papéis da posição angular ocupando o da posição e o da velocidade angular
o da velocidade.

Se empregarmos T para representar o tempo necessário para completar uma
volta, e chamado período, então ωT deve resultar em 2π rad (pois ω = ∆θ

∆t = 2π
T ),

que corresponde a uma volta completa, de modo que a relação entre o período
e a frequência angular é dada por

ω = 2π

T
. (2.6)

É comum em aplicações de engenharia utilizar como parâmetro de veloci-
dade das oscilações a frequência medida em ciclos por unidade de tempo. Se
a unidade de tempo é o segundo, teremos ciclos/s ou s−1 = Hz (hertz), pois
o ciclo é considerado uma quantidade adimensional. Se o período informa o
tempo decorrido por ciclo, a frequência será seu recíproco,

f = 1
T

, (2.7)

e mede a quantidade de ciclos por unidade de tempo. Se o tempo estiver em se-
gundos (unidade do si), a frequência será dada em hertz. Daqui, também, pode-
se chegar por substituição à relação entre frequência (em hertz) e a frequência
angular (em radianos por segundo) dada por

ω = 2πf. (2.8)

Observação de amostras do giro – ambiguidade de posição

Imagine que é feito um instantâneo de um móvel que se desloca em uma trajetó-
ria circular e se obtém o resultado do canto superior esquerdo da figura 2.2 em
que já definimos um eixo de referência e traçamos alguns segmentos de suporte
para observar a simetria.
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Figura 2.2: Medidas da posição angular para um instantâneo do móvel.

Como determinar a posição angular θ do móvel a partir do instantâneo?
Pela simetria observada, podemos inferir que θ = π/3 = θa. Esta é a medida
que adotamos naturalmente apenas devido a nosso viés de empregar o menor
ângulo de giro anti-horário. Nada diz que a medida efetiva não deveria ser a
do menor ângulo do giro horário θ = −5π/3 = θb ou ainda que é devido a uma
medida de giro anti-horário com uma volta completa em que θ = 7π/3 = θc. De
forma geral, se se observa o instantâneo de uma posição angular e uma possível
medida desta posição é θ = θa,

θk = θa + 2πk, para qualquer k inteiro,

também são medidas possíveis. Isto significa que observando um instantâneo
do movimento circular, há uma ambiguidade com relação a sua medida de po-
sição. Podemos afirmar também que se θa e θb são medidas de posição válidas
(geometricamente congruentes), elas devem diferir entre si de um múltiplo de
2π.

Ora, ao longo de uma circunferência só há posições reais ao longo de uma
amplitude de uma volta. Por exemplo, qualquer posição angular será unica-
mente identificada se utilizarmos como convenção 0 ≤ θ < 2π ou −π < θ ≤ π.
Qualquer outra medida é virtual. Elas podem ser justificadas pelo uso da ex-
pressão

θ = ωt + θ0.

As medidas fora de uma margem de 2π podem significar que o móvel deu mais de
uma volta. O problema é que a verificação da ocorrência de mais de uma volta
só é possível se se acompanha o movimento continuamente pois, como vimos,
em um instantâneo há sempre ambiguidade na medida da posição angular.

Exemplo 2.7. Um móvel gira sobre um circunferência com velocidade cons-
tante. No instante t1 ele é observado em uma posição coincidente com
a marca de π/6 com relação a um eixo de referência e no instante pos-
terior t2 na posição coincidente com a marca de π/2. Pelas observações,
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responda: (a) é possível determinar a variação da posição angular? Qual
seria a sua medida? (b) É possível determinar a velocidade angular do
móvel se t1 = 1 s e t2 = 5 s?
Solução. (a) Podemos dizer que duas possíveis posições angulares para os
instantes t1 e t2 são θ1 = π/6 e θ2 = π/2, respectivamente. Isto significa,
efetivamente, que quaisquer posições nas formas

θ1i = π/6 + 2πi, para qualquer i inteiro, e,
θ2j = π/2 + 2πj, para qualquer j inteiro,

são possíveis para o móvel em t1 e em t2. Assim, variação da posição
angular ∆θ = θ2 − θ1 será

∆θ = π/2 + 2πj − (π/6 + 2πi)
= π/2 − π/6 + 2πj − 2πi

= π/3 + 2π(j − i)
∆θ = π/3 + 2πk = ∆θk,

em que k = j − i, a diferença entre dois inteiros, também é um inteiro.
Isto significa que a variação de posição angular não está determinada pois
não há certeza de seu valor por uma parcela dada por um múltiplo inteiro
de 2π. Seu valor tem a forma ∆θ = π/3 + 2πk e significa que não se sabe
quantas voltas inteiras se dá quando se sai de θ1 para θ2.
(b) Para obter a velocidade de um móvel que se move com velocidade
angular constante, precisamos determinar o valor da razão

ω = ∆θ

∆t
.

Neste caso, a variação de tempo ∆t está determinada e vale ∆t = t2 −t1 =
4 s. A variação de posição, porém, não pode ser conhecida, mas seus
possíveis valores podem ser expressos em termos de um inteiro k como
∆θk = π/3 + 2πk, o que significa que há, também, possíveis valores para
ω expressos em termos de k como

ωk = ∆θk

∆t

= π/3 + 2πk

4
ωk = π

12 + π

2 k [rad/s].

Exercícios de revisão

Questão 2.6. Qual é a equação da posição angular de um móvel que gira com velo-
cidade angular de π

6 rad/s e parte da posição π
2 rad quando t = 0?

Questão 2.7. A figura 2.3 mostra a sobreposição de duas posições de um móvel em
movimento circular uniforme, quando t = t1 = 0 e quando t = t2 = 0,1 s. (a)
Quais são as possíveis velocidades angulares do móvel? (b) Em valor absoluto,
qual é a menor destas velocidades?
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O′O

t1t2

Figura 2.3: Localização do móvel para a questão 2.7.

Questão 2.8. Um móvel em movimento circular com equação horária dada por

θ = 50πt + π/6

é iluminado por uma luz estroboscópica que pisca a cada 10 ms, sendo o primeiro
flash em t = 0. (a) A medida que gira, em que posições se encontra o móvel no
momento do flash? Tente achar uma regra geral para as posições em termos da
ordem do flash. (b) O que ocorre quando se reduz estas posições angulares a
uma medida de posição com 0 ≤ θ ≤ 2π?

Questão 2.9. Um móvel realiza um movimento circular uniforme iluminado por uma
luz estroboscópica que emite 11 flashes em rajada, sendo Ts o tempo entre cada
flash. Deseja-se que no 11o flash o móvel se encontre coincidente com a posição
em que ele estava no 1o flash. (a) Qual é a velocidade angular mínima, diferente
de zero, que o móvel deve estar para cumprir esta restrição? (b) Qual é a regra
geral para a expressão da velocidade angular que garante o cumprimento desta
restrição? (c) Esboce as posições do móvel em cada flash para cada velocidade,
considerando que o móvel está inicialmente coincidente com o eixo de referência.

Questão 2.10. Repita a questão 2.9 para N + 1 flashes.
Questão 2.11. Suponha que duas amostras são observadas do giro de um móvel em

movimento circular uniforme. A primeira amostra é feita em t1 = 0 quando
a posição do móvel coincide com o eixo de referência. A segunda em t2 = Ts.
Se desejamos ter certeza da velocidade angular do móvel a partir destas duas
amostras (a velocidade ω deve ser unicamente determinada), é necessário limitar
|ω| a um valor máximo. (a) Qual é esta velocidade máxima? (b) Qual é a
localização limítrofe da amostra feita em t2 = Ts que fornecerá está velocidade
máxima? (c) É permitido que entre t1 e t2 o móvel dê mais de uma volta e ainda
assim consigamos determinar ω unicamente? (dica: pense nas três perguntas
das letras (a), (b) e (c) de forma integrada pois não há ordem entre elas e, em
geral, elaborar um raciocínio que auxilie a responde uma, também auxilia a
responder outra)

2.3 Funções trigonométricas
O uso do seno e do cosseno em nosso trabalho será abundante, e, com uma
frequência um pouco menor, a tangente. Estas entidades podem ser conside-
radas operadores (operador seno, operador cosseno e operador tangente), uma
medida (medida de uma razão) ou uma função (como veremos na seção 2.3.2).
Importa saber que surgem historicamente como números associados a razões de
comprimentos em triângulos retângulos. Como todos os triângulos retângulos
que possuem um ângulo θ são semelhantes, as razões entre seus lados são sem-
pre as mesmas (pois os seus lados são proporcionais). Assim, podemos dizer
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Figura 2.4: Exemplo de um triângulo com um ângulo θ e a designação típica de
seus lados.

que os valores do seno, cosseno e tangente dependem apenas de θ. Elas são
representadas, respectivamente por sen θ, cos θ e tg θ.

No triângulo retângulo, elas podem ser calculadas como

sen θ = cateto oposto
hipotenusa ,

cos θ = cateto adjacente
hipotenusa , e,

tg θ = cateto oposto
adjacente ,

(2.9)

em que hipotenusa é o maior lado no triângulo retângulo, que está oposto ao
ângulo reto, e os catetos, os dois outros lados menores, são distinguidos ao
qualificá-los como ou oposto ou adjacente (próximo) considerando sua localiza-
ção em relação ao ângulo θ.

Assim, no triângulo retângulo da figura 2.4, o cateto adjacente é o lado de
comprimento a, o oposto o de comprimento b e a hipotenusa o de comprimento
c. Nele, temos

sen θ = b

c
,

cos θ = a

c
, e,

tg θ = b

a
.

(2.10)

É fácil ver que podemos calcular a tangente como

tg θ = sen θ

cos θ
. (2.11)

Exercícios de revisão

Questão 2.12. Calcule o seno, cosseno e a tangente do triângulo pitagórico com
relação ao ângulo α que tem cateto adjacente de comprimento 4 e oposto de
comprimento 3.

Questão 2.13. Empregue um dos triângulos formados pelo corte de um triângulo
equilátero por sua altura para determinar cos 30◦, sen 30◦, tg 30◦, cos 60◦, sen 60◦

e tg 60◦. Use as relações de simetria dos triângulos formados e o teorema de
Pitágoras.
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Figura 2.5: Triângulo retângulo padrão de hipotenusa unitária.

Questão 2.14. Empregue um dos triângulos formados pelo corte um quadrado por
sua diagonal para determinar cos 45◦, sen 45◦ e tg 45◦. Use as relações de sime-
tria dos polígonos da figura e o teorema de Pitágoras.

2.3.1 Círculo trigonométrico
As definições para as funções trigonométricas dadas nas equações 2.9 estão
vinculadas a existência de um triângulo retângulo com ângulo θ, o que limita a
explorarmos apenas ângulos θ entre 0◦ e 90◦ (ou entre 0 e π/2 rad).

A definição para valores de seno, cosseno e tangente pode ser expandida
para um ângulo qualquer se em uma primeira proposta adotarmos um triângulo
padrão de hipotenusa unitária como o apresentado na figura 2.5. Neste caso, os
próprios comprimentos dos catetos oposto e adjacente coincidem com o sen θ e
cos θ, como pode ser verificado fazendo c = 1 nas equações 2.10.

Neste paradigma intermediário para definir o seno e cosseno, a variação de
θ acaba traçando um arco de circunferência de raio unitário em torno do ponto
O em que se localiza o ângulo θ. Os valores de cos θ e sen θ se apresentam como
as medidas dos comprimentos horizontal e vertical da posição do ponto A.

Já em um paradigma final apresentado na figura 2.6, podemos fazer de O
a origem de um sistema cartesiano, de θ o ângulo que o segmento OA, de
comprimento unitário, faz com a horizontal, e cos θ e sen θ são, respectivamente,
a abscissa e ordenada do ponto A. Neste esquema, mudar o valor de θ faz o
ponto A descrever a circunferência de raio unitário centrada em O e chamada
de círculo trigonométrico.

Agora, podemos determinar cos θ e sen θ para qualquer valor de θ ∈ R. Para
contemplar os valores negativos, costuma-se convencionar θ > 0 a medida do
ângulo no sentido dextrogiro (anti-horário) conforme indica a seta que desenha-
mos para o ângulo θ na figura 2.6 e θ < 0 no caso contrário. Uma comparação
entre os dois casos está ilustrada na figura 2.7.

Definidos o seno e o cosseno, pode-se obter a tangente pela razão da equação
2.11, de modo que a definição que demos até agora do círculo trigonométrico
possibilita a cálculo dos valores para as três medidas. É comum, porém, aferir a
tangente pela coordenada do ponto A′ na reta t, tangente ao círculo trigonomé-
trico no ponto O′. O ponto A′ é obtido pela da interseção do prolongamento de
OA com a própria reta t. Ela é orientada para cima e tem O′ como origem. A
figura 2.8 apresenta esta estratégia para obter a tg θ. Mostramos também um
exemplo da tg ϕ em que o prolongamento toca a reta t no semi-eixo negativo da
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Figura 2.6: Círculo trigonométrico e definição de cos θ e sen θ válida para qual-
quer θ ∈ R.

θ > 0

O
θ < 0

Figura 2.7: Convenção para determinar o sinal do arco θ.



134 CAPÍTULO 2. BASES MATEMÁTICAS E FÍSICAS

θ

O
O′

A′
t

tg θ

A

tg φ

φ

Figura 2.8: Convenção geométrica para determinar a tangente.

reta orientada t, implicando um caso de tg ϕ < 0.

Exercícios de revisão
Questão 2.15. Use os ângulos de 30◦, 45◦ e 60◦ e o círculo trigonométrico para

elaborar uma tabela com os seno, cosseno e tangente de −120◦, −90◦, −60◦,
−45◦, −30◦, 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦, 180◦, 210◦, 225◦, 240◦,
270◦, 300◦, 315◦, 330◦, 360◦, 405◦, 450◦, 495◦, 540◦, 585◦, 630◦, 675◦ e 720◦.
Inclua uma coluna com a medida do arco em radianos.

Questão 2.16. Quais são as regularidade que se observam nos valores de seno, cos-
seno e tangente observando os dados da tabela realizada na questão 2.15? Quais
são os valores de máximo e mínimo para o seno e cosseno? Quando eles são nu-
los?

2.3.2 Funções senoidais
Agora, se considerarmos a função dada apenas pela operação do seno sobre uma
variável independente, digamos, x, teríamos

f(x) = sen x. (2.12)

É mais comum tratar esta função considerando x a medida do arco, o valor
adimensional convencionado como radianos.

Ilustramos na figura 2.9 a construção do gráfico da função seno. Se partirmos
de x = 0, por exemplo, vemos que o valor inicial para f(0) é f(0) = sen 0 = 0,
pois a ordenada do ponto A quando o arco é x = 0 rad é nula, pois A se encontra
sobre o eixo horizontal.

A medida que aumentamos o valor do arco x, o ponto A começa a girar no
sentido anti-horário sobre o círculo trigonométrico, de modo que o valor de sua
ordenada começa a aumentar. Este comportamento se encerra quando x = π/2
e a ordenada chega ao maior valor que pode atingir (o ponto verticalmente mais
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Figura 2.9: Construção do gráfico de f(x) = sen x.
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Figura 2.10: Construção do gráfico de g(x) = cos x.

acima que A atinge quando gira no círculo trigonométrico). Neste ponto, temos
f(π/2) = sen(π/2) = 1. A partir daí, seu valor passa a diminuir novamente até
atingir f(π) = sen π = 0.

Quando os valores π < x < 2π, o ponto A se encontra abaixo do eixo
horizontal e f(x) é negativo, seguindo um comportamento simétrico ao de 0 <
x < π. Por fim, quando x = 2π, o ponto A termina uma volta completa e retorna
ao mesmo ponto, com mesma ordenada, de quando x = 0. O comportamento
cíclico da função seno mostra que ela é periódica e, pelo círculo trigonométrico,
vemos que o período é 2π, ou seja,

sen x = sen(x + 2πk), (2.13)

para qualquer k inteiro.
Vamos agora tratar a função g(x) = cos x. Ora, o cosseno é também obtido

por uma coordenada do ponto A. Se girarmos os eixos cartesianos do círculo
trigonométrico em 90◦ no sentido anti-horário, vemos a abscissa, onde medimos
o cosseno, tomar a posição vertical de onde vinhamos observando a ordenada
que media o seno. Como diferença, vemos que quando x = 0 ⇒ g(0) = 1, o
que só acontece no seno quando x = π/2. Dizemos que o cosseno tem o mesmo
comportamento do seno, mas ele é adiantado com relação ao seno em π/2 rad.

O efeito sobre o gráfico é um deslocamento horizontal (ao longo da direção
de x) como ilustra a figura 2.10. Estar “adiantado” com relação ao gráfico do
seno, significa que ocorre no gráfico do cosseno o comportamento do seno em
valores menores de x. Isto se apresenta como uma translação para a esquerda.
Algebricamente, podemos escrever

sen(x + π/2) = cos x. (2.14)
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Exercícios de revisão

Questão 2.17. Utilize os valores da tabela obtida na questão 2.15 para esboçar os
gráficos de f(x) = sen(x) e g(x) = cos(x) para −2π

3 ≤ x ≤ 4π.

2.3.3 Características das senoides
As funções f(x) = sen x e g(x) = cos x são as funções mais simples que empre-
gam as operações trigonométricas. Vimos que ambas são capazes de descrever
um comportamento oscilatório com a diferença de um deslocamento no eixo
x. Por esta semelhança, vamos apresentar as características com base na fun-
ção seno, mas todas as características são válidas para ambas as funções (pois,
conforme veremos, elas diferem apenas com relação à característica chamada
fase).

É mais didático ao trabalhar com funções senoidais imaginar que a variável
dependente é uma grandeza (pressão, por exemplo) que está sofrendo um osci-
lação ao longo do tempo. Por isto, vamos adotar como variável independente
a letra t de tempo. Esta escolha é meramente didática e a variável dependente
pode ser de qualquer natureza. As características que estudaremos valeram para
qualquer uma delas.

Para estudar as características das funções senoidais vamos considerar uma
função seno com algumas constantes e dada por

f(t) = Fm sen(ωt + θ0). (2.15)

Elas é que descrevem características distintas das oscilações. O termo entre
parênteses coincide com a descrição cinemática de um movimento circular uni-
forme. Como o seno é a ordenada do ponto A no círculo trigonométrico, então
podemos interpretar sen(ωt + θ0) como a coordenada vertical do ponto A a me-
dida que ele gira no círculo trigonométrico com velocidade angular ω e partindo
de θ0 (quando t = 0).

Amplitude

Vimos que as funções seno e cosseno puras são tais que

−1 ≤ sen t ≤ 1, e − 1 ≤ cos t ≤ 1. (2.16)

Ou seja, entre o eixo de simetria da onda e a crista e o vale (o máximo e o
mínimo da oscilação) há uma amplitude unitária.

Ao multiplicar a função senoidal por uma constante, que chamamos de Fm

na equação 2.15, teremos

−Fm ≤ Fm sen t ≤ Fm, e, − Fm ≤ Fm cos t ≤ Fm, (2.17)

fazendo a amplitude da oscilação valer Fm conforme ilustrado na figura 2.11,
que mostra também a distinção entre as amplitudes para Fm = 1 e Fm = 3. Por
esta razão, a primeira característica que apresentamos para a senoide é chamada
amplitude e é representada pela constante Fm.
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Figura 2.11: Três senoides com amplitudes 1, 3 e Fm.

Frequência angular, frequência e período

Costuma-se convencionar que o argumento das funções senoidais é um arco
medido em radianos. Então, se se faz sen(u), supõe-se que a “unidade” de u é
dada em radianos. Propusemos a função genérica f(t) = Fm sen(ωt + θ0). Já
estudamos a constante Fm, que chamamos de amplitude. Vamos isolar o efeito
da constante ω.

Se observarmos isoladamente sen(ωt), ωt deverá ter unidade de radianos. Se
t for de fato a variável de tempo, sua unidade pode ser segundos. Pela análise
dimensional, a constante ω deverá ter unidade de rad/s. Ela tem significado fí-
sico análogo ao da velocidade angular estudada no movimento circular uniforme
que revisamos na seção 2.2, e pode ser interpretada como a velocidade com que
o ponto A circula ao longo do círculo trigonométrico. Assim, quanto maior for
ω, menor é o tempo necessário para completar um ciclo da oscilação.

Para as oscilações do argumento de senoides, emprega-se os mesmos termos
de período T e frequência f que vimos na seção 2.2.

A figura 2.12 ilustra o efeito da variação da frequência angular. Percebe-se
que as oscilações ficam mais rápidas ao comparar os períodos que cada função
leva para completar um ciclo. A função de maior frequência angular tem período
mais curto, ou seja, completa um ciclo mais rapidamente.

Utilizando a relação entre as frequência ω e f dada por ω = 2πf , a expressão
geral de uma senoide poderá vir no formato

f(t) = Fm sen(ωt + θ0) = Fm sen(2πft + θ0). (2.18)
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t

sen(ω1t)

T2

T1

sen(ω2t)

Figura 2.12: Duas senoides com frequencias angulares ω1 e ω2 com ω2 > ω1 e,
portanto, T2 < T1.

t

sen(ωt)sen(ωt+ θ)sen(ωt+ φ) sen(ωt− θ)

Figura 2.13: Três senoides com fase nula, θ e ϕ com ϕ > θ > 0 e uma quarta
com fase −θ.

Fase ou defasagem

O último elemento de uma senoide genérica de que ainda não tratamos é o θ0.
Como vimos na seção 2.2, o termo θ0 está associado a posição angular quando
t = 0. Na expressão

f(t) = Fm sen(ωt + θ0),

costuma-se trabalhar com duas convenções terminológicas. Umas designa toda
expressão entre parêntese (todo argumento da função trigonométrica) de fase.
Neste caso, θ0 pode ser chamado de fase inicial ou defasagem. Esta convenção é
mais popular entre físicos e matemáticos. A segunda convenção, mais empregada
na engenharia, chama apenas o θ0 de fase.

A figura 2.13 ilustra o efeito da mudança de fase. Dentre os sinais, sen(ωt) =
sen(ωt + 0) é uma espécie de referência, pois sua fase é zero. Há duas senoides
adiantadas. Esta característica pode ser observada se escolhermos uma refe-
rência (o ponto em que a onda corta o eixo t, ou o ponto em que atinge uma
crista ou um vale, por exemplo). Observa-se que os valores de t em que a onda
definida por sen(ωt + θ) atinge pontos de referência são sempre menores que na
curva de sen(ωt), o que significa que ela atinge determinados valores mais “pre-
cocemente”, mais “adiantada” do que o sen(ωt). A função sen(ωt + ϕ) atinge
um mesmo ponto de referência ainda mais cedo. Ela é ainda mais adiantada do
que sen(ωt) e sen(ωt + θ), já que ϕ > θ.

Por outro lado, o gráfico de sen(ωt − θ) é sempre mais atrasado do que
o de sen(ωt). Podemos resumir o comportamento da fase da seguinte forma:
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senoides adiantadas tem fases positivas e aparecem no gráfico transladadas para
a esquerda com relação a uma referência; já as senoides atrasada tem fases
negativas e aparecem transladadas para a direita com relação a uma referência.

Exercícios de revisão
Questão 2.18. Esboce os gráficos das senoides abaixo.

(a) 1
2 sen(t) e 3 sen(t).

(b) 4,3 cos(2πt) e 2,5cos(2πt).
(c) cos(2πt) e cos(8πt).
(d) cos(3t) e cos(4t).
(e) sen(2πt + π/3) e sen(2πt + π/6).
(f) 2 sen(t) e 3 cos(t − π/4).
(g) cos(2πt + π/6) e 2 cos(3πt).

2.3.4 Funções trigonométricas inversas
As funções trigonométricas recebem como argumento um ângulo ou arco e indi-
cam uma razão entre comprimentos. As funções trigonométricas inversas fazem
o caminho contrário. Recebem uma razão e informam o ângulo ou arco para o
qual essa razão ocorre.

Cada função trigonométrica tem sua inversa. arcsen ou sen−1 indica o in-
verso da função seno. Temos, por exemplo,

sen−1
(√

3
2

)
= π

3 rad,

já que

sen
(π

3

)
=

√
3

2 .

Da mesma forma como definimos a inversa do seno, arccos e cos−1 são as
inversas do cosseno e arctg e tg−1 são as inversas da tangente.

O problema de obter os valores de um arco dado o seu seno, que possibilita
o cálculo das funções trigonométricas, é um problema típico de equação trigo-
nométrica. Isto porque a forma de obter o valor do arco para o qual o seno vale√

3/2 pode ser expresso para equação

sen θ =
√

3/2.

A solução obtida para θ, representa um valor válido para a inversa, de onde
teríamos,

sen−1
(√

3
2

)
= θ.

A rigor, neste nosso último exemplo, dizer que sen−1
( √

3
2

)
= π

3 é incompleto
por dois motivos, que podemos resumir no fato de que θ = π/3 não é a única
solução de sen θ =

√
3/2. O primeiro é devido a existência da ambiguidade

da posição angular com relação à quantidade de voltas completas como vimos
na seção vimos na seção 2.2. Como nosso problema é achar um arco θ tal
que sen(θ) =

√
3/2, sabemos que ele deve estar associado a posição angular
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O

O O

O

θ1

θb

θ′1

√
3
2

θ0

A
√
3
2

A

θ′0

B B
√
3
2

√
3
2

Figura 2.14: Ambiguidades na determinação do arco θ, tal que sen θ =
√

3/2.

de um ponto sobre o círculo unitário que tenha ordenada
√

3/2. Por inspeção
da figura 2.14, podemos ver no caso superior esquerdo que o ponto A tem esta
propriedade. Ora, mas o ponto a tem posição angular ambígua. Ela pode ser
dada por θ0, mostrado no canto superior esquerdo da figura, pode ser, também,
dada por θ1 ou qualquer outro arco em que a diferença com relação a θ0 e θ1 seja
um múltiplo inteiro de 2π. Estes arcos tem a forma π/3 + 2πk, com k inteiro.

O segundo motivo é devido a simetria em torno do eixo vertical de pontos
que tem mesma ordenada e estão no círculo unitário. O ponto B é o simétrico
ao ponto A com relação ao eixo vertical e também tem ordenada dada por

√
3/2.

Uma posição angular associada ao ponto B é θ′
0 = 4π/6. Assim, θ′

0 também
seria solução de sen θ =

√
3/2. Além de θ′

0, há também θ′
1 e uma infinidade de

outros arcos que diferem deles em um múltiplo inteiro de 2π.
Assim, o conjunto de soluções para

sen θ =
√

3/2, é

{θ | θ = π/3 + 2πk, ou, θ = 4π/6 + 2πk, k inteiro}
Por esta razão, as funções trigonométricas inversas, como precisam retornar

um único valor, serão limitadas a um conjunto reduzido de valores de arco. Isto
impacta, também, no uso de calculadoras para o cálculo das funções trigono-
métricas inversas, pois devemos lembrar que a calculadora (ou função de uma
linguagem de programação) terá uma predefinição dos arcos que ela retorna
como resultado da aplicação de uma função trigonométrica inversa.

Exercícios de revisão
Questão 2.19. (a) Determine todas as possibilidades para sen−1(−

√
2/2). (b) De-

termine os valores do arco sen−1(−
√

2/2) limitando-o a valores entre −π/2 e
π/2.

Questão 2.20. (a) Determine todas as possibilidades para cos−1(1/2). (b) Determine
os valores do arco cos−1(1/2) limitando-o a valores entre 0 e π.
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B

A√ A
2 +

B
2

θ

Figura 2.15: Triângulo empregado para determinar a soma de senoides.

Questão 2.21. (a) Determine todas as possibilidades para tg−1(−
√

3/3). (b) De-
termine os valores do arco cos−1(−

√
3/3) limitando-o a valores entre −π/2 e

π/2.

2.3.5 Soma e produto de funções senoidais
É possível encontrar em livros de matemática do ensino médio as fórmulas

cos(α + β) = cos α cos β − sen α sen β, (2.19)
cos(α − β) = cos α cos β + sen α sen β, (2.20)
sen(α + β) = cos α sen β + sen α cos β, e, (2.21)
sen(α − β) = cos α sen β − sen α cos β (2.22)

que são as fórmulas para os cossenos e senos das somas e diferenças de arco.
Somando as equações 2.19 e 2.20, subtraindo-as ou somando as equações

2.21 e 2.22, obtemos, respectivamente, as equações

cos α cos β = 1
2[cos(α + β) + cos(α − β)], (2.23)

sen α sen β = 1
2[cos(α − β) − cos(α + β)], e, (2.24)

cos α sen β = 1
2[sen(α + β) + sen(α − β)], (2.25)

que são as fórmulas para produtos entre senos e cossenos.
Agora considere a soma

A cos(ωt) + B sen(ωt),

que representa a soma das duas funções trigonométricas com amplitudes dis-
tintas e fases nulas (porém com diferença de fase de π/2 entre as funções, pois
como vimos cos(x) = sen(x + π/2)).

Agora considere um triângulo retângulo com lados de catetos coincidentes
com as amplitudes A e B, com a amplitude do cosseno como cateto oposto
ao ângulo de interesse θ. Este triângulo é mostrado no figura 2.15, em que a
hipotenusa pode ser obtida pelo teorema de Pitágoras. Ele tem

sen θ = A√
A2 + B2

, (2.26)

cos θ = B√
A2 + B2

, e, (2.27)
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tg θ = A

B
⇔ θ = arctg

(
A

B

)
. (2.28)

Se multiplicarmos a soma de seno por cosseno por 1 =
√

A2+B2√
A2+B2 , teremos

A cos(ωt) + B sen(ωt) =
√

A2 + B2
√

A2 + B2
[A cos(ωt) + B sen(ωt)]

=
√

A2 + B2
[

A√
A2 + B2

cos(ωt) + B√
A2 + B2

sen(ωt)
]

=
√

A2 + B2[sen θ cos(ωt) + cos θ sen(ωt)]

=
√

A2 + B2 sen(ωt + θ)

=
√

A2 + B2 sen
[
ωt + arctg

(
A

B

)]
,

que é a expressão que queríamos para a soma de senoides

A cos(ωt) + B sen(ωt) =
√

A2 + B2 sen
[
ωt + arctg

(
A

B

)]
. (2.29)

Se trocarmos os papéis entre cateto oposto e adjacente realizados por A e B no
triângulo da figura 2.15, chegaremos à

A cos(ωt) + B sen(ωt) =
√

A2 + B2 cos
[
ωt − arctg

(
B

A

)]
.. (2.30)

As expressões 2.29 e 2.30 nos dizem que quando somamos duas senoides
de mesmas frequência, obtemos uma senoide, também na mesma frequência,
porém, defasada com relação às originais. A amplitude e a fase da senoide
resultante são funções das amplitudes das senoides iniciais.

Exemplo 2.8. Reescreva a função

f(t) = 5
√

2 cos(ωt − 3π/4) + (5 + 5
√

3) cos(ωt)

empregando uma única função trigonométrica.
Solução. Reescrevamos inicialmente o primeiro cosseno em termos da
soma de cosseno com seno, utilizando o caminho inverso mostrado na
equação 2.29, expressando

5
√

2 cos(ωt − 3π/4) = 5
√

2 sen(ωt − 3π/4 + π/2)
= 5

√
2 sen(ωt − π/4)

= A cos(ωt) + B sen(ωt),

em que 



√
A2 + B2 = 5

√
2

cos(−π/4) = B√
A2 + B2

sen(−π/4) = A√
A2 + B2

A

B
= tg(−π/4).
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Por estas relações entre A e B, podemos determinar

A = −B = −5,

que implicará

5
√

2 cos(ωt − 3π/4) = −5 cos(ωt) + 5 sen(ωt)

Retomando a expressão para f(t), teremos

f(t) = 5
√

2 cos(ωt − 3π/4) + (5 + 5
√

3) cos(ωt)
= −5 cos(ωt) + 5 sen(ωt) + (5 + 5

√
3) cos(ωt)

= 5
√

3 cos(ωt) + 5 sen(ωt),

que, empregando 2.29 novamente, resulta em

f(t) = 10 sen
[
ωt + arctg(

√
3)

]
= 10 sen(ωt + π/3).

Exercícios de revisão

Questão 2.22. Reduza as funções abaixo a uma única senoide.
(a) f(t) = 4 cos(120πt) + 4

√
3 sen(120πt)

(b) g(t) = 3 sen(ωt + 3π/4) + 1,5
√

2 sen(ωt)
(c) h(t) = 10

√
2 cos(880πt − 2π/3ť) + 20

√
6

3 sen(880πt + π)

2.4 Matrizes
Matrizes são entidades matemáticas que organizam números em um arranjo de
linhas e colunas. Chamamos estes números de elementos da matriz. As matrizes
podem vir com uma grande quantidade de linhas e colunas. O arranjo

no de linhas × no de colunas,

nesta ordem, é o que designamos ordem da matriz ou dimensão da matriz. A
matriz

A =




23 30
35 36
39 49




tem ordem 3 × 2, pois possui três linhas e duas colunas. Se for importante,
podemos explicitar a ordem de uma matriz apondo a ordem ao nome da variável
que representa a matriz como em A3×2.

É comum indicar os termos de uma matriz identificando seus elementos por
uma letra minúscula seguida de dois índices (dois números em subscrito) para
indicar a linha e a coluna, nesta ordem. Na matriz A que apresentamos, por
exemplo, o elemento a21 = 35, pois o elemento da segunda linha na primeira
coluna vale 35 em A. Se os elementos aij são os componentes da matriz A,
escrevemos A = [aij ].
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Igualdade de matrizes

Duas matrizes só são iguais se elas tem cada um de seus termos iguais e elas
tem mesma dimensão, ou seja,

Am×n = Bp×q ⇔





aij = bij

m = p

n = q

. (2.31)

2.4.1 Regularidade nos elementos de uma matriz
Nos interessa a construção de uma matriz seguindo uma regra de formação para
seus elementos. Podemos definir uma matriz B como B3×3 = [bij ], tais que
bij = i + j. Neste caso, pela substituição dos valores de i e j correspondentes
às linhas e colunas expressos na regra geral, podemos obter a matriz

B =




2 3 4
3 4 5
4 5 6


 . (2.32)

Como a diferença entre um elemento e outro dentro da matriz está em sua
localização no arranjo de linhas e colunas, se houver uma regularidade, estamos
falando em uma regra que associa a posição do elemento ao seu valor, e portanto,
o elemento da i-ésima linha e j-ésima coluna está em função de i e j. Isto está
explícito nos índices que escrevemos em bij . De forma redundante, poderíamos
escrever bij = bij(i,j) para explicitar a relação funcional.

2.4.2 Produto de matrizes
Podemos multiplicar duas matrizes Am×n e Bp×q desde que a quantidade de
colunas de A coincida com a quantidade de linhas de B, ou seja, desde que
n = p. Isto ocorre pois se o resultado do produto é C = AB, então o termo cij

é dado pela multiplicação dos elementos da linha i de A pela coluna j de B um
a um e depois somados. Como exemplo, temos



1 0
2 −2
1 3


·

[
4 −1

−1 1

]
=




1 · 4 + 0 · (−1) 1 · (−1) + 0 · 1
2 · 4 + (−2) · (−1) 2 · (−1) + (−2) · 1

1 · 4 + 3 · (−1) 1 · (−1) + 3 · 1


 =




4 −1
10 −4
1 2


 .

Talvez seja mais fácil visualizar uma multiplicação A3×2B2×2 = C3×2 pelos
termos genéricos




a11 a12
a21 a22
a31 a32


 ·

[
b11 b12
b21 b22

]
=




a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22
a31b11 + a32b21 a31b12 + a32b22


 ,

ficando claro a multiplicação termo a termo de uma linhas de A por uma coluna
de B.

É por conta da multiplicação termo a termo que a quantidade de elementos
da linha de A (dado pela quantidade de colunas) deve ser igual a quantidade
de elementos da coluna de B (dado pela quantidade de linhas de B), e por isso
n = p é necessário.
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Vale perceber, também, que se C = AB, e Am×n e Bn×p, então C terá
ordem m × p.

Em notação de somatório, podemos expressar os elementos da matriz pro-
duto C = [cij ] como

cij =
n∑

k=1
aikbkj , (2.33)

em que o incremento no valor da variável k faz o somatório percorrer os n
elementos i-ésima linha da matriz A e os n elementos da j-ésima coluna da
matriz B.

Veremos mais adiante que a possibilidade de organização de matrizes criadas
por meio de uma regra e o uso de produto de matrizes para realizar somatórios
será fundamental para organizar os cálculos para obter a série de Fourier.

Produto de matrizes como representação de sistema de equações

Uma das utilidades do produto de matrizes é seu emprego para representar
um sistema de equações, ou, de forma geral, um conjunto de equações. Vamos
tomar como exemplo um sistema linear de equações com três equações e três
incógnitas. O sistema





2x +y −z = 8
−3x +2y +z = −8
x +3y +4z = 2

pode ser reescrito como



2 1 −1
−3 2 1
1 3 4







x
y
z


 =




8
−8
2


 .

A matriz

A =




2 1 −1
−3 2 1
1 3 4




é chamada de matriz dos coeficientes, a matriz

x =




x
y
z




é chamada de matriz das variáveis, e

B =




8
−8
2




é chamada de matriz dos termos livres. Assim, o sistema de equações pode ser
expresso pelo produto

Ax = B.



146 CAPÍTULO 2. BASES MATEMÁTICAS E FÍSICAS

O produto das matrizes é igual ao sistema pois se resolvermos o produto,
obtemos 


2x + y − z

−3x + 2y + z
x + 3y + 4z


 =




8
−8
2


 ,

e como a igualdade de matrizes implica que os termos correspondentes têm que
ser iguais, temos




2x + y − z
−3x + 2y + z
x + 3y + 4z


 =




8
−8
2


 ⇔





2x +y −z = 8
−3x +2y +z = −8
x +3y +4z = 2

.

Logo, o produto de matrizes expressa exatamente o mesmo que o sistema de
equações.

Exercícios de revisão
Questão 2.23. Dadas as regras de formação, apresente a matriz resultante.

(a) A3×3 com os elementos aij = (i − 1)2 + j.
(b) B4×4 com os elementos bij = 2(i − 1) + 3(j − 1).
(c) C4×7 com os elementos





Cij = 1
7 , i = 1

Cij = 2
7 cos

[2π

N
(i − 1)(j − 1)

]
, nos outros casos

.

Questão 2.24. Expresse os sistemas de equações a seguir na forma matricial.

(a)
{

x 3y = 5
−4x −y = 2

(b)

{
x +y −z = 2
2x +y +2z = 3
3x −2y −z = −11

(c)





2a0 +a1 +a2 +a3 = 5
−2a0 +a1 −a2 −a3 = 1
−4a0 +2a1 −2a2 +a3 = 4
2a0 +a1 −3a2 +2a3 = 11

Questão 2.25. Considere as matrizes

x =




x[0]
x[1]
x[2]
x[3]


 , a =

[
a0
a1
a2

]
, b =

[
b0
b1
b2

]
,

C =




1
4

1
4

1
4

1
4

1
2

1
2 cos

( 2π
4

) 1
2 cos

( 4π
4

) 1
2 cos

( 6π
4

)
1
4

1
4 cos

( 4π
4

) 1
4 cos

( 8π
4

) 1
4 cos

( 12π
4

)


 , e,

S =




0 0 0 0
0 1

2 sen
( 2π

4

) 1
2 sen

( 4π
4

) 1
2 sen

( 6π
4

)
0 0 0 0


 .

Determine o conjunto das equações para a0, a1, a2, b0, b1 e b2 sabendo que

a = Cx, e, b = Sx.
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Questão 2.26. Realize o produto matricial entre as matrizes A e B abaixo expres-
sando cada elemento da matriz produto C na forma de somatório, organizando
os cálculos dos valores destes elementos antes de expressar a matriz produto
resultante.

A =

[1 2 1
1 −1 3
0 1 1

]
B =

[ 2 3
1 −2

−2 0

]
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Capítulo 3

Python, iterações,
somatórios e gráficos

Há várias formas de instalar o Python e rodar seus códigos. Um dos mais simples
é pela instalação do Python disponível em https://www.python.org/ e pelo
uso do Python IDLE (Integrated Development and Learning Environment), um
software que integra a possibilidade de elaborar a programação, editar o código
e executá-lo em um mesmo ambiente. Na instalação para Windows, o IDLE
é padrão. É importante, também, ter a capacidade de instalar e empregar os
módulos do Python. A forma mais empregada para realizar estas instalações é
por meio do pip.

Sugerimos, para seguir com o que apresentamos neste material, que o aluno
siga um tutorial que o capacite a:

• Instalar o Python (costuma vir instalado nas distribuições Linux);

– Ter o Python e a ferramenta de instalação de módulos (sugerimos
pip) disponíveis na variável PATH do sistema operacional;

• Instalar o Python IDLE (padrão na instalação do Python para Windows);

• Instalar, pelo menos, os módulos NumPy e Matplotlib; e

• Executar scripts de teste no Python IDLE (ou com o workflow com que
você melhor se adaptou).

3.1 Uso do IDLE, execução de comandos e scripts
Uma das formas de utilizar a linguagem Python é por seu Shell, em que co-
mandos na linguagem Python podem ser inseridos e executados um a um ao
pressionar a tecla Enter, como em um terminal do Linux ou do DOS (também
conhecido no Windows como prompt de comandos ou cmd). O IDLE, assim que
aberto, é inicializado em um Shell. A indicação de que um comando pode ser
inserido é feita pelo indicador >>> como mostra a figura 3.1.

No Shell os comandos podem ser digitados e executados um por vez. Isto
é útil na realização de testes, em algum procedimento curto ou quando se tem
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Figura 3.1: Python Shell do IDLE.

certeza que não há interesse em executar esta sequência de comandos repetidas
vezes.

Se se deseja executar um código mais extenso ou que poderá ser executado
várias vezes, é mais comum recorrer à criação de um script. Empregando o
IDLE, pode-se criar o arquivo do script pelo caminho File → New File em seu
menu superior. O IDLE abrirá uma nova janela similar a de um editor de
texto para elaboração da sequência de comandos que formará o programa em
linguagem Python. Ao salvar este script, convenciona-se empregar a extensão
.py. Ele poderá ser aberto no futuro para nova execução.

A execução de um script pode ser realizada a partir do menu superior da
janela do código pelo caminho Run → Run Module, ou pelo uso da tecla de
atalho F5. O resultado da execução do script será exibido no IDLE Shell.

3.2 Aspectos básicos da sintaxe do Python
De forma geral, vamos seguir as seguintes diretrizes para construir um programa
em Python:

• Não é necessário declarar variáveis ou inicializá-las;

• Cada comando é posto em uma linha (vários comandos podem ser escritos
em uma mesma linha desde que separados por ponto-e-vírgula);

• Não é necessário identificar o fim do comando; e

• Os blocos de comando (os comandos que serão executados dentro de uma
iteração ou condicional, por exemplo) têm seu início e fim identificados
pela indentação.

3.2.1 Atribuição – o sinal de igual
A atribuição de um valor a uma variável em Python é realizada por meio do
operador de atribuição = (sinal de igual), seguindo a regra:

[ v a r i á v e l ] = [ va l o r a s e r a t r i b u í d o ]

O código 3.1 mostra a atribuição de números às variáveis x, y e z.
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Figura 3.2: Execução do código 3.1 no Shell.

1 x = 3 # a t r i b u i o v a l o r 3 à v a r i á v e l x
2 y = 4 .5 # a t r i b u i o v a l o r 4.5 à v a r i á v e l y
3 z = x + y # a t r i b u i o v a l o r 7.5 = 3 + 4.5 à v a r i á v e l z

Código 3.1: Exemplo de atribuição e comentários em Python.

3.2.2 Comentários
A principal forma de comentar código em Python é por meio do comentário
na linha feito pelo identificador #. A partir deste identificador, qualquer texto
adicionado na linha será ignorado na interpretação e execução do programa.
Assim, no código 3.1, os textos “atribui o valor 3 à variável x”, “atribui o valor
4.5 à variável y” e “atribui o valor 7.5 = 3 + 4.5 à variável z” são comentários
que são ignorados pelo Python, pois são todos precedidos na mesma linha por
#.

3.2.3 Execução de comandos no Shell do IDLE
Teste rodar cada linha do código 3.1 escrevendo-as no Shell após o indicador de
linha >>> e pressionando Enter ao fim de cada comando (não é necessário copiar
os comentários). No Shell, digitar uma variável e pressionar Enter retornará na
tela o valor atual da variável. Ao digitar o nome das variáveis x, y e z seguidas
da tecla Enter após executar o código 3.1, o Shell mostrará os valores 3, 4.5 e
7.5, relativos aos valores armazenados nas respectivas variáveis. Os resultados
da realização deste procedimento ilustrado na figura 3.2.

Exercícios de revisão

Questão 3.1. Repita as operações no Shell realizadas na figura 3.2.
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3.2.4 Exibição básica – a função print

O artifício de digitar o nome da variável e pressionar Enter para visualizar seu
valor só funciona no Shell. Se desejarmos o mesmo em um script, a forma mais
simples é pelo uso da função print. Sua sintaxe é

print ( [ v a r i á v e i s ou o b j e t o s separados por v í r g u l a ] , sep=’ ’ ,
end=’ \n ’ , f i l e=None , f l u s h=False )

Os argumentos precedidos por palavras chave (sep, end, file e flush) são
opcionais. Indicar um caractere em sep define o que separa a impressão das
variáveis ou objetos e end o que é posto ao fim da impressão e podem ser úteis
na definição da aparência da exibição dos dados.

3.2.5 Execução de um script em Python

Podemos, agora, repreduzir os comandos que realizamos no shell utilizando um
script. Basta criar um novo arquivo no IDLE pelo caminho File → New File (ctrl
+ N). Na janela de edição que é aberta, podemos digitar o código 3.2, salvar o
arquivo do código e executá-lo no Shell pela caminho Run → Run Module (F5)
disponível no menu do editor.

1 x = 3
2 y = 4 .5
3 z = x + y
4 print (x , y , z , sep=’ ; ’ )

Código 3.2: Exemplo de código para um script simples.

Com isto, o script será executado e seu resultado será exibido no Shell, que
mostrará 3;4.5;7.5, o resultado da impressão dos valores de x, y e z separados
por ponto e vírgula. Lembre que, por convenção, os scripts de Python são
arquivos com a extensão .py.

Exercícios de revisão

Questão 3.2. Crie um arquivo .py com o código 3.2 e execute o script, verificando o
resultado da execução no Shell.

3.2.6 Strings

Strings são conjuntos de caracteres que podem ser atribuídos à variáveis. Para
declará-los, basta digitar os caracteres entre aspas duplas ou simples. O código
3.3 mostra a declaração dos strings x e y e a impressão dos mesmos com a
função print. Como não foi declarado o tipo de separação desta função, ela usa
o separador padrão que consiste em um espaço.
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Tabela 3.1: Operações matemáticas, de comparação e lógicas definidas no
Python.

operação comparador operador
lógico

adição + igual == negação not
subtração - diferente != e-lógico and

multiplicação * maior que > ou-lógico or
divisão / menor que <
divisão
inteira

// maior ou
igual

>=

resto da
divisão

% menor ou
igual

<=

potenciação **
multiplicação
de matriz

@

1 x = " imprimindo "
2 y = ’ do i s s t r i n g s ’
3 print (x , y )

Código 3.3: Uso de strings.

3.2.7 Entrada de dados básica – a função input
O script pode solicitar ao usuário que digite um valor que poderá ser passado
para uma variável como um string utilizando a função input cuja sintaxe é

1 input ( [ mensagem ] )

O código 3.4 solicita ao usuário para digitar seu nome e idade. A entrada é
realizada quando o usuário pressiona Enter. Em seguida as variáveis nome e
idade, já preenchidas com os strings contendo a informação são empregadas na
função print.

1 nome = input ( " Informe seu nome : " )
2 idade = input ( " Informe sua idade : " )
3 print ( " Você é " , nome , " e tem " , idade , " anos . " )

Código 3.4: Uso da função input.

Exercícios de revisão
Questão 3.3. Ponha o código 3.4 em um arquivo e o execute como script.

3.2.8 Operações matemáticas básicas, comparações e ope-
rações lógicas

O Python tem definido como padrão as operações básicas listadas na tabela
3.1. A execução do código 3.5 tem como resultado a listagem dos valores
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5.5; -25.5; 24.64; 6.428571428571429; 6; 3; 7776.0, correspondentes ao
resultado respectivo das operações realizadas no código.

1 a = 3 + 2 .5
2 b = 4 .5 − 30
3 c = 3 .2 ∗ 7 .7
4 d = 45 / 7
5 e = 45 // 7
6 f = 45 % 7
7 g = 36 ∗∗ 2 .5
8 print ( a , b , c , d , e , f , g , sep=’ ; ’ )

Código 3.5: Código para exemplificar emprego de operadores matemáticos.

As operações de comparação da tabela 3.1 retornam verdadeiro ou falso. É
importante observar que, tal como na linguagem C, o sinal de igual é empregado
para a operação de atribuição. Por esta razão, a comparação utiliza um par
de sinais de igualdade. O código 3.6 apresenta exemplos de comparações e
operações lógicas sob o formato da impressão dos valores true ou false de acordo
com o resultado dos testes colocados como parâmetro da função print.

1 x = 3
2 print ( " x é i g u a l a 3? R: " , x==3)
3 print ( " x é i g u a l a 4? R: " , x==4)
4 print ( " x é d i f e r e n t e de 4? R: " , x !=4)
5 print ( " x é maior do que 4? R: " , x>4)
6 print ( " x é menor do que 3? R: " , x<3)
7 print ( " x é maior ou i g u a l a 4? R: " , x>=4)
8 print ( " x é menor ou i g u a l a 3? R: " , x<=3)
9 print ( " x é menor do que 6 e maior do que 4? R: " , x<6 and x>4)

10 print ( " x é menor do que 6 ou maior do que 4? R: " , x<6 or x>4)
11 print ( " x não é i g u a l a 5? R: " , not x==5)

Código 3.6: Exemplo do uso de comparações e de operadores lógicos.

Vamos retomar a multiplicação de matriz que emprega o operador @ na seção
3.3.2 quando conseguiremos definir as matrizes utilizando o módulo NumPy.

Exercícios de revisão
Questão 3.4. Repita as operações dos códigos 3.5 e 3.6 no Shell, verificando o em-

prego dos operadores aritméticos e lógicos. Mude o valor da variável x na pri-
meira linha para 2, 4, 5, 6 e 7, execute o script em cada caso e veja o resultado
dos novos testes.

3.2.9 Controle de fluxo condicional – uso do if
Os scripts que vimos até aqui realizam os comandos listados na ordem em que
são escritos. É possível alterar esse fluxo de execução invocando uma condição
por meio da construção conhecida como if, que deve seguir a sintaxe
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i f [ t e s t e c o n d i c i o n a l ] :
[ p r ime i ro comando que s e rá r e a l i z a d o s se o t e s t e é

ve rdade i ro ]
[ segundo comando , e t c . ] #os comandos devem e s t a r indentados

para estarem no b l oco do i f

Pode-se realizar testes sucessivos após uma falha (um resultado falso no teste
condicional) empregando uma construção idêntica ao do if (se) chamada elif
(de else, if – senão, se), que também demandará um novo teste condicional.
Este novo teste pode ser repetido várias vezes. Um condicional final pode ser
feito opcionalmente com o uso do else, (senão), e que não demanda um teste.
Simplesmente será executado se todos os outros testes condicionais falharem.
Um exemplo desta construção é mostrada no código 3.7

1 x = 4 # mude o v a l o r de x para 5 , 5 .5 , 6 ou 7 para v e r i f i c a r o
funcionamento do i f

2 i f x<5:
3 print ( " x é menor do que 5 " )
4 e l i f x==5:
5 print ( " x é i g u a l a 5 " )
6 print ( " e s tá mensagem só va i s e r ex ib ida quando x f o r i g u a l

a 5 " )
7 e l i f x==6:
8 print ( " x é i g u a l a 6 " )
9 e l i f x>6:

10 print ( " x é maior do que 6 " )
11 else :
12 print ( " x e s tá ent re 5 e 6 " )

Código 3.7: Uso de controle de fluxo condicional.

3.2.10 Controle de fluxo por iterações – uso do while e
for

Uma segunda forma de realizar mudança no fluxo dos comandos é pela repetição
de um trecho de código de forma repetitiva. Chamamos cada repetição de
iteração. A construção mais simples que realiza iterações é a while (enquanto),
cuja sintaxe é

while [ t e s t e c o n d i c i o n a l ] :
[ p r ime i ro comando da i t e r a ç ã o ]
[ segundo comando , e t c ] #os comandos devem e s t a r indentados

para estarem no b l oco do wh i l e

Enquanto o teste condicional for verdadeiro, os comandos indentados abaixo do
while serão repetidos.

O código 3.8 é um exemplo do uso das iterações do while. A variável texto
é alimentada com um string inicial que é substituído dentro do while pelo string
dado pelo usuário. Enquanto o usuário não digitar encerrar, o loop continuará
a solicitar que dê uma entrada de texto e a exibir o que foi digitado.
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1 texto = " i n i c i a l "
2 while texto != " e n c e r r a r " :
3 texto = input ( ’ D ig i t e " e n c e r r a r " para terminar o s c r i p t : ’

)
4 print ( " Você d i g i t o u : " , t exto )
5 print ( "As i t e r a ç õ e s foram encer radas " )

Código 3.8: Realização de iterações com while.

A segunda construção que veremos para realizar iterações é o for, cuja
sintaxe é
for [ v a r i á v e l ] in [ ob j e to i t e r á v e l ] :

[ p r ime i ro comando da i t e r a ç ã o ]
[ segundo comando , e t c ] #os comandos devem e s t a r indentados

para estarem no b l oco do f o r

O Python possui alguns objetos classificados como iteráveis, capazes de prover
uma iteração por estarem organizados em uma sequência ou ordem. Na constru-
ção for, vamos utilizar com frequência os objetos iteráveis gerados pela função
range. Ela tem três possíveis sintaxes
range ( [ va l o r de parada ] )
range ( [ va l o r i n i c i a l ] , [ va l o r de parada ] )
range ( [ va l o r i n i c i a l ] , [ va l o r de parada ] , [ passo ] )

Se é fornecido apenas uma variável, como range(6), por exemplo, o valor inicial
é tomado como 0 e o passo é unitário. Este comando gerará a sequência 0, 1,
2, 3, 4 e 5, pois o valor de parada nunca é incluído. Se forem fornecidos dois,
valores, como range(3,6), teremos a sequência 3, 4 e 5. Temos um novo valor
inicial mas ainda com passo unitário. Por fim, com os três valores, como em
range(1, 6, 2), geraremos 1, 3 e 5, uma vez que começaremos do valor 1 e
teremos um passo de tamanho 2.

Como exemplo do uso do for e range, veja o código 3.9 que gera o texto
mostrado no comentário.

1 print ( "Os números pares menores do que 20 são : " , end=" " )
2 for i in range (20) :
3 i f i %2==0:
4 print ( i , end=" , " )
5 print ( " e só . " ) #termina o t e x t o "Os números pares menores do

que 20 são : 0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , e só . "

Código 3.9: Realização de iterações com for empregando iterável gerado por
range.

Exercícios de revisão
Questão 3.5. Faça um script para pedir repetidamente números inteiros ao usuário.

O programa informa se o número é divisível por 3, 5 e/ou 7. Caso o usuário
escreva “encerrar”, o script é concluído. Se a função input for empregada, ela
retorna uma variável do tipo string, de sorte que para realizar contas com esta
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variável, poderá ser necessário empregar a função int(x), que converte o string
para inteiro interpretando o valor escrito como número.

3.2.11 Importando módulos
As funcionalidades nativas do Python são muitas e eficazes, mas não são sufi-
cientes para cobrir alguns cálculos mais complexos. Em especial, ele não tem
suporte para cálculos com funções trigonométricas ou com matrizes, que, como
já dissemos, serão fundamentais em nosso estudo. A comunidade de programa-
dores do Python é forte e capaz de acrescentar novas funcionalidades ao Python
pelo uso de módulos, muitos dos quais gratuitos e capazes de acrescentar as
mais diversas funcionalidades a esta linguagem de programação.

A várias formas de incluir as funcionalidades de um módulo em um pro-
grama. Uma das formas mais comuns é pelo uso do comando import utilizando
a sintaxe
import [ nome do módulo ] as [ a pe l i do para o módulo ]

tornando disponível todas as funcionalidades do módulo importado utilizando
o apelido dado.

Pode-se ainda utilizar a sintaxe
from [ nome do módulo ] import [ pacotes ou par t e s do módulo

separados por v í r g u l a ]

Neste caso, como foi feita uma seleção de partes do módulo, não é necessário
repetir o nome do módulo (ou seu apelido) para invocar suas partes. Em um
caso extremo, pode-se importar todo um módulo com esta sintaxe ao pôr um
asterisco (*) nos pacotes ou partes do módulo. Esta prática não é recomendada
pois poderá sobrepor uma grande quantidade de nomes empregados pelo módulo
e causar conflitos.

Vamos ilustrar exatamente a diferença entre estas sintaxes com o pacote
NumPy na seção 3.3.2.

3.3 Uso do Python para auxílio na matemática
Agora vamos utilizar o Python para explorar algumas das questões matemáticas
que já apresentamos e que nos auxiliarão a estudar as séries de Fourier de tempo
discreto.

3.3.1 Realização de somatórios com iterações
Um emprego matemático importante das iterações é a automatização do cálculo
de somatórios. Isto só é verdade se pudermos calcular os termos do somatório a
cada iteração. Uma forma de fazer isto é criando uma variável, que em nossos
exemplos chamaremos de soma, e inicializá-la com o valor 0 (zero), elemento
neutro da soma. Dentro da iteração, calculamos o próximo termo da soma, que
chamaremos de parcela e calculamos
soma = soma + pa rc e l a

Para compreender este comando, lembre que o sinal de igual realiza a atribuição.
No computador, primeiro é feito o cálculo indicado no lado direito, para só então



158 CAPÍTULO 3. PYTHON, ITERAÇÕES, SOMATÓRIOS E GRÁFICOS

a atribuição modificar o valor da variável do lado esquerdo. Isto significa que
o computador soma o antigo valor registrado na variável soma com o valor de
parcela e só após a realização da conta, é que ele atribui este resultado à
variável soma novamente, atualizando seu valor. Com uma iteração contendo
este comando, o valor do somatório vai sendo calculado sucessivamente pela
adição de cada parcela à variável soma até que seu valor final seja atingido ao
fim de todas as iterações. Este processo em que uma variável recebe o seu valor
anterior somado com uma nova parcela é conhecido como acumulação.

Uma anedota conta que um professor solicitou a turma de Gauss que calcu-
lassem a soma de todos os números inteiros até 100 ao que em pouco tempo, e
para a surpresa do professor, Gauss respondeu 5050 por ter usando a fórmula

100∑

k=1
k = (100 + 1)100

2 = 5050

que ele teria descoberto ali mesmo. Nós podemos utilizar o computador para
realizar a soma mítica de Gauss na força bruta fazendo uma variável k percorrer
os valores de 1 a 100, utilizando a função range(1,101), e realizando as 100
iterações com um for como descrito no código 3.10 fazendo parcela = k a cada
iteração.

1 soma = 0
2 for k in range (1 ,101) : #lembre que o 101 não é i n c l u í d o
3 par c e l a = k
4 soma = soma + parc e l a
5 print ( "O somatór io 1 + 2 + 3 + . . . + 99 + 100 =" , soma )

Código 3.10: Realização do somatório da progressão de Gauss por iterações.

Como um último exemplo, vamos calcular o somatório da letra b questão
2.2 utilizando uma iteração do tipo while. Vemos que a regra geral para as
parcelas pk é

pk = 12
(

1
4

)k

,

para 0 ≤ k ≤ 5. Como o while não tem uma regra para atualizar uma variável
a cada iteração, devemos inicializar o valor de k e atualizá-lo dentro da região
identada referente ao while. Com isso, o seu valor atual pode, além de calcular o
nome valor da parcela, auxiliar no teste condicional que encerrará as iterações.
Empregamos estas ideias e elaboramos o código 3.11 cuja execução responde O
somatório é 15.99609375, coincidente com 4095/256, o valor do somatório.
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1 soma = 0
2 k = 0
3 while k <= 5 :
4 par c e l a = 12 ∗ (1/4) ∗∗k
5 soma = soma + parc e l a
6 k = k + 1 #a t u a l i z a ç ã o do v a l o r de k
7 print ( "O somatór io é " , soma )

Código 3.11: Realização do somatório da letra b questão 2.2.

Exercícios de revisão
Questão 3.6. Faça dois scripts para verificar o resultado do somatório do exemplo

2.3 pelo cálculo do somatório parcela a parcela (sem uso de fórmulas). Em um
script utilize o while e no outro o for.

Questão 3.7. Faça um script para realizar o somatório

S =
50∑

k=0

25∑

n=1

3kn2

parcela a parcela.
Questão 3.8. Use o Python para recalcular os somatórios da questão 2.4 com um

script. Desta vez, empregue 1000 termos. Calcule o erro do truncamento nestes
casos.

Questão 3.9. Faça um script que pede ao usuário um valor de erro e indica quantas
parcelas são necessárias para obter π com este erro através do somatório alter-
nado para π/4. (Sugestão: use um while para calcular o somatório parcial a
cada parcela enquanto o erro não é atingido).

3.3.2 Módulo NumPy, funções trigonométricas e matrizes
O NumPy é um módulo do Python desenvolvido como um projeto de código
aberto para prover esta linguagem com capacidades de computação numérica.
Nossos cálculos de funções trigonométricas e matrizes serão realizados com as
funcionalidades obtidas com o NumPy. Uma delas é a definição da constante
π ≈ 3,14. O código 3.12 importa o módulo NumPy sem dar-lhe nenhum apelido
e imprime o valor de π deste módulo.

1 import numpy
2 print ( "O va lo r de p i no módulo NumPy é : " ,numpy . p i ) #Obtemos na

sa ída o t e x t o "O v a l o r de p i no módulo NumPy é :
3.141592653589793".

Código 3.12: Importando NumPy e utilizando sua definição para π.

Veja que para ser capaz de invocar o valor de π cujo nome, no módulo,
é pi, é necessário usar a sintaxe numpy.pi ao longo do código, pois apenas
importamos o módulo NumPy, o que permite o acesso a suas partes pela sintaxe
numpy.[nome da parte].
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O código 3.13 simplifica essa invocação dos componentes do módulo NumPy
pelo uso do apelido np. Fizemos referência a π e a constante natural e definida
neste módulo utilizando np.pi e np.e.

1 import numpy as np
2 print ( "O va lo r de p i no módulo NumPy é : " , np . p i )
3 print ( "O va lo r da constante natura l é : " , np . e )

Código 3.13: Importando NumPy com o apelido np.

Já o código 3.14 importa apenas a variável pi do NumPy. Durante a execu-
ção, a linha 2 faz referência a esta constante apenas como pi pela forma como
ela foi importada na linha 1. Já a linha 3 resulta em erro durante a execução,
pois o programa desconhece qualquer definição de e, já que o mesmo não foi
importado nem definido.

1 from numpy import pi
2 print ( "O va lo r de p i no módulo NumPy é : " , p i )
3 print ( "O va lo r da constante natura l é : " , e )

Código 3.14: Importando NumPy com o apelido np.

Por fim, o código 3.15 funciona perfeitamente pois todas as partes do módulo
NumPy foram importados, podendo ser referenciados pelo nome.

1 from numpy import ∗
2 print ( "O va lo r de p i no módulo NumPy é : " , p i )
3 print ( "O va lo r da constante natura l é : " , e )

Código 3.15: Importando NumPy com o apelido np.

Como desvantagem deste último código, todos os nomes definidos no NumPy
agora estão em uso, resultando no uso de um grande número de variáveis e função
com os quais deve-se ter especial cuidado para que não sejam sobrescritos.

Funções trigonométricas

O módulo NumPy nos disponibilizará todas as funções trigonométricas que
precisamos. Os nomes empregados no módulo são idênticos ao padrão para
estas funções em inglês e são mostrados na tabela 3.2.

As funções trigonométricas do NumPy aceitam como argumento apenas ân-
gulos pela medida do arco em radianos. O código 3.16 apresenta um script
que calcula os seno, cosseno e tangente dos ângulos notáveis de 30◦ = π/6 rad,
45◦ = π/4 rad e 60◦ = π/3 rad, bem como as tangentes inversas que resultam
nestes ângulos.
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Tabela 3.2: Definições de funções trigonométricas no NumPy.

função nome implementado
sen sin
cos cos
tg tan

arcsen ou sen−1 arcsin
arccos ou cos−1 arccos
arctg ou tg−1 arctan

1 from numpy import ∗
2 print ( "O seno de 30 ° é " , s i n ( p i /6) )
3 print ( "O seno de 45 ° é " , s i n ( p i /4) )
4 print ( "O seno de 60 ° é " , s i n ( p i /3) )
5 print ( "O cosseno de 30 ° é " , cos ( p i /6) )
6 print ( "O cosseno de 45 ° é " , cos ( p i /4) )
7 print ( "O cosseno de 60 ° é " , cos ( p i /3) )
8 print ( "A tangente de 30 ° é " , tan ( p i /6) )
9 print ( "A tangente de 45 ° é " , tan ( p i /4) )

10 print ( "A tangente de 60 ° é " , tan ( p i /3) )
11 print ( "O arco cuja tangente va l e ( 3 ^ 0 . 5 ) /3 é " , arctan

(3∗∗0 .5/3 ) )
12 print ( "O arco cuja tangente va l e 1 é " , arctan (1 ) )
13 print ( "O arco cuja tangente va l e 3^0.5 é " , arctan ( 3 ∗ ∗ 0 . 5 ) )

Código 3.16: Utilizando NumPy para calcular seno, cosseno e tangente dos
ângulos notáveis e a inversa da tangente para estes mesmos ângulos.

Matrizes

No NumPy, as matrizes são chamadas pelo termo array, que em inglês significa
matriz (embora também haja a tradução matrix) ou arranjo. O termo array é
mais abrangente, e pode representar espécies de matrizes multidimensionais ou
arranjos multidimensionais, já que as matrizes convencionais são entidades de
duas dimensões (com componentes horizontal e vertical ou de linha e coluna).
Podemos criar uma matriz utilizando a função array, que recebe como parâ-
metro os elementos da matriz. Uma matriz linha recebe esta única linha entre
colchetes com os elementos separados por vírgula como a matriz A definida no
código
from numpy import ∗
A = array ( [ 3 , 4 , −1 ] )

que representará a matriz
A =

[
3 4 −1

]
.

Para criar uma matriz com várias linhas, cada linha deve estar entre colchetes
com os elementos separados por vírgula, e o conjunto das linhas também deve
estar entre colchetes e cada linha separada da outra por vírgulas como em
B = array ( [ [3 ,4 , −1] , [1 , −2 ,6 ] , [5 , −1 ,2 ] ] )
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que representará a matriz

B =




3 4 −1
1 −2 6
5 −1 2


 .

Na tabela 3.1 já havíamos listado o operador @ (arroba) como o reservado
para multiplicação de matriz. O código 3.17 é a realização no Python da mul-
tiplicação que fizemos como exemplo na seção 2.4.2.

1 from numpy import ∗
2 A = array ( [ [ 1 , 0 ] , [ 2 , −2] , [ 1 , 3 ] ] )
3 B = array ( [ [4 , −1] , [ −1 ,1 ] ] )
4 C = A@B
5 print (C)

Código 3.17: Multiplicação de matrizes.

Matrizes unimensionais

Matematicamente, toda matriz é um ente bidimensional, possuindo linhas e
colunas, e isto faz diferença na matemática. Os arrays do NumPy tendem a
interpretar matrizes linha e matrizes coluna como idênticos e unidimensionais.
A matriz A que criamos como A = array([3,4,-1]) será, no NumPy, unidi-
mensional. Podemos verificar isto executando A.shape e observando ter como
resultado o único valor (3,), o que significa que para o NumPy, o array A só
tem uma dimensão de tamanho 3 (contendo 3 elementos).

Já se definirmos C = array([ [3,4,-1] ]) e executarmos C.shape, tere-
mos como retorno o par (1,3), indicando a existência de duas dimensões, sendo
a primeira com um único elemento (uma linha) e a segunda com três (três colu-
nas), que é como queríamos que uma matriz de fato fosse. Isto ocorre pois cada
aninhamento de colchetes aumenta em um a dimensão de um array. O ideal
na definição de qualquer matriz bidimensional seria que ela fosse realizada com
aninhamentos de exatamente dois nível de colchetes.

As diferenças entre os dois casos também se tornam evidentes quando se
tenta obter as matrizes transpostas (em que os elementos tem suas posições de
linha e coluna trocados) de A e C por meio da função transpose. As matrizes
D = transpose(A) e E = transpose(C) terão dimensões (3,) e 3,1, respecti-
vamente. Veja que para o NumPy, transpor A, um array unidimensional, resulta
em uma entidade também unidimensional e com mesma quantidade de elemen-
tos. Já na transposição de C, um array bidimensional, vemos que a quantidade
de linhas fica invertida com relação a de colunas já que este é o efeito esperado
da transposição.

Apesar deste detalhe e deste preciosismo com as matrizes de uma dimensão,
os cálculos que realizaremos com matrizes linha ou coluna só terão uma única
forma de interpretação para a sua geometria, de sorte que realizar o produto
matricial resultará na matriz produto desejado, mas o programador deve estar
atento a este detalhe na implementação das matrizes no NumPy.
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Acessando e modificando elementos de uma matriz

Se tivermos criado um array A com o módulo NumPy representando uma ma-
triz A, seus elementos aij podem ser acessados como A[i,j], ou seja, ponto o
número da linha e coluna separadas por vírgula entre colchetes. Há uma dife-
rença muito importante entre i e j comumente empregado na matemática e o i
e j utilizados na localização de linha e coluna de um elemento de matriz. Em
Am×n o primeiro elemento é a11 e o último é o elemento amn. Já no Python,
matriz A de ordem m × n tem como primeiro elemento A[0,0] e como último
A[(m-1),(n-1)]. Ou seja, no Python, o número que convenciona a ordem de
uma linha ou coluna inicial é 0, e não o 1. Cuidado deve ser tomado, portanto,
quando se estiver tomando como base um texto matemático pois na sua im-
plementação em Python deverá haver uma compensação de uma unidade com
relação à estes valores seguindo

i︸︷︷︸
ordem

no Python

= i︸︷︷︸
ordem

convencional
na matemática

−1.

O código 3.18 acessa os elementos de A[2,1] e A[0,1] e os imprimi. Em
seguida, modifica os valores de A[0,0] e A[1,1].

1 from numpy import ∗
2 A = array ( [ [ 1 , 0 ] , [ 2 , −2] , [ 1 , 3 ] ] )
3 print (A[ 2 , 1 ] , A[ 0 , 1 ] ) #r e s u l t a em 3 0 , os elemento da t e r c e i r a

l inha , segunda co lunas e pr imeira l inha , segunda coluna .
4 A[0 ,0 ]=4
5 A[1 ,1 ]=5
6 print (A) #e x i b e a matr iz A modi f icada e dada por [ [ 4 0 ] , [ 2

5 ] , [ 1 3 ] ]

Código 3.18: Acessando e modificando os elementos de uma matriz.

Preenchimento de matrizes com iterações

Podemos empregar as iterações provenientes das construções for ou while e
preencher uma matriz que possua uma regra de formação. Na seção 2.4.1 utili-
zamos a matriz B3×3 = [bij ], tais que bij = i + j como exemplo de matriz com
regularidade de onde obtivemos a matriz

B =




2 3 4
3 4 5
4 5 6


 . (3.1)

Podemos fazer o mesmo com um script, tomando dois cuidados:

• Criar ou inicializar a matriz usando as funções zeros, ones ou empty, por
exemplo. Todas recebem como parâmetro um par de números, designado
tuples. Eles devem estar dentro de parêntese e separadas por vírgula, e
determinarão a ordem da matriz criada. A chamada empty((4,3)), por
exemplo, cria uma matriz 4 × 3 “vazia” (o que na prática significa que
não se tem controle sob seu conteúdo inicial). Ja as funções zeros e ones
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cria matrizes com todos os elementos iguais a zero e um, respectivamente.
A função empty é computacionalmente a mais eficiente para criar uma
matriz “vazia”.

• Lembrar que a primeira linha e primeira coluna são identificadas pelo
índice 0, o que pode acarretar alguma modificação na regra de formação
dos elementos da matriz definido no formato matemático, que convenciona
o 1 como índice da primeira linha ou primeira coluna.

Tomados os cuidados acima, a regra geral para gerar uma matriz B a par-
tir da mesma regra acima será B[i,j] = (i+1) + (j+1). O código 3.19 cria
esta matriz a partir de uma matriz vazia usando a função empty e a preenche
utilizando duas iterações for aninhadas (uma for dentro da outra) de modo a
percorrer todos os valores de i e j entre 0 e 2. Por fim exibe o valor da matriz
obtida, que será idêntica a obtida na equação 3.1.

1 from numpy import ∗
2 B = empty ( ( 3 , 3 ) )
3 for i in range (3 ) :
4 for j in range (3 ) :
5 B[ i , j ] = ( i +1) + ( j +1)
6 print (B)

Código 3.19: Determinação dos elementos da matriz por iterações.

Atribuição com matrizes

As matrizes do NumPy são objetos e o efeito da operação de atribuição funciona
de uma forma particular. Se criarmos uma matriz A como no código 3.20 e em
seguida fizermos a operação de atribuição B = A, o efeito é de fazer com que
ambas as variáveis, A e B, estejam vinculadas ao mesmo conteúdo da matriz
que originalmente foi criada sob o nome de A. Assim, as operações que alteram
valores dos elementos A[0,0] = 5 e B[1,1]= 10 nas linhas 7 e 8 deste código,
estão modificando a mesma matriz. Este efeito é observado quando imprimimos
as matrizes pela variável A ou B nas linhas 11 e 12, observamos que ambas as
modificações alteraram a matriz chamada originalmente de A, que é a mesma
matriz que chamamos também de B.

Desta forma, se quisermos que duas matrizes tenham mesmo conteúdo mas
que após a atribuição não haja vínculo entre as matrizes, podemos recorrer
às funções copy ou copyto do NumPy, como fizemos para as variáveis C e D,
respectivamente, também no código 3.20. A execução do código revela que, após
a cópia do conteúdo da matriz A e sua atribuição às variáveis C e D, modificações
que empregam as variáveis C e D como as das linhas 9 e 10 afetam apenas as
respectivas matrizes, que agora tem conteúdo separado da matriz A.
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1 from numpy import ∗
2 A = array ( [ [ 1 , − 2 , 3 ] , [ 2 , 0 , − 3 ] ] )
3 B = A #a matr iz A agora também pode ser acessada pe l a v a r i á v e l

B
4 C = A. copy ( ) #c r i a uma cópia de A e a t r i b u i a C
5 D = empty ( ( 2 , 3 ) ) #para usar a função copyto , a matr iz de

d e s t i n o deve e x i s t i r
6 copyto (D,A) #na função copyto , a pr imeira matr iz é a matr iz de

d e s t i n o e a segunda a de origem
7 A[ 0 , 0 ] = 5
8 B[ 1 , 1 ] = 10
9 C[ 1 , 1 ] = 15

10 D[ 1 , 1 ] = 20
11 print ( "A =" , A)
12 print ( "B =" , B)
13 print ( "C =" , C)
14 print ( "D =" , D)

Código 3.20: Atribuição de matrizes e a relação das variáveis que ela representa.

Exercícios de Revisão
Questão 3.10. Faça um script que cria as matrizes A3×3 e B3×2 cujos elementos são

dados pelas regras

aij = i − 2j, bij = 3(j + 2)2 − 4i,

realize a multiplicação C = AB e exiba as matrizes A, B e C. A multiplicação
BA poderia ser realizada?

Questão 3.11. Faça um script para resolver aproximadamente o sistema de equações
{

x +2y +z = 0,76
−2x +y −z = −1,83
−x −y +3z = −6,18

por tentativa e erro pelo método matricial, escrevendo Ax = B. Considere que
−2 ≤ x, y, z ≤ 2 e a solução aproximada com uma resolução de 0,05. Faça cada
tentativa gerando um conjunto solução proposto

x′ =

[
x′

y′

z′

]

calculando B′ = Ax′ e comparando B′ com B. Varie x′, y′ e z′ por meio de
iterações e adote como solução aproximada o valor de x′ que determina o B′

mais próximo (geometricamente) de B. Verifique se a solução aproximada é boa
comparando com a solução exata x que pode ser obtida por

Ax = B
A−1Ax = A−1B

Ix = A−1B
x = A−1B,

em que A−1 é a inversa da matriz A e pode ser calculada com o numpy.linalg.inv(A)
(a função inv do submodulo linalg do numpy).
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Corte de matrizes – o operador : (dois pontos)

O operador : pode ser empregado para cortar um extrato de uma matriz utili-
zando uma das sintaxes

A[ l i n h a _ i n i c i a l : l inha_parada , c o l u n a _ i n i c i a l : coluna_parada ] # o
i n í c i o e o fim do cor t e são ind i cados

A [ : linha_parada , c o l u n a _ i n i c i a l : coluna_parada ] # o i n í c i o do
cor t e é a pr imeira l i n h a

A[ l i n h a _ i n i c i a l : , c o l u n a _ i n i c i a l : coluna_parada ] # o fim do
cor t e é a ú l t ima l i n h a

A[ : , c o l u n a _ i n i c i a l : coluna_parada ] # emprega todas as l i n h a s no
cor t e

em que variamos a sintaxe apenas nos cortes das linhas. Os valores empregados
correspondem aos índices das linhas e colunas da matriz. O valor de parada não
é incluído. Por exemplo, A[1:3,2:] corresponde às linhas de índice 1 e 2 (a
de índice 3, empregada como valor para parada, está excluída do corte) e todas
as colunas a partir da de índice 2. O código 3.21 mostra vários exemplos de
cortes sobre uma matriz 4 × 4. Ele realiza os cortes e mostra o array resultante
e a dimensão do array de acordo com o informado no shape do array. Note
que nas matrizes G e H não fizemos um corte em uma das dimensões, mantendo
fixo o índice da coluna no primeiro caso e da linha no segundo. Com isto, os
arrays F e G deveriam ser idênticos, mas perceba que ao estabelecer um corte nas
linhas e colunas (mesmo que o corte só contemple uma coluna), o resultado em
F é um array bidimensional com shape de (4,1), tal como uma matriz coluna,
enquanto G e H viraram arrays unidimensionais de mesma dimensão e shape de
(4,).

1 from numpy import ∗
2 A = array ( [ [ 1 , 0 , 2 , 4 ] , [ 2 , −2 ,5 ,2 ] , [ 1 , −3 ,0 , −1] , [1 , −6 ,3 ,2 ] ] )
3 print (A, A. shape )
4 B = A[ 1 : 3 , 1 : 3 ]
5 print (B, B. shape )
6 C = A[ : 3 , 1 : 3 ]
7 print (C, C. shape )
8 D = A[ 1 : , 1 : ]
9 print (D, D. shape )

10 E = A [ : , 1 : ]
11 print (E, E. shape )
12 F = A[ : , 0 : 1 ]
13 print (F , F . shape )
14 G = A[ : , 0 ]
15 print (G, G. shape )
16 H = A[ 0 , : ]
17 print (H, H. shape )

Código 3.21: Emprego de corte sobre um array 4 × 4 com o operador :.

Esta sintaxe também pode ser empregada para atribuição como mostra o
código 3.22. Nele, os valores iniciais de A[2,1], A[2,2], A[3,1] e A[3,2] são
substituídos pela matriz B de ordem 2 × 2.
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1 from numpy import ∗
2 A = array ( [ [ 1 , 0 , 2 , 4 ] , [ 2 , − 2 , 5 , 2 ] , [ 1 , − 3 , 0 , − 1 ] , [ 1 , − 6 , 3 , 2 ] ] )
3 print (A)
4 B = array ( [ [ 7 , − 7 ] , [ − 7 , 7 ] ] )
5 print (B)
6 A[ 2 : , 1 : 3 ] = B
7 print (A)

Código 3.22: Modificação de valores de um corte de um array empregando o
operador :.

Operações aritméticas elemento a elemento

Muitos dos símbolos aritméticos que vimos na tabela 3.1 também podem ser
empregados para realizar operações elemento-a-elemento sobre matrizes. Isto
significa, por exemplo, que se tivermos matrizes A e B de mesma ordem e cal-
cularmos C = A*B, então C[i,j] = A[i,j] * B[i,j] – ou seja, cada elemento
de C é a multiplicação de um elemento de A pelo elemento correspondente em
B – e C terá também a mesma ordem de A e B. Veja que a existência da multi-
plicação elemento-a-elemento justifica o emprego de um símbolo especial para a
multiplicação de matrizes. Não se deve, portanto, confundir A*B com A@B, que
em geral resultarão em matrizes totalmente diferentes.

Esta é uma excelente forma de realizar uma grande quantidade de operações
sem precisar recorrer a iterações. O código 3.23 mostra a realização de operações
elemento a elemento na matriz A ou entre A e B.

1 from numpy import ∗
2 A = array ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ] )
3 print (A)
4 B = array ( [ [ 1 , 1 . 5 , 2 ] , [ 1 , 1 . 5 , 2 ] ] )
5 print (B)
6 C = A+5 # cada elemento de A adic ionado em 5
7 print (C)
8 D = 3∗A # cada elemento de A m u l t i p l i c a d o por 3
9 print (D)

10 E = A∗B # cada elemento de A m u l t i p l i c a d o pe l o correspondente
de B

11 print (E)
12 F = A/B # cada elemento de A d i v i d i d o pe l o correspondente de B
13 print (F)
14 G = A∗∗2 # cada elemento de A e l evado ao quadrado
15 print (G)

Código 3.23: Operações realizadas elemento a elemento nas matrizes A e B.

O cálculo elemento-a-elemento é muito útil para aplicar uma função à uma
sequência, formando uma matriz linha ou uma matriz coluna com os valores
sequenciais. Por exemplo, podemos criar uma matriz linha em que cada um de
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seus elementos é um dos termos do somatório que já fizemos na questão 3.8

999∑

0

1
(2k + 1)2 =

999∑

0
(2k + 1)−2, (3.2)

partindo de uma matriz com os valores de k, que são todos os inteiros de 0 a
999. A função arange é similar a função range, com a diferença de que arange
cria um array linha (a rigor um array unidimensional) NumPy e range cria um
list, que é um tipo nativo do Python. Tanto o array quanto o lista são iteráveis
e podem ser empregados em um controle de fluxo do tipo for.

O código 3.24 cria esta matriz linha. Como seus elementos são do tipo
inteiro, eles não são passíveis ao cálculo de potências negativas. A função double
converte os valores para o tipo ponto flutuante de dupla precisão. Na linha
4, por três operações elemento a elemento (multiplicação por 2, soma de 1
e potenciação com −2) é obtida a matrizParcelas contendo as parcelas do
somatório que calculamos. Por fim, a função sum do NumPy calcula a soma de
todos os elementos da matriz de parcelas.

1 from numpy import ∗
2 k = arange (1000)
3 k = double ( k )
4 matr i zParce la s = (2∗ k+1)∗∗(−2) #Matriz com elementos i g u a i s às

p a r c e l a s do somatório .
5 soma = sum( matr i zParce l a s )
6 print ( soma )

Código 3.24: Obtenção de um dos somatórios da questão 3.8 por meio de matriz
linha e operações elemento-a-elemento.

Exercícios de Revisão
Questão 3.12. Faça um script que:

(a) Construa a matriz C6×10 em que

Cij =





1
10 , i = 1
1
10 cos

[2π

10 (i − 1)(j − 1)
]

, i = 6
2
10 cos

[2π

10 (i − 1)(j − 1)
]

, nos outros casos

.

Como sugestão, vemos que dentre as seis linhas, quatro respeitam uma regra
geral, e a primeira e a última respeitam uma regra particular. Trate a primeira
e última linha separadamente empregando corte de matriz e observando que
estas linhas diferem do caso geral apenas devido a um fator de 1/2.
(b) Construa a matriz x10×1 dada por

xi1 = 0,3 cos
[2π

10 3(i − 1)
]

+ 1,5 cos
[2π

10 4(i − 1)
]

.

(c) Obtenha a matriz a = Cx. Analise os termos da matriz a, sua localização
na matriz e os coeficientes dos cossenos e suas frequências angulares. Há alguma
regularidade?
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Tabela 3.3: Pontos para esboçar a parábola y = x2 − 6x + 5.

x y

P1 adicional 0 5
P2 raiz 1 0
P3 adicional 2 −3
P4 vértice 3 −4
P5 adicional 4 −3
P6 raiz 5 0
P7 adicional 6 5

(d) Considere um caso mais geral em que a matriz x é definida pelos termos

xi1 = c1 cos
[2π

10 k1(i − 1)
]

+ c2 cos
[2π

10 k2(i − 1)
]

.

Escolha valores reais quaisquer para c1 e c2 e valores inteiros entre 0 e 5 para
k1 e k2 e observe se a regularidade observada na letra (c) se manteve para as
modificações realizadas.

Questão 3.13. Utilizando operações elemento-a-elemento, construa as matrizes uni-
dimensionais com a quantidade de elementos e seguindo as regras descritas.
(a) Com 10 elementos em que xi = 2,5i − 3, iniciando com i = 0.
(b) Com 20 elementos em que xi = −2

(
i
5

)2 + 3
(

i
5

)
− 2, iniciando com i = −5.

(c) Com 16 elementos em que xi = sen
(

i
4

)
, iniciando com i = −8.

(d) Com 100 elementos em que xi = 2 cos
( 2π

100 i
)
, iniciando com i = 0.

3.3.3 Módulo Matplotlib e gráficos
O que vimos até agora em termos de programação é suficiente para calcular tudo
necessário para as séries de Fourier. Porém, estaremos tratando com grande
quantidade de dados e a visualização gráfica é fundamental para potencializar
a compreensão e a análise. Um importante instrumeto que empregaremos, o
espectro de frequências, é visual.

Para isto, vamos ver como obter três tipos de gráficos com base em amostras
e como realizá-los utilizando o módulo Matplotlib.

O principal processo empregado por computadores para traçar gráficos é si-
milar ao que nós utilizamos quando esboçamos um gráfico a mão livre. Suponha
que você tenha que visualizar o gráfico da parábola

y = x2 − 6x + 5.

Conhecendo uma parábola, sabemos que há pelo menos um ponto importante
– o vértice da parábola. Se ela corta o eixo x teremos uma raiz (que coincidiria
com o vértice) ou duas raízes distintas. Assim, a parábola pode ter até três do
que chamamos de pontos notáveis.

Nesta parábola, em particular, temos como raízes x = 1 e x = 5 e como
vértice x = 3. Para complementar o traçado do esboço, escolhemos quatro
pontos adicionais simétricos com relação ao vértice, sendo dois entre o vértice e
as raízes e dois para além das raízes. Para cada um deles encontramos os valores
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Figura 3.3: Esboço traçado a mão da parábola y = x2 − 6x + 5.

do y correspondente de modo a obter 7 pontos, do P1 ao P7 que organizamos
na tabela 3.3.

Para finalizar o esboço, lançamos os pontos de P1 a P7 em um papel quadri-
culado e ligamos a mão livre estes pontos no mais sincero esforço para desenhar
uma parábola. O resultado final deverá ter um aspecto como o da figura 3.3.

Pois bem, os pontos P1 a P7 são amostras da parábola a partir das quais
tentamos esboçar a sua geometria, composta, em teoria, por uma infinidade
de pontos. Em geral escolhemos uma quantidade reduzida de pontos pois é
muito custoso em termos de tempo construir uma tabela como a 3.3. Acontece
que agora temos a excelente ferramenta das iterações e matrizes que utilizam o
potencial de cálculo dos computadores modernos e podem calcular uma tabela
com centenas e até milhares de amostras em menos de um segundo.

Assim, um computador pode fazer um gráfico de uma parábola em que as
imperfeições são imperceptíveis pois a quantidade de amostras pode ser muito
superior ao que costumamos fazer nos desenhos a mão livre. Deste modo, é
possível adotar um critério de erro aceitável entre o gráfico real e o gráfico
exibido pelo computador e escolher uma quantidade finita, porém grande de
amostras, que sejam suficientes para a aplicação ou finalidade do gráfico.

Tomemos um critério. Se a função da construção do gráfico é exibi-lo na tela
para fins ilustrativos, então a quantidade de pixeis e a grossura da linha com a
qual o gráfico é traçado, podem ser parâmetros na determinação da quantidade
de amostras. Um gráfico com as dimensões que fizemos, ocupando menos de 5
cm, poderia ser traçado com 100 pontos sem que sobrasse sequer espaço para
traçar uma linha entre os pontos, o que tenderá a possibilitar o traçado da
parábola com precisão.

Para isso, precisamos definir 100 valores para x e calcular os 100 valores
correspondentes de y. Se tomarmos como extremos do gráfico os mesmos pontos
que utilizamos no gráfico traçado a mão, pondo x entre 0 e 6, o espaçamento
entre os valores de x para que utilizemos 100 pontos deve ser de (6 − 0)/100.
Vamos definir os valores de x utilizando a função arange como fizemos na seção
3.3.2 quando tratamos das operações aritméticas elemento a elemento. Podemos
iniciar com o valor de x = 0, tomar como critério de parada x = 6 e utilizar
(6 − 0)/100 como passo, e definir um array com os 100 valores de x utilizando
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o código
x = arange (0 ,6 ,(6 −0) /100)

Ele gerará um array para x com os valores 0, 0,06, 0,12, 0,18 . . . 5,988 e 5,994.
O valor 6, definido como parada, é excluído.

Dados os valores de x organizados em um array, fica fácil calcular os valores
de y utilizando operações com array elemento a elemento como vimos na seção
3.3.2, e calcular todos os valores de y de uma só vez fazendo y = x**2 -6*x +5.

Com estes dois comandos, teremos a “tabela” com 100 valores de x e os 100
valores de y correspondentes. Basta, agora, utilizar a função plot disponível no
módulo matplotlib.pyplot para que ela desenhe o gráfico. Esta função utiliza
a sintaxe
p lo t ( [ array dos v a l o r e s de x ] , [ array dos v a l o r e s de y ] , [

formato ] )

Vamos explorar algumas opções aos poucos, mas basta dizer que se pusermos
como formato um string com a letra x, ele desenhará o gráfico marcando cada
amostra com um xis. Com isso, podemos realizar o desenhar do gráfico com
o comando plot(x,y,"x"). A função plot desenha o gráfico “internamente”.
Para exibi-lo, usamos a função show, que não tem argumentos.

O código 3.25 mostra o script final com os comandos que sugerimos postos
em sequência. Note que nele, importamos todas as funções do NumPy para
utilizarmos arrays e importamos o matplotlib.pyplot com o apelido plt, que
deve preceder todas as chamadas das funções deste módulo.

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 x = arange (0 ,6 ,(6 −0) /100)
4 y = x∗∗2 − 6∗x + 5
5 p l t . p l o t (x , y , " x " )
6 p l t . show ( )

Código 3.25: Determinação dos elementos da matriz por iterações.

O resultado da execução do código 3.25 é mostrado na figura 3.4. Conforme
nossa estimativa, o uso de 100 pontos deixa bem delineado o perfil da parábola.
Próximo ao vértice, onde as variações verticais são pequenas, os marcadores em
xis empregados para localizar as amostras quase se sobrepõem. Mesmo quando
nos afastamos do vértice, há pouco espaço entre os pontos, não sobrando espaço
para que ela exiba curvatura acentuada. Ligar estes pontos com um pequeno
segmento de reta não seria muito perceptível em sua exibição em uma tela. Para
isso, podemos alterar o formato de x para - para deixar de marcar as amostras
com um xis e passar a desenhar um segmento de reta entre cada amostra. O
desenho da parábola resultante é suave, (não é possível perceber se tratar de
um desenho feito pela ligação de segmentos de reta) devido a grande quantidade
de amostras, mas, na realidade, é um gráfico aproximado por 99 segmentos de
reta (e não uma parábola exatamente). O resultado desta alteração é ilustrado
no gráfico da figura 3.5.

Os gráficos que fizemos até agora com o matlibplot tem um estilo “cientí-
fico”, diferente do que costumamos encontrar em textos de matemática. Como
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Figura 3.4: Marcação de 100 amostras da função y = x2 − 6x + 5.
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Figura 3.5: Traçado de 99 segmentos entre as 100 amostras da função y =
x2 − 6x + 5.
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último exemplo, vamos utilizar várias opções deste módulo para ajustar a apa-
rência do gráfico para que fique similar ao que costumamos fazer à mão como
mostramos na figura 3.3. Estes ajustes são mostrados na figura 3.6 e obtidos
com o código 3.26.

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 p l t . rcParams . update ({ " t ext . usetex " : True , " f ont . f ami ly " : " s e r i f

" }) #Usa TeX para t e x t o
4 x = arange (0 ,6 ,(6 −0) /100)
5 y = x∗∗2 − 6∗x + 5
6 f i g , ax = p l t . subp lo t s ( ) #Cria os o b j e t o s de f i g u r a e e i x o s
7 ax . p l o t (x , y , "−" )
8 ax . s p i n e s [ ’ l e f t ’ ] . s e t_pos i t i on ( ’ ze ro ’ ) #Põe o e i xo v e r t i c a l

esquerdo na origem
9 ax . s p i n e s [ ’ r i g h t ’ ] . s e t _ v i s i b l e ( Fa l se ) #Ret ira o e i xo v e r t i c a l

d i r e i t o
10 ax . s p i n e s [ ’ bottom ’ ] . s e t_pos i t i on ( ’ ze ro ’ ) #Põe o e i xo

h o r i z o n t a l i n f e r i o r na origem
11 ax . s p i n e s [ ’ top ’ ] . s e t _ v i s i b l e ( Fa l se ) #Ret ira o e i xo h o r i z o n t a l

s up e r i o r
12 ax . s e t_x labe l ( "x" , l o c=" r i g h t " ) #Escreve x no lado d i r e i t o do

e i xo h o r i z o n t a l
13 ax . s e t_y labe l ( "y " , l o c=" top " ) #Escreve y na par te supe r i o r do

e i xo v e r t i c a l
14 ax . xax i s . get_major_ticks ( ) [ 1 ] . l a b e l 1 . s e t _ v i s i b l e ( Fa l se ) #

Remove a e t i q u e t a do 0 na e s c a l a h o r i z o n t a l
15 ax . yax i s . get_major_ticks ( ) [ 3 ] . l a b e l 1 . s e t _ v i s i b l e ( Fa l se ) #

Remove a e t i q u e t a do 0 na e s c a l a h o r i z o n t a l
16 p l t . show ( )

Código 3.26: Determinação dos elementos da matriz por iterações.

Gráfico de amostras ou gráfico de ramos

Vamos ver mais adiante que nosso principal interesse recairá sobre dados e
funções que são amostrados, ou seja, os valores da variável independente não
estão contidas em um contínuo, mas em uma quantidade finita e selecionada de
valores chamadas amostras. Nossa intenção na construção do gráfico da figura
3.4 era traçar a linha da parábola, e, portanto, a natureza do que estávamos
estudando era de um x contínuo. A amostragem foi uma simplificação para
conseguirmos cumprir nosso objetivo de realizar um traçado contínua. Neste
caso, marcamos com uma cruz cada ponto da amostra.

É comum na literatura e na prática da representação gráfica de sistemas
naturalmente amostrados adotar o gráfico de ramos, do inglês stem. A realização
deste gráfico é feita no Python pela função stem, similar a plot, que vimos na
seção anterior.

O código 3.27 faz o gráfico da função

y = sen
(

6π

25 x

)
+ cos

(
10π

25 x

)
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Figura 3.6: Gráfico de y = x2 − 6x + 5 com eixos detalhados similares ao dos
gráficos desenhados a mão.
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Figura 3.7: Gráfico de ramos (stem) gerado pelo código 3.27.

com valores inteiros de x entre 0 e 24 (25, usado como critério de parada, não
entra no array de x) no formato de gráfico de ramos. O resultado da aplicação
do código é mostrado na figura 3.7.

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 x = arange (0 ,25 )
4 y = s i n ((3∗2∗ p i /25) ∗x ) + cos ((5∗2∗ p i /25) ∗x )
5 p l t . stem (x , y )
6 p l t . show ( )

Código 3.27: Determinação dos elementos da matriz por iterações.

Exercícios de Revisão
Questão 3.14. Faça os gráficos das funções indicadas abaixo empregando a biblioteca

Matplotlib.
(a) 2x2 − 3x − 2, para valores de x entre −1 e 3.
(b) x3 − 7x2 + 14x − 8, para valores de x entre 0 e 5.
(c) sen

( 2π
20 x

)
+ 2 cos

( 2π
20 x

)
para valores de x entre −10 e 30.

Questão 3.15. Faça os gráficos de 5
√

2 cos(ωt−3π/4)+(5+5
√

3) cos ωt e 10 sen(ωt+
π/3) e verifique graficamente que são iguais conforme prevíamos no exemplo
2.8. Considere ω = 1 rad/s e elabore o gráfico de dois períodos para ilustrar.
Sugerimos ao usar os comando de plot empregar linha contínua em um gráfico
e outro em tracejado com cores distintas, nesta ordem, antes de empregar a
função show. Desta forma, será possível ver as duas cores, a da linha contínua
por baixo e a da tracejada por cima e se as duas expressões forem realmente
iguais, elas devem se sobrepor.
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Capítulo 4

Amostragem

Terminamos o capítulo 3 trazendo uma evidência breve da importância da amos-
tragem. Lá observamos o comportamento de uma função (ou de uma entidade
qualquer) por meio de uma quantidade selecionada de valores específicos da va-
riável independente. Nesse capítulo, concluímos apenas pela observação, sem
recorrer a grande rigor matemático, que com uma quantidade razoável de amos-
tras não é possível distinguir uma curva de um conjunto de segmentos de reta,
de modo que amostrar a função resolveu o problema da visualização de uma
função em um gráfico. Vamos entrar em maiores detalhes na natureza e nos
efeitos da amostragem.

4.1 Ideia de sinais
O tema central desta obra, a série de Fourier de tempo discreto, é tópico tra-
dicionalmente tratado na disciplina chamada Processamento de Sinais. Esta
disciplina estuda como tratar informações, chamadas genericamente de sinais.
Não há distinção rigorosa entre as ideias de sinais na engenharia e de funções na
matemática, ou seja, um sinal é tratado matematicamente como uma função.
Na prática de engenharia, os sinais costumam ser grandezas físicas reais que car-
regam informações relevantes para o funcionamento de um sistema e tratadas
como variáveis dependentes. A grandeza pode ser uma corrente elétrica, uma
intensidade luminosa, uma velocidade, uma posição angular, etc. Já o sistema
é algum aparato tecnológico como um computador, um robô, um rádio, um
eletrocardiógrafo, etc.

As tensões elétricas geradas pelo sistema nervoso para o estímulo do coração,
por exemplo, são sinais de interesse para um eletrocardiógrafo. Poderíamos
representar este sinal como v(t), uma tensão elétrica em função do tempo.

Os sinais costumam ser grandezas que variam com o tempo, sua representa-
ção matemática toma a forma de uma variável dependente em função da variável
independente de tempo. Outro tipo de variável independente comum é o espaço,
que, por vezes, pode vir como várias variáveis correspondente às várias coorde-
nadas do espaço. Neste texto vamos tender a interpretar a variável independente
como tempo e vamos trabalhar com funções de apenas uma variável.

Para finalizar, Vamos dar dois exemplos de sinais: um sinal de áudio e
uma imagem em preto e branco. O primeiro é fruto do som. O som pode

177
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Figura 4.1: Exemplo de sinal de áudio.
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Figura 4.2: Exemplo da projeção de uma imagem.

ser considerado em si um sinal, pois sua natureza é a variação de pressão ao
longo do tempo em um determinado ponto P , ou seja, pode ser um sinal p(t)
de pressão mostrado na figura 4.1. Havendo um sensor elétrico capaz de captar
estas variações de pressão, como o microfone, elas podem se tornar um sinal de
tensão que varia ao longo do tempo v(t). É utilizando este sinal elétrico que
se torna mais fácil “gravar” o áudio, como vamos detalhar ainda mais na seção
4.2.

Podemos considerar uma fotografia como um caso do segundo exemplo, a
imagem em preto e branco. A imagem, estática no tempo, é o exemplo de uma
grandeza que varia no espaço. Isto é mais fácil de ilustrar se considerarmos a
fotografia em uma tela de computador, ou projetada em uma parede branca
de uma sala escura. A ausência de imagem, nestes casos, é o monitor apagado
(escuro), ou a sala escura, quando o quadro de projeção também se encontra no
escuro e visto como preto. A imagem clareia a medida que se acrescenta luz em
alguns locais do monitor ou da parede, formando uma imagem pelo contraste
de regiões claras e escuras. Podemos considerar, então, que a imagem em preto
e branco é a intensidade da iluminação que varia com a posição, I(x,y). Se em
um local a intensidade assume um valor baixo, 0, por exemplo, então neste local
temos uma região preta da imagem (ou escura de forma geral). A medida que
o valor da intensidade aumenta, teremos a representação de tons de cinza cada
vez mais claros. Quando a intensidade de iluminação atinge seu valor máximo,



4.2. EXEMPLOS DE SISTEMAS AMOSTRADOS E DE “TEMPO” CONTÍNUO179

p(t)

t

Figura 4.3: Forma do gráfico de p(t) obtido pela amplificação da vibração das
ranhuras em um vinil.

teríamos uma região branca na imagem.
O sinal do tipo imagem em preto e branco (a rigor, em tons de cinza) está

ilustrado na figura 4.2 para o caso de uma imagem projetada sob uma tela.
Pusemos três pontos de exemplo, P1 = (x1, y1), P2 = (x2, y2) e P3 = (x3, y3).
Se supusermos que a intensidade máxima da iluminação, que torna a imagem
branca, é Imáx, então, I(x1, y1) = Imáx é a intensidade no ponto P1. Em P2 a
imagem é preta, de modo que I(x2, y2) = 0. Por fim, em P3, temos um valor
intermediário como I(x3, y3) = 0,5Imáx.

4.2 Exemplos de sistemas amostrados e de “tempo”
contínuo

Imagine agora que se deseja registrar o sinal do som como p(t) da figura 4.1.
Uma solução do fim do século XIX consistiu em utilizar a variação de pressão
sonora para mover um mecanismo amplificador capaz de controlar uma agulha
“dura” e criar sulcos sobre um disco de resina (substituído pelo vinil por volta
de 1940). Depois de criados os sulcos com material duro e abrasivo, uma agulha
de material “mole” era utilizada para reproduzir o som gravado pelo processo
inverso. Ao mover-se sobre o disco, seu movimento era amplificado para esti-
mular uma variação de pressão pela vibração de uma membrana e gerar o som
como uma reprodução do originalmente gravado.

O vídeo do canal Applied Sciences [6] mostra uma sucessão de imagens ob-
tidas com microscópio eletrônico das ranhuras de um disco de vinil e seu efeito
na agulha a medida que o disco gira. É possível ver como o movimento da agu-
lha é suave, o que tem como consequência uma representação do sinal do som
resultante p(t) contínuo como o esboçado na figura 4.3.

Vamos agora ver como um áudio está gravado em um computador. Utiliza-
mos um software gratuito e popular de edição de som, o Audacity [7], e abrimos
um arquivo de áudio contendo os 18 segundos iniciais da 5a Sinfonia de Be-
ethoven. O programa nos exibe uma espécie de p(t), que é a gravação do áudio
armazenado no computador, em um gráfico que reproduzimos na figura 4.4. Ele
é similar ao gráfico da figura 4.3 em que o eixo horizontal é o tempo e o vertical
está ligado a intensidade do som, mas não é necessariamente a intensidade da
pressão mas apenas uma representação da pressão em uma escala entre −1 e 1.
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Figura 4.4: Gráfico de 18 segundos de áudio da 5a sinfonia de Beethoven obtido
no Audacity.

Figura 4.5: Gráfico de aproximadamente 1 milisegundo de áudio da 5a sinfonia
de Beethoven obtido no Audacity.

Ora, na figura 4.4 não conseguimos ver a linha suave de variação da inten-
sidade, pois 18 segundos é um tempo muito grande durante o qual há muita
variação do valor da grandeza de pressão no som. Para observar um traçado
claro, utilizamos o próprio Audacity para ampliar a escala do eixo horizontal
e “dar um zoom” no gráfico. O traço fica visível quando o gráfico cobre algo
em torno de dezenas de milisegundos até que algo de muita importância para
nós ocorre. Estamos observando uma escala de tempo tão curta que o Audacity
mostra a real natureza de como o som é representado no computador – por meio
de amostras. Neste momento, o software muda a exibição da onda do som para
um formato similar ao da figura 4.5, que cobre apenas por volta de 1 milisegundo
de um trecho do mesmo áudio. Nele, o Audacity explicita o caráter amostrado
do som pelo emprego de um gráfico de ramos, tal como já vimos na seção 3.3.3.

Vulgarmente, as diferenças entre o áudio armazenado por um disco de vinil
e por um arquivo de áudio no computador são explicitadas pelas qualificações
de analógico e digital. Diz-se que o áudio do disco de vinil é armazenado em
formato analógico enquanto que o do computador é armazenado em formato
digital. Esta terminologia vulgar não está completamente incorreta, mas ela
cobriria características adicionais e alguns complicantes que não vamos cobrir
nesta obra. A rigor, a principal distinção que estamos salientando aqui é que a
natureza do tempo no disco de vinil é de um tempo contínuo, enquanto que o
tempo no áudio digital é amostrado, o que chamamos de tempo discreto.

O termo discreto aqui vem do mesmo radical de discriminar que significa
perceber diferença, distinguir. Ou seja, cada momento de tempo é bem distinto
pois eles são instantes separados e não aglutinados uns sobre os outro em um
contínuo.

Outra característica importante é que, embora a convenção da terminologia
seja dizer que os sinais são de tempo contínuo e de tempo discreto, nem sempre
a variável independente é o tempo. Para o processamento de sinais, a princípio,
o tipo da grandeza da variável independente não importa (isso não é verdade
quando as ideias de passado e futuro, de causa e consequência e de estímulo
e resposta podem ser importantes). Apenas para ilustrar, a mesma diferença
entre o registro de áudio obtido no vinil e o armazenado no computador, aparece
entre as imagens obtidas a partir de filmes fotográficos com relação àquelas
armazenadas no computador obtidas por câmeras digitais (ou escaneadas).
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Figura 4.6: Imagem do veleiro da projeção da figura 4.2 reduzida a 20 × 15
pixeis.

Na fotografia analógica a luz causa uma reação no filme. Três produtos
químicos – revelador, interruptor e fixador – interrompem as reações e garantem
que as regiões sensibilizadas pela luz tenham seu grau de transparência alterado.
As áreas mais expostas à luz ficam mais opacas gerando um filme chamado
negativo. Neste caso, a variação da sensibilização é o que causa as diferenças na
intensidade da luz na imagem, e esta variação é contínua com relação aos eixos
espaciais x e y da imagem.

Em uma câmera digital, as regiões que são “sensibilizadas” são discretas1 e
chamadas de células do sensor. Como resultado, a imagem digital é formada
por vários pontos designados pixeis. Uma TV digital exibindo uma imagem
no formato convencionado como 720p, por exemplo, está exibindo uma imagem
com 921 600 pixeis organizados em 720 linhas e 1 280 colunas.

Reduzimos a imagem do veleiro da figura 4.2 a uma figura digital de 20×152

pixeis (um total de 300 pixeis, muito menos do que o 720p e, portanto, uma
qualidade muito inferior) para obter a imagem da figura 4.6.

Nas imagens digitais em preto e branco, temos um conjunto discreto e finito
de valores de x e y para variáveis independentes que determinam a posição
e também uma quantidade finita e discreta de valores de intensidade I(x, y).
Nesta imagem, x está limitado a valores inteiro entre 0 e 19 e identifica da
primeira à vigésima posição possível para abscissa da posição do pixel. De
forma semelhante, o y cobre valores inteiros de 0 a 14 para identificar as suas
ordenadas.

Isto significa que uma possível representação da intensidade é por meio de
uma matriz. A imagem da figura 4.6 tem tão poucos pixeis que podemos ser

1Uma discussão mais profunda de como funcionam os químicos na foto poderá nos levar a
divagar sobre a natureza discreta dos elementos que se sensibilizam no filme. Esta discussão é
infrutífera pois muitos fenômenos são, em última instância, resultados macroscópicos de uma
grande quantidade de fenômenos discretos em nível microscópico e nossa distinção aqui sobre
o que é contínuo ou discreto é mais frouxa, desleixada, e não merece este aprofundamento.

2É comum descrever as dimensões de uma imagem na ordem largura×altura, o que acarreta
na ordem contrária de matrizes que utiliza a ordem linha × coluna.
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ousados o suficiente para mostrar toda a matriz I que a representa.

I =




53 64 73 80 76 81 116 255 216 129 129 123 112 115 133 129 129 121 105 63
70 70 68 82 95 114 189 255 240 130 124 110 115 131 145 129 119 108 82 68

151 140 121 109 97 91 222 255 255 121 98 94 92 91 109 80 128 108 75 64
162 160 161 167 172 170 251 255 255 178 91 86 86 99 88 87 143 120 86 94
152 156 158 154 162 178 255 255 255 216 127 124 121 128 117 113 150 160 106 97
175 178 177 169 167 220 255 255 255 240 148 131 131 139 141 145 172 187 157 122
181 188 222 217 210 229 255 255 255 251 182 162 158 143 129 147 143 127 124 119
149 158 184 176 166 244 251 255 255 255 198 145 152 146 143 150 151 161 141 130
161 168 165 167 170 255 255 229 237 255 232 196 192 177 161 155 157 152 147 149
147 149 153 154 173 255 255 246 203 193 229 183 181 175 181 194 180 163 164 164
145 148 151 153 204 254 255 251 219 192 184 163 170 168 164 164 161 161 161 158
131 135 139 143 165 162 157 163 175 140 153 137 160 161 162 160 156 155 153 149
55 57 70 84 120 216 206 217 228 254 188 103 114 115 118 117 114 111 108 105
10 13 12 10 64 90 133 123 64 98 54 2 3 4 3 2 1 3 1 1
4 3 8 13 60 126 147 135 112 82 41 15 8 3 7 5 9 1 2 1




.

Nesta matriz, a intensidade máxima (branco) é, por convenção, Imáx = 255
e a intensidade mínima (preto) é 0. Na região central da imagem (e da matriz)
onde se encontra a vela branca, vemos várias amostras com valor 255. Já na
parte do mar escuro e quase preto, temos amostras com valores próximos de 0.
Esta imagem é o um exemplo de sinal de “tempo discreto” em que a variável
independente não é o tempo, mas o comprimento, especificamente duas variáveis
para os comprimentos vertical e horizontal que chamamos de x e y.

Exercícios de Revisão
Questão 4.1. Abra um áudio qualquer no Audacity e confira a natureza discreta dos

áudios. Se desejar, abra o mesmo áudio que empregamos de exemplo da 5a

Sinfonia de Beethoven.
Questão 4.2. Simulando uma amostragem. (a) Faça um gráfico com traço contínuo

para a função
x(t) = 5 cos(2πft)

para f = 1 kHz. Considere t como o tempo contínuo e, portanto, empregue
grande quantidade de amostras para realizar o gráfico da linha suave, exibindo
dois períodos a partir de t = 0.
(b) Sobre o gráfico da letra (a), plote o gráfico de ramos das amostras se fosse
realizadas com período de amostragem de 0,05 ms.

Questão 4.3. Abrindo áudio no Python. Utilize o submódulo wavfile do submó-
dulo io3 do módulo SciPy para abrir um áudio em wav. Podemos importá-
lo empregando from scipy.io import wavfile. Para tal, empregue a função
wavfile.read(). Esta função recebe como parâmetro um string contendo o
caminho para o arquivo de áudio em formato wav e retorna dois parâmetros, a
taxa de amostragem e um array no formato NumPy contendo as amostras do
áudio. Podemos usar a sintaxe

f_s , arrayAmostras = w a v f i l e . read ( [ s t r i n g com caminho do
áudio ] )

em que a variável f_s receberá a taxa de amostragem em amostras/s e a
arrayAmostras receberá um array NumPy com as amostras. Caso o áudio
tenha um único canal, o array será unidimensional de tamanho N em que N é a
quantidade de amostras. Se o áudio tiver mais canais o Array será bidimensi-
onal de tamanho (N, N_c) em que N_c é a quantidade de canais. Ou seja, as
amostras de áudio estão organizadas nas colunas. A cada coluna há N amostras
do canal de áudio da referida coluna. Plote o gráfico da variação do sinal de
áudio completo em um gráfico de linha e de um trecho curto com a função stem.

3O termo io diz respeito às iniciais de input/output e é o submódulo do SciPy que con-
tém funções que podem empregar arquivos como entrada e saída (file input/outout). Em
particular, vamos empregar um arquivo de áudio como entrada.
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4.3 Noções de espectro de frequências
Desde o fim da década de 80 que as mídias digitais têm se estabelecido como o
estado da arte em termos de tecnologia, ou seja, aquilo que há de mais moderno
e de melhor qualidade é digital. Para o estudante nascido depois do final da
década de 90, é possível que ele sequer conheça as mídias analógicas (de tempo
contínuo) – discos de vinil, fitas cassete, e até fotos obtidas com filmes – o que
significa que a maioria dos sinais que ele terá acesso são amostrados. Este fato
destaca a importância do estudo dos sistemas com sinais de tempo discreto pois
eles são hoje predominantes, principalmente em aplicações de tecnologia. As
máquinas que trabalham com amostragem se tornaram mais confiáveis e mais
baratas, o que justifica sua abundância.

É evidente, porém, que cuidados devem ser tomados para que se possa re-
alizar a amostragem e ainda assim o sinal amostrado poder substituir com se-
gurança o sinal correspondente de tempo contínuo. Nossa intenção é conseguir
quantificar estes cuidados, e, para isso, vamos explorar a ideia de espectro de
frequências de um sinal.

Imagine um contra-baixo, um violoncelo e um violino. A nota mais grave
que é possível reproduzir em um contra-baixo tem aproximadamente 30 Hz,
e a mais aguda aproximadamente 300 Hz. No violoncelo estes limites estão
aproximadamente entre 60 Hz e 600 Hz e no violino entre 200 Hz e 2 kHz.

Fisicamente, sabemos que uma corda costuma vibrar na frequência que de-
fine a nota e nos seus múltiplos inteiros, chamados harmônicos. O violino to-
cando o seu dó mais grave, por exemplo, vibra em 261,6 Hz e ao mesmo tempo
em 523,2 Hz, 784,6 Hz, 1046,4 Hz, etc. pois elas são as frequências da nota, cha-
mada frequência fundamental ou primeiro harmônico, do segundo harmônico,
do terceiro e assim sucessivamente.

A tendência é que os harmônicos superiores tenham intensidades de vibração
cada vez menor. Isso significa que a energia nas vibrações em um instrumento
qualquer tende a estar concentrada nas frequências das notas que ele é capaz de
reproduzir e a partir daí passam a decrescer.

É comum ilustrar de forma simplificada estas limitações de vibração por
um esquema que chamamos de espectro de frequências. A figura 4.7 mostra os
esboços de como seriam os espectros dos três instrumentos. No contra-baixo,
por exemplo, a quantidade de energia nas vibrações se concentra entre 30 Hz e
300 Hz, havendo alguns harmônicos de ordem maior a partir destas frequências
que tendem a decrescer. Vamos propor, como estimativa, que deve haver uma
quantidade relevante de energia nas vibrações deste instrumento até o terceiro
harmônico da nota de maior frequência (de frequência 3 · 300 Hz = 900 Hz).
A partir daí, consideramos que as energias em vibrações são irrelevantes (lem-
brando que trata-se de um esboço e de uma estimativa), de modo que podemos
formar uma figura para o que estamos chamando de espectro de frequências do
contra-baixo ocupando uma região do gráfico energia × frequência entre 30 e
900 Hz como no gráfico mais à esquerda da figura 4.7.

O espectro de frequência é, portanto, um esquema gráfico que relaciona com-
ponentes vibração e sua respectiva frequência em um gráfico energia × frequên-
cias, embora seja comum gráficos que mostram intensidade da amplitude das
vibrações × frequências. Empregando estimativas semelhantes a que emprega-
mos no contra-baixo para o violoncelo e violino podemos estimar as extensões
dominadas por sinais sonoros emitidos por estes instrumentos e esboça-las nos
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Figura 4.7: Esboço dos espectros de frequência para contra-baixo, violoncelo e
violino.

0 Ts 2Ts 3Ts 4Ts 5Ts 6Ts 7Ts 8Ts 9Ts
. . .

t

instantes de amostragem

Figura 4.8: Eixo da variável independente t e os instantes de amostragem nTs.

gráficos dos espectros de frequência da figura 4.7.
O espectro do sinal emitido por uma fonte – no nosso exemplo a fonte são

instrumentos musicais – tem o que chamamos de limitação em uma banda de
frequências. No caso do contra-baixo, podemos dizer que estimamos o som que
ele emite por um sinal limitado a uma banda entre 30 Hz e 900 Hz.

Exercícios de Revisão

Questão 4.4. (a) Faça uma estimativa da banda de frequências da voz humana na
fala. (b) Quais são as frequências de interesse no áudio para humanos?

4.4 Representação matemática e convenção de
amostragem

Se a variável independente é o tempo t e fizermos uma amostra a cada 5 ms, por
exemplo, então teremos como amostras 0, 5 ms, 10 ms, 15 ms, etc. Trabalhare-
mos apenas com este caso em que as amostras são coletadas regularmente em
intervalos fixos.

A amostragem passa a ser uma atividade periódica e ao tempo que se leva
a cada repetição da amostragem chamamos de período de amostragem, Ts. A
letra s é utilizada no subscrito pois é a inicial de sample, amostra em inglês.

A regra geral é que a amostragem de t é nos instantes 0, Ts, 2Ts, 3Ts, etc.
ou ainda nTs para n inteiro. Ou seja, nos instantes de amostragem, temos

t = nTs. (4.1)

Estes instantes de amostragem são mostrados no eixo t na figura 4.8.
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Se o sinal de interesse é x(t), quando o mesmo é amostrado, só nos inte-
ressa os valores x(nTs). Utilizaremos a convenção de chamar x(nTs) de x[n],
utilizando os colchetes para explicitar que a variável dentro dos colchetes é uma
variável independente discreta (inteira).

Ora, se Ts é chamado de período de amostragem, sua unidade deve ser de
tempo, ou de tempo por amostra, já que amostra é um adimensional. Podemos
quantificar o processo de amostragem, também, pelo que chamamos de taxa de
amostragem ou frequência de amostragem dada pelo recíproco do período como

fs = 1
Ts

.

Se no sistema internacional Ts tem unidade de s ou s/amostra, a unidade da
taxa de amostragem é s−1 = Hz ou amostra/s.

Veja nas figuras 4.4 e 4.5 que há a informação da taxa de amostragem do
áudio no lado esquerdo, onde são mostradas informações sobre os canais de
áudio. Ele indica que o exemplo que usamos foi amostrado a 44 100 Hz ou
44 100 amostras/s.

4.5 Efeito da amostragem em uma senoide pura
Está implícito na ideia de espectro de frequências apresentada na seção 4.3
que os sinais são, de certa forma, compostos por uma grande quantidade de
vibrações. Veremos no capítulo 5 que, de fato, é possível descrever qualquer
sinal como a soma de várias parcelas de senoides.

Podemos, então, estudar um “efeito elementar” da amostragem em um pro-
cesso com oscilação se observarmos o que ocorre quando amostramos um único
seno. Pela periodicidade das funções senoidais, vista na equação 2.13, podemos
afirmar que se n é inteiro, então

sen(ωt) = sen(ωt + 2πn) , e, cos(ωt) = cos(ωt + 2πn). (4.2)

Ao amostrarmos estas senoides com taxa de amostragem é Ts, observamos
o tempo t apenas nos instantes em que t = nTs com n inteiro. Se fizermos esta
substituição, ω = 2πf e estudarmos o efeito sobre a função cosseno, teremos

cos(2πfTsn) = cos(2πfTsn + 2πn)
= cos [2π(fTs + 1)n]

= cos
[
2π

(
f + 1

Ts

)
Tsn

]

cos(2πfTsn) = cos[2π (f + fs)︸ ︷︷ ︸
f ′

Tsn].

A última equação nos diz que devido a periodicidade do cosseno o uso da
amostragem (que impõe o uso de argumentos inteiros no função cosseno), cos-
senos amostrados com frequência f e f ′ se apresentam iguais! Ou seja, após
amostradas, não é possível distinguir f e f ′ = f + fs.

Exemplo 4.1. Verifique os sinais senoidais puros x1 e x2 com frequências de
80 Hz e de 280 Hz se apresentam idênticos quando amostrados a cada 5ms.
Apresente o gráfico que ilustra as coincidências das amostras.
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Solução. De fato, a taxa de amostragem em questão é de

fs = 1/(0,005 s) = 200 Hz

e
280 Hz = f ′ = f + fs = 80 Hz + 200 Hz.

Os sinais nas frequências de 80 Hz e 280 Hz podem ser expressos como

x1(t) = cos(160πt) e x2(t) = cos(560πt),

que se amostrarmos com t = nTs = 0,005n resulta em

x1[n] = cos(0,8πn) e x2[n] = cos(2,8πn).

Vemos que a distinção entre eles é de exatamente 2πn, com n inteiro.
Pela periodicidade da cossenoide temos cos(0,8πn) = cos(2,8πn), o que
significa que, quando amostradas, as cossenoides dos sinais x1 e x2 são
iguais.
O código 4.1 constrói 4 gráficos sobrepostos. Os dois primeiros são os
cossenos de 80 e 560 Hz traçados com grande quantidade de amostras
para observarmos o traço da linha de dois períodos do cosseno de menor
frequência como se fossem contínuos. Os outros dois são gráficos de ramos
da amostragem proposta no problema. Não é fácil distinguir os dois gráfi-
cos de ramos pois eles ficam exatamente sobrepostos. Pusemos a linha do
ramo do primeiro em amarelo contínuo e a do segundo em verde tracejado
para possibilitar a visualização pois, devido a sobreposição, todas as linhas
ficaram amarelas listradas de verde. O gráfico resultante da aplicação do
código é mostrado na figura 4.9.

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 T_s = 0.005
4 t = arange (0 ,0 .025 , (0 .025 −0) /200) # 80 Hz imp l i ca per íodo de

1/80 s . Vamos f a z e r do i s per íodos ou 0 ,025 s . Uso de 200
amostras .

5 n = arange (0 , 0 . 025/T_s + 1) # A quant idade de amostras va i de
0 a té o fim da e s c a l a . Somamos com 1 para i n c l u i r o ú l t imo

ponto .
6 x_1 = cos (160∗ p i ∗ t ) # Define grande quant idade de amostras

para x1 t raçado do g r á f i c o em l i n h a .
7 x_2 = cos (560∗ p i ∗ t ) # Idem para x2 .
8 x_1_amostrado = cos (160∗ p i ∗T_s∗n) # x1 amostrado .
9 x_2_amostrado = cos (560∗ p i ∗T_s∗n) # Idem para x2 .

10 p l t . p l o t ( t , x_1 , "k−" , t , x_2 , " r−−" ) # Plot das l i n h a s de x1 em
pre to com l i n h a cont ínua e x2 em vermelho t r a c e j a d o .

11 p l t . stem (n∗T_s , x_1_amostrado , l i n e f m t=" y " ) # Plot do stem das
amostras de x1 .

12 p l t . stem (n∗T_s , x_2_amostrado , l i n e f m t=" g−−" ) # Idem para as
amostras de x2 .

13 p l t . show ( )

Código 4.1: Criação de gráficos de cossenoides de 80 e 280 Hz.
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Figura 4.9: Gráfico ilustrativo da coincidência entre cossenoides de 80 e 280 Hz
quando amostrados a 5 ms.

O que vimos até então indica que não adiantaria amostrar uma onda com
frequência de f + fs pois ela se confundiria com a frequência f , que é menor do
que ela. A pergunta que devemos fazer é: se amostrarmos um sinal com taxa de
fs, haveria uma região dentre baixas frequências em que todas elas são únicas,
e não se confundem entre si? Para responder esta pergunta, vamos tentar um
outro caminho algébrico para verificar se há uma frequência ainda menor do que
f + fs que se confunde com f quando amostrada.

Para tal, vamos utilizar tanto a periodicidade do cosseno como a sua pari-
dade, que nos diz que cos(x) = cos(−x). Com isso, para a cossenoide cos(ωt) =
cos(2πfTsn), teremos as igualdades quando amostrada dadas por

cos(2πfTsn) = cos(−2πfTsn)
= cos(−2πfTsn + 2πn)
= cos [2π(1 − fTs)n]

= cos
[
2π

(
1
Ts

− f

)
Tsn

]

cos(2πfTsn) = cos[2π (fs − f)︸ ︷︷ ︸
f ′

Tsn].

Com este desenvolvimento vemos que as frequências f e f ′ = fs − f também
são se apresentam idênticas quando amostradas.

Exemplo 4.2. Repita a comparação feita entre os sinais no exemplo 4.1, desta
vez empregando as frequências de 80 e 120 Hz, de x1 e x3, respectivamente,
amostrados a 5 ms.
Solução. Neste caso, temos

120 Hz = f ′ = fs − f = 200 Hz − 80 Hz.

Os sinais podem ser

x1(t) = cos(160πt) e x2(t) = cos(240πt),
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Figura 4.10: Gráfico ilustrativo da coincidência entre cossenoides de 80 e 120 Hz
quando amostrados a 5 ms.
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Figura 4.11: Localização das frequências f e f ′ = fs − f com relação a fs no
eixo de frequências.

que amostradas se tornam

x1[n] = cos(0,8πn) e x3[n] = cos(1,2πn),

e, para n inteiro, vale

cos(0,8πn) = cos(−0,8πn) = cos(−0,8πn + 2πn) = cos(1,2πn).

Logo, os sinais x1 e x3, quando amostrados, são iguais.
Modificamos minimamente o código 4.1 (foi necessário apenas substituir
560*pi ou 240*pi) e obtivemos os gráficos da figura 4.10.

Não vamos provar rigorosamente nesta obra, mas a frequência f ′ = fs − f é
a menor que coincide com a frequência f quando amostradas com taxa fs. Isto
implica na configuração de frequências ilustrada na figura 4.11. Ela mostra a
localização de f e f ′, que tem mesma representação quando amostradas, com
relação a taxa de amostragem fs para um valor pequeno da frequência f .

Em uma aplicação real, não poderíamos ter ambas as frequências compondo
o espectro de frequências do sinal, pois elas seriam indistinguíveis. Assim, vamos
priorizar o uso da menor entre elas, f .

Deveríamos limitar, então, os valores de possíveis frequências f para 0 ≤
f ≤ fmáx de modo a garantir que dentre elas todas têm representação única
quando amostradas.
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Figura 4.12: Localização no eixo de frequências da relação entre a frequência
máxima de um sinal e da frequência de Nyquist.

Assim, vemos pela figura 4.11 que fmáx está entre f e f ′ na figura. Vemos
também que a medida que aumentamos f , ele e sua contra-parte f ′ se aproxi-
mam de fs/2, onde se encontrariam. Aumentar f a partir daí causa a inversão
dos papéis pois f já seria maior do que f ′.

Isto significa que se 0 ≤ f ≤ fs/2, a senoide que tem menor frequência
e também tem mesma representação está na faixa fs/2 ≤ f ′ ≤ fs. Logo, se
limitarmos f ao intervalo de 0 a fs/2, garantimos que todos os f nesta faixa
tem representação única, implicando em fmáx = fs/2.

4.6 Critério de Nyquist
O resultado obtido na seção 4.5 para a amostragem de uma senoide pura é
generalizado no critério de Nyquist. Ele pode ser expresso como: se um sinal
tem espectro com banda limitada até fmáx, se for adotada taxa de
amostragem fs ≥ 2fmáx não haverá perda de informação.

Equivalentemente, o limite fmáx da banda de um sinal deve ser menor
que a metade da taxa de amostragem, ou seja, fmáx ≤ fs/2. A taxa fs/2
é chamada de taxa de Nyquist.

A figura 4.12 ilustra a distribuição do espectro de um sinal hipotético e a
localização esperada da taxa de amostragem.

As provas rigorosas da veracidade do critério de Nyquist estão além do al-
cance deste curso, mas o que vimos com relação à senoide pura auxilia a compre-
ender o tipo de problema que pode ocorrer quando ele não é respeitado. Dizemos
que quando o critério de Nyquist não é respeitado, acorre subamostragem. O
erro que o sinal subamostrado apresenta se chama aliasing.

Exercícios de Revisão

Questão 4.5. Ligação com dual-tone. A figura 4.13 ilustra o aspecto de um teclado
numérico convencional como os empregados em telefones. Um dos padrões para
sinalizar que uma tecla foi pressionada é o conhecido como dual-tone que con-
siste na emissão, pelo aparelho, da soma de dois tons (duas senoides) quando
uma tecla é pressionada. Os tons empregados são padronizados e a composição
dos mesmos é organizada de acordo com a posição da tecla, ou seja, variam com
linha e coluna em que a tecla está disposta. As frequências associadas a cada
linha e coluna também estão mostradas na figura. (a) Estime a banda necessá-
ria para operar o dual-tone. (b) Escolha uma taxa de amostragem compatível
com a banda e crie um sinais no formato de dual tone de modo que ele tenha
uma duração suficiente para que fosse audível e escute o resultado empregando
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Figura 4.13: Esquema do teclado dual-tone com as frequências atribuidas às
linhas e colunas.

a função sounddevice.play(arrayDeAudio,Ts) do módulo sounddevice que re-
cebe como parâmetros o sinal de áudio no formato de array do NumPy e a taxa
de amostragem Ts. Escute o som emitido e compare com o emitido por seu
celular (em geral, é possível ouvir o som do dual-tone quando o celular está no
discador). (c) Crie um programa que pede sucessivamente que o usuário informe
teclas e emite o som da tecla correspondente até que ele digite “encerrar”. (d)
Tente realizar uma ligação pelos sons emitidos pelo dual-tone em seu computa-
dor aproximando a sua caixa de som ao microfone de um telefone convencional.
(e) Mude a taxa de amostragem para abaixo da Taxa de Nyquist e compare os
sons emitidos neste caso. Tente realizar a ligação novamente. O que se percebe
com relação ao som emitido e a tentativa de ligação?

4.7 Frequência angular normalizada
A convenção para a frequência angular é ser medida em rad/s. Ela costuma
aparecer multiplicando uma variável independente de tempo em expressões como

cos(ωt) (4.3)

de modo a obter no argumento do cosseno um valor em radianos. Quando
realizamos a amostragem, estamos observando os instantes de tempo em que
t = Tsn, em que Ts, o período de amostragem é medido em s/amostra. Se
substituirmos este valor numa expressão como a da equação 4.3, temos

cos(ωt) = cos(ωTsn) = cos(wn), (4.4)

em que w, definido como o produto entre a frequência angular e o período de
amostragem, tem unidades de rad/amostra e é designada frequência angular
normalizada. A rigor, tanto rad como amostra são adimensionais, de modo que
a frequência angular normalizada é adimensional. Note, também que adotamos
para distinguir a frequência angular da frequência angular normalizada a sutil
substituição da letra grega ômega (ω) pela letra dábliu (w).

O processo de amostragem faz “desaparecer” a dimensão do tempo, que
passa a ser contado de amostra em amostra, normalizando-o por períodos de
duração da amostragem. Podemos, então, reescrever o critério de Nyquist em
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Tabela 4.1: Comparação entre as frequências dos exemplos 4.1 e 4.2.

f w situação
fs = 200 Hz 2π

fs/2 = 100 Hz π
f1 = 80 Hz 0,8π 80 Hz ≤ 100 Hz 0,8π ≤ π atende ao critério
f2 = 280 Hz 2,8π 280 Hz > 100 Hz 2,8π > π não atende ao critério
f3 = 120 Hz 1,2π 120 Hz > 100 Hz 1,2π > π não atende ao critério

termos das frequência angular normalizada máxima, pois

fs ≥ 2fmáx

1
Ts

≥ 2ωmáx
2π

ωmáxTs ≤ π,

que resulta no critério
wmáx ≤ π. (4.5)

Ou seja, em um processo em que o critério de Nyquist é respeitado, as frequên-
cias angulares normalizadas tem valor máximo de π rad/amostra.

Exemplo 4.3. Analise os sinais senoidais proposto nos exemplos 4.1 e 4.2 com
relação a sua concordância com o critério de Nyquist. Utilize as frequências
em Hz e normalizadas.
Solução. Chamamos a frequência de amostragem de fs, a taxa de Nyquist
de fs/2 e as frequências de 80, 280 e 120 Hz do problema respectivamente
de f1, f2 e f3 e as listamos na tabela 4.1. Nas terceira e quarta colu-
nas fizemos as comparações entre as frequências de interesse e a taxa de
Nyquist em hertz e normalizada e pusemos a situação do atendimento ao
critério de Nyquist na última coluna. Como esperado, apenas a menor
das frequências, de 80 Hz, atende ao critério de Nyquist. Todas as outras
que se apresentam iguais a ela quando amostradas tem maior frequência
e não atendem ao critério.

4.8 Incompatibilidade da banda do sinal e da
frequência de amostragem

Argumentamos sobre a limitação da banda do sinal de alguns instrumentos mu-
sicais na seção 4.3 pelas características do som emitido pelos instrumentos. Na
prática, o tamanho da caixa de ressonância, o comprimento do braço, a espes-
sura e a tensão das cordas etc. são aspectos físicos que acabam condicionando
como o instrumento reage aos estímulos mecânicos e impedem que os instrumen-
tos tenham uma resposta em um espectro que cubra qualquer frequência. Pelo
contrário, o artífice, conhecendo as limitações da física, escolhe as características
do instrumento para que ele responda aos estímulos mecânicos de acordo com
a tessitura para a qual o instrumento se presta.
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Figura 4.14: Esquema de sistema de amostragem com sensor, filtro e conversor.

Em alguns casos, os limites físicos da banda de frequências de um sistema não
são fáceis de estimar. Ou ainda, os sinais de interesse se misturam com outros
que abundam em frequências altas muito além dos limites do sinal de interesse.
Quando isto ocorre, é importante que o sistema que realiza a amostragem faça
uma filtragem prévia do sinal captado.

Com isto, vamos mostrar um esquema típico que realiza a amostragem na
figura 4.14. Ele costuma ser composto de 3 partes. A primeira é a que consegue
observar a grandeza em estudo e é designada sensor. Como os sistemas elétricos
são aqueles que mais facilmente processam e tratam dados e informações, em
geral, o sensor percebe uma grandeza qualquer x(t) e a converte em um sinal
elétrico v(t).

A segunda parte é um filtro que chamamos de passa-baixas (pois ele só deixa
passar as baixas frequências). Este filtro tem uma característica que chamamos
de frequência de corte fc. A saída do filtro é um novo sinal de tensão v′(t)
em que as frequências acima de fc existentes em v(t) foram removidas, ou seja,
estão ausentes pois foram filtradas. Com isso, v′(t) tem banda limitada à fc.

Por fim, a parte que de fato realiza a amostragem é chamada de conversor
analógico-digital ou simplesmente conversor A/D, que recebe v′(t) e gera o sinal
x[n] amostrado. Neste sistema, se a frequência de amostragem do conversor A/D
é fs, para que o critério de Nyquist seja cumprido, é necessário que

fs ≥ 2fc.

Este esquema garante que não haja aliasing ao realizar uma pré-filtragem no
sinal amostrado e garantir que sua banda será limitada e adequada ao conversor.
O efeito sobre os espectro sobre os sinais durante o processo também é mostrado
na figura 4.14.

É importante observar que o filtro remove algumas informações. A escolha de
fc deve ser tal que ele remova apenas informações indesejadas, que costumamos
chamar de ruído, permitindo a amostragem posterior do sinal de interesse. Ou
seja, a escolha de fc não deve ser arbitrária, mas adequada à aplicação específica.



Capítulo 5

Série de Fourier de tempo
discreto

O sinal xt(t) de tempo contínuo da figura 5.1 é o que chamamos de “onda
triangular”. Desenhamos este sinal com período T = 30 ms.

Considere agora que amostramos este sinal com período de amostragem Ts =
5 ms gerando sua versão amostrada xt[n]. Para este período de amostragem,
temos como frequência de amostragem

fs = 1/Ts = 200 Hz.

O sinal amostrado também é apresentado na mesma figura e também é perió-
dico, repetindo-se a cada 6 amostras. Dizemos que ele tem período N = 6
amostras.

Agora vamos considerar o sinal

x′
t(t) = 3

2 − 2
3 cos

(
2π

6 fst

)
+ 1

6 cos
(

2π

6 3fst

)
+ 2

√
3

2 sen
(

2π

6 fst

)
(5.1)

traçado em linha contínua sobre as amostras e sob xt(t), denotando que a va-
riável t ∈ R.

Duas coisas interessantes ocorrem:
1. x′

t(t) tem aspecto muito semelhante a xt(t), ou seja, x′
t(t) ≈ xt(t) para

qualquer t; e

2. se xt(t) ou x′
t(t) forem amostradas, obtém-se sinais de tempo discreto xt[n]

e x′
t[n] iguais, ou seja, x′

t(t) = xt(t) para t = Tsn. Em outras palavras,
indica que as amostragens de xt e de x′

t são indistinguíveis.
Em particular, temos

xt[n] = x′
t[n] = 3

2 − 2
3 cos

(
2π

6 n

)
+ 1

6 cos
(

2π

6 3n

)
+ 2

√
3

2 sen
(

2π

6 n

)
.

Este exemplo específico nos induz a propor que as funções seno e cosseno
podem ser utilizadas para representar aproximadamente sinais quaisquer de
tempo contínuo e identicamente as funções de tempo discreto.

Estes somatórios de senos e cossenos ponderados que utilizamos para definir
xt[n] e x′

t[n] chamamos de representação em série de Fourier de tempo discreto
destes sinais.

193
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Figura 5.1: Onda triangular de tempo contínuo.

5.1 Sinais periódicos e sinais limitados
Iniciamos nossos exemplos com o sinal da onda triangular periódica. Faz mais
sentido pensar que um sinal desta natureza possa ser representado como uma
soma de senos e cossenos. Veremos, porém, que um grupo importante de fun-
ções, as funções limitadas na variável independente, também podem ser repre-
sentadas por funções senoidais.

Na matemática pura, é comum trabalharmos com funções f de t em que
qualquer valor de t é importante para o estudo, muitas vezes desde −∞ a +∞,
a depender do quão vasto possa ser o domínio das funções que compõem f . No
mundo real, toda análise de sinal costuma ter um valor inicial e um valor final
de interesse, ou seja, a ≤ t ≤ b, em que a e b são respectivamente os valores
inicial e final de interesse. Isto ocorre pois se t é uma variável que representa
o tempo, por exemplo, a e b podem ser os instantes em que um experimento
começa ou termina. Se t é um comprimento, a e b pode ser o alcance do sensor
ou o limites de deslocamento de um aparato mecânico que restringem os valores
de interesse de t.

Nestes casos, dizemos que a função é limitada para t entre a e b. Caso esta
função seja amostrada, teremos f [n] também limitada para na ≤ n ≤ nb.

Veja as funções xt[n], que já trabalhamos, e x[n], uma função limitada a
0 ≤ n ≤ 5 da figura 5.2. Dentro do limite em que x[n] está definida, xt[n] = x[n],
de modo que sempre podemos trabalhar uma função limitada como uma
função periódica, desde que definamos a região limitada coincidente
com um período.

Desta maneira, a importância deste estudo recai sobre as funções limitadas e
amostradas (de tempo discreto), que estudaremos por meio de séries de Fourier
de tempo discreto.
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Figura 5.2: Sinal limitado x[n] e seu correspondente periódico xt[n].

5.2 Funções senoidais de interesse num sinal li-
mitado

Para obter a série de Fourier de um sinal amostrado limitado ou periódico,
devemos primeiro restringir quais senos e cossenos são de interesse. Para tal,
vamos considerar o exemplo da onda triangular que demos. Como ela tem
período N = 6, vamos começar pelas funções seno e cosseno que também têm
este período. Na seção 2.3.2, vimos que um cosseno com período 6 deve respeitar

cos(wn) = cos[w(n + 6)]
cos( wn︸︷︷︸

=ϕ

) = cos(wn + 6w︸ ︷︷ ︸
=θ

).

Como os cossenos são iguais, significa que a diferença entre seus argumentos
(θ−ϕ) deve ser um múltiplo inteiro de uma volta completa (2πk, com k inteiro),
ou seja,

θ − ϕ = 2πk

wn + 6w − wn = 2πk

6w = 2πk.

Isto significa que há várias frequências normalizadas w no formato

w = 2πk

6

para as quais um cosseno é periódico com período N = 6, a depender do valor
de k. Vamos chamá-la de wk. A expressão que obtivemos é para o caso em que



196 CAPÍTULO 5. SÉRIE DE FOURIER DE TEMPO DISCRETO

N = 6. Para o caso geral em que N é um inteiro positivo qualquer teríamos

wk = 2πk

N
.

O valor de w0 = 0 é aquele que torna o cosseno constante e igual a 1 (e o seno
constante e igual a zero). Como ela não pode ser empregada para descrever um
sinal variável, ela não é exatamente uma “frequência”, mas tem uma importância
que veremos mais adiante (veja que xt[n] do exemplo da onda triangular tem
um termo constante e igual a 3/2).

A menor destas frequências é

w1 = 2π · 1
6 = π

3 rad/amostra.

Todas as outras frequências são múltiplos inteiros de w1, ou seja,

wk = w1 · k.

A próxima frequência, w2 = 2π/3 rad/amostra, também tem período N = 6
(essa foi nossa premissa), mas ela tem o “dobro da velocidade” de w1. Dizemos
o dobro da velocidade para indicar que quando cos(w1n) completa um ciclo,
cos(w2n) completou dois. Por fim, w3 = π rad/amostra tem o triplo da velo-
cidade de w1. Também, não há variação mais abruta do que a que podemos
observar em cos(πn), já que em uma amostra este cosseno apresenta o valor 1 e
na amostra seguinte apresenta o valor oposto.

Estas quatro frequências, w0, w1, w2 e w3, resultam nos quatro primeiros
gráficos das funções cosseno que apresentamos na figura 5.3. Para mostrarmos
as frequências de interesse, colocamos o gráfico de cos(win), de tempo discreto,
junto com seu correspondente cos[(wi/Ts)t], de tempo contínuo. Veja que a
partir de w4, apesar de em termos de do tempo contínuo termos gráficos distintos
(todos os gráficos em vermelho são diferentes), quando eles são amostrados, o
resultado da amostragem de cos[(w4/Ts)t] é igual ao de cos[(w2/Ts)t].

Algebricamente, é fácil observar que

cos(w4n) = cos
(

4π

3 n

)

= cos
(

4π

3 n − 2πn

)

= cos
(

−2π

3 n

)

cos(w4n) = cos
(

2π

3 n

)
= cos(w2n),

que é o que o gráfico nos mostra.
Esta demonstração de igualdade dependeu do fato de que cos

( 4π
3 n

)
=

cos
( 4π

3 n − 2πn
)
, o que só é verdade se n é inteiro. Isso significa que esta é

uma particularidade do universo dos sinais amostrados – há apenas 4 frequên-
cias normalizadas de interesse de período N = 6: w0, w1, w2 e w3. Todas as
outras frequências se comportam exatamente como uma destas quando amos-
tradas.
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Figura 5.3: Amostragem de cossenos com período N = 6.
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Vejam que o resultado que encontramos aqui se relaciona com a ideia ex-
pressa no critério de Nyquist que vimos na seção 4.6. Estamos trabalhando com
frequências angulares que devem estar sujeitas a duas restrições

• o critério de Nyquist que as limita a 0 ≤ wk ≤ π, e

• serem periódicas com período N que implica em sua expressão geral ser

wk = 2π

N
k. (5.2)

Não devemos contar que apenas cossenos sejam suficientes para representar
uma função (ou sinal) qualquer de frequência N = 6, pois a função cosseno tem
uma fase fixa, e os sinais podem ter fases diversas. Uma soma de senos e cossenos
ponderados é suficiente para resolver funções periódicas com qualquer fase como
vimos na equação 2.29, de modo que poderemos escrever, particularmente para
a onda triangular (ou para a função limitada x[n] com N = 6) que estamos
utilizando como exemplo,

xt[n] = x[n] = a0 cos(w0n) + a1 cos(w1n) + a2 cos(w2n) + a3 cos(w3n)+
+ b0 sen(w0n) + b1 sen(w1n) + b2 sen(w2n) + b3 sen(w3n).

Se simplificarmos cos(w0n) = 1 e sen(w0n) = 0, teremos

xt[n] = x[n] = a0 + a1 cos(w1n) + a2 cos(w2n) + a3 cos(w3n)+
+ b1 sen(w1n) + b2 sen(w2n) + b3 sen(w3n).

= a0 +
3∑

k=1
[ak cos(wkn) + bk sen(wkn)] .

Aqui, fortalecemos nosso argumento de que deve ser possível representar
xt[n] = x[n] desde que consigamos determinar a1, a2, a3, b1, b2 e b3, que são os
“pesos” da ponderação dos senos e cossenos, além do a0 que é uma espécie de
termo constante.

Em nosso exemplo, para N = 6, precisamos determinar o termo indepen-
dente, a0, e os coeficientes para 3 frequências. Estas três frequências são as que
estamos chamando de frequências de interesse. Como regra geral, considerando
a expressão geral para wk e o critério de Nyquist, para N amostras, é necessário
determinar o termo independente a0 e mais os coeficientes dos senos e cossenos
de ⌊N/2⌋ frequências de interesse. O símbolo ⌊x⌋ denota o arrendondamento
para baixo. Por exemplo, ⌊3,3⌋ = 3 e ⌊3,9⌋ = 3.

A forma geral de uma função expressa como série de Fourier discreta poderá
ser dada, portanto, como

x[n] = a0 +
⌊N/2⌋∑

k=1

[
ak cos

(
2π

N
kn

)
+ bk sen

(
2π

N
kn

)]
. (5.3)

A equação 5.3 é conhecida como equação de síntese, que expressa x[n] como um
somatório de senos e cossenos ponderados. Este termo vem do significado de
síntese como construção ou montagem. Ela mostra como x[n] pode ser “cons-
truída” com componentes senoidais.
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5.3 Determinação dos coeficientes ak e bk

As fórmulas para cálculo dos coeficientes ak e bk são dadas por

a0 = 1
N

N−1∑

n=0
x[n]; (5.4)

aN/2 = 1
N

N−1∑

n=0
x[n] cos (πn) , para N par; (5.5)

ak = 2
N

N−1∑

n=0
x[n] cos

(
2π

N
kn

)
, para k ̸= 0, k ̸= N/2; (5.6)

b0 = 0, (5.7)
bN/2 = 0, para N par; e, (5.8)

bk = 2
N

N−1∑

n=0
x[n] sen

(
2π

N
kn

)
, para k ̸= 0, k ̸= N/2. (5.9)

As equações de 5.4 a 5.9 são conhecidas como equações de análise e expressam
os coeficientes ak e bk em termos de x[n].

5.3.1 Demonstração das fórmulas de análise da série de
Fourier de tempo discreto

Para demonstrar como obter as fórmulas para ak e bk faremos uso ostensivo das
propriedades

N−1∑

n=0
cos

(
2π

N
kn

)
= 0, se 1 ≤ k ≤ (N − 1), (5.10)

N−1∑

n=0
sen

(
2π

N
kn

)
= 0, para qualquer k inteiro, e, (5.11)

N−1∑

n=0
cos

(
2π

N
kn

)
= N , se k = 0 ou k = N. (5.12)

Demonstração do cálculo de a0

Como estamos propondo

x[n] = a0 +
⌊N/2⌋∑

k=1

[
ak cos

(
2π

N
kn

)
+ bk sen

(
2π

N
kn

)]
,

se somarmos todas as amostras de x[n] dos valores de 0 até N − 1, o que pode
ser interpretado como o somatório de termos do membro esquerdo para todos os
valores de n, isto será igual ao mesmo somatório com os termos do lado direito,
já que ambos os lados são iguais. Algebricamente, isto significa

N−1∑

n=0
x[n] =

N−1∑

n=0



a0 +

⌊N/2⌋∑

k=1

[
ak cos

(
2π

N
kn

)
+ bk sen

(
2π

N
kn

)]


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=
N−1∑

n=0
a0 +

N−1∑

n=0

⌊N/2⌋∑

k=1
ak cos

(
2π

N
kn

)
+

N−1∑

n=0

⌊N/2⌋∑

k=1
bk sen

(
2π

N
kn

)

= Na0 +
⌊N/2⌋∑

k=1

N−1∑

n=0
ak cos

(
2π

N
kn

)
+

⌊N/2⌋∑

k=1

N−1∑

n=0
bk sen

(
2π

N
kn

)

= Na0 +
⌊N/2⌋∑

k=1
ak

N−1∑

n=0
cos

(
2π

N
kn

)
+

⌊N/2⌋∑

k=1
bk

N−1∑

n=0
sen

(
2π

N
kn

)

= Na0 +
⌊N/2⌋∑

k=1
ak · 0 +

⌊N/2⌋∑

k=1
bk · 0

N−1∑

n=0
x[n] = Na0,

de onde, isolando a0, obtemos sua fórmula

a0 = 1
N

N−1∑

n=0
x[n].

Veja que a0 é a média dos valores das amostras de x[n]! Isto ocorre
pois os componentes senoidais tem uma simetria entre seus valores positivos e
negativos ao longo de N amostras pois todos são periódicos com esta quantidade
de amostras. Esta simetria faz os componentes senoidais se anularem, sobrando
apenas o componente constante a0 que deve coincidir com a “parte” constante
que x[n] tenha na média.

Demonstração do cálculo de ak, com k ̸= N/2

Novamente partimos de

x[n] = a0 +
⌊N/2⌋∑

k=1

[
ak cos

(
2π

N
kn

)
+ bk sen

(
2π

N
kn

)]
,

mas antes de somar todos os termos do membro esquerdo e direito, vamos
multiplicar ambos os membros por cos

( 2π
N k′n

)
, em que k′ é um dos valores de k

de interesse, e, portanto, 1 ≤ k′ ≤ ⌊N/2⌋ (excluímos k′ = 0 pois já o estudamos
na seção passada), obtendo

cos
(

2π

N
k′n

)
x[n] = cos

(
2π

N
k′n

)
a0+

+ cos
(

2π

N
k′n

) ⌊N/2⌋∑

k=1
ak cos

(
2π

N
kn

)
+

+ cos
(

2π

N
k′n

) ⌊N/2⌋∑

k=1
bk sen

(
2π

N
kn

)
,
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para então somar todos os termos do lado esquerdo e, consequentemente todos
do lado direito, de n = 0 até N − 1, obtendo

N−1∑

n=0
cos

(
2π

N
k′n

)
x[n] =

N−1∑

n=0
cos

(
2π

N
k′n

)
a0+

+
N−1∑

n=0
cos

(
2π

N
k′n

) ⌊N/2⌋∑

k=1
ak cos

(
2π

N
kn

)
+

+
N−1∑

n=0
cos

(
2π

N
k′n

) ⌊N/2⌋∑

k=1
bk sen

(
2π

N
kn

)

= a0

N−1∑

n=0
cos

(
2π

N
k′n

)
+

+
N−1∑

n=0

⌊N/2⌋∑

k=1
ak cos

(
2π

N
k′n

)
cos

(
2π

N
kn

)
+

+
N−1∑

n=0

⌊N/2⌋∑

k=1
bk cos

(
2π

N
k′n

)
sen

(
2π

N
kn

)

= a0 · 0 +
⌊N/2⌋∑

k=1

N−1∑

n=0
ak cos

(
2π

N
k′n

)
cos

(
2π

N
kn

)
+

+
⌊N/2⌋∑

k=1

N−1∑

n=0
bk cos

(
2π

N
k′n

)
sen

(
2π

N
kn

)

=
⌊N/2⌋∑

k=1
ak

N−1∑

n=0
cos

(
2π

N
k′n

)
cos

(
2π

N
kn

)
+

+
⌊N/2⌋∑

k=1
bk

N−1∑

n=0
cos

(
2π

N
k′n

)
sen

(
2π

N
kn

)

=
⌊N/2⌋∑

k=1

ak

2

N−1∑

n=0

{
cos

[
2π

N
(k′ + k)n

]
+ cos

[
2π

N
(k′ − k)n

]}
+

+
⌊N/2⌋∑

k=1

bk

2

N−1∑

n=0

{
sen

[
2π

N
(k′ + k)n

]
+ sen

[
2π

N
(k′ − k)n

]}
.

Aqui temos quatro termos de somatório de senoides que precisamos verificar
se se anulam como nos casos previstos nas equações 5.10, 5.11 e 5.12. De
imediato, podemos ver que os senos são todos nulos devido à equação 5.11.

Resta-nos analisar os cossenos. Vemos que como 1 ≤ k′ ≤ ⌊N/2⌋ e 1 ≤ k ≤
⌊N/2⌋, então

2 ≤ k′ + k ≤ N,

em que a igualdade k′ +k = N só ocorre se N for par e quando k′ = k = N/2.
Deste modo, com exceção do caso N par e k′ = k = N/2, que vamos estudar na
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próxima seção,
N−1∑

n=0
cos

[
2π

N
(k′ + k)n

]
= 0.

Resta analisar a diferença k′ − k. Ela é tal que

−N/2 + 1 ≤ k′ − k ≤ N/2 − 1.

Nesta faixa, as condições da equação 5.10 só não são atendidas quando k′ = k
e, k′ − k = 0, quando ocorre a condição da equação 5.12. Temos então

N−1∑

n=0
cos

[
2π

N
(k′ − k)n

]
=

{
N, k′ = k

0, caso contrário
,

e no somatório original

⌊N/2⌋∑

k=1

ak

2

N−1∑

n=0
cos

[
2π

N
(k′ − k)n

]
=

∑

k=k′

ak

2 N = Nak′

2 .

Este é o único somatório não-nulo.
Retomando estes valores na equação original, teremos

N−1∑

n=0
cos

(
2π

N
k′n

)
x[n] = Nak′

2 .

Utilizando a variável k genérica no lugar de k′, já que não há mais variável com
nome k, e isolando ak, obtemos o resultado que esperávamos de

ak = 2
N

N−1∑

n=0
cos

(
2π

N
kn

)
x[n], k ̸= 0, k ̸= N/2.

Demonstração do cálculo de ak, com N par e k = N/2

Na demonstração anterior, quando tínhamos

N−1∑

n=0
cos

(
2π

N
k′n

)
x[n] =

⌊N/2⌋∑

k=1

ak

2

N−1∑

n=0

{
cos

[
2π

N
(k′ + k)n

]
+ cos

[
2π

N
(k′ − k)n

]}
+

+
⌊N/2⌋∑

k=1

bk

2

N−1∑

n=0

{
sen

[
2π

N
(k′ + k)n

]
+ sen

[
2π

N
(k′ − k)n

]}
,

vimos que os somatórios de seno são sempre zero, mas o primeiro somatório de
cosseno, que era sempre nulo na seção passada, nesta seção, com k′ = N/2, este
primeiro somatório é não nulo quando k′ = k = N/2. Assim temos dois casos
dentre os somatório não nulos, em que ambos caem no caso da equação 5.12,
resultando em, quando substituímos k′ = N/2

N−1∑

n=0
cos

(
2π

N

N

2 n

)
x[n] =

⌊N/2⌋∑

k=1

ak

2

N−1∑

n=0

{
cos

[
2π

N
(k′ + k)n

]
+ cos

[
2π

N
(k′ − k)n

]}
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=
∑

k=N/2

ak

2 [N + N ]

N−1∑

n=0
cos (πn) x[n] = NaN/2,

que, isolando o termo aN/2, resulta na fórmula que esperada

aN/2 = 1
N

N−1∑

n=0
cos (πn) x[n], para N par.

Demonstração do cálculo de bk

O termo b0 é nulo por definição pois podemos considerar que ele não existe, já
que ele multiplicaria o sen( 2π

N · 0 · n) ≡ 0. Como esta componente de senoide é
sempre nula, não faz sentido pensar em um termo com b0.

Para os outros termos, faremos o processo análogo realizado com os casos
gerais de ak – multiplicaremos ambos os membros por sen( 2π

N k′n) e somaremos
os termos dos dois membros para todos os n de 0 até N − 1. Com isto, teremos

N−1∑

n=0
sen

(
2π

N
k′n

)
x[n] =

N−1∑

n=0
sen

(
2π

N
k′n

)
a0+

+
N−1∑

n=0
sen

(
2π

N
k′n

) ⌊N/2⌋∑

k=1
ak cos

(
2π

N
kn

)
+

+
N−1∑

n=0
sen

(
2π

N
k′n

) ⌊N/2⌋∑

k=1
bk sen

(
2π

N
kn

)

= a0

N−1∑

n=0
sen

(
2π

N
k′n

)
+

+
N−1∑

n=0

⌊N/2⌋∑

k=1
ak sen

(
2π

N
k′n

)
cos

(
2π

N
kn

)
+

+
N−1∑

n=0

⌊N/2⌋∑

k=1
bk sen

(
2π

N
k′n

)
sen

(
2π

N
kn

)

= a0 · 0 +
⌊N/2⌋∑

k=1

N−1∑

n=0
ak sen

(
2π

N
k′n

)
cos

(
2π

N
kn

)
+

+
⌊N/2⌋∑

k=1

N−1∑

n=0
bk sen

(
2π

N
k′n

)
sen

(
2π

N
kn

)

=
⌊N/2⌋∑

k=1
ak

N−1∑

n=0
sen

(
2π

N
k′n

)
cos

(
2π

N
kn

)
+

+
⌊N/2⌋∑

k=1
bk

N−1∑

n=0
sen

(
2π

N
k′n

)
sen

(
2π

N
kn

)
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=
⌊N/2⌋∑

k=1

ak

2

N−1∑

n=0

{
sen

[
2π

N
(k′ + k)n

]
+ sen

[
2π

N
(k − k′)n

]}
+

+
⌊N/2⌋∑

k=1

bk

2

N−1∑

n=0

{
cos

[
2π

N
(k′ − k)n

]
− cos

[
2π

N
(k′ + k)n

]}
.

Aqui, os dois primeiros somatórios, sobre funções seno, são sempre nulos pois
coincidem com o caso da equação 5.11. Já o primeiro somatório de cosseno, é
não nulo para k′ = k, qualquer que seja o valor de k′, pois é sempre o caso da
equação 5.12. O segundo somatório de cosseno é, também, sempre nulo, exceto
quando N é par e k′ = k = N/2, quando acabamos caindo, também, no caso
da equação 5.12. Teremos, então, quando k′ ̸= N/2 o caso
N−1∑

n=0
sen

(
2π

N
k′n

)
x[n] =

⌊N/2⌋∑

k=1

bk

2

N−1∑

n=0

{
cos

[
2π

N
(k′ − k)n

]
− cos

[
2π

N
(k′ + k)n

]}

=
∑

k=k′

bk

2 N = Nbk′

2

que implica no resultado esperado de

bk = 2
N

N−1∑

n=0
sen

(
2π

N
k′n

)
x[n], para k ̸= 0, k ̸= N/2, (5.13)

e quando N é par e k′ = N/2, teremos
bN/2 = 0,

pois, a senoide da qual bN/2 é coeficiente,

sen
(

2π

N

N

2 n

)
= sen (πn) ≡ 0,

é sempre nula, tal como a senoide do termo b0, de modo que ele não precisa
existir.

5.4 Forma matricial das equações de análise
Quando vimos produtos de matrizes, antecipamos na questão 2.25 exatamente
o conjunto de equações que possibilitam obter a0, a1, a2, b0, b1 e b2 que são
os coeficientes da série de Fourier de tempo discreto quando a quantidade de
amostras é N = 4. Ela nos ajuda a observar que como os termos ak, como regra
geral, são obtidos pelo somatório do produto entre cos( 2π

N kn) e x[n] e os termos
bk pelo somatório do produto entre sen( 2π

N kn) e x[n], é possível obter todos os
coeficientes se definirmos

a =




a0
a1
a2
...

a⌊N/2⌋−1
a⌊N/2⌋




, b =




b0
b1
b2
...

b⌊N/2⌋−1
b⌊N/2⌋




, x =




x[0]
x[1]
x[2]

...
x[N − 2]
x[N − 1]




,
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como a matriz coluna de coeficientes ak, a matriz coluna dos coeficientes bk e a
matriz coluna de amostras, respectivamente, a matriz de cossenos, C(⌊N/2⌋+1)×N ,
composta pelos elementos

Cij =





1
N

, i = 1
1
N

cos
[

2π

N
(i − 1)(j − 1)

]
, N par, i = N/2 + 1

2
N

cos
[

2π

N
(i − 1)(j − 1)

]
, nos outros casos

,

e a matriz de senos, S(⌊N/2⌋+1)×N , composta pelos elementos

Sij =





0, i = 1
0, N par, i = N/2 + 1
2
N

sen
[

2π

N
(i − 1)(j − 1)

]
, nos outros casos

,

nas duas operações entre as matrizes

a = Cx, e, (5.14)
b = Sx. (5.15)

Com estas definições, temos contas simples e fáceis de realizar em progra-
mação por meio de produto de matrizes, já que a matriz dos coeficientes dos
cossenos é o produto da matriz dos cossenos pela matriz das amostras e a ma-
triz dos coeficientes dos senos é o produto da matriz dos senos pela matriz das
amostras.

5.5 Série de Fourier de tempo discreto compacta
Vimos na equação 2.29 da seção 2.3.5 que a soma de um seno com um cosseno
resulta em um seno defasado seguindo a regra geral

A cos(ωt) + B sen(ωt) =
√

A2 + B2 sen
[
ωt + arctg

(
A

B

)]
. (5.16)

Ora, o somatório de nossa série de Fourier é justamento composto de somas
de cosseno e com senos de amplitudes ak e bk, respectivamente, que podem ser
reescritas como

ak cos(wkn) + bk sen(wkt) =
√

a2
k + b2

k sen
[
wkn + arctg

(
ak

bk

)]

= ck sen(wkn + θk),

em que definimos

ck =
√

a2
k + b2

k, e, (5.17)

θk = arctg
(

ak

bk

)
. (5.18)
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Com esta mudança, podemos reescrever a série de Fourier de tempo discreto
como uma constante somada a uma única senoide defasada para cada frequência
como

x[n] = a0 +
⌊N/2⌋∑

k=1
ck sen(wkn + θk). (5.19)

Demonstração similar pode ser realizada com a equação2.30 para obter

x[n] = a0 +
⌊N/2⌋∑

k=1
ck cos(wkn + ϕk) (5.20)

com
ϕk = − arctg

(
bk

ak

)
. (5.21)

Estas formas, além de mais sucintas, deixam explícita a existência de uma
única componente de frequência angular normalizada wk com sua respectiva
amplitude ck e por esta razão podemos chamá-la de equação de síntese compacta.
No nosso nível de matemática, não é possível substituir as equações de análise.
Devemos, então, continuar a calcular ak e bk pelas equações 5.4 a 5.9 e obter ck

e θk ou ϕk pelas equações 5.17 e 5.17 ou 5.21.

5.6 Espectro de frequências de um sinal limi-
tado

Agora que chegamos a uma expressão que associa frequências wk a uma medida
de sua intensidade dada pela sua amplitude ck, podemos dar algumas definições
mais rigorosas de espectro de frequências, de modo a complementar significati-
vamente e quantificar precisamente o que apresentamos na seção 4.3.

Podemos, definir o espectro de frequência como a associação entre uma
medida da intensidade de componentes de vibração e uma medida da
respectiva frequência, em geral, apresentada em um gráfico que tem
a medida da frequência como eixo horizontal (variável independente)
e a medida da intensidade no eixo vertical (variável dependente).

Com esta definição, alguma possibilidades surgem, pois devemos escolher as
medidas da intensidade da componente e a medida da frequência. São populares
os usos dessas três medidas da intensidade da componente:

1. o valor absoluto da amplitude da componente |ck|;
2. o quadrado da amplitude da componente c2

k; ou

3. a energia da componente que, em geral, é proporcional a c2
k.

Já para a quantificação da frequência, as quatro medidas a seguir são usuais:
1. o número de ordem k da componente;

2. a frequência angular normalizada wk da componente;

3. a frequência angular ωk da componente; ou

4. a frequência fk em hertz da componente.
Desta forma, é comum que chamemos um gráfico fk × |ck| dos coeficientes da
amostragem de x(t), por exemplo, de espectro de frequências deste sinal.



Apêndice A

Respostas, sugestões e
soluções

Questão 2.1 (a) 0 + 2 + 4 + 6 + 8 + 10 + 12 + 14. (b) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15.
(c) 12 + 22 + 32 + 42 + 52 + 62 + 72. (d) a0 cos

(2π

11 · 0 · n
)

+ a1 cos
(2π

11 n
)

+

a2 cos
(2π

11 2n
)

+ a3 cos
(2π

11 3n
)

+ a4 cos
(2π

11 4n
)

+ a5 cos
(2π

11 5n
)

.

Questão 2.2 (a)
6∑

k=2

1
k2 (b)

5∑

k=0

12
(1

4

)k

(c)
4∑

k=0

cos(kωt) (d)
5∑

k=1

bk sen
(2π

10 kn
)

Questão 2.3 (a) 32+52+72+· · ·+20012+20032. (b) 1
23 + 1

27 + 1
211 +· · ·+ 1

2115 + 1
2119

(c) b1 sen
( 2π

200n
)

+ b2 sen
( 4π

200n
)

+ b3 sen
( 6π

200n
)

+ · · · + b99 sen
(198π

200 n
)

+

b100 sen (πn). (d) a0+a1 cos
( 2π

1024n
)

+a2 cos
( 4π

1024k
)

+· · ·+a511 cos
(1022π

1024 n
)

+
a512 cos (πn)

Questão 2.4 (a) 1,208721311. Erro de aproximadamente 2% para baixo. (b) 0,7604599047.
Erro de aproximadamente 3,2% para baixo. (c) 1,499974597. Erro para baixo
de aproximadamente 0,0017%.

Questão 2.5 (a) 120. (b) 700. (c) 5a. (d) Na0. (e) 250. (f) 205. (g) 8250. (h) 0.
Questão 2.6 θ = π

6 t + π
2 .

Questão 2.7 (a) . . . −100π/3 rad/s, −40π/3 rad/s, 20π/3 rad/s, 80π/3 rad/s, 140π/3 rad/s. . . A
regra geral é ωk = 20π/3 + 20πk [rad/s]. (b) 20π/3 rad/s.

Questão 2.8 (a) Adotando para o 1o flash k = 0, a regra geral é θ = π/6+πk/2, com k
inteiro. As posições do móvel são todas sobrepostas às posições π/6, 2π/3, 7π/6
e 5π/3, que correspondem a giros de π/2 com relação a posição inicial. Após
quatro flashes, o quinto ocorrerá com o móvel sobreposto a primeira posição pois
4 · π/2 = 2π.

Questão 2.9 Vamos chamar a posição no 1o flash de θ0, no 2o de θ1 e assim suces-
sivamente até θ10 no 11o flash. Se ao fim dos flashes eles se encontravam em
posições coincidentes, podemos dizer que se θ0 = θa +2πi, então θ10 = θa +2πj e
teremos ∆θ = θ10 −θ0 = 2πk. Se o primeiro flash ocorre em t0, o segundo ocorre
em t1 = t0 + Ts, o terceiro em t2 = t1 + Ts = T0 + 2Ts e assim sucessivamente
até t10 = t0 + 10Ts no 11o flash, de modo que ∆t = t10 − t0 = 10Ts. Assim,
a velocidade tem como regra geral a expressão ωk = 2πk

10Ts
, que é a resposta

207
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da letra (b). Fazendo k = 1 (ou, identicamente k = −1, que significaria que
o móvel gira no sentido horário), teremos a velocidade mínima não nula dada
por ω = 2π

10Ts
, que é a resposta da letra (a). (c) As posições coincidem com os

vértices de um polígono regular com L lados em que um dos vértices está sobre
o eixo de referência e a trajetória é a circunferência circunscrita ao polígono. É
possível ver que L = 10/ mdc(10,k).

Questão 2.10 (a) ω = 2π
NTs

. (b) ωk = 2πk
NTs

. (c) As posições coincidem com os vértices
de um polígono regular com L = N/ mdc(N,k) lados em que um dos vértices
está sobre o eixo de referência e a trajetória é a circunferência circunscrita ao
polígono.

Questão 2.11 (a) |ω| < π/Ts. (b) θ2 próximo de π. Se θ2 = π, já haverá ambiguidade
no sentido do giro. O móvel poderá estar com velocidade ω = π/Ts ou ω =
−π/Ts. (c) Não é permitido que o móvel dê mais de uma volta. É justamente a
possibilidade de ocorrer mais de uma volta que gera a ambiguidade na variação
da posição angulare consequentemente na velocidade angular.

Questão 2.12 Pelo teorema de Pitágoras, a hipotenusa é 5, e sen α = 3/5 = 0,6,
cos α = 4/5 = 0,8 tg α = 3/4 = 0,75.

Questão 2.13 Obtém-se cos 30◦ =
√

3
2 , sen 30◦ = 1

2 , tg 30◦ =
√

3
3 , cos 60◦ = 1

2 ,
sen 60◦ =

√
3

2 e tg 60◦ =
√

3.

Questão 2.14 Obtém-se cos 45◦ =
√

2
2 , sen 45◦ =

√
2

2 e tg 45◦ = 1.
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Questão 2.15

ângulo arco seno cosseno tangente

−120◦ − 2π
3 −

√
3

2 − 1
2

√
3

−90◦ − π
2 −1 0 ∞

−60◦ − π
3 −

√
3

2
1
2 −

√
3

−45◦ − π
4 −

√
2

2

√
2

2 −1
−30◦ − π

6 − 1
2

√
3

2 −
√

3
3

0◦ 0 0 1 0
30◦ π

6
1
2

√
3

2

√
3

3
45◦ π

4

√
2

2

√
2

2 1
60◦ π

3

√
3

2
1
2

√
3

90◦ π
2 1 0 ∞

120◦ 2π
3

√
3

2 − 1
2 −

√
3

135◦ 3π
4

√
2

2 −
√

2
2 −1

150◦ 5π
6

1
2 −

√
3

2 −
√

3
3

180◦ π 0 −1 0
210◦ 7π

6 − 1
2 −

√
3

2

√
3

3
225◦ 5π

4 −
√

2
2 −

√
2

2 1
240◦ 4π

3 −
√

3
2 − 1

2
√

3
270◦ 3π

2 −1 0 ∞
300◦ 5π

3 −
√

3
2

1
2 −

√
3

315◦ 7π
4 −

√
2

2

√
2

2 −1
330◦ 11π

6 − 1
2

√
3

2 −
√

3
3

360◦ 2π 0 1 0
405◦ 9π

4

√
2

2

√
2

2 1
450◦ 5π

2 1 0 ∞
495◦ 11π

4

√
2

2 −
√

2
2 −1

540◦ 3π 0 −1 0
585◦ 13π

4 −
√

2
2 −

√
2

2 1
630◦ 7π

2 −1 0 ∞
675◦ 15π

4 −
√

2
2

√
2

2 −1
720◦ 4π 0 1 0

Questão 2.16 Os valores de seno e cosseno se repetem a cada 360◦. Os valores de
tangente a cada 180◦. Os valores do cosseno em um ângulo são iguais aos do
seno 90◦ a mais. O seno é ímpar e o cosseno é par. Os valores de máximo e
mínimo do seno e cosseno são iguais a 1 e −1 respectivamente. O cosseno é nulo
nos ângulos congruentes a 90◦ e −90◦ e o seno é nulo nos ângulos congruentes
a 0◦ e 180◦.
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Questão 2.18

3

−3

0,5
−0,5

2π 4π

3 sen(t)

0,5 sen(t)

t

4,3

2,5

−2,5
−4,3

1 2

4,3 cos(2πt)

2,5 sen(2πt)

t

t

cos(2πt) cos(8πt)
1

−1

1 2

cos(3t)cos(4t)
1

−1

2π

2π
/3

4π
/3

π
/2 π

3π
/2

t

2π

t

sen(2πt+ π/3)sen(2πt+ π/6)√
3/2
1/2

3

−2

2

−3
2π 4π

π
/4

t

2 sen(t)
3 cos(t− π/4)

2

−1

1

−2

√
3/2

21 t

2 cos(3πt)

cos(2πt+ π/6)

(a)

(b)

(c)

(e)

(f)

(d)

(g)

Questão 2.19 θ = −π/4 + 2πk ou θ = −3π/4 + 2πk, para k inteiro. Na margem
entre −π/2 e π/2, teremos sen−1(

√
2/2) = −π/4.

Questão 2.20 θ = π/3 + 2πk ou θ = −π/3 + 2πk, para k inteiro. Na margem entre
0 e π, teremos cos−1(1/2) = π/3.

Questão 2.21 θ = −π/6 + 2πk ou θ = 2π/3 + 2πk, para k inteiro. Esta resposta
pode ser resumida como θ = −π/6 + πk. Na margem entre 0 e π, teremos
tg−1(−

√
3/3) = −π/6.

Questão 2.22 (a) 8 sen(120πt + π/6); (b) 1,5
√

2 cos(ωt); (c) 10
√

6
3 sen(880πt − 2π/3).

Questão 2.23 (a) A =

[1 2 3
2 3 4
5 6 7

]

(b) B =




0 3 6 9
2 5 8 11
4 7 10 13
6 9 12 15



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(c) C =




1
7

1
7

1
7

1
7

1
7

1
7

1
72

7 cos(0) 2
7 cos(w0 · 1) 2

7 cos(w0 · 2) 2
7 cos(w0 · 3) 2

7 cos(w0 · 4) 2
7 cos(w0 · 5) 2

7 cos(w0 · 6)
2
7 cos(0) 2

7 cos(w0 · 2) 2
7 cos(w0 · 4) 2

7 cos(w0 · 6) 2
7 cos(w0 · 8) 2

7 cos(w0 · 10) 2
7 cos(w0 · 12)

2
7 cos(0) 2

7 cos(w0 · 3) 2
7 cos(w0 · 6) 2

7 cos(w0 · 9) 2
7 cos(w0 · 12) 2

7 cos(w0 · 15) 2
7 cos(w0 · 18)


,

C ≈




0,1429 0,1429 0,1429 0,1429 0,1429 0,1429 0,1429
0,2857 0,1781 −0,0636 −0,2574 −0,2574 −0,0636 0,1781
0,2857 −0,0636 −0,2574 0,1781 0,1781 −0,2574 −0,0636
0,2857 −0,2574 0,1781 −0,0636 −0,0636 0,1781 −0,2574


,

em que ω0 = 2π/7.

Questão 2.24 (a)
[

1 3
−4 −1

] [
x
y

]
=

[
5
2

]

(b)

[1 1 −1
2 1 2
3 −2 −1

] [
x
y
z

]
=

[ 2
3

−11

]

(b)




2 1 1 1
−2 1 −1 −1
−4 2 −2 1
2 1 −3 2







a0
a1
a2
a3


 =




5
1
4
11




Questão 2.25




a0 = 1
4 x[0] + 1

4 x[1] + 1
4 x[2] + 1

4 x[3]
a1 = 1

2 x[0] + 1
2 cos

( 2π
4

)
x[1] + cos

( 4π
4

)
x[2] + cos

( 6π
4

)
x[3]

a2 = 1
4 x[0] + 1

4 cos
( 4π

4

)
x[1] + 1

4 cos
( 8π

4

)
x[2] + 1

4 cos
( 12π

4

)
x[3]





b0 = 0
b1 = 1

2 sen
( 2π

4

)
x[1] + 1

2 sen
( 4π

4

)
x[2] + 1

2 sen
( 6π

4

)
x[3]

b2 = 0
Questão 2.26

c11 =
3∑

k=1

a1kbk1 = a11b11 + a12b21 + a13b31 = 1 · 2 + 2 · 1 + 1 · (−2) = 2

c12 =
3∑

k=1

a1kbk2 = a11b12 + a12b22 + a13b32 = 1 · 3 + 2 · (−2) + 1 · 0 = −1

...

c32 =
3∑

k=1

a3kbk2 = a31b12 + a32b22 + a33b32 = 0 · 3 + 1 · (−2) + 1 · 0 = −2

C =

[ 2 −1
−5 5
−1 −2

]

Questão 3.7 S = 21 133 125.
Questão 3.8 π2/8 ≈ 1,2334505501570059 com erro de aproximadamente 0,0203%.

π/4 ≈ 0,7851481634599485 com erro de aproximadamente 0,031%. Na aritmé-
tica aproximada do Python obtemos um valor exato para o último somatório
com 1000 termos.

Questão 3.13 Empregue operações elemento a elemento sobre matriz para, partindo
de uma matriz com os valores da variável independente, calcular todos os valores
da variável dependente.
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Apêndice B

Material Instrucional –
Videoaulas

As 35 videoaulas listadas a seguir, produzidas para auxílio na condução do
curso de Amostragem de grandezas na Física e seus espectros de Fourier
proposto para o curso de Análise de Espectro para o Ensino Médio. O acesso
às videoaulas é facilitada pelo uso da lista de reprodução1 disponibilizada no
YouTube.

• Introdução ao Espectro de Frequências [1]

• Introdução ao Espectro de Frequências [2]

• Introdução ao Espectro de Frequências [3]

• Introdução ao Espectro de Frequências [4]

• Espectro e a modulação AM

• Somatórios [1]

• Somatórios [2]

• Movimento Circular Uniforme
1Disponível no link:

https://youtube.com/playlist?list=PLdny05X-pNRIGw_OO3X9N7uOuEqLFixqX.
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• Funções Trigonométricas [1]

• Funções Trigonométricas [2]

• Funções Trigonométricas [3]

• Funções Trigonométricas [4]

• Ondas [1]

• Ondas [2]

• Ondas [3]

• Ondas [4]

• Matrizes

• Aspectos Gerais do Python

• Sintaxe Básica Python Nativo

• Comandos de Controle de Fluxo

• Python na Matemática [1]

• Python na Matemática [2]

• Python na Matemática [3]

• Amostragem

• Noção de Espectro e Amostragem de Senoides

• Série de Fourier de Tempo Discreto [1]

• Série de Fourier de Tempo Discreto [2] - Recuperação do Sinal

• Cálculo dos Coeficientes da Série de Fourier de Tempo Discreto

• Demonstração das Equações de Análise [1]

• Demonstração das Equações de Análise [2]
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• Equações de análise da SFTD na forma matricial

• Equação de síntese da SFTD na forma matricial

• Espectro com SFTD [1]. Série de Fourier de tempo discreto compacta

• Espectro com SFTD [2]. Espectro do ping do sonar

• Espectro com SFTD [3]. Espectro do ping do sonar real
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Apêndice C

Material Instrucional –
Projetos para análise de
espectro

O material instrucional a seguir é uma lista de pequenos projetos ou exercí-
cios mais aprofundados criados com a finalidade de aplicar as competências
desenvolvidas durante o curso de “Amostragem de grandezas na Física e seus
espectros de Fourier”. Seu uso deve ser integrado ao curso e as soluções e
sugestões para solução dos problemas se encontram no apêndice D.
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Projetos para Análise de Espectro
Quão rápido batem as asas. Estime o quão rápido batem as asas de um

beija-flor empregando um vídeo comum como o “How to tame wild humming-
birds” (disponível em https://www.youtube.com/watch?v=vVjkAnbcDqw). Tente
empregar mais de um método de estimativa. Repita o processo para estimar
o quão rápido batem as asas de uma mosca. Explique como você realizou as
estimativas.

Estimativa de velocidade na F1. Estime a velocidade com a qual os car-
ros passam pelo espectador no vídeo “BEST F1 Sound exhaust V8” (disponível
em https://www.youtube.com/watch?v=hpvuu5MfaSk) Tente empregar mais
de um método de estimativa com a finalidade de validar a medida. Explique
como você realizou as estimativas.

Velocidade do chute ao gol. Estime a velocidade do seu chute ao gol.
Tente empregar mais de um método de estimativa com a finalidade de verificar
a confiabilidade da medida. Explique como você realizou as estimativas.

Identificação da altura de som monofônico. Escolha um trecho de
áudio de uma música monofônica (uma única nota é tocada por vez) e identifique
a altura das notas executadas. Empregue algum método para validar se as
notas identificadas conferem com as executadas. Explique como você realizou a
identificação.

Identificação de dígitos em dual-tone. Grave a discagem de algumas
sequências numéricas empregando o simulador “Online Tone Generator”. (Dis-
ponível em: https://onlinetonegenerator.com/dtmf.html). Identifique a
sequência discada. Explique como você realizou a identificação. Tente automa-
tizar o processo de identificação.

Pêndulo, ângulo de partida e MHS. Discuta qual é o perfil do espectro
de um MHS. Obtenha θ[n] para o pêndulo da figura abaixo que é largado do
repouso a partir de θ0 para diversos valores de θ0. Ele é composto por uma massa
pontual m e por uma haste de massa desprezível e comprimento L. Discuta se o
espectro coincide com aquele esperado para um MHS e se a possível coincidência
ocorre para qualquer θ0. Faça o gráfico da proporção do harmônico fundamental
na composição de θ[n] com relação ao ângulo de largada θ0. Verifique o quanto
a frequência fundamental se afasta da frequência teórica

ω =
√

g

L

também com a variação de θ0.

O

θ0L

m

Comportamento massa-mola com 2 graus de liberdade. Considere
o sistema de massas e molas da figura em uma superfície sem atrito. Descreva
como você supõe que seria o movimento das massas m1 no eixo x1 e m2 no
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eixo x2 caso uma perturbação temporária fosse introduzida anteriormente no
sistema. Considere que no momento do estudo apenas as forças elásticas agem
horizontalmente sobre as massas. Descreva a posição das massas a partir da
equação para a força resultante em cada bloco.

m1 m2

k1 k12 k2
x1 x20 0

Filtragem da voz. Aplique uma máscara sigmoide (em formato de “S”)
sobre o espectro de um áudio de voz. Uma boa função sigmoide direita (começa
com valor baixo e aumenta o valor a medida que k cresce) é dada por

f [k] = 1
1 + e− k−k0

L

.

O valor k0 é o valor de k no qual ocorre a inversão da curva do “S” e o de
L determina o espalhamento da curva. Quanto maior for o seu valor, mais
espalhada será a curva e menos abrupta é a transição entre valores próximos de
0 e próximos de 1. Já a curva sigmoide

g[k] = 1
1 + e

k−k0
L

,

é invertida, mas os parâmetros têm o mesmo significado (veja que muda apenas
o sinal da exponencial). Escute o áudio da voz recuperada após a aplicação das
máscaras. Descreva qualitativamente o efeito da aplicação da máscara sobre o
áudio.

Flauta sintética. Analise o espectro de uma flauta tocando um tom. Es-
time quais harmônicos são os mais relevantes. Tente replicar o som pelo soma-
tório de componentes senoidais na proporção do obtido na análise de espectro.
Escute e analise qualitativamente o som. Gere um áudio com uma grande
quantidade de números aleatórios (com a função numpy.random.normal, por
exemplo). Faça vários espectrogramas de trechos consecutivos deste áudio obte-
nha a média da intensidade das componentes. Estime quais são as frequências
presentes no áudio composto com números aleatórios, na média. Aplique uma
máscara sobre o espectro do ruído (o sinal gerado com números aleatórios) com
perfil similar ao do espectro da flauta. Uma função capaz de gerar uma faixa
estreita similar a um harmônico é dada por

g[k] = e−α|k−k0|,

ela cresce exponencialmente próximo a k0, em k0 ela atinge o valor máximo de
1 e a partir daí ela decresce exponencialmente formando um pico simétrico em
torno de k0. Mude o valor de α para mudar o quão abrupta é a passagem até o
máximo em k0. Escute o áudio resultante e analise qualitativamente o som.

Reconhecimento de altura (pitch) automático. Dado um áudio de
música monofônica, proponha um script que identifica a altura das notas tocadas
automaticamente.

Transmissão simultânea empregando AM. Obtenha o espectro de um
sinal de voz m1[n] e observe qual é a frequência máxima wmáx1 de suas compo-
nentes. Empregue-o como amplitude de um sinal cossenoidal p1[n] = cos wp1n

219



para obter
s1[n] = m1[n]p1[n] = m1[n] cos wp1n.

Este esquema é chamado de modulação em amplitude em que m1[n] é o sinal
modulante da portadora p1[n], ou seja, p1[n] é uma senoide de amplitude variável
dada pelo valor de m1[n]. Escolha para a frequência da portadora wp1 um valor
que seja ao menos o dobro da frequência máxima das componentes de m1[n].
Caso necessário recorra a superamostragem para “abrir espaço” no espectro e
possibilitar o estudo. O espectro do estudo deve possibilitar a visualização de
frequências até wp1 + wmáx1. Descreva o que acontece com o espectro de s1[n]
quando a frequência da portadora wp1 é modificada e verifique se há justificativa
para a necessidade de empregar frequências até wp1 + wmáx1. Proponha uma
explicação que justifique a forma do espectro de s1[n]. (Obs.: é possível obter
uma explicação algébrica descrevendo m1[n] por usa série de Fourier de tempo
discreto.)

Agora faça o mesmo com um segundo sinal de voz m2[n] e uma portadora
p2[n] = cos wp2n para obter o sinal modulado s2[n]. Considerando o efeito da
mistura da portadora com o sinal que vimos em s1[n], descreva como poderíamos
transmitir s1[n] e s2[n] de modo que, na frequência, um sinal não se misture
com o outro. Apresente o espectro do sinal resultante s[n] = s1[n] + s2[n] em
que é possível ver as duas transmissões sem que haja mistura. Se s1[n] é o sinal
de uma onda eletromagnética gerada por uma estação 1 de rádio AM e s2[n] o
sinal gerado pela estação 2, que efeito faz com que, para um receptor, o sinal
percebido seja s[n]?

Separação de sinais AM. Considere o sinal s[n] do problema anterior.
Aplique máscaras sobre seu espectro para separar o sinal s1[n] do sinal s2[n] e
obtenha os sinais AM recebidos r1[n] e r2[n] de cada estação.

Demodulação AM. Aplique sobre r1[n] e r2[n] os sinais p1[n] = cos wp1n
e p2[n] = cos wp2n, respectivamente, tal como na modulação AM e observe o
espectro dos sinais m′

1[n] = r1[n]p1[n] e m′
2[n] = r2[n]p2[n] comparando seus

espectros com os de m1[n] e m2[n]. Obtenha m1[n] e m2[n] a partir de m′
1[n] e

m′
2[n]. Proponha uma explicação que justifique a forma do espectro de m′

1[n]
ou de m′

2[n]. (Obs.: é possível obter uma explicação algébrica utilizando o
resultado do problema da modulação.) Descreva a operação realizada para
recuperar m1[n] e m2[n]. Escute m1[n] e m2[n] recuperados e compare com os
originais utilizados na operação de modulação.

Amortecedor massa-mola com atrito viscoso. Considere uma força
F⃗ (t) de intensidade F = Fm cos(ωt) sendo aplicada sobre o bloco de massa m.
A superfície em que o bloco se desloca é livre de atrito, mas o fluido em que a
massa se encontra causa uma força de atrito viscoso F⃗at contrária e proporcional
a velocidade, e para a qual a constante de proporção é β, ou seja,

F⃗at = −βv⃗.

Após algum tempo sobre ação da força F⃗ (t), a posição x(t) do bloco deve
se aproximar, também, de uma senoide x(t) ≈ Xm cos(ωt + θ), com mesma
frequência do estímulo de F⃗ (t). Faça o gráfico Xm

Fm
× ω da razão da amplitude

do deslocamento de x(t) pela amplitude da força F⃗ (t) a medida que se altera a
frequência ω. Este gráfico é chamado de resposta em frequência.

Obtenha o espectro de x[n] para uma força F⃗ [n] impulsiva, ou seja, F⃗ [n] é
sempre nula, exceto em uma amostra n0 em que F⃗ [n0] = 1. Compare o gráfico
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de Xm

Fm
× ω com o espectro de x[n] para este estímulo. Por fim, compare os

resultados com o resultado esperado obtido empregando cálculo diferencial e
dada por

Xm

Fm
= 1√

(k − mω2)2 + β2ω2
.

m
k

x0

v⃗
F⃗ (t)

−βv⃗ = F⃗at
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Apêndice D

Material Instrucional –
Sugestões para realização dos
projetos

O material instrucional a seguir resolve ou apresenta sugestões aos projetos
propostos no apêndice C para emprego como referência no curso de “Amos-
tragem de grandezas na Física e seus espectros de Fourier”.
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Sugestões para Solução dos Projetos
para Análise de Espectro

1 Quão rápido batem as asas
Vídeos comuns tem taxa de atualização de quadro muito baixa comparada a
velocidade do bater das asas de um beija-flor. As asas aparecem como um borrão
devido ao efeito conhecido como motion blur, o rastro devido à movimentação.
Por esta razão, sugerimos empregar o áudio1 como fonte de informação para
estimativa.

Para tal, é necessário uma breve modelagem da situação física para verificar
que o som se relaciona com o quão rápido as asas do beija-flor batem. Isto é
possível considerando que as asas causam uma variação de pressão nas vizinhan-
ças da asa e sabemos que o som se origina na propagação de ondas de pressão.
Logo, é razoável supor que o bater das asas gere som, e que as cristas e vales,
por terem origem no movimento das asas, devem acompanhar seus padrões de
repetitividade. Assim, se se sabe qual a frequência dos componentes do som do
bater da asa, poder-se-á estimar a frequência do bater das asas.

Utilizamos um aplicativo web do tipo “conversor de Youtube para mp3”
que escolhemos arbitrariamente dentre os resultados da pesquisa empregando
os termos em inglês “youtube to mp3” na ferramenta de busca. Com este
aplicativo, conseguimos acesso ao áudio do vídeo sugerido.

O vídeo completo tem 3 min 28 s, mas desejamos estudar um fenômeno em
uma escala de tempo muito menor. Para isso, fizemos a análise grossa do áudio
no Audacity onde observamos que aproximadamente entre 21,95 s s e 22,70 s há
um trecho em que o som do bater das asas é bem evidente e que representa bem
o fenômeno que desejamos estudar. Isolamos este trecho no audacity, reduzimos
o áudio para mono e exportamos para o arquivo beijaflor.wav para fazer a
análise fina no Python.

1.1 Análise no domínio do tempo
O código 1 gera o gráfico t × intensidade do trecho de áudio em que o bater
das asas é isolado e forte. Plotamos o gráfico exibido na figura 1 que editamos
para marcar dois vales da ondulação gerada. Contamos contamos 34 ondulações
entre t1 ≈ 0,00925 s e t2 ≈ 0,7861 s onde localizamos os vales. Se considerarmos
que o as ondulações são aproximadamente periódicas com período T0, então

34T0 = t2 − t1, (1)

o que implica T0 ≈ 22,8 ms, correspondente a uma frequência fundamental f0 ≈
43,8 Hz.

1Interessante notar que o nome em inglês do beija-flor, hummingbird, se traduz, aproxi-
madamente como pássaro-zumbido, destacando o efeito sonoro perceptível da batida de suas
asas.
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Figura 1: Trecho de áudio do bater de asas obtido pelo código 1.

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 import s o u n d f i l e
4 amostras , f sArquivo = s o u n d f i l e . read ( " b e i j a f l o r . wav" )
5 NArquivo = len ( amostras )
6 TsArquivo = 1/ fsArquivo
7 t = arange (0 , len ( amostras ) )
8 t = t ∗TsArquivo
9 print ( " Quantidade de amostras no arquivo : " , NArquivo , " amostras

" )
10 print ( " Taxa de amostragem do arquivo : " , fsArquivo , "Hz" )
11 print ( " Duração do áudio : " , t [ −1] , " s " )
12 print ( " Est imat iva de consumo de memória : " , ( NArquivo

∗∗2∗64/(8∗2∗∗30) ) , "GiB" )
13 p l t . p l o t ( t , amostras )
14 p l t . show ( )

Código 1: Análise do áudio do beija-flor no domínio do tempo.

1.2 Análise no domínio da frequência
Imprimimos as informações abaixo no código 1 que empregaremos para tomar
algumas decisões para realizar a análise no domínio da frequência.

• Quantidade de amostras no arquivo: 35270 amostras

• Taxa de amostragem do arquivo: 44100 Hz

• Duração do áudio: 0.799750566893424 s

• Estimativa de consumo de memória: 9.268320351839066 GiB

Vemos que o trecho de áudio que contém o fenômeno a estudar tem uma
grande quantidade de amostras, mais de 35 mil. Pela estimativa que fizemos
na análise de tempo, a frequência fundamental presente no áudio é por volta de
40 Hz. Se considerarmos que o áudio tem 10 harmônicos relevantes, precisaría-
mos estudar até 400 Hz. Como consequência, a taxa de amostragem mínima é
de 2 ·400 Hz = 800 Hz, e a taxa de amostragem do áudio é a taxa de amostragem
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padrão de 44100 Hz, mais de 50 vezes maior do que a necessária para estudar
até o 10o harmônico.

É esta alta taxa de amostragem que leva a uma grande quantidade de amos-
tras. A estimativa de consumo de memória para os cálculos com essa quantidade
de amostras é de mais de 9 GiB2, o que está nos limites da memória disponível
em computadores comuns de escritório.

Para realizar a análise no domínio da frequência, vamos, antes, reduzir força-
damente a taxa de amostragem por um processo chamado de dizimação. Trata-
se de, simplesmente, ignorar algumas amostras. Por nossa estimativa, podemos
ignorar até por volta de 49 de cada 50 amostras, mas vamos adotar uma dizi-
mação mais conservadora e coletar apenas 1 de cada 20 amostras. Chamaremos
este número de kdizimação = 20.

Desta forma, das 35270 amostras iniciais, sobrarão apenas 1764 amostras,
reduzindo o consumo de memória para menos de 30 MiB. Este processo é equi-
valente a ter um amostrador 20 vezes mais lento do que o que realizou a amos-
tragem do áudio, ou seja, a nova frequência de amostragem será 44100/20 =
2205 Hz. Processos para alterar a frequência de amostragem para baixo são
chamados de downsampling, sendo a dizimação o mais simples deles.

Pusemos o código 2 após a execução do código 1 para realizar a dizimação
das amostras de áudio, calcular os coeficientes da SFTD compacta ck e plotar
o espectro do áudio dizimado. A dizimação é feita na linha 2 empregando um
recurso mais avançado da indexação dos arrays do NumPy. Vimos na apos-
tila duas formas de indexar. Utilizando amostras[i], acessamos o i-ésimo
elemento e utilizando amostras[inicio:fim], fazemos um corte dos elemen-
tos de amostras do elemento de índice inicio até o elemento de índice fim
(exceto). O corte com três elementos como fizemos na linha 2 do código 2,
em que empregamos amostras[0:NArquivo:kDizimacao], tem como sintaxe
inicio:fim:passo, ou seja, o corte não é feito coletando todos os elementos,
mas a distância entre os elementos é dada pelo passo, que é exatamente o efeito
que desejamos na dizimação.

2Para chegar à estimativa de consumo de memória, consideramos o tamanho de 64 bits
de um número da matriz, relativo ao tamanho empregado por um número no padrão double
(representação em ponto flutuante de dupla precisão), que 1 Byte corresponde a 8 bits e que
1 Gi é o multiplicador equivalente a 230. Por fim, a quantidade de números empregado nas
matrizes de análise é aproximadamente o quadrado da quantidade de amostras.
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Figura 2: Espectro do trecho de áudio do bater de asas obtido pelo código 2.

1 kDizimacao = 20
2 x = amostras [ 0 : NArquivo : kDizimacao ]
3 f s = fsArquivo /kDizimacao
4 N = len ( x )
5 w0 = 2∗ pi /N
6 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
7 j = reshape ( arange (N) , ( 1 ,N) )
8 matr iz IJ = i@j
9 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )

10 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
11 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
12 i f N%2==0:
13 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
14 a = Ca@x
15 b = Sa@x
16 c = s q r t ( a∗∗2 + b∗∗2)
17 f = arange (0 , int (N/2)+1) ∗( f s /N)
18 p l t . p l o t ( f , c )
19 p l t . p l o t ( )
20 p l t . show ( )

Código 2: Análise do áudio do beija-flor no domínio da frequência.

O espectro do áudio dizimado obtido é mostrado na figura 2, em que adi-
cionamos por fora as frequências dos picos observados. O seu eixo vertical é
a frequência em hertz e o vertical é a intensidade do harmônico em unidades
arbitrárias oriundas do processo de conversão analógico-digital.

Este espectro exibe as características típicas de um espectro de um sinal
aproximadamente periódico mas não-senoidal. Neste caso, os componentes pre-
sentes no sinal são devidos à frequência fundamental e aos harmônicos de ordem
mais alta que têm, necessariamente, frequências múltiplas inteiras da frequência
fundamental. Os principais picos de intensidade dos componentes encontram-se
nas frequências f0 ≈ 43,75, 86,25, 128,75, 171,25 e 215 hertz, que são, respec-
tivamente, a frequência fundamental e seus 4 harmônicos seguintes que vão do
dobro de f0 ao seu quíntuplo.
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A resolução da medida da frequência neste espectro é de

∆f = fs

N
= 2205

1764 = 1,25 Hz.

Com este valor de resolução, temos uma frequência fundamental 42,5 Hz ≤ f0 ≤
45 Hz. Este valor confere com a estimativa de f0 = 43,8 Hz que fizemos no
domínio do tempo. Vemos, também, que 86,25, 128,75, 171,25 e 215 hertz estão
dentro das margens aceitáveis para 2f0, 3f0, 4f0 e 5f0, respectivamente.

1.2.1 Qualidade da medida de frequência

A medida de frequência feita pelo espectro da figura 2 tem duas imperfeições: o
limite superior da frequência e a resolução. O limite superior de nossa medida
foi de 1102,5 Hz, metade da frequência de amostragem após a dizimação (que era
de 2205 Hz). Grosseiramente (sem um critério quantitativo rigoroso), podemos
dizer não haver, efetivamente, qualquer componente de frequência relevante nas
frequências acima de 400 Hz do espectro. Isto significa que nossa estimativa
inicial foi boa. Pode-se testar uma dizimação com kdizimação = 125, por exemplo,
e observar o efeito que a frequência de amostragem de 352,8 Hz terá sobre o
espectro3. Além do deslocamento aparente de alguns componentes, observar-se-
á que não haverá “folga” entre os últimos componentes de frequência relevantes
e o limite da escala de de frequência. Sempre que isto ocorrer, é provável que
seja um caso de subamostragem.

Já a resolução de 1,25 Hz, considerando que estamos com medidas relevantes
de frequência em torno de 40 Hz, representa um desvio de por volta de 3%, o que
é um valor razoável para uma estimativa e, portanto, com qualidade suficiente
para a aplicação.

Estas duas observações são sempre necessárias no estudo de um fenômeno e
na medida de frequências por meio da série de Fourier de Tempo Discreto. Se a
taxa de amostragem é adequada para observação do fenômeno e se a resolução
possibilitará a precisão necessária para as medidas.

1.3 Estimativa do quão rápido batem as asas do beija-flor
Tanto no domínio do tempo como no domínio da frequência, obtivemos uma
frequência fundamental em torno de 40 Hz para o som emitido pelo bater das
asas do beija-flor no curto trecho estudado. Empregamos duas metodologias
distintas para tal. Pode-se argumentar que como o movimento de descida das
asas é muito distinto do de subida, podemos supor que um ciclo descida-subida
corresponde a um período do som. Daí, então, estimar a frequência do bater
das asas nas dezenas de batidas por segundo.

Para uma verificação final, sem realização de análise de dados, pode-se recor-
rer à pesquisa bibliográfica como no trabalho de Warrick [1] que põe um limite
superior para o bater de asas de um beija-flor em torno de 80 Hz.

Como última avaliação quantitativa, pode-se buscar outros trechos do mesmo
vídeo e ainda outros vídeos e tentar estabelecer uma estatística para uma melhor
estimativa. Neste caso, a pesquisa bibliográfica pode auxiliar na escolha de

3A frequência de Nyquist de 176,4 Hz parecerá um espelho que rebaterá as frequências mais
altas do que este limite. A frequência do quinto harmônico, por exemplo, de 215 Hz, aparecerá
na frequência de 137,8 Hz = 176,4 − (215 − 176,4) Hz.
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vídeos buscando diferentes espécies de beija-flor que tenham uma frequência de
batida distinta, de modo a estabelecer bons limites para a estimativa.

1.4 Bater das asas de uma mosca
A estimativa do quão rápido bate as asas de uma mosca pode ser feita de maneira
análoga ao realizado para estimativa do bater das asas do beija-flor. Ou seja,
partir de uma fonte do áudio do bater das asas e, pela medida da frequência
fundamental do som gerado pelo fenômeno, estimar a frequência do bater das
asas.

2 Estimativa de velocidade na F1
Vamos fazer uma breve análise da situação encontrada no vídeo. Os automóveis
passam rapidamente em um trecho do circuito por um observador que grava
a corrida de uma mureta colada com o limite da pista. Pelo vídeo, é possível
falar pouco sobre valores exatos de velocidade pois a posição é difícil de verificar
quando o observador grava o movimento a partir do chão. Não há referências
seguras de posição ou comprimento e o movimento é acompanhado em uma pro-
jeção em que a escala muda devido ao afastamento. Não há escala de distância
definida no vídeo. Isto significa que o vídeo, apenas, não facilita a estimativa
da velocidade pois não é fácil definir as posições dos móveis, apenas os instantes
de tempos que estão bem definidos no progresso dos quadros.

A descrição do vídeo nos informa que o vídeo é gravado na Bélgica no Circuito
de Spa-Francorchamps, nas proximidades (ou observando) dos trechos chamados
de Eau Rouge e Raidillon. Pesquisamos na Internet pelo circuito, localizamos
seu mapa com as referências dos trechos no guia RacingCircuits.info [2]. Com o
vídeo e o mapa, foi possível localizar a pista em imagens de satélite do Google
Maps e a posição aproximada do observador do vídeo na latitude 50,442900◦ e
longitude 5,969823◦.

Com a imagem de satélite, que dispõe de uma escala, pode-se fazer uma
primeira estimativa por meio da cinemática do vídeo comparada com o mapa.
Pode-se definir aproximadamente dois pontos em que se possa ter alguma cor-
respondência no mapa e no vídeo. No mapa, pode-se achar a distância entre eles
e, no vídeo, o tempo aproximado que o móvel leva para passar entre um ponto e
o outro, de modo que se pode estimar a velocidade pela velocidade média dada
pela razão da distância pelo tempo.

2.1 Estimativa empregando o efeito Doppler
Uma segunda estimativa pode ser feita por meio do efeito Doppler sobre as emis-
sões dos carros ao passarem pelo observador. Para tal, é necessário uma breve
modelagem da situação física de modo a garantir que a estimativa é coerente
com a situação. Observa-se que o trecho é aproximadamente reto e que o ob-
servador, no limite externo da pista, está o mais próximo possível da trajetória
dos móveis onde ainda há segurança.

No nível do Ensino Médio, a modelagem do efeito Doppler pressupõe que
o móvel e o observador se encontram na mesma trajetória retilínea. Este não
é o caso da nossa situação. De fato, no caso geral, há uma dependência da
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Figura 3: Descrição da situação em que o vídeo da fórmula 1 foi gravado.

frequência percebida pelo observador com o cosseno do ângulo θ que a velocidade
instantânea do móvel faz com a direção entre entre o observador e o móvel como
ilustrado na figura 3.

Quando o observador se encontra na trajetória retilínea, a relação entre a
frequência percebida fp pelo observador, a frequência emitida fe pelo emissor é

fp = fe

1 ± v

c

(2)

em que v é o módulo da velocidade do móvel e c é a velocidade do som. O sinal
positivo ocorre no afastamento e o sinal negativo é o caso da aproximação. No
caso geral, quando o observador não se encontra na mesma trajetória retilínea,
temos

fp = fe

1 − v cos θ

c

. (3)

Neste caso, a aproximação para a expressão da equação 2 só é valida quando,
se aproximando, θ é pequeno de modo que cos θ ≈ 1 ou θ é próximo de 180◦ de
modo que cos θ ≈ −1.

Isto significa que durante a passagem do móvel, há um trecho de transição
em que cos θ é muito diferente de 1 ou −1. Nesta região, não podemos empregar
a expressão da equação 2 com exatidão, o que não é um grande problema para
a finalidade de estimativa.

De qualquer maneira, ainda temos uma outra variável para tratar se deseja-
mos determinar a velocidade v do móvel que é a frequência que ele emite. Isto
pode ser resolvido com as seguintes considerações

• o trecho em que há a transição entre aproximação e afastamento é curto
e a velocidade v é aproximadamente constante logo antes e logo após a
transição; e

• a frequência de emissão fe do automóvel depende de sua velocidade (está
predominantemente associada a rotação do motor que é proporcional à ve-
locidade em uma mesma marcha) e portanto também é aproximadamente
constante.

Com elas, podemos estudar a frequência percebida na aproximação logo antes
da transição, que chamaremos fap, e a frequência percebida no afastamento logo
após a transição, que chamaremos de faf . Consideraremos que em ambos os
casos v e fe permanecem constantes. Com isso

fap = fe

1 − v

c

e, faf = fe

1 + v

c

. (4)
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Figura 4: Espectro de trecho do áudio da aproximação do carro.

Resolvendo para v, temos
v = c

fap − faf

fap + faf
. (5)

Basta-nos realizar as medidas de fap e faf . Vamos fazê-lo com uma passagem
de um automóvel por volta dos 10 s no vídeo. Consideramos como aproximação
um trecho de áudio entre 9,77 s e 9,865 s. O trecho que escolhemos tinha apenas
3937 amostras, o que resulta em menos de 200 MiB de memória e efetivamente
utilizamos o áudio original para a medida. O espectro deste trecho é mostrado
na figura 4 e foi obtido pelo código 3. O primeiro pico é o mais intenso e de
menor frequência, sendo, portanto o componente da frequência fundamental.
Ela é medida no espectro como fap = 728,09 Hz.

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 import s o u n d f i l e
4 x , f s = s o u n d f i l e . read ( " F1ap . wav" )
5 N = len ( x )
6 w0 = 2∗ pi /N
7 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
8 j = reshape ( arange (N) , ( 1 ,N) )
9 matr iz IJ = i@j

10 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
11 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
12 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
13 i f N%2==0:
14 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
15 a = Ca@x
16 b = Sa@x
17 c = s q r t ( a∗∗2 + b∗∗2)
18 f = arange (0 , int (N/2)+1) ∗( f s /N)
19 p l t . p l o t ( f , c )
20 p l t . p l o t ( )
21 p l t . show ( )

Código 3: Obtenção do espectro do som de trecho da aproximação do carro de
F1.

Vemos no espectro que praticamente não há componentes com frequência
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maior do que 5000 Hz e, por esta razão, aqui também poderíamos ter empregado
dizimação com kdizimação ≈ 4 sem prejuízo à análise do espectro.

Para estimar faf fizemos um processo similar com um trecho entre aproxi-
madamente 11,250 e 11,330 s obtendo faf = 445,80 Hz.

Aplicando os valores obtidos para fap e faf e considerando c = 343 m/s na
equação 5, obtemos v = 82 m/s = 297 km/h, uma velocidade típica da F1 em
uma reta. Neste problema, também é válida a análise estatística, já que há a
passagem de vários carros, o que possibilita o estabelecimento de uma média e
um desvio padrão para a medida.

3 Velocidade do chute ao gol
Este problema comporta a solução típica da cinemática, como a medida da
velocidade como a razão entre a distância entre o ponto em que a bola é chutada
e o ponto em que ela colide com a rede, por exemplo. Considerando nossa
sugestão de realizar mais de uma estimativa e a possibilidade de realização de
medidas de frequências, podemos tentar uma medida da velocidade explorando
o efeito Doppler.

A figura 5 propõe uma configuração que possibilita a medida por meio desse
efeito. Para tal, é necessário uma fonte de áudio por meio da qual se possa
controlar a frequência da emissão. Isto é fácil de obter empregando uma caixa
de som sem fio e a emissão de uma frequência conhecida. Não é difícil encon-
trar aplicativos, inclusive com funcionamento no navegador, que emitem uma
frequência controlada. Eles podem ser encontrados pesquisando por gerador de
tom, sendo mais fácil encontrá-los em ferramentas de pesquisa empregando os
termos em inglês (tone generator).

v⃗fe

fr

fonte

microfone

Figura 5: Esquema para medição da velocidade da bola empregando o efeito
Doppler.

Como alternativa, pode-se empregar o Python, gerar uma senoide com a
frequência desejada, com uma taxa de amostragem arbitrária, e por um tempo
suficiente para realizar o experimento. Pode-se reproduzir o áudio executando
a função sounddevice.play ou ainda salvando a matriz em um arquivo com
a função soundfile.write e executá-lo em um aplicativo de reprodução de
mídia.

Ao mesmo tempo em que a frequência é emitida, é necessário captá-la com
um microfone, que pode ser um microfone de um celular. Se a bola fosse um
observador, ele estaria em movimento com relação à fonte que se encontra em
repouso com relação à atmosfera. Neste caso, sabemos que a frequência que a
bola “perceberia” o som é

fr = fe

(
1 + v

c

)
. (6)
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Ora, essa é justamente a taxa com a qual a onda se choca com a bola e, portanto,
a taxa com a qual a bola reflete a onda. Ou seja, pode-se determinar a velocidade
da bola isolando v, obtendo

v = c

(
fr

fe
− 1

)
. (7)

Da equação 7 sabe-se a frequência emitida fe, que deve ser definida na confi-
guração do experimento, e a velocidade c do som. Pelo espectro do sinal captado
pelo microfone que esboçamos na figura 6, pode-se determinar a frequência re-
fletica fr. Tipicamente nesta configuração, não é fácil evitar que o microfone
receba a emissão da caixa de som, que poderá, inclusive, se apresentar com
maior amplitude do que as componentes de áudio refletido. O áudio deverá ter
dois picos, um na frequência emitida e outro, possivelmente menor, na frequên-
cia refletida fr. Observando este segundo pico, pode-se medir fr e estimar a
velocidade da bola pela equação 7.

|ck|

ffe fr

Figura 6: Esboço do espectro do sinal de áudio captado pelo microfone no
experimento da figura 5.

4 Identificação da altura de som monofônico
Se o a música é monofônica, espera-se que a única nota tocada possa ser iden-
tificada por sua frequência fundamental e, portanto, mensurável pelo espectro.
Pode-se separar os trechos de cada uma das notas no Audacity e verificar suas
frequências fundamentais pelo espectro com um algoritmo similar ao do código
3.

Obtida a frequência fundamental, pode-se recorrer às convenções para a
definição das notas musicais na escala temperada, convenção mais comum na
música ocidental. A escala temperada respeita as convenções:

• Nota padrão A4 = 440 Hz.

• Outras notas seguem uma progressão geométrica.

• 13a nota da escala cromática recebe o mesmo nome da 1a nota, chamada
de oitava (na escala não cromática utiliza-se apenas 7 notas).

• A oitava tem o dobro da frequência da nota original. A4 = 440 Hz,
A5 = 880 Hz.
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Tabela 1: Oitava completa das notas da escala cromática ocidental.

ordem alfabética solfejo
0 A (A4) lá (natural)
1 A\ ou BZ lá sustenido ou si bemol
2 B si (natural)
3 C (A5) dó (natural)
4 C\ ou DZ dó sustenido ou ré bemol
5 D ré (natural)
6 D\ ou EZ ré sustenido ou mi bemol
7 E mi (natural)
8 F fá (natural)
9 F\ ou GZ fá sustenido ou sol bemol
10 G sol (natural)
11 G\ ou AZ sol sustenido ou lá bemol

Logo, se considerarmos a nota A4 como o termo de ordem 0 da PG, ou seja
a0 = 440 Hz, então o A5 será o termo de ordem 12, ou seja a12 = 880 Hz. Com
isso, é possível encontrar a regra geral na qual, dada a ordem da nota (neste caso
A4 tem ordem 0 e A5 tem ordem 12), temos a sua frequência, pois é possível
obter a razão q = 21/12 e a expressão geral para o termo da PG

an = 440 · 2 1
12 n[Hz]. (8)

Ora, se os termos desta PG determinam as frequências, para identificar a
nota, devemos tentar descobrir a ordem n dado o termo. A tabela 1 mostra a
ordem de todas as notas da escala cromática (a que contém todas as 12 notas
desta convenção). Se medirmos, por exemplo, uma frequência fundamental de
an = 790 Hz, pela inversão

n = 12 log2
an

440 , (9)

chegamos a n ≈ 10,13. Como n deve ser um inteiro, a ordem da nota, vemos que
há ou uma imprecisão na execução da nota ou na sua medida, sendo a ordem
mais próxima n = 10 que corresponde a nota G (sol natural).

A sequência das notas da tabela 1 é cíclica, repetindo-se a cada 12 notas. A
nota de ordem 0 é a mesma nota de ordem 12. A nota de ordem 1 é a mesma
nota da de ordem 13 e assim sucessivamente, inclusive para valores negativos
da ordem. Assim, se se obtém an = 2220 Hz, se obtém n ≈ 28, que, pelo ciclo,
é o mesmo que a nota que tem n = 4 pois 28 = 4 + 12 · 2, ou seja, são dois ciclos
adiante da nota de ordem 4. Como a nota de ordem 4 é o C\ (dó sustenido) e
o primeiro ciclo é o ciclo do C\5 (ou seja, da oitava de ordem 5), então a nota
que tem n = 28 é o C\7, ou seja, duas oitavas à frente4.

Por outro lado, uma nota com frequência fundamental an = 165 Hz, tem
n ≈ −17. Ora, −17 = 7 + (−2) · 12, ou seja, é a mesma nota que a nota de
ordem 7 mas duas oitavas abaixo da apresentada na tabela 1. Como a nota
de ordem 7 na tabela é o E5, então a nota que tem frequência fundamental de
165 Hz é o E3.

4Observe que o A (lá natural) é a nota padrão de frequência e primeira letra do alfabeto mas
o C (dó natural) é a nota que determina a numeração das oitavas, apresentada no subscrito.
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4.1 Verificação das notas
Pode-se procurar algum registro das notas que estão sendo tocadas como a
sua partitura, por exemplo. Este caminho é fácil se a música escolhida for
clássica com direitos autorais abertos. Uma segunda possibilidade é procurar
um instrumento afinado ou até um aplicativo de piano e repetir as notas obtidas
e comparar sensorialmente com as notas na música. Há uma grande quantidade
de aplicativos, inclusive alguns web, que podem ser utilizados no navegador,
permitem a reprodução das notas e, inclusive, indicam a nota tocada e a sua
oitava.

5 Identificação de dígitos em dual-tone
O uso do dual-tone consiste na execução de duas frequência ao mesmo tempo,
sendo uma delas referente à linha e a outra a coluna da tecla, de modo a associar
o par de tons aos símbolos arranjados em linha e colunas como mostra a figura
7 reproduzida da norma ITU-T Rec. Q. 23 [3]. As frequências são 697, 770, 852
e 941 Hz para as linhas (baixas frequências) e 1209, 1336, 1477 e 1633 Hz5 para
as colunas (altas frequências).

Figura 7: Teclado do dual-tone e as suas frequências.
Fonte: ITU-T Rec. Q. 23[3].

Como cada tecla emite duas frequências muito próximas de senoidais (a
norma determina que o conteúdo na frequência seja 10 vezes maior na frequência
fundamental do que aqueles em outras frequências durante a transmissão e um
desvio máximo de ±1,8% na frequência emitida), o espectro apresentará apenas
dois picos acentuados nas frequências relativas à tecla pressionada.

Assim, basta ler ambas as frequências num trecho de emissão para deter-
minar a tecla pressionada. A leitura pode ser feita pelo espectro da mesma

5Note que a última coluna foi reservada na norma para as teclas A, B, C e D que foram
previstas mas acabaram não sendo implantadas nos telefones e teclados com este formato.
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maneira que empregamos o espectro para leitura de harmônicos nos problemas
anteriores.

5.1 Automatização de leitura da sequência de teclas
Esta fase admite muitas soluções, pois a automatização da identificação da
sequência é um verdadeiro problema de engenharia. Vamos propor uma solução
com muitas regras mas, todas elas, simples. Nesta fase da aprendizagem, não
é possível propor um programa de identificação automática infalível e os algo-
ritmos propostos poderão apresentar falsos positivos ou falsos negativos com
frequência e isto não deve ser considerado um problema.

Para nossa solução gravamos uma sequência de teclas no audacity a partir
do áudio gerado pelo aplicativo Dual Tone Generator6 e o empregamos como en-
trada do script de Python. Como uma sequência de discagem é um áudio longo,
criamos uma regra para analisá-lo em partes. A primeira parte do algoritmo
é mostrada no código 4. Ele cria as variáveis de apoio que empregaremos. A
primeira delas, o criterioEnergia é a proporção mínima de energia (associada
ao quadrado da amplitude da componente de frequência) na frequência para
considerarmos que ela está presente como parte de uma emissão de dual-tone.
Ou seja, se a tecla 6 for pressionada, deve haver pelo menos 10% da energia do
sinal na frequência 770 Hz e pelo menos 10% da energia na frequência 1477 Hz
pois empregamos criterioEnergia = 0.1.

6Disponível em https://onlinetonegenerator.com/dtmf.html.
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1 #Def in ição de v a r i á v e i s da l ó g i c a da sequênc ia
2 c r i t e r i o E n e r g i a = 0 .1
3 f r eqLinha = array ( [ 6 9 7 , 770 , 852 , 9 4 1 ] )
4 f reqColuna = array ( [ 1 2 0 9 , 1336 , 1477 , 1633 ] )
5 t e c l a s = array ( [ [ " 1 " , " 2 " , " 3 " , "A" , "n " ] ,
6 [ " 4 " , " 5 " , " 6 " , "B" , "n " ] ,
7 [ " 7 " , " 8 " , " 9 " , "C" , "n " ] ,
8 [ " ∗ " , " 0 " , "#" , "D" , "n " ] ,
9 [ " n " , "n " , "n " , "n " , "n " ] ] )

10 sequenc ia = " "
11 #Carrega o áudio
12 discagem , f s = s o u n d f i l e . read ( " discagem . wav" )
13 #Prepara as v a r i á v e i s para r e a l i z a r SFTD
14 N = 5000
15 Del ta f = f s /N
16 w0 = 2∗ pi /N
17 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
18 j = reshape ( arange (N) , ( 1 ,N) )
19 matr iz IJ = i@j
20 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
21 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
22 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
23 i f N%2==0:
24 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
25 #Preparação para percor re r o áudio
26 i n i c i o = 0
27 f im = N
28 i=0
29 t e c l aAtua l = "n"

Código 4: Definição de variáveis gerais e para cálculo do espectro para a iden-
tificação automática de dual-tone.

Os vetores freqLinha e freqColuna guardam as frequências padrão das
linhas e colunas na ordem em que aparecem no padrão. Já a matriz teclas,
carrega em seu elemento teclas[i,j] a tecla correspondente em formato string
da i-ésima linhas e j-ésima coluna. A última linha e última coluna é utilizada
com o caractere identificador "n" com a finalidade de indicar que o toque de uma
das frequências da linha ou da coluna não foi identificado. Estas três variáveis
foram criadas para facilitar a localização da possível tecla tocada pela compa-
ração entre as posições das frequências nos vetores freqLinha e freqColuna e
localizá-lo na matriz teclas.

Após cada teste, caso o resultado da avaliação da matriz teclas resulte em
uma das teclas, ela será gravada no string sequencia, que é inicializado vazio
para que seja preenchido a medida que a presença das frequências do dual-tone
forem sendo identificadas.

O fim do código 4 apenas define as matrizes que serão empregadas no cálculo
do espectro e as variáveis de controle do laço que efetivamente fará a identificação
das teclas.

O algoritmo que propomos aqui divide o áudio em frações x com N amostras.
Esperamos que N seja muito menor que a quantidade total de amostras do áudio
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Figura 8: Fluxograma do algoritmo para definir a sequência dual-tone presente
em um áudio.

que contém a sequência. O que fazemos com x a cada iteração é mostrado no
fluxograma da figura 8.

Os seguintes testes são feitos para que se possa, enfim, registrar uma tecla
como sendo parte da sequência:

• A energia total no sinal deve ser não-nula, caso contrário, trata-se de um
trecho de silêncio absoluto.

• Identificados dois picos de frequência e sua ordem (qual tem frequência
maior que o outro), só haverá registro se a energia nos picos for alta o
suficiente para ser considerada uma frequência de dual-tone intencional e
não a simples presença ocasional destas frequências no áudio.

• O valor da frequência medida dos picos deve estar dentro da tolerância de
1,8% com relação às frequências esperadas no dual-tone.

• A tecla deve ser nova para ser registrada, caso contrário, consideramos
que este trecho x ainda continua o toque da tecla iniciado em trechos
anteriores.

O código 5 implementa o fluxograma da figura 8. A forma como ele iden-
tifica dois picos é, localizando o primeiro pelo seu índice dentre os valores dos
coeficientes c com a função argmax que retorna o índice do item de c que tem o
maior valor. Após calcular sua potência, o algoritmo zera o valor do pico e de
suas adjacências de modo que a próxima aplicação de argmax tenda a localizar
o próximo pico.

Para comparar a frequência dos picos com as frequências padrão, o algoritmo
utiliza o argmin, análogo ao uso do argmax, mas para obter o índice do valor
mínimo, o que é feito sobre o vetor que contém as frequências padrão subtraídas
do valor do pico. Se o pico for próximo de alguma frequência padrão, a célula
correspondente apresentará um valor próximo de 0.
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1 while f im < len ( discagem ) :
2 x = discagem [ i n i c i o : f im ]
3 c = s q r t ( (Ca@x) ∗∗2 + (Sa@x) ∗∗2 )
4 ene rg iaTota l = sum( c ∗∗2)
5 i f ene rg iaTota l == 0 :
6 l i n h a = 4
7 coluna = 4
8 else :
9 picoLinha = argmax ( c ) ∗ De l ta f

10 ene rg i a1 = c [ argmax ( c ) ]∗∗2/ energ i aTota l
11 c [ argmax ( c ) −3:argmax ( c ) +4] = 0
12 picoTemp = argmax ( c ) ∗ De l ta f
13 ene rg i a2 = c [ argmax ( c ) ]∗∗2/ energ i aTota l
14 i f picoTemp < picoLinha :
15 picoColuna = picoLinha
16 picoLinha = picoTemp
17 else :
18 picoColuna = picoTemp
19 i f energ ia1 <c r i t e r i o E n e r g i a or energ ia2 <

c r i t e r i o E n e r g i a :
20 l i n h a = 4
21 coluna = 4
22 else :
23 l i n h a = argmin ( abs ( f reqLinha − picoLinha ) )
24 i f abs ( f reqLinha [ l i n h a ] − picoLinha ) > 0.036∗

f reqLinha [ l i n h a ] :
25 l i n h a = 4
26 coluna = argmin ( abs ( f reqColuna − picoColuna ) )
27 i f abs ( f reqColuna [ coluna ] − picoColuna ) > 0.036∗

freqColuna [ coluna ] :
28 coluna = 4
29 i f ( ( t e c l a s [ l inha , coluna ] != tec l aAtua l ) and ( t e c l a s [

l inha , coluna ] != "n " ) ) :
30 sequenc ia = sequenc ia + t e c l a s [ l inha , coluna ]
31 t e c l aAtua l = t e c l a s [ l inha , coluna ]
32 i = i+1
33 i n i c i o = N∗ i
34 f im = N∗( i +1)
35 print ( s equenc ia )

Código 5: Implementação do fluxograma da figura 8 em continuação ao código
4.

O áudio criado continha a sequência “77367150” que foi testado em dois
cenários. No primeiro o áudio puro obtido do aplicativo Dual Tone Generator
foi empregado como entrada. O áudio puro tem silêncio absoluto nos períodos
em que nenhuma tecla está sendo pressionada, configurando um áudio ideal de
dual-tone. No segundo cenário, empregamos o Audacity para misturar o áudio
puro com o som ambiente7 em uma mistura de volumes realista. Em ambos os
cenários o algoritmo identificou a sequência de dual-tone corretamente.

7O som ambiente empregado foi https://www.soundjay.com/human/crowd-talking-1.mp3.
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6 Pêndulo, ângulo de partida e MHS
6.1 Discussão do espectro do MHS
O movimento harmônico simples é aquele definido como análogo ao da projeção
do movimento circular uniforme, e, portanto, consiste de um movimento senoi-
dal. Por esta razão, seu espectro contém apenas 1 componente, com intensidade
igual à amplitude e frequência igual a frequência de repetição do movimento.
Por esta razão, o seu espectro deve conter apenas um pico, e o resto do espectro
deve ser nulo.

6.2 Obtenção de θ[n]
A força resultante sobre o pêndulo tem dois componentes. A centrípeta, que
mantém a trajetória circular e o tangente à trajetória, que efetivamente altera o
módulo da velocidade do móvel ao longo da trajetória. É este segundo que nos
dará a equação do movimento. O componente tangente à trajetória da força
resultante é dada por mg sen θ. Com isso, a equação do movimento do pêndulo
é

mg sen θ = mat, (10)

em que at é o componente tangente da aceleração, e é a aceleração linear sobre
a trajetória circular, e, portanto, dado por

at = αL, (11)

em que α é a aceleração angular dada em rad/s2.
Podemos usar as relações

α ≈ ∆ω

∆t
= ω[n] − ω[n − 1]

Ts
(12)

e
ω ≈ ∆θ

∆t
= θ[n] − θ[n − 1]

Ts
(13)

sucessivamente e isolar θ[n] para obter

θ[n] = −T 2
s g

L
sen θ[n − 1] + 2θ[n − 1] − θ[n − 2]. (14)

Nestas expressões ω é a velocidade angular e θ é a posição angular. Os
valores entre colchetes são a ordem da amostra, ou seja, é uma simulação que
nos dará amostras das posições angulares θ. Como estamos trabalhando com
amostras, a melhor aproximação para ∆t é o período de amostragem Ts.

Vemos que o valor de θ[n] depende de duas amostras anteriores, valores de
θ[n − 1] e de θ[n − 2], isto porque, de certa forma, para determinar o valor
sucessivo, deve-se ter conhecimento da posição anterior, que poderia ser dada
por θ[n − 1] e da velocidade anterior, que precisaria de uma variação ∆θ =
θ[n − 1] − θ[n − 2]. Com isso, se o pêndulo é solto (velocidade inicial nula) de
θ = θ0, podemos fazer θ[0] = θ[1] = θ0, garantindo tanto a velocidade inicial
nula como a posição inicial dada por θ0. A partir destes dois valores, é possível
obter quantos valores de θ se desejar.
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6.3 Simulação no tempo
O código 6 simula 500 mil pontos de θ[n] considerando L = 10 m, g = 10 m/s2

e θ0 = 0.1 rad e tomando como referência para o período de amostragem 10000
pontos por período, considerando o período teórico de

T0 = 2π

√
L

g
. (15)

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 L = 10
4 g = 10
5 omega0 = s q r t ( g/L)
6 f 0 = omega0 /(2∗ p i )
7 T0 = 1/ f0
8 Tssim = T0/10000
9 Nsim = 500000

10 theta0 = 0 .1
11 theta = empty (Nsim)
12 k = (−1) ∗( Tssim ∗∗2) ∗g/L
13 theta [ 0 ] = theta0
14 theta [ 1 ] = theta0
15 for n in range (2 , Nsim) :
16 theta [ n ] = k∗ s i n ( theta [ n−1])+2∗theta [ n−1] − theta [ n−2]
17 t = arange (0 ,50000) ∗Tssim
18 p l t . p l o t ( t , theta [ : 5 0 0 0 0 ] )
19 p l t . show ( )

Código 6: Cálculo de 500 000 valores de θ[n] empregando aproximadamente
10 000 amostras por período.

6.4 Espectro para θ0 pequeno
O espectro do sinal do código 6 é mostrado na figura 10 para θ0 = 0,1 rad,
considerado um valor pequeno e com uma dizimação de kdizimação = 100. Vale,
portanto, a aproximação de que o pêndulo realiza uma oscilação harmônica com
frequência fundamental

ω0 =
√

g

L
, (16)

que para as escolhas da simulação resultam em ω0 = 1 rad/s, valor no qual se
observa o único valor relevante de componente. Para nossas escolhas de N e
fs após a dizimação, a ordem do harmônico com frequência de 1 rad/s é o c50.
Seu valor deveria ser igual a amplitude da oscilação dada pelo ângulo de onde
o pêndulo é solto, porém, o valor calculado é de c50 = 0,09981449749198941,
0,18% menor do que deveria ser.

Os componentes próximos à c50 são em torno de duas ordens de grandeza
menores do que o valor de pico e os valores dos componentes próximos dos
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Figura 10: Espectro de θ[n] obtido no código 6.
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harmônicos de 2o e 3o ordens são quatro ordens de grandeza menor do que o
valor de pico, mostrando que o espectro parece, efetivamente, o espectro de um
MHS, composto de um único componente na frequência de oscilação8.

6.5 Estudo da frequência de oscilação com a variação do
ângulo inicial θ0

Para estudar a variação da frequência da oscilação com θ0, é necessário um
laço em que, a cada iteração, fazemos uma simulação, calculamos o espectro e
estimamos a frequência da oscilação pela ordem do componente de frequência
com máxima amplitude empregando a função argmax, o que fizemos no código
7. Assim, dada a ordem k do componente de frequência máximo, o que poderia
ser feito com k = argmax(c), pode-se chegar à frequência de oscilação por

ωoscilação = 2πfs

N
k. (17)

Assim, para cada valor de θ0 no vetor thetaIniciais, que varre os ângu-
los 0,1 ≤ θ0 < π/2 em intervalos de um centésimo de radiano, calculamos a
frequência de oscilação e pusemos no gráfico em azul da figura 11. Nele, vemos
que quanto maior é o ângulo de onde o pêndulo é solto, mas lentamente o pên-
dulo oscila. O gráfico dá “saltos” pois a precisão da medida da frequência de
oscilação é

∆ω = 2πfs

N
= 0,02 rad/s (18)

em nossos espectros.
Para verificar a aderência dos resultados simulados e calculados por meio do

espectro com valores teóricos, comparamos o nosso resultado com o proposto
por Beléndez et al. [4] para o período de oscilação do pêndulo dado aproxima-
damente por

Toscilação = 2π

√
g

L

(
1 + 1

16θ2
0 + 11

3072θ4
0 + · · ·

)
(19)

e apresentamos o gráfico do ωoscilação teórico em vermelho tracejado. Vemos uma
excelente adesão entre as medidas de nossas simulações com o comportamento
teórico esperado.

8Se mudarmos no modelo sin(theta[n-1]) por theta[n-1], estabelecendo um modelo efe-
tivamente de MHS, o erro na frequência de pico cai para 0,0000058%, as frequências adjacentes
à frequência de pico caem para 7 ordens de grandeza abaixo do pico e nas próximidades dos
2o e 3o harmônicos entre 8 e 9 ordens de grandeza abaixo.
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1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 L = 10
4 g = 10
5 omega0 = s q r t ( g/L)
6 f 0 = omega0 /(2∗ p i )
7 T0 = 1/ f0
8 Tssim = T0/10000
9 Nsim = 500000

10 theta = empty (Nsim)
11 #Var iáve i s para c á l c u l o dos e s p e c t r o s
12 kDizimacao = 100
13 Ts = Tssim∗kDizimacao
14 N = int (Nsim/kDizimacao )
15 f s = 1/(Ts )
16 w0 = 2∗ pi /N
17 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
18 j = reshape ( arange (N) , ( 1 ,N) )
19 matr iz IJ = i@j
20 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
21 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
22 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
23 i f N%2==0:
24 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
25 #Simulações com var iação do the ta0
26 k = (−1) ∗( Tssim ∗∗2) ∗g/L
27 t h e t a I n i c i a i s = arange ( 0 . 1 , p i /2 , 0 . 0 1 )
28 omega = empty ( len ( t h e t a I n i c i a i s ) )
29 i = 0
30 for theta0 in t h e t a I n i c i a i s :
31 theta [ 0 ] = theta0
32 theta [ 1 ] = theta0
33 for n in range (2 , Nsim) :
34 theta [ n ] = k∗ s i n ( theta [ n−1])+2∗theta [ n−1] − theta [ n−2]
35 x = theta [ 0 : Nsim : kDizimacao ]
36 c = s q r t ( (Ca@x) ∗∗2 + (Sa@x) ∗∗2)
37 omega [ i ] = 2∗ p i ∗argmax ( c ) ∗ f s /N
38 i=i+1
39 #Cálcu lo t e ó r i c o segundo Beléndez e t a l (2011)
40 TTeorico = 2∗ pi ∗ s q r t (L/g ) ∗(1+ t h e t a I n i c i a i s ∗∗2/16+11∗

t h e t a I n i c i a i s ∗∗4/3072)
41 omegaTeorico = (2∗ p i ) / TTeorico
42 #Plot dos g r á f i c o s
43 p l t . p l o t ( t h e t a I n i c i a i s , omega )
44 p l t . p l o t ( t h e t a I n i c i a i s , omegaTeorico , " r−−" )
45 p l t . show ( )

Código 7: Cálculo da frequência de oscilação para valores de 0,1 ≤ θ0 < π/2.
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Figura 11: Variação da frequência de oscilação do pêndulo em termos do ângulo
inicial θ0. Azul contínuo obtido pela simulação e vermelho tracejado o valor
teórico aproximado da equação 19.

6.6 Estudo da proporção do harmônico fundamental com
a variação do ângulo inicial θ0

Alteramos o código 7 na sua linha 28 para inicializar um vetor para registrar o
cálculo da proporção:

proporcao = empty(len(thetaIniciais))

e a linha 37 para efetivamente realizar a proporção:

proporcao[i] = (c[argmax(c)])/(sum(c)).

Também modificamos o trecho para gerar o gráfico da variável proporcao em
termos de θ0.

Como resultado das alterações no código 7, geramos o gráfico da figura 12
para a proporção entre a amplitude do componentes de maior intensidade com
relação ao somatório de todas as amplitudes de componentes, ou seja

proporção = cmaior componente∑
ck

. (20)

Podemos ver que em alguns pontos esta razão está muito próxima de 1 para
0,1θ0 ≤ π/2, ou seja, o maior componente de frequência é o componentes pre-
dominante em todo o espectro, o que condiz com um MHS que possui um único
harmônico na frequência de oscilação.

Fora destes pontos de pico, há uma queda abrupta na relevância da compo-
nente de pico. Isto se deve à imprecisão da medida da frequência por meio do
espectro. A medida que o ângulo θ0 muda, vimos que a frequência de oscilação
muda, mas como a SFTD só mede exatamente as frequências no formato

ω = 2πfs

N
k = ∆ωk (21)
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Figura 12: Proporção do componente da frequência fundamental com relação
ao total para 0,1 ≤ θ0 ≤ π/2.

para valores inteiros distintos de k. Assim, quando a frequência de oscilação real
fica fora destes valores, outras frequências próximas à frequência de oscilação
acabam sendo “usadas” pela SFTD para conseguir realizar a representação do
sinal por meio de frequências que usam necessariamente frequências no formato
da equação 21.

Tomemos o caso em que θ0 = 0,4 rad, por exemplo. Neste caso, temos
ωoscilação = 0,99 rad/s. Como em nossa simulação e cálculo de espectro nosso
∆ω = 0,2 rad/s, as melhores leituras seriam para ωoscilação = 0,98 ou ωoscilação =
1,00, e para θ0 = 0,4 temos uma medida exatamente no meio, resultando na
pior leitura possível. O espectro deste caso é apresentadona figura 13 em que a
proporção calculada utilizando a equação 20 mede aproximadamente 0,108 e há
uma grande quantidade de componentes em torno de ω = 0,99 rad/s com valor
não nulo na tentativa de representar esta frequência que não está disponível
com exatidão na representação em que ∆ω = 0,2 rad. Observe como ele é
diferente do espectro apresentado na figura 10 em que o pico de frequência é
bem concentrado em um ponto.
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Figura 13: Detalhe do Espectro do pêndulo para θ0 = 0,4 rad.

245



Desta forma, só é segura a análise do comportamento da proporção da figura
12 nos seus pontos de máximo, quando ela é capaz de melhor representar a
oscilação do pêndulo. Esta figura, porém, mostra uma queda muito sutil na
proporção, mostrando que até θ0 = π/2, a oscilação ainda é aproximadamente
senoidal. Por esta razão, repetimos este processo para 0,95π ≤ θ0 < 99π,
obtendo o resultado da figura 14. Nela, observamos que nos picos, onde a medida
é mais precisa, a proporção do componente mais intenso é por volta de 80% do
total, o que significa que para representar a forma da onda, são necessários mais
componentes de frequência, possivelmente harmônicos, senoides em múltiplos
inteiros da frequência fundamental.
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Figura 14: Proporção do componente da frequência fundamental com relação
ao total para 0,95π ≤ θ0 < 0,99π.

Para ilustrar a distorção do formato senoidal, mostramos na figura 15 a
simulação no tempo do caso extremo em que θ0 = 0,99π. Para este ângulo
extremo, obtivemos ωoscilação = 0,283515 rad/s, muito distante da frequência de
1 rad/s =

√
g/L e uma curva completamente diferente de uma senoide, que foi

posta no gráfico em vermelho tracejado com mesma amplitude e frequência para
a finalidade de comparação.

Uma onda tão diferente da senoide não pode ser composta de um único com-
ponente de frequência. O seu espectro é mostrado na figura 16. Nela, ajustamos
N para alterar ∆ω de modo a coincidir com um submúltiplo da frequência de
oscilação do pêndulo. Assim, podemos ver claramente a frequência fundamental
ωoscilação = 0,283515 rad/s e pelo menos mais três ou quatro harmônicos, todos
de ordem ímpar (nas frequências 3ωoscilação, 5ωoscilação, 7ωoscilação e 9ωoscilação).
Este caso especial encerra nossa análise com relação a distorção da oscilação
com relação àquela do MHS.
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Figura 15: Simulação das oscilações do pêndulo para θ0 = 0,99π rad ao longo
do tempo. Linha contínua azul dada pela simulação e a linha tracejada em
vermelho uma senoide com mesma amplitude e frequência.
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Figura 16: Espectro da oscilação do pêndulo para θ0 = 0,99π rad. O eixo
vertical é a intensidade do componente de frequência dado no eixo horizontal
em radianos.

7 Comportamento massa-mola com 2 graus de
liberdade

7.1 Descrição do movimento
Neste nível, é muito difícil deduzir qual é efetivamente o movimento das massas
num sistema com este nível de complexidade. Talvez seja fácil inferir apenas
que será alguma espécie de oscilação, e certamente não tão simples como uma
oscilação senoidal harmônica. Não é fácil supor qual é o comportamento quali-
tativamente e muito menos quantitativamente. Este exercício busca, inclusive,
mostrar como é complexa a descrição de um sistema desta natureza apenas
“dobrando” a quantidade de elementos com relação ao sistema massa-mola con-
vencional para o qual se sabe que o movimento é harmônico simples.
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Figura 17: Diagrama de corpo livre do esquema de massas e mola.

7.2 Análise do movimento a partir da força resultante
A figura 17 mostra o diagrama de corpo livre das massas m1 e m2. Com eles,
determinamos as equações do movimento de ambos os corpos como

{
m1a1 = −k1x1 + k12(x2 − x1)
m2a2 = −k12(x2 − x1) − k2x2

. (22)

Substituindo as relações

v ≈ ∆x

∆t
= x[n] − x[n − 1]

Ts
(23)

a ≈ ∆v

∆t
= v[n] − v[n − 1]

Ts
= x[n] − 2x[x − 1] + x[n − 2]

T 2
s

(24)

em que o período de amostragem Ts é tomado como um tempo curto o sufici-
ente para uma boa aproximação das medidas instantâneas da aceleração e da
velocidade, obtemos o sistema de equações




(
m1
T 2

s

+ k1 − k2

)
x1[n] −k12x2[n] = m1

T 2
s

(2x1[n − 1] − x1[n − 2])

−k12x1[n] +
(

m2
T 2

s
+ k1 + k2

)
x2[n] = m2

T 2
s

(2x2[n − 1] − x2[n − 2])
(25)

para obter os valores atuais das posições dos blocos, x1[n] e x2[n], a partir dos
valores anteriores de suas posições, x1[n − 1], x1[n − 2], x2[n − 1] e x2[n − 2] e
dos parâmetros do sistema.

7.3 Simulando comportamento das massas no tempo
Para simular o comportamento das massas, escolhemos os parâmetros

k1 = 100 N/m; m1 = 1 kg; x1[0] = 0,2 m; x2[0] = 0,1 m;
k12 = 200 N/m; m2 = 2 kg; x1[1] = 0,2 m; x2[1] = 0,1 m; e
k2 = 300 N/m.

A escolha de duas amostras na mesma posição simula o efeito das massas m1
e m2 serem soltas a partir do repouso quando estão deformadas, respectiva-
mente, de 0,2 m e 0,1 m. Como ∆t = Ts, escolhemos 10 µs e coletamos 1 500 000
amostras.

Estes parâmetros da simulação correspondem às linhas de 3 a 11 do código
8. Em seguida, criamos as matrizes A, A1 e A2 por meio das quais resolveremos
o sistema da equação 25 pelo teorema de Cramer dentro do laço for fazendo

x1[n] = det A1
det A = D1

D
, x2[n] = det A2

det A = D2
D

(26)
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para valores sucessivos de n. O determinante das matrizes é calculado pela
função linalg.det do NumPy.

1 from numpy import∗
2 import matp lo t l i b . pyplot as p l t
3 m1 = 1 ; m2 = 2
4 k1 = 100 ; k12 = 200 ; k2 = 300
5 x10 = 0 .2 ; x11 = 0 .2
6 x20 = 0 .1 ; x21 = 0 .1
7 Tssim = 0.00001
8 Nsim = 1500000
9 x1 = empty (Nsim) ; x2 = empty (Nsim)

10 x1 [ 0 ] = x10 ; x1 [ 1 ] = x11
11 x2 [ 0 ] = x20 ; x2 [ 1 ] = x21
12 A = array ( [ [ m1/( Tssim ∗∗2) + k1 + k12 , −k12 ] , [ − k12 ,m2/( Tssim

∗∗2) + k12 + k2 ] ] )
13 D = l i n a l g . det (A)
14 ka = m1/( Tssim ∗∗2)
15 kb = m2/( Tssim ∗∗2)
16 A1 = A. copy ( )
17 A2 = A. copy ( )
18 for n in range (2 , Nsim) :
19 B = array ( [ ka ∗ (2∗ x1 [ n−1]−x1 [ n−2]) ,
20 kb ∗ (2∗ x2 [ n−1]−x2 [ n−2]) ] )
21 A1 [ : , 0 ] = B
22 A2 [ : , 1 ] = B
23 D1 = l i n a l g . det (A1)
24 D2 = l i n a l g . det (A2)
25 x1 [ n ] = D1/D
26 x2 [ n ] = D2/D
27 t = arange (0 , Nsim) ∗Tssim
28 p l t . subp lot ( 2 , 1 , 1 )
29 p l t . p l o t ( t , x1 )
30 p l t . subp lot ( 2 , 1 , 2 )
31 p l t . p l o t ( t , x2 )
32 p l t . show ( )

Código 8: Simulação do movimento do sistema de massas e molas.

Ao fim do cálculo de todos os valores de x1 e x2, são exibidos seus gráficos
que reproduzimos na figura 18. Observa-se uma espécie de “oscilação bagun-
çada”. Neste nível e olhando apenas para o gráfico não é fácil descrever as
características específicas da oscilação, mas parece uma espécie de movimento
composto, especialmente para os valores escolhidos dos parâmetros.

7.4 Característica oscilatória do movimento das massas
Para extrair características adicionais do movimento das massas, analisamos
o comportamento do deslocamento x1 no domínio da frequência por meio do
código 9 posposto ao código 8.
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Figura 18: Movimento das massas simulado pelo código 8.

1 kDizimacao = 1000
2 N = int (Nsim/kDizimacao )
3 Ts = Tssim∗kDizimacao
4 x = x1 [ 0 : Nsim : kDizimacao ]
5 w0 = 2∗ pi /N
6 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
7 j = reshape ( arange (N) , ( 1 ,N) )
8 matr iz IJ = i@j
9 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )

10 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
11 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
12 i f N%2==0:
13 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
14 c = s q r t ( (Ca@x) ∗∗2 + (Sa@x) ∗∗2)
15 omega = 2∗ pi ∗ arange (0 , int (N/2)+1) /(Ts∗N)
16 p l t . p l o t ( omega , c )
17 p l t . show ( )
18 Termo1 = ( ( k1+k12 ) ∗m2+(k12+k2 ) ∗m1) /(m1∗m2)
19 Termo2 = ( ( k1+k12 ) ∗( k12+k2 ) − k12 ∗∗2) /(m1∗m2)
20 omega1 = s q r t ( 0 .5∗ Termo1 − 0 . 5 ∗ ( ( Termo1∗∗2 − 4∗Termo2 )

∗∗0 . 5 ) )
21 omega2 = s q r t ( 0 .5∗ Termo1 + 0 . 5 ∗ ( ( Termo1∗∗2 − 4∗Termo2 )

∗∗0 . 5 ) )
22 print ( " omega1 =" , omega1 )
23 print ( " omega2 =" , omega2 )

Código 9: Espectro e valores teóricos das frequências de ressonância para a
simulação do código 8.

O resultado é um espectro com dois picos acentuados mostrados na figura
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Figura 19: Espectro do movimento da massa m1. O eixo horizontal é a frequên-
cia angular em radianos por segundo e o vertical a amplitude do deslocamento
em metros.

19. Isto indica um movimento composto por dois componentes senoidais puros,
ou seja, uma espécie de MHS composto por duas frequências.

De fato, Rao [5], em seu livro, indicado para nível superior, deduz analiti-
camente que se trata de um movimento de dupla oscilação senoidal em que as
frequências de oscilação são as raízes positivas9 de

ω2 = 1
2

[
(k1 + k12)m2 + (k12 + k2)m1

m1m2

]

∓ 1
2

{[
(k1 + k12)m2 + (k12 + k2)m1

m1m2

]2

−4
[

(k1 + k12)(k12 + k2) − k2
12

m1m2

]}1/2

. (27)

Pelo gráfico da figura 19, os picos se localizam em ω1 = 11,31 rad/s e
ω2 = 20,53 rad/s com uma precisão ∆ω = 0,42 rad/s da SFTD. Pelo cálculo
da equação 27 que também fizemos no código 9, obtivemos ω1 = 11,46 rad/s
e ω2 = 20,46 rad/s, o que mostra uma excelente adesão da simulação ao valor
teórico esperado.

8 Filtragem da voz
Preparamos um áudio muito curto com aproximadamente 1 s de voz com um
pouco mais do que 50 000 amostras de um áudio. Como a quantidade de amos-
tras de áudio é muito grande, fizemos a filtragem por partes a cada N = 5000
amostras. O processo de filtragem é muito simples e consiste apenas em aplicar
a função f [k] ou g[k] sobre os coeficientes ak e bk. Para a aplicação de f , por
exemplo, fizemos

ak filtrado = f [k]ak original e bk filtrado = f [k]bk original. (28)
9Veja que poderiam ser 4 valores de ω, as raízes positiva e negativa e um valor para cada

escolha do sinal indicado pelo símbolo ∓ (“menos ou mais”). Os valores negativos não tem
significado de frequência distinto de sua contrapartida positiva, razão pela qual basta-nos
olhar as raízes positivas e obter as duas frequências de oscilação.
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Para tal, transformamos os valores de f [k] em um vetor f e realizamos a mul-
tiplicação elemento a elemento a = f*a e b = f*b, já que já temos ak e bk em
vetores.

O código 10 consiste, simplesmente, na carga do áudio, seguida da definição
dos parâmetros. Escolhemos k0 de modo que ele coincidisse aproximadamente
com o k correspondente à frequência fcorte = 600 Hz. A decisão do fcorte e dos
outros parâmetros foi feita por tentativa e erro.

Em seguida criamos o perfil do filtro. Na linha 11 calculamos f [k] e na
linha 12 g[k], mas empregamos o mesmo nome f para ambos os casos para não
ser necessário alterar todo o código pela mudança da expressão do perfil do
filtro. Pode-se mudar a expressão escolhendo, dentre as linhas 11 e 12, qual será
comentada.

Utilizando a expressão para f [k], obtivemos o perfil de filtro mostrado na
figura 20 e com a expressão g[k] o perfil mostrado na figura 21.

As linhas de 16 a 31 do código 10 apenas definem as matrizes de síntese
e análise. Logo em seguida, um laço escolhe trechos sucessivos das amostras
do áudio de voz de tamanho N = 5000, obtém o espectro, realiza a filtragem
pela multiplicação elemento-a-elemento e determina o trecho correspondente do
áudio filtrado pela síntese a partir dos valores de ak e bk modificados por f [k]
ou g[k].

Elaboramos as figuras 22 e 23 para mostrar o efeito da filtragem sobre o
espectro original (em azul tracejado). Onde o valor de f [k] ou g[k] são baixos,
o gráfico do espectro original é visível pois ele não está presente no espectro
resultante da filtragem (em preto). Já onde seus valores são altos (próximos
a 1 na escala original), os gráficos do original e do resultante da filtragem são
praticamente iguais e, com a sobreposição, fica visível apenas o gráfico resultante
(preto).

Assim, na figura 22, em que f [k] é aplicado, observa-se que os componen-
tes de baixa frequência são filtrados no processo e os de alta frequência são
preservados. Este processo é chamado de filtragem passa alta (em referência
a passagem das altas frequências). Já o processo da figura 23 faz o contrário,
sendo designado filtragem passa baixa.

Reproduzimos o áudio utilizando a função sounddevice.play para os dois
tipos de filtro. Em termos qualitativos da percepção do áudio, o filtro passa
alta faz o áudio soar como um rádio velho ou um megafone, já o passa baixa
torna o som abafado, como se houvesse uma dificuldade na passagem do som.
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1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 import s o u n d f i l e
4 import sounddevice
5 voz , f s = s o u n d f i l e . read ( " voz . wav" )
6 N = 5000 ; De l ta f = f s /N ; fCorte = 600 ; L = 10
7 voz = voz [ 0 : int ( len ( voz ) /N) ∗N]
8 vozF i l t rada = empty ( voz . shape )
9 kCorte = int ( fCorte / De l ta f )

10 k = arange (0 , int (N/2)+1)
11 f = 1/( 1 + exp ( − (k−kCorte ) /L ) )
12 #f = 1/( 1 + exp (( k−kCorte ) /L) )
13 f r e q = k∗ f s /N
14 p l t . p l o t ( f r eq , f )
15 p l t . show ( )
16 w0 = 2∗ pi /N
17 #Definindo matr i ze s de a n á l i s e
18 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
19 j = reshape ( arange (N) , ( 1 ,N) )
20 matr iz IJ = i@j
21 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
22 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
23 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
24 i f N%2==0:
25 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
26 #Definindo matr i ze s de s í n t e s e
27 i = reshape ( arange (N) , (N, 1 ) )
28 j = reshape ( arange ( int (N/2)+1) , ( 1 , int (N/2)+1) )
29 matr iz IJ = i@j
30 Cs = cos (w0∗ matr i z IJ )
31 Ss = s i n (w0∗ matr i z IJ )
32 #Laço de f i l t r a g e m
33 i n i c i o = 0
34 f im = N
35 i=0
36 while fim<len ( voz ) :
37 x = voz [ i n i c i o : f im ]
38 a = Ca@x
39 b = Sa@x
40 a = f ∗a #f i l t r a g e m sobre c o e f i c i e n t e s a
41 b = f ∗b #f i l t r a g e m sobre c o e f i c i e n t e s b
42 vozF i l t rada [ i n i c i o : f im ] = Cs@a + Ss@b
43 i = i+1
44 i n i c i o = i ∗N
45 f im = ( i +1)∗N

Código 10: Filtragem da voz por meio do perfil de filtro f.
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Figura 20: Perfil do filtro f [k] obtido com k0 = ⌊600N/fs⌋.
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Figura 21: Análogo à figura 20 para g[k].

0 1000 2000 3000 4000 5000
0.00

0.02

0.04

0.06

0.08

in
te

ns
id

ad
e

[u
.a

.]

frequência [Hz]

Figura 22: Efeito da filtragem de f [k] (perfil vermelho tracejado fora de escala)
sobre o espectro do áudio original (azul tracejado) para obter o espectro filtrado
(preto contínuo.
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Figura 23: Análogo à figura 20 para g[k].
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Figura 24: Espectro de um trecho do áudio de uma flauta.

9 Flauta sintética
9.1 Análise do áudio de uma flauta
Escolhemos um áudio de uma flauta de bambu soando em f0 = 667 Hz. O espec-
tro de um trecho do áudio é mostrado na figura 24. Nele, extraímos a frequência
fundamental e as intensidades aproximadas da componente fundamental e dos
seis harmônicos seguintes dados aproximadamente por 0,336, 0,149, 0,174, 0,052,
0,024, 0,011 e 0,004.

9.2 Reprodução do som da flauta por componentes senoi-
dais puros

Montamos um sinal com o somatório de sete senoides com as intensidades ex-
traídas do espectro do áudio da flauta no código 11. Escutamos o som gerado
empregando sounddevice.play(flautaSintetica,fs). O resultado é um som
extremamente artificial mas cujo espectro é muito similar ao da flauta original
e que mostramos na figura 25. Observamos que ele é muito parecido com o
espectro original da figura 24, ainda que os áudios reproduzidos sejam muito
diferentes.
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Figura 25: Espectro de um trecho do som similar a flauta elaborado com o
código 11.

1 from numpy import ∗
2 import sounddevice
3 f 0 = 667
4 f s = 44100
5 N = 100000
6 t = arange (0 ,N) / f s
7 i n t e n s i d a d e s = (0 .336472468501187 , 0 .14908012775965768 ,
8 0.1738175811205412 , 0 .05220254193671233 ,
9 0.024395951321697543 , 0 .011099601727655806 ,

10 0.004297160535376037)
11 f l a u t a S i n t e t i c a = z e r o s (N)
12 i = 1
13 for k in i n t e n s i d a d e s :
14 f l a u t a S i n t e t i c a = f l a u t a S i n t e t i c a + k∗ cos (2∗ p i ∗ i ∗ f 0 ∗ t )
15 i = i+1

Código 11: Construção de um áudio com componentes nas intensidades de um
áudio de uma flauta empregando componentes senoidais puros.

9.3 Espectro de sinal gerado por valores aleatórios
No código 12 construímos 500 sinais a partir de N = 5000 números aleatórios
gerados pela função numpy.random.normal, um a cada iteração de um laço
for. Ao longo do laço, separamos 5 espectros para estes sinais, mostrados nos 5
gráficos superiores da figura 26. Observando estes espectros, vemos que não há
regularidade para a presença de determinadas componentes. Frequências altas,
médias e baixas estão presentes, mas de forma pouco uniforme.

Já o último gráfico da figura 12, mostra a média entre os valores das compo-
nentes dos espectros dos 500 sinais gerados. Nele, uma regularidade é observada
– a média dos componentes de frequência cobre todas as frequências com
intensidade quase constante. Isto significa que os números aleatórios da
função numpy.random.normal são bons para “criar quaisquer frequências”.
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1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 N = 5000
4 w0 = 2∗ pi /N
5 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
6 j = reshape ( arange (N) , ( 1 ,N) )
7 matr iz IJ = i@j
8 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
9 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )

10 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
11 i f N%2==0:
12 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
13 cAcumulado = z e r o s ( int (N/2)+1)
14 for i in range (500) :
15 x = random . normal ( s i z e=N)
16 c = s q r t ( (Ca@x) ∗∗2 + (Sa@x) ∗∗2 )
17 i f i %100==0:
18 p l t . subp lot (6 , 1 , int ( i /100)+1)
19 p l t . p l o t ( c )
20 cAcumulado = cAcumulado + c
21 p l t . subp lot ( 6 , 1 , 6 )
22 p l t . p l o t ( cAcumulado /500)
23 p l t . show ( )

Código 12: Geração do espectro obtido para um sinal composto por números
aleatórios.

9.4 Geração de áudio a partir de ruído
Empregamos o código 13 para gerar um som parecido com o de flauta a partir
de ruído. As linhas de 10 a 17 geram uma máscara com o perfil mostrado na
figura 27, similar ao do espectro da flauta que estudamos na seção 9.1. No
laço das linhas de 34 a 29, geramos sinais a partir de números aleatórios, lhes
aplicamos a máscara do filtro e concatenamos seus valores na variável flauta
até que tenha por volta de 100 000 amostras, totalizando por volta de 2 s de
áudio.

O único detalhe que adicionamos neste algoritmo foi o emprego de uma mas-
cara de volume. Isto foi necessário pois nossa intenção era gerar um áudio com
por volta de 100 000 amostras a partir de trechos de áudio mais curtos para que
pudéssemos utilizar as matrizes da SFTD com um valor razoável (escolhemos
N = 5000). Acontece que o fim de um trecho não precisa necessariamente coin-
cidir com o inicio do trecho seguinte, já que eles foram criados separadamente,
não tendo correlação um com o outro. Estas descontinuidades causam efeitos de
“estalos” no áudio. Por esta razão, misturamos um trecho ao outro diminuindo
gradualmente o volume do anterior, enquanto o misturávamos com o seguinte
cujo volume vai aumentando aos poucos a medida que o anterior abaixa. Esco-
lhemos uma máscara de volume com formato trapezoidal para esta finalidade.
Ela cresce a partir do 0 até 1 (que corresponde a 100% do volume), passa a
maior parte das amostras neste volume máximo para, então, reduzir de 1 até 0
ao fim.
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Figura 26: Espectro de cinco trechos de um sinal gerado a partir de números
aleatórios com a função numpy.random.normal (cinco primeiros superiores) e
da média entre 500 espectros (inferior).

O resultado é muito melhor em termos de áudio sintético para representar o
som de uma flauta do que a proposta com senoides puras.
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1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 import sounddevice
4 f 0 = 667 ; f s = 44100 ; N = 5000 ; alpha = 0 .5
5 Del ta f = f s /N
6 i n t e n s i d a d e s = (0 .336472468501187 , 0 .14908012775965768 ,
7 0.1738175811205412 , 0 .05220254193671233 ,
8 0.024395951321697543 , 0 .011099601727655806 ,
9 0.004297160535376037)

10 k = arange (0 , int (N/2)+1)
11 f = k∗ De l ta f
12 mascara = z e r o s ( k . shape )
13 i=1
14 for k i in i n t e n s i d a d e s :
15 k0 = i ∗ f0 / De l ta f
16 mascara = mascara + k i ∗exp(−alpha ∗abs ( k−k0 ) )
17 i = i+1
18 w0 = 2∗ pi /N
19 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
20 j = reshape ( arange (N) , ( 1 ,N) )
21 matr iz IJ = i@j
22 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
23 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
24 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
25 i f N%2==0:
26 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
27 i = reshape ( arange (N) , (N, 1 ) )
28 j = reshape ( arange ( int (N/2)+1) , ( 1 , int (N/2)+1) )
29 matr iz IJ = i@j
30 Cs = cos (w0∗ matr i z IJ )
31 Ss = s i n (w0∗ matr i z IJ )
32 volume = concatenate ( ( l i n s p a c e (0 , 1 , 500 ) , ones (4000) , l i n s p a c e

(1 , 0 , 500) ) )
33 f l a u t a = z e r o s (20∗(N−500)+500)
34 for i in range (20) :
35 x = random . normal ( s i z e=N)
36 a = mascara ∗(Ca@x)
37 b = mascara ∗(Sa@x)
38 f l a u t a [ i ∗(N−500) : i ∗(N−500)+N] = ( volume ∗(Cs@a + Ss@b) +
39 f l a u t a [ i ∗(N−500) : i ∗(N

−500)+N] )
40 f l a u t a = f l a u t a /(max( abs ( f l a u t a ) ) )

Código 13: Geração do espectro obtido para um sinal composto por números
aleatórios.
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Figura 27: Máscara (filtro) a ser aplicada em um sinal contendo ruído para
conformar seu espectro ao da flauta que estudamos na seção 9.1.

10 Reconhecimento de altura (pitch) automá-
tico

Aqui, vamos misturar a ideia de máscara e filtragem com o ideia que empregamos
nos problemas das seções 4 e 5. Vamos fazer uma máscara para cada nota e
vamos filtrar o trecho do áudio com cada máscara. Se a nota coincidir com a
respectiva máscara, devemos ter muita energia no resultado da filtragem. Se a
nota for diferente da máscara, ocorrerão poucos casos de coincidência entre as
componentes do áudio e a máscara, tendo como consequência a filtragem de boa
parte de suas componentes e resultando em pouca energia ao fim da operação.
Assim, vamos atribuir a nota observada àquela que tiver associada a máscara
que deixa passar maior energia após a filtragem.

O código 14 faz a detecção armazenando as máscaras para as notas na matriz
matrizHarmonicos, sendo um linha para cada máscara. Escolhemos arbitraria-
mente a cobertura da frequência fundamental e mais 5 harmônicos na máscara.
Também arbitrariamente, a primeira nota é o C2, o que facilita a identificação
da nota e da oitava, já que o dó natural é a primeira nota de toda oitava. O
resto da divisão dos índices das notas na matrizHarmonicos coincide com o
índices dos nomes das notas no vetor notas, o que é empregado para nomear
as notas no string sequencia.

Montamos a máscara considerando uma janela unitária por harmônico indo
da média geométrica entre os harmônicos adjacentes. Veja por exemplo a más-
cara do C3 e do E3 na figura 28. O primeiro harmônico do C3 está centrado em
130,8 Hz e o E3 em 164.8 Hz. As posições em que as frequências dos harmôni-
cos de uma máscara estão costumam diferir significativamente com as de outra
máscara. Há algumas exceções, como se observa no 5o harmônico do C que é
aproximadamente coincidente com o 4o harmônico do E. Com o nível da precisão
que empregamos, eles ficam exatamente coincidentes.
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Figura 28: Máscaras para identificação do C3 (azul) e do E3 (vermelho trace-
jado).

1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 import s o u n d f i l e
4 musica , f s = s o u n d f i l e . read ( " ce l l oG . wav" )
5 qtdeNotas = 37 ; s i l e n c i o = 0.0005 ; N = 7500
6 sequenc ia = " " ; De l ta f = f s /N
7 cBaixo = 2∗∗( −1/24) ; cAlto = 2∗∗(1/24)
8 k = arange (0 , int (N/2)+1)
9 fC5 = 440∗(2∗∗(3/12) ) ; fC2 = fC5 /(2∗2∗2)

10 notas = array ( [ "C" , "C#" , "D" , "D#" , "E" , "F" ,
11 "F#" , "G" , "G#" , "A" , "A#" , "B" ] )
12 matrizHarmonicos = z e r o s ( ( qtdeNotas , len ( k ) ) )
13 for i in range ( qtdeNotas ) :
14 for h in range (6 ) :
15 f i = (h+1) ∗(2∗∗( i /12) ) ∗ fC2
16 i n i c i o = int ( r i n t ( f i ∗ cBaixo / De l ta f ) )
17 f im = int ( r i n t ( f i ∗ cAlto / De l ta f ) )+1
18 matrizHarmonicos [ i , i n i c i o : f im ] = 1
19 w0 = 2∗ pi /N
20 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
21 j = reshape ( arange (N) , ( 1 ,N) )
22 matr iz IJ = i@j
23 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
24 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
25 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
26 i f N%2==0:
27 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
28 ene rg i a = empty ( qtdeNotas )
29 i n i c i o = 0 ; f im = N ; i = 0
30 notaAnter ior = " s "
31 while f im <= len ( musica ) :
32 x = musica [ i n i c i o : f im ]
33 c = (Ca@x) ∗∗2 + (Sa@x) ∗∗2
34 for j in range ( qtdeNotas ) :
35 ene rg i a [ j ] = sum( matrizHarmonicos [ j , : ] ∗ c )
36 i f max( ene rg i a ) > s i l e n c i o :
37 notaAtual = notas [ argmax ( ene rg i a ) %12]
38 notaAtual = notaAtual + str ( argmax ( ene rg i a ) //12 + 2)
39 else :
40 notaAtual = " s "
41 i f notaAtual != notaAnter ior and notaAtual != " s " :
42 sequenc ia = sequenc ia + " " + notaAtual
43 i = i+1 ; i n i c i o = N∗ i ; f im = N∗( i +1)
44 notaAnter ior = notaAtual
45 print ( s equenc ia )

Código 14: Identificação automática de altura.
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Tabela 2: Resultados da execução do código 14.

Arpejo esperado Notas detectadas
Tuba Mirum
A\3 F3 D4 A\3 F3 D4 A\3 F3 D4 A\3 F3 F4 D3 D4

Prelúdio da Suíte No1
G2 D3 A3 B3 G2 D3 A3 B3
G2 E3 B3 C4 E2 G2 E3 G3 B3 C4
G2 F\3 B3 C4 F\2 G2 C3 F\3 G3 B3 C4 F\4
G2 G3 A3 B3 G2 G3 B3

O código 14 observará qual é a máscara de maior energia a medida que
percorre os trechos do sinal de entrada. Ao fim da iteração, ele incluirá a nota
correspondente na variável sequencia caso a nota observada seja distinta da
que ele observou no último trecho, considerando que não houve interrupção na
execução da nota enquanto não houver um trecho de silêncio ou de outra nota
separando dois trechos em que a mesma nota foi identificada. Caso o nível de
energia seja muito baixo, ele considerará um trecho de silêncio e não realizará
nenhum registro.

Testamos o algoritmo com uma gravação dos trechos iniciais de Tuba Mirum
do Réquiem de Mozart e do Prelúdio da Suíte No 1 de Bach, por se tratarem de
trechos monofônicos. Como resultado, tivemos a seguinte saída para a variável
sequencia para o primeiro trecho (Tuba Mirum)

A#3 F3 D4 A#3 F3 F4 F3 F4 F3 D3 D4 D3.

Na tabela 2 comparamos o arpejo esperado com o arpejo detectado. Neste
trecho, mais curto, listamos as notas na ordem em que aparecem e observamos
alta fidelidade, com exceção de algumas falsas detecções das notas corretas na
oitava acima.

Fizemos o mesmo processo para o segundo trecho (Prelúdio da Suíte No1) e
obtivemos o seguinte registro para a variável sequencia

G2 D3 B3 A3 B3 D3 B3 D3 G2 D3 G2 B3 B3 D3 B3 D3
G2 E2 E3 C4 B3 E3 G3 G2 E3 B3 E2 E3 E3

G2 F#3 B3 C4 F#3 C3 F#3 G2 F#3 B3 F#3 F#4 F#2
G2 G3 G2 G3 G2 B3 G2.

Também na tabela 2, fizemos a comparação entre os arpejos, considerando as
notas que o compõem, e não a ordem. Neste caso, a velocidade da execução
parece ter sido determinante como dificultante na detecção de cada nota. Ape-
sar disto, o algoritmo detectou corretamente todas as notas, errando algumas
oitavas, e deixou de detectar apenas o A3 no último arpejo.
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Figura 29: Relação entre a potência acima de 5 kHz com relação à potência total
em m1[n].

11 Transmissão simultânea empregando AM
11.1 Escolha do sinal
Escolhemos um sinais de voz com pouco mais de 1 s e separamos 50 000 amostras
deste áudio com frequência de amostragem padrão de 44 100 Hz para tomarmos
como m1[n]. Empregamos o Audacity para aplicar um filtro passa baixas para
remover frequências acima de 5 kHz. Calculamos espectros sucessivos deste
áudio e observamos a quantidade de energia acima da frequência de 5 kHz com
relação à energia total e registramos estes valores no gráfico 29. O maior valor
que essa relação assume é de 0,00739 o que significa que no pior caso, há menos de
0,8% de energia acima de 5 kHz, mostrando a eficácia do processo de filtragem10.
Portanto, é seguro afirmar que temos fmáx1 = 5 kHz.

11.2 Superamostragem
No código 15, preparamos os áudios e as matrizes. Vamos precisar realizar análi-
ses com quantidades distintas de conjuntos de amostras, conforme explicaremos
a seguir, para realizar o processo designado superamostragem. Por esta razão,
após a criação das variáveis que carregam as amostras de áudio completas, cria-
mos um conjunto de matrizes para realizar a análise do espectro com N1 = 1000
amostras e um conjunto de matrizes para realizar análise e outro para realizar
a síntese com N = MN1 = 4 · 1000 = 4000 amostras.

10Sem a filtragem, este valor passa de 75% em um trecho em que é pronunciado um fonema
fricativo rico em componentes de alta frequência.
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1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 import s o u n d f i l e , sounddevice , sys
4 audio1 , f s 1 = s o u n d f i l e . read ( " audio1 . wav" )
5 audio2 , f s 2 = s o u n d f i l e . read ( " audio2 . wav" )
6 audio1 = audio1 [ 0 : 5 0 0 0 0 ] ; audio2 = audio2 [ 0 : 5 0 0 0 0 ]
7 i f f s 1 != f s 2 :
8 print ( " Taxas de amostragem d i f e r e n t e s . " ) ; sys . e x i t ( )
9 #Matr izes de a n á l i s e sobre N1 amostras

10 N1 = 1000 ; w01 = 2∗ pi /N1
11 i = reshape ( arange ( int (N1/2)+1) , ( int (N1/2) +1 ,1) )
12 j = reshape ( arange (N1) , ( 1 ,N1) )
13 Sa1 = i@j ; Ca1 = (2/N1) ∗ cos (w01∗Sa1 ) ; Sa1 = (2/N1) ∗ s i n (w01∗

Sa1 )
14 Ca1 [ 0 , : ] = 0 .5∗ Ca1 [ 0 , : ]
15 i f N1%2==0:
16 Ca1 [ int (N1/2) , : ] = 0 .5∗ Ca1 [ int (N1/2) , : ]
17 f 1 = arange (0 , int (N1/2)+1)∗ f s 1 /N1
18 #Matr izes de s í n t e s e sobre N amostras
19 M = 4 ; N = N1∗M ; f s = f s 1 ∗M ; De l ta f = f s /N ; w0 = 2∗ pi /N
20 f = arange (0 , int (N/2)+1)∗ De l ta f
21 i = reshape ( arange (N) , (N, 1 ) )
22 j = reshape ( arange ( int (N/2)+1) , ( 1 , int (N/2)+1) )
23 Ss = i@j ; Cs = cos (w0∗Ss ) ; Ss = s i n (w0∗Ss )
24 #Matr izes de a n á l i s e sobre N amostras
25 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
26 j = reshape ( arange (N) , ( 1 ,N) )
27 Sa = i@j ; Ca = (2/N) ∗ cos (w0∗Sa ) ; Sa = (2/N) ∗ s i n (w0∗Sa )
28 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
29 i f N%2==0:
30 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]

Código 15: Preparação das variáveis e das matrizes para realização da síntese e
da análise.

Com a frequência de amostragem de 44 100 Hz, podemos observar apenas
22 050 Hz, o que “comporta” apenas 4 vezes a frequência máxima. Por esta
razão, no código 16, realizamos o processo chamado superamostragem com um
fator de 4, levando o estudo para a frequência de amostragem de 176 400 Hz e
a máxima frequência observável para 88 200 Hz. Veremos mais adiante que este
limite é suficiente para o estudo do AM.
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1 m1 = z e r o s ( len ( audio1 ) ∗M)
2 i n t e r v a l o = 25
3 volume1 = concatenate ( ( ones (N−M∗ i n t e r v a l o ) , l i n s p a c e (1 , 0 ,M∗

i n t e r v a l o ) ) )
4 volume = concatenate ( ( l i n s p a c e (0 , 1 ,M∗ i n t e r v a l o ) ,
5 ones (N−2∗M∗ i n t e r v a l o ) , l i n s p a c e (1 , 0 ,M∗

i n t e r v a l o ) ) )
6 volumeUltimo = concatenate ( ( l i n s p a c e (0 , 1 ,M∗ i n t e r v a l o ) , ones (N−M

∗ i n t e r v a l o ) ) )
7 i n i c i o = 0 ; f im = N1 ; i = 0 ; terminar = False ; u lt imo =

False
8 while not terminar :
9 i f ult imo == True :

10 a = Ca1@concatenate ( ( audio1 [ i n i c i o : ] , z e r o s (1000− len (
audio1 [ i n i c i o : ] ) ) ) )

11 b = Sa1@concatenate ( ( audio1 [ i n i c i o : ] , z e r o s (1000− len (
audio1 [ i n i c i o : ] ) ) ) )

12 else :
13 a = Ca1@audio1 [ i n i c i o : f im ] ; b = Sa1@audio1 [ i n i c i o : f im

]
14 a = concatenate ( ( a , z e r o s ( int (N/2)+1 − len ( a ) ) ) )
15 b = concatenate ( ( b , z e r o s ( int (N/2)+1 − len (b) ) ) )
16 i f i == 0 :
17 m1[ i n i c i o ∗M: fim ∗M] = m1[ i n i c i o ∗M: fim ∗M] + volume1 ∗(

Cs@a + Ss@b)
18 e l i f ult imo == True :
19 m1[ i n i c i o ∗M: ] = m1[ i n i c i o ∗M: ] + ( volumeUltimo ∗(Cs@a +

Ss@b) ) [ 0 : len (m1[ i n i c i o ∗M: ] ) ]
20 else :
21 m1[ i n i c i o ∗M: fim ∗M] = m1[ i n i c i o ∗M: fim ∗M] + volume ∗(Cs@a

+ Ss@b)
22 i = i+1
23 i n i c i o = i ∗(N1−i n t e r v a l o )
24 f im = i ∗(N1−i n t e r v a l o )+N1
25 i f ult imo == True :
26 terminar = True
27 i f f im >= len ( audio1 ) :
28 ult imo = True

Código 16: Superamostragem de m1[n].

O processo escolhido para superamostragem é simples e consiste em acres-
centar frequências que “não existem” ou seja, que podem ser interpretadas como
se existissem mas fossem nulas, ao fim do espectro e em seguida retomar o sinal
no tempo. Neste caso, acrescentamos três vezes a quantidade de componentes
além dos valores que já tínhamos. A quantidade de componentes de frequências
ficou 4 vezes maior, correspondendo a

fs novo = 4fs anterior. (29)

A figura 30 mostra o espectro original de um trecho do áudio e como ele fica
após acrescentarmos componentes nulos até a frequência de 4fs anterior.
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Figura 30: Comparação entre os espectros original (superior) e superamostrado
(inferior).
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Figura 31: Amostras do sinal original nas marcações em × vermelho sobre o
gráfico stem do sinal superamostrado.

Se retornarmos para o domínio do tempo por uma operação de síntese sobre
o novo espectro, vamos obter 4 vezes a quantidade de amostras que tínhamos
antes da superamostragem. Ora, se a frequência de amostragem quadruplicou,
isso significa que o período de amostragem caiu para um quarto do que era. Ou
seja, 4 das novas amostras ocupam o tempo decorrido para apenas uma amostra
antes do processo de superamostragem. O resultado da superamostragem é
mostrado na figura 31 que apresenta em detalhe a criação das novas amostras. O
gráfico do tipo stem (ramos) foi feito com o sinal superamostrado. As amostras
originais foram sobrepostas ao gráfico empregando a marcação do tipo × em
vermelho em suas posições. Observe que uma de cada quatro amostras do
sinal original coincide com o sinal superamostrado conforme esperado, o que
equivale a considerar que acrescentamos três amostras entre duas amostras do
sinal original.

Esta é a razão desta expressão superamostragem. Simplesmente ao aumentar
a quantidade de componentes de frequência, é como se causássemos um aumento
na taxa de amostragem e a criação de novas amostras entre as antigas11.

Como o áudio original contém muitas amostras, precisamos realizar a supe-
ramotragem em trechos de tamanho muito menor que o áudio completo. Como
a SFTD é baseada em forçar a periodicidade do trecho limitado, a tendência do

11É uma forma de interpolação realizada no domínio da frequência.
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sinal seria, após a última amostra, voltar para uma amostra igual a primeira
amostra do mesmo trecho. No nosso caso, porém, o fim de um trecho está con-
catenado com o início do próximo trecho, cuja primeira amostra tenderá a não
ter nenhuma relação com a primeira amostra do trecho anterior. A “criação”
de novas amostras proporcionada pela superamostragem faz com que surjam al-
gumas amostras que se direcionam para o valor da primeira amostra do trecho.
Se a partir daí emendássemos a primeira amostra do próximo trecho, ocorreria
uma sucessão de valores com descontinuidades (a tendência de continuidade do
trecho anterior era para o primeiro valor do próprio trecho e não para a primeira
amostra do próximo trecho) que soam no áudio como estalos.

Por esta razão, empregamos mais uma vez a técnica de fazer sobrepor o fim
de um trecho com o início do outro e enquanto, o volume do trecho anterior cai,
o volume do próximo trecho aumenta, como fizemos no problema da geração de
áudio a partir de número aleatórios na seção 9.4.

11.3 Realização da modulação em amplitude
Para gerar o sinal modulado em AM empregamos o código 17. Nele, escolhemos
para a frequência da portadora fc1 ≈ 25 000 Hz. Não utilizamos este valor exato
pois preferimos utilizar uma frequência fosse múltiplo inteiro da precisão ∆f
da medida de frequência da SFTD. Isto fará com que o espectro fique “bem
comportado”12.

1 t = arange (0 , len (m1) ) / f s
2 f c 1 = int (25000/ De l ta f ) ∗ De l ta f
3 p1 = cos (2∗ p i ∗ f c 1 ∗ t )
4 s1 = m1∗p1

Código 17: Geração do sinal s1[n] da modulação AM.

Variamos a frequência fc1 pelos valores de 20 kHz até 50 kHz em passos de
10 kHz e apresentamos os espectros de um trecho dos sinais na figura 32, em que
o primeiro gráfico é o espectro do trecho em m1[n] e os gráficos seguintes são
gráficos de s1[n] do trecho correspondente para os valores de fc1 que listamos.

Algumas características importantes podem ser extraídas dos gráficos:

• os espectros parecem figuras simétricas em torno de um eixo na vertical;
e

• o eixo de simetria parece centrado em fc1.

Para melhor observar outras características, ampliamos os gráficos da figura
32 na figura 33 nas regiões em torno dos seus eixos de simetria. No primeiro
gráfico, do espectro de m1[n], acrescentamos em vermelho em valores negativos
de frequência o próprio espectro espelhado. Com este artifício, vemos:

• os valores do espectro de m1[n] aparecem no espectro de s1[n] a partir da
frequência fc1;

12Utilize uma frequência para a portadora que não seja múltiplo inteiro de ∆f e observe o
efeito sobre o espectro.
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Figura 32: Espectro de um trecho de m1[n] (superior) e do trecho correspondente
de s1[n] para fc1 variando de aproximadamente 20 kHz até 50 kHz em passos de
10 kHz (segundo ao último gráfico de cima para baixo).

• os valores do espectro de m1[n] aparecem no espectro de s1[n] espelhados
antes da frequência fc1; e

• as intensidades dos componentes de m1[n] parecem estar no espectro de
s1[n] com metade da intensidade.

Como o espectro de m1[n] vai até fmáx1 e ele aparece no espectro de s1[n]
a partir de fc1, isto significa que o espectro total de s1[n] terá componente de
frequência máximo em fc1 + fmáx1.

11.4 Justificativa para o espectro do sinal AM
Ora, obtivemos o sinal s1[n] por meio do produto entre um sinal original m1[n]
e um sinal senoidal de frequência fc1 que chamamos de portadora. Vamos agora
esquecer brevemente o o índice 1 (ou 2) pois numeramos os sinais apenas para
caracterizar o efeito da transmissão simultânea e vamos considerar o caso geral.
Se descrevermos m[n] por meio de sua série de Fourier de tempo discreto, ele
será

m[n] = a0 +
⌊N/2⌋∑

k=1
cn cos(wkn + ϕk) (30)

e a portadora
p[n] = cos(2πfcTsn) = cos(wcn), (31)

o sinal s[n] será

s[n] = p[n]m[n]
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Figura 33: Ampliação dos gráficos das figuras 32 nas proximidades do eixo de
simetria. No gráfico superior do espectro de m1[n], o gráfico vermelho posto
nas “frequências negativas” é o próprio espectro positivo espelhado.

= cos(wcn)


a0 +

⌊N/2⌋∑

k=1
ck cos(wkn + ϕk)




= a0 cos(wcn) + cos(wcn)
⌊N/2⌋∑

k=1
ck cos(wkn + ϕk)

= a0 cos(wcn) +
⌊N/2⌋∑

k=1
ck cos(wcn) cos(wkn + ϕk)

= a0 cos(wcn) +
⌊N/2⌋∑

k=1

ck

2 {cos[(wc + wk)n + ϕk] + cos[(wc − wk)n − ϕk]}

= a0 cos(wcn) +
⌊N/2⌋∑

k=1

ck

2 cos[(wc + wk)n + ϕk]
︸ ︷︷ ︸

componentes simétricos à direita de fc

+
⌊N/2⌋∑

k=1

ck

2 cos[(wc − wk)n − ϕk]
︸ ︷︷ ︸

componentes simétricos à esquerda de fc

.

Vemos que nas frequências fc1 + fk, ou seja, distantes fk da frequência fc1
e à sua direita, aparecem componentes de intensidade ck/2. Ora, em m1[n], a
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Figura 34: Espectro do sinal s[n] dado pela superposição dos espectros de s1[n]
e s2[n].

componente ck aparece fk à direita da origem. Isto significa que veremos no
espectro de s1[n] uma cópia do espectro de m1[n] deslocado para fc1 e com
metade da amplitude.

Ocorre o mesmo à esquerda de fc1 nas frequências fc1 − fk, razão pela qual
surge a imagem simétrica dos dois lados de fc1 no espectro de s1[n]. A única
assimetria é que a frequência central que fica com o componente a0 na frequência
fc1, sem o multiplicador de um meio.

Em geral, isto mostra que a multiplicação por uma portadora de frequência
fc, é capaz de deslocar o espectro de m[n] que se encontrava na origem para
o entorno de fc. Enquanto m[n] ocupa frequências de 0 até fmáx, s[n] ocupa
frequências de fc − fmáx até fc + fmáx.

11.5 Modulando um segundo sinal
Já no código 15, havíamos reservado um segundo áudio na variável audio2.
Aplicamos códigos similares aos códigos 16 e 17 para gerar as variáveis m2[n],
p2[n] e s2[n]. Também filtramos o segundo áudio em fmáx1 = 5 kHz. Por esta
razão, o sinal s2[n] ocupará no espectro uma região entre fc2−fmáx2 e fc2+fmáx2.
Para que esta região não se sobreponha à região ocupada no espectro por s1[n],
escolhemos fc2 ≈ 35 kHz.

Criamos, por fim, a variável s[n] = s1[n] + s2[n]. Se s1[n] e s2[n] são sinais
oriundos de ondas eletromagnéticas transmitidas por estações de rádio, s[n] pode
ser o efeito da superposição das ondas no espaço. O espectro de um trecho de
s[n] é mostrado na figura 34. Nela, vemos o espectro de s1[n] que já estudamos
nas figuras 32 e 33, desta vez centrado em 25 kHz. O que vemos centrado em
fc2 ≈ 35 kHz é o espectro de s2[n] no mesmo trecho. Veja que ele também é
simétrico com relação à frequência de sua portadora e que eles ocupam “espaços”
distintos no espectro devido a nossas escolhas para fc1 e fc2 e pelos valores de
fmáx1 e fmáx2.

É importante destacar que no domínio do tempo – em s[n] – estes sinais
estão unidos de tal forma que é impossível observar a distinção entre eles. Já
no domínio da frequência é fácil ver onde cada sinal começa e termina, prin-
cipalmente pois tomamos o cuidado de não deixar os espectros se sobreporem.
O sinal s1 está entre fc1 − fmáx1 e fc1 + fmáx1, ou seja, entre 20 kHz e 30 kHz
enquanto fc2 − fmáx2 e fc2 + fmáx2, ou seja, entre 30 kHz e 40 kHz.
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12 Separação de sinais AM
Já vimos nas seções 8, 9 e 10 como podemos trabalhar filtros no domínio da
frequência. Ora, se podemos ver claramente no espectro de s[n] na figura 34 que,
na frequência, s1[n] e s2[n] se encontram separados, podemos utilizar ambas as
máscaras propostas na filtragem 8 para separar s1[n] de s2[n] no domínio da
frequência empregando uma máscara

h[k] = 1
1 + e− k−kinício

L

1
1 + e

k−kfim
L

(32)

que vale 1 apenas quando kinício < k < kfim quando k < kinício e k > kfim, o
valor de h[k] tende rapidamente à 0. Isto gera um filtro que chamamos de passa-
banda. O número inteiro k está associado à frequência fk e devemos fazer os
valores de kinício e kfim coincidirem aproximadamente com as regiões dos espec-
tros correspondentes às frequências fc1 − fmáx1 e fc1 + fmáx1, respectivamente,
para separar s1[n] e aos valores análogos para separar s2[n].

O código 18 cria estas máscaras. Elaboramos os gráficos das máscaras e
os apresentamos na figura 35. A máscara azul é aproximadamente unitária na
região entre 20 kHz e 30 kHz já que s1[n] está centrado em 25 kHz e se estende
fmáx1 = 5 kHz para a esquerda e para a direita no espectro. Fora desta região ela
cai rapidamente para aproximadamente nula. Ela é, portanto, capaz de isolar
o espectro de s1[n]. A máscara vermelha da figura 35, por sua vez, tal como a
azul isola s1[n], é capaz de isolar s2[n].

1 k = arange ( int (N/2) + 1)
2 L = 5
3 k I n i c i o = int ( ( f c 1 − 5000) / De l ta f )
4 kFim = int ( ( f c 1 + 5000) / De l ta f )
5 mascara1 = (1/(1 + exp ( (k−kFim) /L ) ) ) ∗(1/(1 + exp ( −(k−

k I n i c i o ) /L ) ) )
6 k I n i c i o = int ( ( f c 2 − 5000) / De l ta f )
7 kFim = int ( ( f c 2 + 5000) / De l ta f )
8 mascara2 = (1/(1 + exp ( (k−kFim) /L ) ) ) ∗(1/(1 + exp ( −(k−

k I n i c i o ) /L ) ) )

Código 18: Criação das máscaras que separam os espectros s1[n] e s2[n] na
frequência.

A aplicação destas máscaras sobre os sinais correspondentes gera os dois
espectros dos gráficos nas figuras 34. O superior é o espectro de s1[n] obtido
empregando a máscara azul da figura 35 sobre o espectro de s[n]. O inferior é
o espectro de s2[n] obtida da mesma forma mas com a máscara vermelha. Ou
seja, o sinal superior é o espectro do sinal recebido pela estação 1, r1[n], e o
inferior o sinal recebido pela estação 2, r2[2].

13 Demodulação AM
Empregamos o código 19 para, a partir do espectro de s[n], obter os componentes
de frequência ar1 e br1 de r1[n] através da filtragem. Com os componentes de
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Figura 35: Máscaras empregadas para separar s1[n] (azul) e s2[n] (vermelho)
em s[n].
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Figura 36: Espectros obtidos pela aplicação das máscaras da figura 35 sobre o
espectro de s[n] mostrado na figura 34.
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Figura 37: Espectros de r1[n] (em vermelho tracejado) e m′
1[n] (superior) e r2[n]

(em vermelho tracejado) e m′
2[n] (inferior).

frequência, recuperamos r1[n] no domínio do tempo e realizamos o produto com
p1[n] novamente obtendo m′

1[n].

1 ar1 = (Ca@s [ i n i c i o : f im ] ) ∗mascara1
2 br1 = ( Sa@s [ i n i c i o : f im ] ) ∗mascara1
3 cr1 = s q r t ( ar1 ∗∗2 + br1 ∗∗2)
4 r1 = Cs@ar1 + Ss@br1
5 m1linha = r1 ∗ cos (2∗ p i ∗ f c 1 ∗ t [ i n i c i o : f im ] )
6 c1 l i nha = s q r t ( ( Ca@m1linha ) ∗∗2 + ( Sa@m1linha ) ∗∗2 )

Código 19: Geração do sinal m′
1[n] da demodulação AM.

Código análogo ao código 19 também é aplicado para gerar r2[n] e m′
2[n].

Com os sinais m′[n] e r[n] (com ambos os índices), montamos o gráfico de seus
espectros na figura 37. Notamos que enquando os gráficos de r[n] se encontram
centrados em fc, o gráfico de m′[n] apresenta dois agrupamentos. O primeiro
parece uma versão de r[n] com amplitude reduzida pela metade e centrada em
2fc. A outra está centrada na origem do eixo de frequências.

Para melhor visualização do agrupamento na origem do eixo de frequência,
elaboramos o gráfico da figura 38 que amplia a região próxima à origem. Nela,
fica claro que, nesta região, m′[n] é muito similar a m[n], com exceção de uma
redução pela metade na amplitude. Isto significa que podemos recuperar o es-
pectro de m[n] filtrando o agrupamento nas proximidades de 2fc e multiplicando
o restante por 2. Após estas operações, realizadas no domínio da frequência,
podemos voltar para o domínio do tempo pelas operações de síntese e recuperar
m[n].

O código 20 recupera os sinais m1[n] e m2[n] a partir do sinal s[n] que simula
os sinais modulados e superpostos. Após a execução deste trecho, não é possível
distinguir m1 e m2 dos sinais recuperados m1Rec e m2Rec quando ouvimos suas
reproduções utilizando a função sounddevice.play. Um segundo indicativo
da qualidade da recuperação do sinal é a energia contida na diferença entre os
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Figura 38: Detalhe dos espectros de m1[n] (em vermelho tracejado) m′
1[n] e

(superior) e m2[n] (em vermelho tracejado) m′
2[n] e (inferior) próximo à origem.

sinais com relação ao sinal original, que podemos calcular executando

sum((m1-m1Rec)**2)/sum(m1**2).

Este parâmetro resulta em menos de 0,003% para ambos os áudios, ou seja,
quase não há diferenças entre os áudios recuperados e os originais.
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1 m1Rec = z e r o s (m1. shape ) ; m2Rec = z e r o s (m2. shape )
2 kCorte = int (6000/ De l ta f )
3 mascara = 1/(1 + exp ( (k−kCorte ) /L ) )
4 i = 0 ; terminar = False ; u lt imo = False
5 i n i c i o = 0 ; f im = N
6 while not terminar :
7 i f ult imo == True :
8 x = concatenate ( ( s [ i n i c i o : ] , z e r o s (N−len ( s [ i n i c i o : ] ) ) ) )
9 p1 = cos (2∗ p i ∗ f c 1 ∗ concatenate ( ( t [ i n i c i o : ] , t [ −1]∗ ones (

N−len ( t [ i n i c i o : ] ) ) ) ) )
10 p2 = cos (2∗ p i ∗ f c 2 ∗ concatenate ( ( t [ i n i c i o : ] , t [ −1]∗ ones (

N−len ( t [ i n i c i o : ] ) ) ) ) )
11 else :
12 x = s [ i n i c i o : f im ]
13 p1 = cos (2∗ p i ∗ f c 1 ∗ t [ i n i c i o : f im ] )
14 p2 = cos (2∗ p i ∗ f c 2 ∗ t [ i n i c i o : f im ] )
15 ar1 = (Ca@x) ∗mascara1 ; br1 = (Sa@x) ∗mascara1
16 ar2 = (Ca@x) ∗mascara2 ; br2 = (Sa@x) ∗mascara2
17 r1 = Cs@ar1 + Ss@br1 ; r2 = Cs@ar2 + Ss@br2
18 m1linha = r1 ∗ p1 ; m2linha = r2 ∗ p2
19 a1Rec = ( Ca@m1linha ) ∗mascara ; b1Rec = ( Sa@m1linha ) ∗

mascara
20 a2Rec = ( Ca@m2linha ) ∗mascara ; b2Rec = ( Sa@m2linha ) ∗

mascara
21 t recho1 = Cs@a1Rec + Ss@b1Rec ; t recho2 = Cs@a2Rec +

Ss@b2Rec
22 i f i == 0 :
23 m1Rec [ i n i c i o : f im ] = volume1∗ trecho1
24 m2Rec [ i n i c i o : f im ] = volume1∗ trecho2
25 e l i f ult imo == True :
26 m1Rec [ i n i c i o : ] = m1Rec [ i n i c i o : ] + ( volumeUltimo∗

trecho1 ) [ 0 : len (m1Rec [ i n i c i o : ] ) ]
27 m2Rec [ i n i c i o : ] = m2Rec [ i n i c i o : ] + ( volumeUltimo∗

trecho2 ) [ 0 : len (m2Rec [ i n i c i o : ] ) ]
28 else :
29 m1Rec [ i n i c i o : f im ] = m1Rec [ i n i c i o : f im ] + volume∗ trecho1
30 m2Rec [ i n i c i o : f im ] = m2Rec [ i n i c i o : f im ] + volume∗ trecho2
31 i = i+1
32 i n i c i o = i ∗(N−i n t e r v a l o ∗M)
33 f im = i ∗(N−i n t e r v a l o ∗M) + N
34 i f ult imo == True :
35 terminar = True
36 i f f im >= len (m1) :
37 ult imo = True
38 m1Rec = m1Rec ∗ 2
39 m2Rec = m2Rec ∗ 2

Código 20: Recuperação dos sinais m1[n] e m2[n] a partir dos sinais modulados
e superpostos em s[n].
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13.1 Justificativa para a recuperação do sinal na demodu-
lação AM

Vimos na seção 11.4 que o sinal m[n] quando modulado em AM com a portadora
senoidal p[n], resulta em s[n] que pode ser escrito como

s[n] = a0 cos(wcn) +
⌊N/2⌋∑

k=1

ck

2 cos[(wc + wk)n + ϕk]

+
⌊N/2⌋∑

k=1

ck

2 cos[(wc − wk)n − ϕk].

Com esta expressão, m′[n] será dado por

m′[n] = p[n]s[n]

= cos(wcn)



a0 cos(wcn) +

⌊N/2⌋∑

k=1

ck

2 cos[(wc + wk)n + ϕk]

+
⌊N/2⌋∑

k=1

ck

2 cos[(wc − wk)n − ϕk]





= a0 cos2(wcn) +
⌊N/2⌋∑

k=1

ck

2 cos(wcn) cos[(wc + wk)n + ϕk]

+
⌊N/2⌋∑

k=1

ck

2 cos(wcn) cos[(wc − wk)n − ϕk]

= a0

[
1
2 + 1

2 cos(2wcn)
]

+
⌊N/2⌋∑

k=1

ck

4 {cos[(2wc + wk)n + ϕk] + cos(wkn + ϕk)}

+
⌊N/2⌋∑

k=1

ck

4 {cos[(2wc − wk)n − ϕk] + cos(−wkn − ϕk)}

= a0
2 +

⌊N/2⌋∑

k=1

ck

4 cos(wkn + ϕk) +
⌊N/2⌋∑

k=1

ck

4 cos(−wkn − ϕk)

+ a0
2 cos(2wcn) +

⌊N/2⌋∑

k=1

ck

4 cos[(2wc + wk)n + ϕk]

+
⌊N/2⌋∑

k=1

ck

4 cos[(2wc − wk)n − ϕk]

= 1
2


a0 +

⌊N/2⌋∑

k=1
ck cos(wkn + ϕk)




︸ ︷︷ ︸
m[n]
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+ a0
2 cos(2wcn) + 1

4

⌊N/2⌋∑

k=1
ck cos[(2wc + wk)n + ϕk]

︸ ︷︷ ︸
componentes de m[n] centrados em 2fc

+ 1
4

⌊N/2⌋∑

k=1
ck cos[(2wc − wk)n − ϕk]

︸ ︷︷ ︸
componentes espelhados de m[n] centrados em 2fc

.

Vemos, então, que os componentes de m[n] voltam para a origem do eixo das
frequências multiplicado por 1/2 e que ainda há duas cópias de m[n] centradas
em 2fc, uma com frequências wk positivo, formando um espectro direito, e uma
com wk negativo, formando o espectro invertido, ambos multiplicados por 1/4.
O componente constante a0 aparece multiplicado por 1/2 exatamente no eixo de
simetria em 2fc. Estas características que obtivemos analiticamente explicam o
que observamos nos gráficos da figura 37.

14 Amortecedor massa-mola com atrito viscoso
14.1 Resposta em frequência por simulações no domínio

do tempo
O movimento do bloco depende apenas da atuação das forças horizontais. São
três as forças horizontais, a força externa F (t), a força elástica −kx, em o sinal
significa que a força atua no sentido oposto de sua posição, e a força de atrito
viscoso de intensidade −βv, em que o sinal significa que ela atua no sentido
oposto ao da velocidade. A soma destas forças totaliza a força resultante, já
que a resultante na vertical é nula. Assim,

F − kx − βv = ma, (33)

que, empregando as relações das equações 23 e 24, resulta na relação

x[n] = (βTs + 2m)x[n − 1] − mx[n − 2] + T 2
s F [n]

kT 2
s + βTs + m

(34)

para a posição da massa ao longo do tempo.
Vamos tomar a expressão teórica fornecida como referência para determinar

que frequências estudaremos. Vemos que

H(ω) = Xm

Fm
= 1√

m2ω4 + (β2 − 2mk)ω2 + k2
≈ 1

mω2 (35)

quando a frequência ω cresce, já que m2ω4 cresce muito mais rapidamente do
que (β2 − 2mk)ω2 e o termo k2 é fixo. Ou seja, sabemos que, pela teoria, a
resposta em frequência vai tender a 0 a medida que ω cresce. Vamos estudar,
apenas até H(ω) = 0,01, ou seja, até

1√
m2ω4 + (β2 − 2mk)ω2 + k2

= 1
100 (36)
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que implica determinar o valor de omega que resolve a equação biquadrada

m2ω4 + (β2 − 2mk)ω2 + k2 − 10000 = 0. (37)

No código 22, calculamos este valor para ω considerando que ele é a maior
raiz e empregando a função numpy.roots para calculá-lo. Neste script, determi-
namos os parâmetros do problema, escolhemos N = 2000 para a quantidade de
amostras da análise no domínio da frequência que faremos na seção 14.2. Isto
implica nos valores para k de 0 até ⌊N/2⌋ para os harmônicos da SFTD nas
frequências angulares ωk. Estes valores sugerem que empreguemos os valores de
ωk como as amostras para o eixo ω da análise em frequência.

Por esta razão, no trecho de código que se segue, realizamos dois laços
aninhados. No laço mais externo, escolhemos um valor para ωk e no interno
percorremos vários valores de n para determinar x[n] pela equação 34 para
F (t) = Fm sen(ωkt). A princípio tentamos resolver com 15 períodos de F (t),
mas caso x[n] ainda não tenha se acomodado para a oscilação estável final,
acrescentamos mais um período à simulação. Utilizamos como critério para a
acomodação, se no período anterior, a amplitude dos valores de x[n] não difere
da amplitude de seus valores no último período em mais do que 0,01%.

Por fim, tomamos como amplitude da oscilação de x a metade da diferença
entre os valores de máximo e mínimo nos últimos dois períodos e meio da simu-
lação, o que é uma estimativa da amplitude. Ao fim do percurso por todos os
valores de ωk, ao registrar as amplitudes a cada valor de ωk e empregando um
valor conhecido de Fm, podemos calcular a razão Xm/Fm em termos de ω, que
exibimos no gráfico da figura 39.
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1 from numpy import ∗
2 import matp lo t l i b . pyplot as p l t
3 m = 1 ; kEl = 1 ; beta = 1 ; Fm = 1
4 omegaMax = max( r e a l ( r o o t s (
5 [m∗∗2 , 0 , ( beta ∗∗2−2∗m∗kEl ) , 0 , kEl ∗∗2 −10000]) ) )
6 f s = omegaMax∗2/(2∗ p i )
7 N = 2000 ; ppT = 1000
8 k = arange (0 , int (N/2)+1) ; omega = k∗2∗ p i ∗ f s /N
9 HsimT = empty ( omega . shape ) ; HsimT [ 0 ] = Fm/kEl

10 for i in range (1 , len ( omega ) ) :
11 omegak = omega [ i ] ; T = 2∗ pi /omegak
12 Tssim = T/ppT
13 c1 = ( beta ∗Tssim + 2∗m) /( kEl ∗( Tssim ∗∗2) + beta ∗Tssim + m)
14 c2 = (−m) /( kEl ∗( Tssim ∗∗2) + beta ∗Tssim + m)
15 c f = ( Tssim ∗∗2) /( kEl ∗( Tssim ∗∗2) + beta ∗Tssim + m)
16 x = empty (ppT∗15) ; F = empty (ppT∗15)
17 F [ 0 ] = 0 ; F [ 1 ] = Fm ∗ s i n ( omegak∗Tssim )
18 x [ 0 ] = 0 ; x [ 1 ] = 0
19 acomodado = False ; n = 2
20 while n != len ( x ) :
21 F[ n ] = Fm ∗ s i n ( omegak∗n∗Tssim )
22 x [ n ] = c1∗x [ n−1] + c2∗x [ n−2] + c f ∗F [ n ]
23 i f (n%ppT == 0) and (n > 3∗ppT) :
24 acomodado = ( (max( x [ n−2∗ppT : n−ppT ] ) − min( x [ n−2∗

ppT : n−ppT ] ) ) >
25 0 .9999∗(max( x [ n−ppT : n ] ) − min( x [ n−ppT : n ] ) ) and (
26 max( x [ n−2∗ppT : n−ppT ] ) − min( x [ n−2∗ppT : n−ppT ] ) )

<
27 1 .0001∗(max( x [ n−ppT : n ] ) − min( x [ n−ppT : n ] ) ) )
28 i f ( not acomodado ) and (n == len ( x ) − 1) :
29 x = append (x , empty (ppT) )
30 F = append (F , empty (ppT) )
31 n = n+1
32 HsimT [ i ] = (max( x [ len ( x )−int ( 2 . 5 ∗ppT) : ] ) − min( x [ len ( x )−

int ( 2 . 5 ∗ppT) : ] ) ) ∗0 .5/Fm
33 p l t . p l o t ( omega , HsimT)
34 p l t . show ( )

Código 21: Simulação da oscilação do sistema massa-mola com atrito viscoso
para muitos valores da frequência do estímulo.

14.2 Análise da resposta ao impulso na frequência
Repetimos a simulação da equação 34 mas agora com a função

F [n] =
{

1, n = 2
0, caso contrário

, (38)

em que há um único impulso em F [2]. Para qualquer outro valor de n, F [n] = 0.
Usamos um período de amostragem na simulação 20 vezes menor do que o pe-
ríodo de amostragem final que desejamos apenas para ter uma melhor precisão
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Figura 39: Resposta em frequência para o sistema massa-mola com atrito viscoso
obtido pela simulação no tempo do código 22.

na simulação no tempo. Retomamos para o período desejado por meio da di-
zimação antes de obter o espectro. O espectro de x[n] obtido pelo estímulo
impulsivo de F é mostrado na figura 40. Vemos que a forma do espectro de x[n]
é muito similar à resposta em frequência do sistema13 exceto por uma propor-
ção, já que os valores da resposta em frequência estão na ordem da unidade e
os valores da resposta ao impulso estão na ordem de 10−5.

13Aqui, este fato pode ficar como mera coincidência ou pode-se mostrar que um impulso
contém todas as frequências, razão pela qual a resposta de um estímulo impulsivo em um
sistema linear tem a configuração da resposta em frequência.
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Figura 40: Espectro de x[n] para um estímulo impulsivo F [n].

1 x = z e r o s (20∗N)
2 F = z e r o s (20∗N)
3 F [ 2 ] = 1
4 Tssim = 1/(20∗ f s )
5 c1 = ( beta ∗Tssim + 2∗m) /( kEl ∗( Tssim ∗∗2) + beta ∗Tssim + m)
6 c2 = (−m) /( kEl ∗( Tssim ∗∗2) + beta ∗Tssim + m)
7 c f = ( Tssim ∗∗2) /( kEl ∗( Tssim ∗∗2) + beta ∗Tssim + m)
8 for n in range (2 ,20∗N) :
9 x [ n ] = c1∗x [ n−1] + c2∗x [ n−2] + c f ∗F [ n ]

10 x = x [ 0 : len ( x ) : 2 0 ]
11 w0 = 2∗ pi /N
12 i = reshape ( arange ( int (N/2)+1) , ( int (N/2) +1 ,1) )
13 j = reshape ( arange (N) , ( 1 ,N) )
14 matr iz IJ = i@j
15 Ca = (2/N) ∗ cos (w0∗ matr i z IJ )
16 Sa = (2/N) ∗ s i n (w0∗ matr i z IJ )
17 Ca [ 0 , : ] = 0 .5∗Ca [ 0 , : ]
18 i f N%2==0:
19 Ca [ int (N/2) , : ] = 0 .5∗Ca [ int (N/2) , : ]
20 H = s q r t ( (Ca@x) ∗∗2 + (Sa@x) ∗∗2)
21 #p r i n t (max( Hteo ) /max(H) )
22 #H = max( Hteo ) ∗H/max(H)
23 #p l t . p l o t (omega , Hteo , " r−−")
24 p l t . p l o t ( omega , H)
25 p l t . show ( )

Código 22: Recuperação dos sinais m1[n] e m2[n] a partir dos sinais modulados
e superpostos em s[n].

14.3 Comparação com resposta em frequência teórica
A figura 39 já mostra em tracejado vermelho a resposta em frequência teórica.
Ela é tão próxima de nossa simulação que quase não é possível vê-la.
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Figura 41: Comparação da resposta em frequência com a escala corrigida obtida
pela resposta ao impulso e a expressão teórica.

Já a comparação da resposta em frequência obtida pelo espectro da resposta
ao impulso com o valor teórico é mostrada na figura 41. Nela, corrigimos a
escala pelo valor do máximo teórico. Por esta razão, os gráficos são coincidentes
neste ponto, embora estejam efetivamento muito próximos por todo o gráfico.
Além do ganho para ajustar a escala, apenas desprezamos o primeiro e o último
valor que apresentavam descontinuidades.
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