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RESUMO

Amostragem de grandezas na Fisica e seus espectros
de Fourier — um curso para o Ensino Médio

Gabriel Torreao Dias da Silva

Orientador: Helio Salim de Amorim

Resumo da Dissertacao de Mestrado submetida ao Programa de P6s-Gradua-
¢ao em Ensino de Fisica, Instituto de Fisica, da Universidade Federal do Rio
de Janeiro, como parte dos requisitos necessarios a obtencao do titulo de
Mestre em Ensino de Fisica.

Apresentamos o desenvolvimento de um curso e seus materiais instrucio-
nais para realizacao de amostragem de grandezas, calculo e interpretacao do
espectro de Fourier por meio de uma adaptacao da apresentagao tipica do
ensino superior para uma forma de série finita trigonométrica adequada ao
Ensino Médio. O curso tem objetivo de compor disciplina eletiva da parte
diferenciada de itinerarios formativos de Matematica e suas tecnologias ou de
Ciéncias da Natureza e suas tecnologias, visando atividades interdisciplina-
res de aprofundamento de Fisica, Matematica e Programacao e envolvendo
temas de tecnologia e Processamento de Sinais. A aplicacao da proposta foi
realizada em grupos de estudo formados na Escola Naval e no Colégio Naval
e validou sua viabilidade para emprego como disciplina eletiva nos tltimos
anos do Ensino Médio.

Palavras chave: Ensino de Fisica, Espectro de Fourier, Amostragem.
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ABSTRACT

Sampling of quantities in Physics and its Fourier
sprectra — a course for high school

Gabriel Torreao Dias da Silva

Supervisor: Helio Salim de Amorim

Abstract of master’s thesis submitted to Programa de Poés-Graduagao em
Ensino de Fisica, Instituto de Fisica, Universidade Federal do Rio de Janeiro,
in partial fulfillment of the requirements for the degree Mestre em Ensino de
Fisica.

We present the development of a course and its instructional materials
for sampling quantities, calculating and interpreting the Fourier spectrum
by adapting the typical college presentation to a trigonometric finite series
form suitable for High School level. The course aims to compose an elective
discipline of the “differentiated part” of “formative itineraries” in Mathema-
tics and its technologies or in Natural Sciences and its technologies, legal
subdivisions of high school in Brazil, aiming at interdisciplinary activities
of in-depth study of Physics, Mathematics and Programming and involving
themes of technology and Signal Processing. The application of the propo-
sal was carried out in study groups formed at the Brazilian Naval School
(Escola Naval) and Brazilian Navy high school course (Colégio Naval) which
validated its viability for use as an elective discipline in the last years of high
school.

Keywords: Physics education, Fourier spectrum, Sampling.

Rio de Janeiro
Dezembro de 2024
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/[T] F(t)dt
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Capitulo 1

Introducao

As ideias de decomposicao de uma grandeza em termos de componentes é
um antigo e importante método de andlise e modelagem da Fisica, o que se
observa, pelo menos, desde o estudo de decomposi¢ao da luz em suas com-
ponentes espectrais realizada por Newton e publicado em seu livro Opticks
em 1704.

A decomposicao de uma grandeza varidavel no tempo em termos de com-
ponentes harmonicas senoidais ¢ um importante uso desta estratégia. Ela
nao s6 auxilia a modelar fendémenos ondulatorios complexos em termos de
uma série de oscilagoes com frequéncias que sdo multiplas inteiras de uma
frequéncia fundamental, como possibilita interpretacoes que designamos and-
lise mo dominio da frequéncia que seriam impossiveis em sua contrapartida,
aquela no dominio do tempo.

Embora representagoes por componentes trigonométricas tenham sido
amplamente empregadas ao longo da histéria da Matematica e da Fisica,
foi o trabalho de Jean-Baptiste Joseph Fourier publicado em 1822 que inse-
riu definitivamente as analises em componentes harmoénicas como estratégia
fundamental na descrigdo de fendmenos fisicos [1]. O importante papel de
Fourier lhe garantiu o empréstimo de seu nome nas analises no dominio da
frequéncia que passaram, predominantemente, a ser designadas andlises de
Fourier. Como é a composicao por diferentes frequéncias que permite a de-

composicao da luz no seu espectro, a andlise de Fourier também ¢é chamada
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de analise de espectro.

Além de sua presenca significativa na Matematica e na Fisica, a analise
de Fourier é tépico mandatério no estudo de tecnologias das areas das Fn-
genharias Elétrica, da Computacao, de Telecomunicagoes, de Automagao e
Controle e Biomédica, na analise de sistemas e no processamento de sinais
como suporte as tecnologias cujos projetos dependem da analise no dominio
da frequéncia.

O caso mais simples da aplicacao do espectro de Fourier é na medicao de
frequéncia. Um exemplo simples consiste na medicao da frequéncia com que
as asas de um beija-flor batem. Este problema nao é tao facil de resolver por
meio do video pois exige uma frequéncia de captura de quadros elevada e o
correto ajuste dos parametros da camera, caso contrario, o que se observa
é apenas o borrao resultante do rapido movimento das asas. Este problema
nao ocorre com o audio, que é bem preservado na captura com equipamentos
comerciais comuns. A andlise da fisica desta situacao nos indica que o som
emitido pelo bater das asas do beija-flor é resultante da perturbacao que
suas asas causam na atmosfera na vizinhanca da asa. A frequéncia desta
perturbagao coincide com o a origem da perturbacao, o préprio movimento
ordenado das asas. Desta forma, a frequéncia do som emitido, deve coincidir
com a frequéncia do bater das asas.

A figura apresenta um trecho de aproximadamente 800 ms do audio
captado na batida das asas do beija-flor. No gréfico, é possivel ver que, de
fato, o fené6meno parece ser aproximadamente peridodico e que a variacdo de
pressao apresenta vales acentuados. O intervalo entre dois vales foi tomado
como referéncia aproximada de um periodo e de onde se pode estimar a
frequéncia de 44 Hz. Esta é a estimativa realizada no dominio do tempo, ja
que nosso problema foi representado pelas relagoes das variagdo de pressao
X tempo.

O mesmo problema pode ser levado ao dominio da frequéncia se obser-
varmos o espectro de Fourier do mesmo trecho de dudio da figura[I.2] Agora,
ao observar a intensidade dos componentes de pressao x frequéncia, obser-
vamos que o efeito das asas possuem alguns componentes com intensidades

relativamente acentuadas nas frequéncias de 43,75, 86,25, 128,75, 171,25 e
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Figura 1.2: Espectro do trecho de audio emitido pelas asas.

215 Hz, o que também caracteriza uma oscilagdo em aproximadamente 44 Hz,
uma vez que se observam componentes, aproximadamente, nesta frequéncia
e em seus multiplos inteiros, ou harmoénicos.

Ao propor um problema relacionado a medida de frequéncia, se observa
que o dominio da frequéncia é mais apropriado para a coleta dos dados, uma
vez que a medigao é feita diretamente sobre o grafico do espectro por meio
leitura da frequéncia relativa ao primeiro pico, a da frequéncia fundamental.
Este exemplo é o mais simples e apenas ilustrativo. Em alguns fenémenos e
tecnologias, como modulagao em amplitude (AM), ha um afastamento ainda
maior com relacao as informacoes apresentadas quando se compara o dominio
do tempo com o da frequéncia.

O presente trabalho de dissertacao, que ora passamos a descrever, foi
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fortemente motivado pela possibilidade da antecipacao de tépicos de tecno-
logia tipicos do Ensino Superior em disciplinas eletivas previstas nos, assim
chamados, Itinerarios Formativos, orientados ao aprofundamento em Cién-
cias Exatas. Estes itinerarios figuram na redacao das diretrizes e bases da
educagao nacional, estabelecida pela Lei n2 9.394/1996, desde a modificagdo
proposta pela Medida Proviséria n® 746/2016. A redagdo mais atual deste
tépico é dada pela pela Lei n2 14.945/2024.

Considerando a importancia do topico e essa previsao legal, comegamos
a desenvolver, em 2022, um curso de analise de Fourier em grandezas amos-
tradas e sua aplicacdo a problemas de Fisica e tecnologia com a finalidade
de aplicé-lo no Colégio Naval (CN), curso de Ensino Médio e preparatério
para a formacao superior na Escola Naval. A proposta do curso considera
uma aplicacao sob a forma de disciplina eletiva da parte diversificada de seu
[tinerario Formativo de Ciéncias da Natureza e suas de Tecnologias.

A presente dissertacao foi organizada em quatro capitulos. No Capitulo
analisamos o estudo, ou a possibilidade de estudo, de tépicos de tecnologia
no Ensino Médio. Procuramos focar, em particular, na aplicabilidade des-
ses topicos no Colégio Naval, instituicao com a qual mantenho um vinculo
por meu trabalho na Escola Naval. Naturalmente, essa vinculacao tem um
carater estratégico na medida em que possibilita aplicagoes das ideias aqui
desenvolvidas diretamente com nossos alunos. Consideramos o carater inter-
disciplinar das tecnologias e a centralidade da Fisica na apresentagao destes
topicos como um fato basico e procuramos desenvolver uma metodologia,
ou mais simplesmente, uma linha de argumentagao envolvendo, especifica-
mente, o uso dos conceitos de analise de espectro e de amostragem para o
nivel médio. Veremos mais adiante, como conclusao, que esses conceitos sao
acessiveis neste nivel.

Ainda no Capitulo [2| consideramos outras finalidades para o curso, pois
esperamos que ele possa servir de contribuicao geral tanto no nivel médio
como para fundamentar alteragoes curriculares no inicio do Ensino Superior.

Como ja indicamos, os conceitos que esperamos introduzir sao tipicos do
Ensino Superior. No Capitulo [3] detalhamos os diversos formatos de analise

de Fourier empregados nos cursos de Engenharia e, mais especificamente,
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adaptamos uma de suas modalidades, a série de Fourier de tempo discreto,
para se adequar ao nivel e aos conceitos usualmente explorados no Ensino
Médio e, em particular, no nivel do Colégio Naval. Com a apresentacao dessa
adaptacgao, vamos encaminhar a proposta de curso.

Formamos grupos de estudo no 32 ano do Colégio Naval e no 12 ano da Es-
cola Navalll com a finalidade de desenvolver o curso de forma extracurricular
e verificar a sua aplicabilidade como disciplina eletiva, conforme objetivo ori-
ginal do trabalho. Os resultados da aplicacao sao apresentados no Capitulo
[l Apesar do alto nivel de complexidade dos tépicos e da interdisciplinari-
dade exigida, os trabalhos dos grupos de estudo foram bem sucedidos, razao
pela qual concluimos pela viabilidade da integragao do curso como disciplina
eletiva, a ser incluida na estrutura curricular do CN em um futuro préximo.

O desenvolvimento do curso fez uso de apostila, videoaulas e de uma lista
de pequenos projetos no formato de problemas para aplicacao da andlise
de espectro, bem como suas solucoes. Estes materiais integram o produto
educacional desenvolvido nesta dissertacao e sao apresentados nos apéndices
@, , @ e . Enquanto a apostila garante um texto escrito de referéncia, as
videoaulas foram elaboradas por demanda dos préprios alunos. Os projetos
concluem a aplicagao das competéncias a desenvolver no curso com questoes

envolvendo tépicos de Fisica e de Tecnologia.

1A Escola Naval é uma instituicdo de Ensino Superior que adota a divisio anual em
sua periodicidade.
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Analise de espectro no Ensino
Meédio

O desenvolvimento de competéncias e de uma visao de mundo que contribua
para a formacao de um cidadao e profissional capaz de compreender e fazer
bom uso das tecnologias é papel, no ensino basico, das disciplinas de Ciéncias
no Ensino Fundamental e de Quimica, Fisica e Biologia no Ensino Médio.
Subjacente, como ferramenta de descri¢ao auxiliar ao estudo, estas disciplinas
sdo conduzidas pelo emprego abundante da Matematica [2-4].

Aparatos tecnologicos, porém, costumam ser fruto de projetos interdis-
ciplinares. Os fenomenos e disciplinas sao abarcados como contribui¢ao nos
projetos a medida que surtam um efeito desejado, ou seja, que deem aos apa-
ratos a finalidade imaginada pelo projetista [4]. A tecnologia nao olha para
as disciplinas, mas para seus efeitos. Nao olha para o aparato, mas para sua
finalidade. Desta maneira, o uso desta ou daquela disciplina ou fen6meno
se subordina ao cumprimento da finalidade do aparato tecnoldgico e nao das
preferéncias do projetista ou mesmo do usuario das tecnologias.

Tomemos como exemplo um eletrocardidgrafo digital [5]. O conhecimento
da bioeletricidade e da anatomia do sistema nervoso e cardiovascular humano
determina pontos sobre o térax do paciente em que devem ser posicionados
os eletrodos. A anatomia humana é topico da biologia. A bioeletricidade, em

si, j& é um tépico da Biofisica e interdisciplinar por definicdo. Tem origem
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no transporte de ions dissolvidos nos fluidos do paciente. Sao interpretados
biologicamente como a acao do sistema nervoso, quimicamente como efeitos
de difusao e fisicamente como movimento de cargas elétricas.

Os eletrodos captam as flutuagoes da diferenca de potencial devido ao
deslocamento destes fons no processo de excitagao nervosa do coragao e as
trata em um circuito eletrénico, cujos fundamentos de funcionamento se re-
lacionam com os topicos de eletricidade da Fisica. Muito provavelmente os
circuitos sao ricos em componentes integrados fabricados sobre materiais se-
micondutores dopados propositalmente com impurezas em processos que en-
volvem Quimica, Fisica Quantica e Otica em plantas robotizadas preparadas
para realizar operagdes mecanicas finas [6,[7].

Por fim, os sinais cardiacos sao convertidos em variaveis tratadas em uma
abstragao numérica, permitindo o emprego de nimeros em base binaria em
algum pequeno processador do eletrocardiégrafo e, portanto, empregando a
Matematica. Ele, entao, exibe a onda caracteristica do processo de excitagao
cardiaca e cumpre sua finalidade de subsidiar um profissional da saude, for-
necendo informagoes para a tomada de decisdes da atuagdao médica em um
paciente sob monitoramento.

Os fundamentos das disciplinas basicas de Fisica, Quimica, Biologia e
Matematica serviram apenas de meio para se obter como finalidade a exibicao
de informacao de dados do paciente. Podemos ir ainda mais longe e afirmar
que a finalidade tultima s6 é atingida quando estes dados sao efetivamente
observados e interpretados por um profissional.

Ora, o desenvolvimento das disciplinas do ensino basico costuma ser con-
duzido pela exploracao isolada de fendmenos, e, por esta razao, tipicamente
se afastam de aplicagoes finalisticas como as desejadas em tecnologias, mesmo
as mais simples. Como discutimos, as tecnologias nao precisam se deter em
um fendmeno ou disciplina, ou pior, nao podem fazé-lo sob a pena de res-
tringir as possibilidades de conduzi-la ao cumprimento de uma finalidade.

E bem verdade que no processo de aprendizagem seria muito dificil englo-
bar todos os aspectos de tecnologias atuais nas disciplinas fundamentais de
ciéncias. Isto nao significa, porém, que elas nao sejam os fundamentos destas

tecnologias e o caminho inicial pelo qual os estudantes se interessaram em
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carreiras da area tecnoldgica.

Podemos considerar pelo menos trés caminhos através dos quais é reali-
zada a aproximagao de alunos do ensino béasico aos tépicos de tecnologia e
das carreiras de tecnologia. O primeiro deles é pela exploracao segmentada
de aparatos tecnologicos de modo a limitar a abordagem a um fenémeno
associado a um topico de aula. Ou seja, o aparato dificilmente é explorado
integralmente, mas apenas de forma fracionada tal que cada fracao caiba no
enquadramento de cada aula especifica. Neste caminho, cabe ao aluno unir
as observacoes isoladas para compreender o todo depois de estudar varios
segmentos em aulas distintas.

O segundo caminho é por meio do desenvolvimento de trabalhos ou pro-
jetos mais complexos e interdisciplinares que se estendem por varias aulas, as
vezes de varias disciplinas, sob o acompanhamento de mais de um professor,
e até em atividades extraclasse. Esta abordagem foi adotada nas politicas
publicas vinculadas ao chamado Novo Ensino Médio e, consequentemente, no
Programa Nacional do Livro e do Material Didatico (PNLD) que licitou no
Edital n® 03/2019, referente ao PNLD 2021, obras sobre o titulo de “Projetos
Integradores”.

O dltimo é pela integracao com profissionais das areas de tecnologia, o
que tipicamente é desenvolvido por meio de atividades de extensao junto a
instituicoes de Ensino Superior.

Vamos considerar estes caminhos, principalmente os dois tltimos, nova-

mente, ao fim da secao para melhor delinear os objetivos deste trabalho.

2.1 Fisica — a porta para as carreiras em tec-
nologia

Dentre as trés disciplinas que delineamos no Ensino Médio como fundamentos
das areas de tecnologia, a Fisica tem um papel central na descricao dos
fendmenos naturais. Em ultima instancia, varios dos fendmenos de outras
areas sao estudados a fundo em algum dos ramos interdisciplinares da Fisica,

como a bioeletricidade que discutimos na descri¢ao do eletrocardidgrafo.
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Apenas como uma referéncia da centralidade da Fisica como fundamento
das carreiras de tecnologias, vamos tomar o processo seletivo para ingresso
no Ensino Superior da USP promovido pela FUVEST em 2022 (para in-
gresso em 2023) [8]. A organizagao divide os cursos em trés grandes areas
que designam ciéncias humanas, bioldgicas e exatas. Estas, por sua vez, sao
subdivididas em carreiras que englobam cursos afins de um mesmo campus e
define quais provas especificas devem ser feitas na segunda fase do processo
seletivo. Como a segunda fase possibilita a selecao de disciplinas, a tendén-
cia é que o estudante realize provas de areas que tem mais aderéncia como
fundamento das técnicas e tecnologias que ele estudara para se tornar um
profissional e que sao espécies de prerrequisitos importantes para realizar o
respectivo curso.

Dentre as ciéncias exatas, que cobrem a maior parte das profissdes da
area de tecnologia, apenas o ingresso em Engenharia Ambiental (apenas no
campus de Sao Carlos), Engenharia Bioquimica, Licenciatura em Ciéncias
Exatas, Licenciatura em Geociéncias e Educacao Ambiental, Oceanografia,
Bacharelado e Licenciatura em Quimica (apenas para o campus de Ribeirao
Preto) nao determinaram a realizagdo da prova de Fisica na segunda fase
do processo seletivo. O total de vagas que exigiram a prova de Fisica para
ingresso é de aproximadamente 92% nesta area.

Nas ciéncias biologicas, os cursos de Ciéncias Biomédicas, Fonoaudiolo-
gia, Medicina, Medicina Veterinaria, Nutricdo e Metabolismo, Odontologia,
Educagao Fisica e Fisioterapia consideraram a Fisica na segunda fase. Estes
cursos totalizam aproximadamente 46% das vagas desta area.

Mesmo na area do que foi classificada como ciéncias humanas e que estaria
mais afastada das tecnologias, a prova de Fisica é mandatoria para os cursos
de Arquitetura e de Design, totalizando aproximadamente 5% das vagas nesta
area.

A abrangéncia das areas profissionais e, consequentemente, das técnicas
e tecnologias que podemos considerar relacionadas a Fisica é tao vasta que
inclui uma nova dificuldade no ensino da Fisica béasica — a abrangéncia de

aplicagoes correlatas.
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2.2 Espectro de Fourier no Ensino Médio —
oportunidade de aprofundamento em te-

mas de tecnologia

As Leis n® 13.415/2017 e n2 14.945/2024, que modificam a Lei n® 9.394/1996
de diretrizes e bases da educagao, instituiu no Ensino Médio o emprego de
uma parte diversificada nos curriculos do ensino para o atendimento de “ca-
racteristicas regionais e locais da sociedade, da cultura, da economia e dos
educandos” considerando Itinerarios Formativos que “serao compostos de
aprofundamento das areas do conhecimento”. Para os alunos e institui¢oes
que promovem ou identificam um direcionamento para seus alunos voltado
para seu emprego em atividades relacionadas a tecnologia, a parte diversifi-
cada pode servir como oportunidade para aprofundamento, antecipacdo ou
melhor preparagao para os topicos avancados em tecnologia e de certa forma
pode auxiliar a resolver o problema da grande abrangéncia de aplicagoes
relacionadas a Fisica.

Isto se observa no caso especifico do Colégio Naval, estabelecimento de
Ensino Médio localizado em Angra dos Reis e que prepara os alunos para
o Curso de Graduacao da Escola Naval. A Escola Naval é a academia mi-
litar responsavel pela formacao em nivel superior dos oficiais considerados
operativos na Marinha do Brasil. A principal forma de entrada na Escola
Naval é pelo éxito no Curso de Preparacao de Aspirantes, como é chamada
a proposta de ensino basico promovida pelo Colégio Naval.

Uma vez cursando a Escola Naval, o aluno, designado Aspirante nesta
instituicao, devera escolher em que corpo servird. Os corpos realizam ativi-
dades distintas dentro da Marinha e sdo uma primeira forma de diferenciacao
da especializagao. Os oficiais dos Corpos da Armada e de Fuzileiros Navais
trabalham na linha de frente na operagao e gestao dos meios navais (navios,
submarinos e aeronaves) e de fuzileiros navais (veiculos terrestres e aerona-
ves). Estes meios sdo complexos, compostos de estruturas, equipamentos
para propulsao, governo, geragao e distribuicao de energia, combate a incén-

dio e controle de avarias, armazenamento, distribuicao e tratamento de agua
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e esgoto, comunicagao, navegacao e deteccao, além de armamentos e de seus
sistemas de controle. Por esta razao, espera-se alto grau de especializacao
em tecnologias diversas, garantindo as competéncias necessarias para as ati-
vidades de operacao, manutencao e assessoramento na modernizacao destes
meios.

A estatistica que considera a turma formada no ano de 2023 e as trés
turmas subsequentes mostra que 89% dos Aspirantes integrarao os Corpos
da Armada e de Fuzileiros Navais. Com estes nimeros, podemos estimar
que em torno de nove de cada dez alunos, e portanto quase a totalidade, do
Colégio Naval tendem a ser encaminhados para areas onde a demanda pelo
desenvolvimento de competéncias da area tecnologica é certa. Os alunos res-
tantes optam pelo Corpo de Intendentes da Marinha, cujo enfoque é no apoio,
logistica e administragao, menos orientado a area de tecnologia. Fica claro
com esta estatistica que a parte diversificada ¢ uma excelente oportunidade
para o desenvolvimento embrionario de competéncias de areas da tecnologia
no Colégio Naval.

O exemplo deste caso especifico destaca o surgimento de uma oportuni-
dade para a estruturacao de cursos eletivos ocupando as partes diversificadas
do ensino bésico, uma vez que pode-se observar alta probabilidade de que
os alunos do CN sigam uma carreira tecnoldgica. Conforme detalhado na
se¢do |3.1], o estudo do espectro de Fourier e, de forma mais ampla, do pro-
cessamento digital de sinais, é um tépico relevante na formacao de grande
quantidade de profissionais.

Mostramos no Capitulo [3| de forma geral que, embora seja hoje um to6-
pico exclusivo do Ensino Superior, a amostragem e o espectro de Fourier de
sinais amostrados ¢ passivel de uma abordagem empregando prerrequisitos
do Ensino Médio presentes nos curriculos atuais e em particular no curriculo
do CN [9]. Este tépico pode ser um caso relevante para apresentacao de
forma introdutoéria no Ensino Médio como uma antecipacdo ou preparacao
para seu aprofundamento no Ensino Superior. Um curso cobrindo tépicos
de amostragem e de espectro de sinais no curso basico se encaixa ao caso
especifico do Colégio Naval na proposta da parte diversificada do curriculo.

Delineado o caso especifico podemos considerar o caso geral. Pode-se pro-
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por o emprego de um curso de amostragem e analise de espectro empregando
prerrequisitos do Ensino Médio para pelo menos os seguintes casos do ensino

basico:

e em escolas de maior porte que possam reunir alunos suficientes para
apresentacao dos referidos tépicos de forma eletiva na parte diversifi-

cada de seu curriculo;

« em institui¢oes de educacao profissional técnica de nivel médio em cur-
sos como eletronica, instrumentagao industrial, mecatronica ou teleco-
municacoes em que a amostragem e o processamento de sinais é tecno-

logicamente relevante; ou,

e em escola menores nas quais se possa estruturar a parte diversificada
por meio de cursos a distancia, conforme previsto na Lei n® 9.394 /1996,

como forma de atender a alunos interessados neste tépico como eletivo.

A simplificacao da abordagem que torna a amostragem e andlise de espec-
tro viaveis no Ensino Médio discutida no Capitulo |3| pode também subsidiar
mudancas curriculares nos proprios cursos superiores das areas de tecnolo-
gia, uma vez que estes cursos poderiam ser apresentados desde a entrada do
aluno nesta fase da formagao pois os prerrequisitos para o curso sao de nivel
médio.

Por fim, podemos considerar que o formato simplificado pode ser impor-
tante também como aprofundamento para profissionais das areas especificas
de onde sao coletados os dados mas que nao tenham formagao aprofundada
em topicos tipicos das carreiras de tecnologia no nivel superior, como o cal-
culo diferencial e algebra linear. Isto ocorre, por exemplo, para musicos,
artista e editores que trabalham com audio no formato digital ou com pro-
fissionais da satude que operem instrumentos de medida e diagnostico digital
ou ainda que desejem fazer pesquisa com analise mais detalhada de sinais de
origem biologica.

Conforme verificaremos nos Capitulos [3| e [ embora possivel, o desenvol-
vimento do curso exigira emprego de recursos de programacao, e dos limites

da Matematica e Fisica do Ensino Médio, sendo considerado, portanto, um
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curso avancado nesse nivel e recomendado apenas para alunos com bom de-
senvolvimento nos seus prerrequisitos. Desta forma, nao parece adequado
que o0 mesmo seja um curso obrigatério ou aplicavel em qualquer contexto.

O caso especifico do Colégio Naval e da possivel antecipacao destes topicos
no Ensino Superior da Escola Naval, porém, sao razoes suficientes para a
estruturagao de um curso de amostragem e andlise de Fourier empregando
prerrequisitos do Ensino Médio e é o que tomamos como objetivo para este
trabalho. A previsao de possibilidades diversas de demanda por um curso
de espectro de Fourier apenas aumenta o interesse no desenvolvimento desta
abordagem, embora entendamos que se trata de uma proposta de vanguarda
e de aceitacao limitada.

Para tal, vamos considerar os caminhos que delineamos no inicio deste
capitulo e promover atividades de extensao por professores da Escola Naval
junto aos professores do Colégio Naval consistindo na realizacao de ativida-
des extracurriculares em analise de espectro de Fourier aos alunos de ambas
as instituicoes. Esperamos conseguir, em médio prazo, converter a ativi-
dade extracurricular experimental em um curso curricular eletivo da parte

diversificada do curriculo.

2.3 Apresentacao de amostragem e analise de

espectro no Ensino Médio

Os resultados deste trabalho serao aplicados a fendmenos em que a descri-
¢ao se faz por meio da conexao de duas grandezas, uma independente e uma
dependente. Este é o caso da cinematica, por exemplo, em que se busca estu-
dar as relagoes da posi¢ao (dependente) ao longo do tempo (independente).
De fato, a maior parte de nosso trabalho considerara implicitamente que a
variavel independente é o tempo t para uma variavel dependente qualquer x.
Em nossos estudos, chamaremos por convencao z(t) de sinal.

Nao nos importa grandes formalismos na ideia de sinais, embora fagamos
uma introducao das nog¢oes de sinais nos materiais instrucionais apresentados

nos apéndices [A] e Bl Sem muito rigor, podemos dizer que hé certa similari-
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dade entre os conceitos de funcao na Matematica, grandeza dependente de
outra grandeza na Fisica e de sinais na tecnologia. As principais diferen-
cas se encontram no interesse de cada disciplina. Enquanto a Matematica
enfoca na relacao entre z e t, em que ambos sao apenas numeros reais, a
Fisica se importa com o estudo de x e t quando ambos sao, necessariamente,
grandezas fisicas, desejando com isso tirar conclusdes sobre a natureza da
relacdo entre as grandezas ou fornecer uma descrigdo detalhada da relagao.
Ja na interpretacao tecnoldgica, importa que se x(t) é um sinal, ele carrega
informacao relevante que pode ser observada no valor de x a medida que o
tempo t passa.

Como o estudo de relagoes do tipo z(t) coincide com o caso da cinemaética,
que é amplamente estudado na maior parte dos curriculos de Fisica desde o
primeiro ano de um curso do nivel médio, espera-se que um aluno dedicado
nesta disciplina no fim de 2° ano ou inicio do 32 ja esteja familiarizado com
este tipo de descricao.

Ha uma caracteristica interessante no ensino de Fisica do nivel médio
na descricdo de fendmenos que envolvem a relagdo entre duas grandezas.
Enquanto que o ensino se baseia na apresentacao da relagao entre x e t,
tratando-os como continuos, raramente, inclusive por razoes tecnolédgicas,
serdo observados registros continuos da associacao destas grandezas. Ou

seja, a forma mais comum ¢é a observacao de amostras das grandezas.

t =
:L’ o
inicio

Figura 2.1: Amostras de posicao e tempo no experimento de Galileo.

Este é o caso, por exemplo, do famoso experimento do rolamento inclinado
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realizado por Galileo [10] que ilustramos na ﬁgura Em termos modernos,
se 0 eixo x ¢é o eixo no qual marcamos as posicoes da esfera que rola no sulco,
Galileo sabia apenas que a esfera rola uma distancia Ax num tempo At. O
primeiro ele mediu em proporcao ao tamanho total da rampa e o segundo
em proporc¢ao com a massa da agua que ele coletava do inicio ao fim do rola-
mento. Ora, isto corresponde exatamente a conhecer apenas duas amostras
da relagao z(t): z(0) = 0 e x(At) = Az — assumindo arbitrariamente que o
inicio ocorre quando ambos, x e t, sdo nulos.

Vemos que, neste experimento, seria impossivel, com os instrumentos
disponiveis, ter conhecimento da relagao z(t) para uma faixa continua de ¢.
Desta forma, a coleta do que interpretamos como duas amostras foi necessaria
pelas dificuldades tecnolégicas inerentes ao experimento. O estabelecimento
da relagao entre x e t continuos s6 é possivel a posteriori considerando que
as repeticoes do experimento seguem uma regra e de onde Galileo concluiu
que em qualquer rolamento x o t? e que hoje estudamos como
a

12 2.1
2 ? ( )

T =
em que a é a aceleracao da esfera. A equacao [2.1]é topico certo da literatura
do ensino basico sob a denominacao de equagao horaria do espago para o caso
em que a velocidade e posi¢ao iniciais sdo nulas e estabelece uma relacao entre
as duas grandezas continuas = e t. Seu estudo d& ao aluno a impressao de
que seria trabalho facil observar e registrar o desenvolvimento do movimento
considerando um tempo continuo.

Caso ainda mais evidente do emprego da amostragem ¢ feito por Newton
em suas argumentacoes a respeito da segunda lei de Kepler, o que o faz por
meio da figura [11]. Nela, o estudo da trajetéria de um corpo sobre acao
de uma forga centripeta (em dire¢ao a .S) proporcional ao inverso do quadrado
da distancia (do corpo até ) é feita por um conjunto de segmentos de reta de
A até F. Os segmentos sao justamente porc¢oes descritas em tempos iguais,
o que coincide com o conceito de periodo de amostragem 7.

Neste caso amostrado, as areas varridas pelo raio num mesmo tempo coin-

cidem com os triangulos ASB, BSC, CSD etc. Pela geometria, ele prova
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Figura 2.2: Amostras de posicdo de corpo sobre acao de forca centripeta
proporcional ao inverso do quadrado da distancia.
Fonte: Newton [11].

que estas dreas sdo iguais, mostrando a segunda lei de Kepler. E apenas
apos esta constatacao do caso amostrado que Newton propde “aumentar a
quantidade de triangulos” de modo que a distancia entre os pontos consecu-
tivos diminua, assim como diminuird o tempo decorrido entre as amostras,
implicando no que poderiamos considerar hoje como a diminui¢ao do periodo
de amostragem. Com isso, o conjunto de segmentos tende a uma curva suave
e a observacgao do progresso de amostras de tempo tende ao tempo continuo.

Além do emprego da amostragem na elaboracao da argumentacgao, observa-
se repetidamente que os registros de experimentos na Fisica sao quase em sua
totalidade compostos de observagoes discretas ou amostras das grandezas en-
volvidas. Esta realidade se agravou com o emprego de aparatos tecnolégicos
como o estroboscopio, cAmeras e o computador digital. Sensores eletronicos
e sinais digitalizados por meio de conversores analdgico-digitais se tornaram
baratos e abundantes e uma fonte de registro de amostras nos experimentos
da Fisica.

Apesar da abundancia do uso de observacoes discretas ou amostras, os
livros didéticos consultados [12-15] ndo tratam das caracteristicas da amos-

tragem, e raramente empregam este termo atualmente difundido para des-
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crever o emprego de observacoes discretas. Por esta razao, nossa proposta
de sequéncia didatica tratard de amostragem com detalhe matematico sufi-
ciente para seu uso na andlise de espectro conforme apresentamos na segao
A necessidade do emprego de amostragem, além da abundancia de sinais
reais amostrados, se da pela simplificacao do calculo do espectro de Fourier
em sinais amostrados conforme vemos na secao [3.1] De fato, o célculo do
espectro de Fourier no nivel do Ensino Médio s6 é possivel em sinais finitos
ou periddicos amostrados, situagao em que se evitam o célculo diferencial e
os somatoérios infinitos.

Ja em relagdo a nocao de espectro, observamos que o caso mais comum
de sua apresentacao no Ensino Médio se da no estudo da composicao da luz
visivel por componentes de acordo com o comprimento de onda. Os textos
em geral associam comprimento de onda, velocidade e frequéncia, de sorte
que pode-se associar com facilidade os componentes de onda eletromagnética
no espectro visivel a nogao de espectro de frequéncias.

Como no espectro visivel os componentes do espectro estao associados as
cores, a apresentacao é facilitada, inclusive, com a possibilidade de abordar
as nogoes de cores primarias e de espectros de emissao e absorcao que sao
argumentos passiveis de demonstragoes visuais e associados ao cotidiano.

Nao foram observadas discussoes especificas ou detalhadas a respeito da
decomposi¢ao em componentes de frequéncia ou de suas representacoes gra-
ficas nos livros didaticos consultados [12-{15]. E comum que seja apresentada
a ideia de harmonicos, especialmente nos casos das cordas fixas em ambas
as extremidades e na ressonancia em tubos, abertos em uma extremidade ou
em ambas.

Alguma ideia rudimentar de espectro e de componentes de frequéncia
é apresentada, também, em tépicos relativos as qualidades do som quando
tratando do timbre. Varios textos empregam a composi¢ao de harmonicos
na onda sonora como trago distintivo entre os timbres como se observa, por
exemplo, no livro adotado no Colégio Naval [15] que reproduzimos na figura
2.3] Ela ilustra brevemente a composi¢ao de uma onda periédica complexa
chamando a apresentacao dos diversos componente de “andlise”.

Encontramos resultados similares aos que queremos reproduzir apenas na
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Figura 2.3: Sinal original a) e suas componentes senoidais de b) a e).
Fonte: Doca, Biscuola ¢ Boas [15].

obra de Tipler e Mosca dentre os textos de Fisica. Eles estao reproduzidos
na figura 2.4 Esta obra, porém, ¢ indicada para o curso superior e o espectro
é apresentado como ilustrativo do timbre. Os autores trazem estes dados
em secao do livro designada “Tépicos adicionais” sob o titulo de “Analise e
sintese harmoénicas” e indicam no texto que a ponderacao da intensidade de
harmonicos ¢ realizada pela técnica designada “andlise de Fourier”, mas nao

detalha como esta anélise é realizada.
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Figura 2.4: Anédlise de Fourier apresentada em Tipler e Mosca [16] em t6pico

de anélise de harmonicos.
Fonte: Tipler e Mosca .

Embora a andlise de espectro nao seja claramente definida nos textos ti-

picos do Ensino Médio, a ideia de componentes de frequéncia, sua represen-
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tagao grafica e algumas de suas consequéncias e conceitos derivados podem
ser observados em exercicios propostos em processos seletivos recentes, o que

passamos a analisar a seguir.

2.3.1 Analise de espectro em processos seletivos

O fato de serem observadas nogoes de andlise de espectro em exercicios de
processos seletivos serve de evidéncia de que a esta ideia pode ser intuida
ou deduzida a partir dos conceitos deste nivel de ensino, embora nao esteja
formalizada. Esta proximidade do conceito de espectro com os conceitos do
ensino basico sdo delineados em detalhes na secao [3.6.1]

Nos exames, a nocao de espectro de frequéncias aparece diretamente ou
em conceitos derivados. Como exemplo do emprego direto da nocao de espec-
tro de frequéncias, podemos citar a questao 9 da prova da 22 fase do ITA de
2022. Ela trata do som emitido por cordas percutidas no piano e apresenta
o gréifico do espectro de frequéncias da figura [2.5] chamado no enunciado de

“decomposicao espectral”.
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Figura 2.5: Espectro de frequéncia no exame do ITA na 22 fase de 2022.
Fonte: ITA 2022 (22 fase).

Nenhuma descricao do que é esta decomposicao espectral é dada, o que
corrobora o entendimento de que o elaborador do exercicio considera que

os alunos tém conhecimento suficiente para concluir do que se trata apenas
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pelo grafico e pela compreensao do fend6meno (estimulo de uma corda presa
nas extremidades). Como resultado, o grafico fornecido é um exemplo muito
préoximo do que desejamos que o aluno seja capaz de produzir com exatidao
a partir de amostras. Nota-se pelo grafico ndo haver grande preocupacao
com os valores exatos de amplitude e de frequéncia. Podemos considerar que

trata-se de um esboco.
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Figura 2.6: Grafico de um instantaneo da pressao x posi¢do de uma onda
sonoral para obtencao do espectro da figura no exame da 22 fase da
FUVEST 2005.

Fonte: FUVEST 2005 (22 fase).

Ainda dentre os exercicios que abordam diretamente o conceito de anélise
de espectro, a questao 8 da prova de Fisica da 22 fase da FUVEST de 2005
apresenta componentes de frequéncia do som pela representacao das inten-
sidades de trés componentes senoidais e da onda resultante da superposicao
por meio de um grafico de um instantaneo de intensidade x distancia repro-
duzido na figura [2.6] Pede-se no enunciado o preenchimento do grafico da
figura sem que seja detalhado o gréfico. Para facilitar o candidato, um
dos componentes vem preenchido no exercicio (conforme se observa na figura
. Quando completo, ele é o espectro de frequéncias da onda S também
nos moldes do que desejamos desenvolver no curso.

Como um tultimo caso em que se observa o conceito de espectro de frequén-

cias diretamente é o da questao 19 da 22 fase do exame da UFU no processo de
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Figura 2.7: Espectro de frequéncias a preencher no exame da 22 fase da

FUVEST 2005.
Fonte: FUVEST 2005 (22 fase).
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Figura 2.8: Espectro de frequéncia no exame da UFU 2021.2.
Fonte: UFU 2021.2 [17].

2021 do segundo semestre. O espectro reproduzido de é dado no exame

e também o reproduzimos na figura 2.8, Neste caso, é interessante notar que
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o grafico é extraido de um livro de Ensino Superior, e, ainda assim, o elabo-
rador da questao também considera que o aluno é capaz de compreender o
grafico pois o mesmo nao é detalhado no enunciado.

Partindo para alguns exemplos do uso de conceitos secundarios, podemos
observar os conceito de resposta em frequéncia na questao 55 da prova azul
da 22 aplicacdo do ENEM em 2016. Este gréfico, reproduzido na figura [2.9]
indica a relagdo entre a intensidade da resposta de um sistema a um estimulo
em termos da frequéncia do estimulo. Uma defini¢ao formal da resposta em

frequéncia pode ser dada pelo médulo da razao

entre as amplitudes das entradas e saidas do sistema, em que a entrada tem
o formato
x(t) = Ay cos(2m ft + 0,,)

e a saida
y(t) = Ay cos(2m ft +6,).

Ou seja, o efeito do sistema é apenas sobre a amplitude e a fase quando se
considera um estimulo senoidal. A razao A,/A, nao é constante, ela depende
da frequéncia, o que possibilita a elaboragao do grafico |H(f)| x f que é o
que é apresentado no problema.

Podemos ver que o conceito formal de resposta em frequéncia nao é sim-
ples. Sua apresentagao costuma se dar apenas no curso superior em topicos
de sistemas lineares, vibracao, circuitos lineares, filtros etc. Dentre os cursos
que delineamos na secao [3.1], a primeira vez que este conceito costuma apa-
recer é nos cursos de Circuitos Elétricos onde a sua definicdo pode ser vista
em sua bibliografia tipica [18-23]. Apesar disto, o elaborador explica apenas
superficialmente o significado do grafico e exige sua compreensao ao fim do
nivel médio, momento para o qual o ENEM ¢ indicado.

Por fim, no ENEM de 2011, encontramos dois exemplos de conceitos se-
cundérios, o de espectro de absorgao e o de espectro de reflectancia (chamado

no enunciado de curva de comportamento espectral ou assinatura espectral
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Figura 2.9: Resposta em frequéncia no ENEM 2016.
Fonte: ENEM 2016.
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Figura 2.10: Grafico do espectro de absorcao no ENEM 2011.
Fonte: ENEM 2011.

do objeto), respectivamente nas questoes 63 e 67 da prova azul. Ambos os
conceitos expressos por meio de graficos e reproduzidos nas figuras [2.10] e
2.11} Neles, a variavel independente é o comprimento de onda, de onde se

pode obter a frequéncia pela relagao

em que c é a velocidade de propagacao da onda e A é o comprimento de onda.

Nos enunciados destes exercicios, ha explicagoes sobre os fendémenos com
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Figura 2.11: Curva de comportamento espectral ou assinatura espectral de
um objeto no ENEM 2011.
Fonte: ENEM 2011.

os quais eles estao relacionados, mas as caracteristicas especificas dos graficos
nao sao comentadas.

A tabela resume os exemplos de exercicios e mostra que, de forma
geral, os elaboradores assumiram que as representacoes envolvendo compo-
nentes de frequéncia nao precisam de explicagoes adicionais. A compreensao
pode ser depreendida do conhecimento prévio do aluno e da analise das ca-
racteristicas do grafico. Fendmenos secundarios como harmoénicos em cordas
e em ondas sonoras e a emissao, absor¢ao e reflexdo de radiacao sao resu-
midas em graficos do tipo grandeza x frequéncia (ou comprimento de onda)
sem grandes floreios.

Esta evidéncia nos auxilia a assumir que a nocao de espectro, neste nivel,
é relativamente intuitiva e que basta a apresentacao detalhada dos procedi-
mentos para o calculo do espectro de Fourier com a finalidade de se obter
exatidao na representacao. Isto possibilitard o emprego da analise de espec-
tro como instrumento para medir frequéncia e para realizacao da analise no

dominio da frequéncia.
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Tabela 2.1: Resumo das caracteristicas de exercicios envolvendo espectro de
frequéncias.

Variavel
Processo Conceito Independente Dependente  Detalhamento
ITA 2022 espectro de  frequéncia amplitude nao
(22 fase) frequéncias  em hertz em decibel
do som
FUVEST espectro de  frequéncia intensidade  nao
2005 (22 frequéncias  em hertz
fase) do som
UFU 2021.2  espectro de  frequéncia intensidade  nao
frequéncias ~ sem escala
da radiacao
térmica
ENEM 2016 resposta em  frequéncia intensidade  parcial
(22 frequéncia em hertz em decibel
aplicagao) de microfone
ENEM 2011 espectro de  comprimento intensidade  nao
absorcao de onda em  absorvida
nanometro
ENEM 2011 espectro de  comprimento percentual nao
reflectancia  de onda em  de radiagao
micrometro  refletida

2.4 Espectro de frequéncias como instrumen-

tacao para medida de frequéncia

Consideramos até agora que a andlise de espectro é importante por seu em-
prego no processamento de sinais e, portanto, para um tépico de tecnologia.
A Fisica era envolvida aqui apenas por ser, no ensino basico, a principal
porta para introducao de temas de tecnologia. A realizacdo de medidas e a

instrumentagao, porém, sao tépicos da Fisica e um grafico como o da figura
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fornece informagoes fundamentais a respeito de medidas de frequéncia do

fendmeno observado.

Este aspecto serd utilizado como principal conector entre o ensino basico,
os problemas da Fisica e os problemas de tecnologia quando da determinacao

de aplicagoes no formato de problemas que propomos na segao [3.7]
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Proposta de Curso de Analise

de Espectro para o Ensino
Médio

O curso que queremos propor é uma adaptacao dos cursos de processamento
digital de sinais realizados no Ensino Superior, a ser introduzido por meio de
problemas da Fisica. Por esta razao, vamos partir de uma analise breve de
como estes cursos sao apresentados em seu nivel tipico e realizar, ao longo
deste capitulo, as adaptagoes necessarias para torna-lo apresentavel no nivel
médio. Vamos, também, delinear os prerrequisitos especificos para um curso
desta natureza de modo a facilitar o seu encaixe nas institui¢coes que desejem

aplicé-lo.

3.1 Cursos com amostragem e analise de es-

pectro no ensino regular

Analise de espectro e amostragem sao topicos apresentados formalmente em
cursos das engenharias eletronica (ou elétrica, de forma mais geral), da com-
putagao, de comunicagoes (ou telecomunicagoes), de automagao e controle,
biomédica etc. em disciplinas de analise e processamento de sinais e siste-

mas lineares e, portanto, apenas no Ensino Superior. Costuma ser tépico de
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Tabela 3.1: Exemplos de cursos e suas referéncias bibliograficas.

IE Curso Codigo Disciplina Referéncias
MIT  Engenharia Elé- 6.003 Signals and Systems [27]
trica
LSJU  Engenharia Elé- EE 102A  Signals and Systems 1 [27]
trica
EPFL Engenharia Ele- EE-205  Signauz et systémes [27]
tronica
USP  Eng. de Teleco- PTC3007 Sistemas e Sinais [27]

municagoes e Con-

trole

USP  Eng. Eletronica e  SEL0383 Sinais e Sistemas em Enge- [27H29]

da Computacao nharia Elétrica
UFAM Eng. Eletronica FTL023  Sinais e Sistemas [28+33]
UFRGS Eng. de Energia ENG10017 Sistemas e Sinais [27) 28] 130]

33|34]

componente curricular obrigatorio nestes cursos.

Reunimos apenas alguns exemplos de disciplinas deste tépico oferecidas
em instituigdes do Brasil e do exterior na tabela[3.1] Elas foram selecionadas
tomando por base os resultados do ENADE [24], e os rankings QS [25] e
RUF [26] e para os quais foram encontradas paginas ou documentos como
curriculos e ementas contendo a bibliografia sugerida, que também é apresen-
tada na tabela. Ala nos auxilia a estabelecer a obra de Oppenheim, Willsky
e Nawab [27] como bom representante do topico.

Nela, observamos que os principais resultados que desejamos adaptar ao
Ensino Médio estao detalhadamente demonstrados e aplicados por meio do
uso do calculo diferencial e integral. As nogoes de sinais e sistemas linea-

res sao introduzidos nos dois capitulos iniciais, a série de Fourier de tempo
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discreto é apresentada na secao 3.6 em sua forma exponencial e a amostra-
gem esta descrita no seu Capitulo 7. Isto significa que os objetivos do curso
que desenvolvemos para Ensino Médio neste trabalho estao completamente
contidos em um curso de analise de sistemas lineares baseados nessa obra.

Os cursos de engenharia sao subdivididos em contetidos béasicos, profis-
sionais e especificos e os topicos de processamento de sinais sdo tipicos da
parte profissional ou especifica [35]. E comum que, quando cursando discipli-
nas referentes a processamento de sinais, principalmente de processamento
digital de sinais, o aluno ja esteja familiarizado com a série de Fourier (SF),
valida para fungoes peridédicas ou limitadas, de variavel independente conti-
nua e resultado de seus estudos de Matematica ou Célculo da parte basica
da formacao.

Ainda nos cursos de Calculo e motivados pela solucdo de equacoes di-
ferenciais no dominio s por meio de equacoes algébricas, o aluno tipico do
Ensino Superior dessa area também tem contato com a transformada de La-
place (TL). Esta transformada, com um dominio amplo, ja que s € C, pode
ser interpretada como o calculo de componentes de frequéncia se se restringe

o dominio de s ao eixo imaginario, ou seja, se
s = jw

para w € R.

Apesar das interpretagoes tanto a série de Fourier como da transformada
de Laplace fornecerem informagoes relativas ao espectro de sinais, o foco
no estudo destas entidades matematicas nos cursos dos conteuidos basicos,
conforme revela analise de consideravel bibliografia dos cursos iniciais de
Calculo e Equagoes Diferenciais [36-H43], é a ampliagdo de possibilidades de
manipulagao algébrica para a solucao de problemas ja representados no for-
mato matematico, e ndo na capacidade que as séries ou transformadas tém
de representar componentes de frequéncia.

Guidorizzi |36] desenvolve a série apenas para frequéncia angular unitaria,
ou com periodo 27, com enfoque na convergéncia da série e abordando apenas

a solucao de equagoes diferenciais lineares de 22 ordem em um apéndice. Ja
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a transformada de Laplace é apresentada também para solucao de equagoes
diferenciais e como exemplo de aplicagao do calculo de integrais. Hass, Heil e
Weir [39] e Spivak |42] comentam em seus textos que consideram as séries de
Fourier como “calculo avancado” e nao tratam da transformada de Laplace
enquanto Stewart [37,38] apresenta a série de Fourier e de Laplace apenas
em exercicios de aplicacao de integrais.

Esta opcao curricular e de abordagem dos textos de Matemaética superior
introdutoério é explicita no delineamento dado por Boyce, Diprima e Meade
[43], por exemplo, apds a exposicao da série de Fourier de tempo continuo,

para o objetivo de sua obra:

Neste livro, as séries de Fourier aparecem, principalmente, como
um meio para resolver determinados problemas em equagoes dife-
renciais parciais. No entanto, tais séries tém uma aplicacao muito
mais ampla em ciéncia e Engenharia, e, em geral, sdo ferramentas
valiosas na investigacao de fendomenos periédicos. Um problema
basico consiste em decompor um sinal de entrada em seus compo-
nentes harmonicos, o que corresponde a construir sua represen-
tacao em série de Fourier. Em algumas bandas de frequéncia, os
termos separados correspondem a cores diferentes ou a tons au-
diveis diferentes. O modulo do coeficiente determina a amplitude
de cada componente. Este processo é conhecido como andlise

espectral |43, se¢ao 10.2].

Os autores reconhecem a importancia tecnolégica da série de Fourier, ex-
plicitando o recurso da analise de espectro, mas optam por explorar apenas
os aspectos operacionais da mesma. E importante observar que esta tltima
obra ja trata de um topico especifico, as equagoes diferenciais, e pode ja nao
ser considerado um texto introdutério de Calculo.

E comum o emprego da série de Fourier de tempo continuo e da transfor-
mada de Laplace com interpretacoes de espectro de frequéncias nos cursos de
circuitos elétricos que precedem ou sao concomitantes aos cursos de sistemas
lineares e processamentos de sinais de tempo continuo. Isto porque os cir-

cuitos lineares estao entre os mais simples e abundantes sistemas capazes de
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realizar filtragem, fendmeno cuja interpretacao emprega a nocao de espectro.
A bibliografia tipica das disciplinas de circuitos elétricos [18-23] contempla
capitulos para andlise de circuitos considerando estimulos representados por
sua série de Fourier ou por sua transformada de Laplace e os conceitos de
funcao de transferéncia e de resposta em frequéncia como representantes dos
circuitos lineares.

O estudo de sinais amostrados e sistemas digitais de tempo discreto con-
cluem estes estudos. A figura resume esta sequéncia tipica das trilhas
de aprendizado nos cursos de engenharia em que os tépicos de amostragem
e andlise de espectro sao relevantes. Observa-se que a andlise de sistemas
digitais figura ao fim do curso, depois de adquirida maturidade na anélise de

sistemas de tempo continuo.

3.1.1 Abordagem da amostragem no Ensino Superior

Apesar da apresentacao formal tardia nos cursos de graduacao, os sinais digi-
tais, em funcao da miniaturizacao e reducao dos custos proporcionados pela
eletronica digital, se tornaram abundantes e de facil emprego. Quando se
soma o baixo custo, a facilidade de realizar projetos por meio de solugoes se-
quenciais programadas e os aspectos tedricos simplificados dos sinais digitais
com relacao aos analdgicos, ¢ de se estranhar que os cursos de processamento
de sinais mantenham uma trilha que privilegia a exposicao de sinais analo-
gicos de tempo continuo com relacao aos sinais digitais, uma vez que estes
ultimos se tornaram mais baratos e mais faceis de manipular.

Uma das consequéncias é que parte das simplificagbes promovidas pelo
trabalho com tempo discreto nao sao aproveitadas nestes cursos, principal-
mente nas demonstragoes. Como se espera um aluno com uma base mate-
matica sélida, potencialmente experiente em céalculo diferencial e integral, na
solucao de equacgoes diferenciais, e até mesmo com aptidao em calculo com
variaveis complexas, nao é necessario recorrer as simplificacoes na aborda-
gem. Apresenta-se, entdo, a amostragem com um altissimo nivel de abstragao

— o produto entre um trem de impulsos e a fun¢ao continua original. Mate-
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Fase do curso
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Figura 3.1: Esquema do desenvolvimento do estudo de amostragem e anéalise
de espectro no Ensino Superior.
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Figura 3.2: Representacao tedrica da amostragem no tempo.

maticamente, este processo é expresso por

za(t) = 2()ps (1)

em que

i o(t — nTy)

n=—oo
e x,(t) é a versao amostrada de z(t) com periodo de amostragem 7.

A figura ilustra a obtengao de z,(t) a partir de um z(f) genérico e
de ps(t). Nela, esbogamos o comprimento das setas que convencionam a
representacao da funcdo 0 na proporcao da intensidade do impulso. Veja
que resta para z,(t), com relacdo a z(t), apenas informagao relativa aos
pontos em que t = nT}, os instantes de amostragem, contida na intensidade
dos impulsos localizados nestes instantes de tempo. Qualquer informacao de
x(t) fora dos instantes de amostragem sao perdidas em x,(t).

Ja a figura |3.3|ilustra os espectros de x(t) e ps(t) dados respectivamente
por X (f) e Ps(f) e obtidos pela transformada de Fourier (TF) destes sinais.
Consideramos que X (f) tem banda limitada em fy4y, ou seja, z(t) nao car-

rega componentes de frequéncia para qualquer frequéncia maior do que fi4x,
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Figura 3.3: Representacao tedrica da amostragem na frequéncia.

de modo que X (f) = 0 para |f| > fmax. J& 0 espectro do trem de pulsos
unitarios com pulsos a cada Ty, é dado também por um trem de impulsos de
intensidade 1/7T; e centrado em multiplos inteiros de f; = 1/7}, a frequéncia

de amostragem. Analiticamente,

Ps(f) = = Z 6(f —kfs). (3.1)

5 k=—o00
Pelas propriedade da convolugao, se

TF

y(t) = 21(t)za(t) & Y (f) = Xa(f) * Xa(f), (3.2)

ou seja, a multiplicagao no tempo resulta na convolugao na frequéncia. Desta

forma, X,(f) é dado pela convolugao entre X (f) e Ps(f), conforme também
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apresentado na figura [3.3] Analiticamente, temos

Xlf) = X(f) = Po(J)
= [T XA - 9)do

1 feo >

= | X k:z_mw — 6~ kf.)do
1 oo

=g 3 [ XU — o= kfdo
1 [ee]

= X(f—kfs)

Ts =

Ou seja, X,(f) é dado pela superposigao de varias repeticoes de X (f) esca-
ladas em 1/T} e deslocadas de multiplos inteiros de f;, assim como mostrado
na figura . Ora, se fumax < fs/2, ndo ha coincidéncia entre os trechos nao-
nulos das varias repeticoes de X (f), e, por esta razao, pode-se dizer que ao
observar o espectro de X,(f) entre —f,/2 e f,/2, é possivel constatar a pre-
servagao da “informacao” do espectro de X (f). Idealmente, isto significa que
se poderia recuperar x(t) pela filtragem de x,(t) com um filtro passa-baixas
com frequéncia de corte em f,/2.

Esta argumentagao é conhecida como o Teorema de Nyquist — se x(t) é
limitado na frequéncia f4., € ele é amostrado com frequéncia de amostra-
gem fg, com fosx < fs/2, ndo haverd perda de informagao no processo de
amostragem e z(t) pode ser recuperado de sua versao amostrada por meio de
filtragem. E um t6pico fundamental no estudo de sistemas digitais e abor-
dado em profundidade na literatura e em especial no Capitulo 7 da obra de
Oppenheim, Willsky e Nawab [27], referéncia para este tépico como vimos
na tabela B.11

Este método de representacdo da amostragem traz uma elegancia aos re-
sultados uma vez que por ele é possivel determinar o espectro de um sinal
amostrado pela propriedade da convolugao e com esta metodologia o Teo-
rema da Amostragem é facilmente verificavel. Vemos, porém, que se trata
de um caminho matematicamente pesado, mesmo para o aluno do Ensino

Superior, empregando a fungao impulso, uma funcao generalizada, integrais
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impréprias, somatorios infinitos e convolugao.

3.1.2 Abordagem da analise de espectro no Ensino Su-

perior

O caminho para representacao do espectro no Ensino Superior também nao
considera uma trilha que va dos resultados mais simples ao resultado mais
complexo ja que se costuma contar com uma formacao comum bésica entre
todas as engenharias que garante ao aluno uma base sélida em Matematica.
Nao ¢é necessario se preocupar com o nivel de complexidade da representagao
matematica do espectro.

Como consequéncia, o caminho tipico da apresentagao das representacoes
em frequéncia costuma figurar dentre os contetidos basicos com a transfor-
mada de Laplace (TL) e a série de Fourier (SF) e em disciplinas iniciais de
andlise de circuitos lineares com a transformada de Fourier de tempo conti-
nuo (TFTC). Outras representagoes em frequéncia como a série de Fourier
de tempo discreto (SFTD) e a transformada de Fourier de tempo discreto
(TFTD) ficam reservadas as disciplinas de processamento de sinais como as
que listamos na tabelas [3.1]

A tabela[3.2] resume as principais representagoes em frequéncia estudadas
num curso tipico de engenharia com processamento de sinais. Empregamos
a terminologia convencional que designa a obtencao dos componentes (ou
coeficientes) representantes da frequéncia a partir do sinal no tempo como a
relacao de analise e a que constroi o sinal no tempo a partir de seus compo-
nentes de frequéncia como a de sintese.

E importante enfatizar a ocorréncia de operacdes elaboradas em ambas
as relagdes nas representagoes mais comuns como a TL, SF e TFTC. Ha uso
de integral, inclusive improprias ou o emprego de somatérios infinitos em
todas elas. O caso mais critico ¢ a sintese da TL que consiste no emprego de
integral no plano complexo [27,44], ndo é apresentada nos cursos mais bésicos
e, com frequéncia, nem mesmo nos de processamento de sinais. Para evitar
este complicante, a inversao do dominio s para o dominio ¢ costuma ser feita

pelo uso de propriedades até a identificacao por inspecao de transformadas
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conhecidas com o auxilio de tabelas.

Apesar de nao ser tdo comum, a TFTD emprega somatoério infinito na
analise e integral na sintese, de sorte que a amostragem, neste caso, nao traz
grandes vantagens computacionais.

Ainda na tabela [3.2] observamos que a série de Fourier de tempo dis-
creto, aplicavel a descri¢ao de sinais amostrados limitados ou periddicos no
tempo, tem como representacao uma quantidade finita de componentes de
frequéncia. Os calculos necessarios tanto para a analise como para a sintese
sao dados por somatérios finitos. Computacionalmente é o caso mais simples
dentre as representagoes em frequéncia listadas.

Embora possa parecer que o emprego de sinais limitados ou periddicos
seja demasiadamente restritivo com relacao ao universo de sinais, isto nao é

verdade quando se considera que:

 0s sinais de tempo discreto, amostrados, sao os sinais tipicos nos siste-

mas digitais modernos;

» os sistemas digitais abundam devido a diminui¢ao no custo e a minia-

turizacao; e

e a coleta de dados num sistema digital, num experimento etc. é sempre
limitada no tempo (tem inicio e tem fim) ou sao limitadas (quando a va-
ridavel independente nao é o tempo) devido a incapacidade de realizagao
de variagbes até o infinito nas grandezas observadas em experimentos

reais.

Fica claro, na verdade, que os sinais discretos limitados compreendem a maior
parte dos sinais ou dos registros de dados nas ciéncias ou em aplicagoes
tecnologicas.

Por esta razao, destacamos a relevancia de propor a inversao das trilhas
tipicas do estudo da analise de espectro, privilegiando a antecipac¢ao do estudo
sobre grandezas amostradas e a vantagem que o curso que propomos pode
representar. Desta forma, nosso interesse se volta para a adaptacao da SFTD

ao nivel médio.
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Tabela 3.2: Representacoes em frequéncia tipicas no Ensino Superior.
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3.2 Adaptacao das nocoes de amostragem para

o Ensino Médio

Como a representagdo em frequéncia mais simples é a que emprega tempo
discreto, torna-se necessario o emprego de amostragem para o estudo da
analise de Fourier no nivel do Ensino Médio. Mais do que uma simples
técnica, ela costuma ser uma necessidade quando se trata da observacao e
registro de grandezas como discutimos na secao [2.3] ainda mais por meio de
instrumentagao eletronica.

As tecnologias digitais e o computador impulsionaram o registro de gran-
dezas por meio de amostras. Exceto quando empregando algebra simbdlica,
que nao se aplica a dados amostrados, todo o funcionamento do computador

se baseia em grandezas quantizadas e amostradas.

Tabela 3.3: Conceitos de amostragem e abordagem de ensino

Conceito Abordagem
Nocao de Recorrer a nocao intuitiva e aos usos tipicos. Apresen-
amostragem tacao da terminologia. Apresentacao de exemplos em

geral. Construcao de graficos em computador. Variacao
do periodo de amostragem e seu efeito. Observagao qua-
litativa de que grande quantidade de amostras é dificil
de distinguir do caso continuo. Apresentacao do exem-
plo especifico do audio digital.

Representacao  Limitar a apresentacao ao caso mais simples de taxa

matematica da de amostragem fixa em que a varidvel independente ¢ é

amostragem amostrada como t = nT,. Apresentar a notagao z[n] e a
nocao de frequéncia angular normalizada.

Teorema de Demonstracao pela légica necessaria para evitar repre-

Nyquist sentacoes ambiguas de sinais senoidais de frequéncias
distintas. Verificacao grafica da ocorréncia da ambi-
guidade. Demonstragdo analitica por trigonometria da
relacao de ambiguidade.

Considerando o alto nivel de complexidade da apresentagao da amostra-
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gem no nivel superior, é necessario elaborar uma abordagem inédita ade-
quada ao nivel médio. Para isso, resumimos na tabela [3.3] alguns conceitos
fundamentais para emprego da amostragem a partir dos conceitos de dominio
do aluno e a abordagem que vamos desenvolver para consolidar o uso desta
técnica.

Conforme veremos no Capitulo [ a no¢ao de amostragem é bem conso-
lidada no senso comum do aluno nos ultimos anos do Ensino Médio. Ele
ja a empregou tanto na Matematica, no esboco de graficos, por exemplo,
quando se recorre a marcagao de amostras do grafico antes do tracado con-
tinuo aproximado a mao livre, quanto em diversos casos da Fisica. Nesta
ultima matéria, é comum a apresentacao de dados na forma de amostras,
por vezes tabeladas, para o estudo dos diversos fenémenos. Se o aluno teve
oportunidade de realizar atividades laboratoriais, ¢ ainda mais provavel que

ele tenha colhido amostras de grandezas.

Tabela 3.4: Amostras de pontos notaveis de y = x® — 32? — 144x + 432.

T Y tipo

—12 0 ralz

—6 972  méaximo

0 432 intersecao com eixo y
3 0 raiz
8 —400 minimo

12 0 raiz

Pode-se propor, entao, atividades progressivas com elaboracao de graficos
a partir de pontos notaveis (amostras). Para a funcdo, y = 2° — 322 —
144x+432, por exemplo, fornecemos 7 amostras de pontos notaveis na tabela
Mesmo sem grandes conhecimentos a respeito de cibicas, um aluno
de Ensino Médio pode elaborar um esbogo do seu grafico a mao livre a

partir destas amostras tal como ilustrado no grafico superior da figura [3.4]
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Figura 3.4: Esbogo a mao livre (superior) e grafico elaborado por computador
a partir de 99 segmentos de reta ou 100 amostras (inferior).

Embora imperfeito, o esbo¢o com estas amostras nao difere demasiadamente
no comportamento geral do grafico mais preciso elaborado no computador e
também exibido na figura |3.4] em sua parte inferior.

Neste simples exemplo, uma série de questoes relacionadas a amostragem

podem ser discutidas:

e O préprio computador costuma construir graficos por amostras, o da
figura 3.4 por exemplo, é composto de 100 amostras ligadas por seg-
mentos de reta. A quantidade de amostras é tao grande que nao é

possivel identificar visualmente o carater amostrado.

e A prépria exibicao em telas e impressao de midias digitais é feita por

amostras, designadas pixels.

e O efeito no tracado a mao dos graficos realizado sem que todos os

pontos notaveis fossem fornecidos.
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Figura 3.5: Zoom sobre grafico de um audio gravado no Audacity detalha
cada amostra.

¢ O uso dos termos amostra, periodo de amostragem e frequéncia de

amostragem.

o Os limites nas quantidades de amostras para que se possa representar

o comportamento aproximado da funcao.

Nesta fase, a introduc¢ao de um recurso computacional para a elaboracao de
graficos permite a exploracao das nuances da amostragem. Recomendamos o
uso do Python [45] com os recursos basicos disponiveis na instalagdo padrao
e as bibliotecas NumPy e Matplotlib. Espera-se que o aluno compreenda o
conceito de amostragem e conclua que a amostragem nao tem capacidade
ilimitada de representar o comportamento de uma fung¢ao, principalmente se
a quantidade de amostras for muito pequena para expressar a variacao da
funcdo em um trecho.

Para os exercicios especificos que pretendemos desenvolver, é 1til apre-
sentar audios digitais diversos em um software que permita a distincao das
amostras. Isto é possivel, por exemplo, no Audacity [46], software livre e
de cédigo aberto para edicdo de audio conforme ilustramos na figura |3.5
Cada amostra é isoladamente apresentada neste tipo de grafico chamado de
grafico de ramos (stem) amplamente empregado na comunidade académica
e comercial para explicitar o carater amostrado em um grafico.

Apesar das nuances e detalhes do emprego da amostragem, sua represen-
tagdo matematica neste nivel é muito simples. Se a variavel independente

real de um determinado problema é ¢, sua amostragem pode ser representada
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pela troca da variavel ¢ € R pela variavel n € Z pela substituicao
t =nTs, (3.3)

em que a constante T é definida como o periodo de amostragem, dado em
unidades de tempo por amostra, e define um intervalo regular entre as coletas
de amostra sobre a variavel independente. Como amostra pode ser conside-
rado um adimensional, T pode ser medido em unidades de tempo — segundos

no SI. Seu reciproco,
1

i?

é a frequéncia de amostragem dada em amostras por unidade de tempo, ou

pelo reciproco da unidade de tempo — hertz no SI. Uma unidade comercial
comum para esta medida é sps (sigla de samples per second), do inglés para
amostras por segundo, e seus multiplos decimais ksps e Msps.

Com a substituicao definida na equacao [3.3 nos interessara num sinal

x(t), apenas os casos x(nTs), que convencionaremos chamar
z(nTy) = x[n], (3.5)

em que os colchetes sao empregados para designar que a variavel indepen-
dente ¢ inteira e que x é um sinal amostrado.

Com a substituicao t = nT, sobre uma func¢do trigonométrica represen-

tante de um movimento harmoénico simples de frequéncia f = 1/T como
em

cos(2m ft),
obtemos

cos(2m ft) = cos(2mw fTsn)

em que o multiplicador 27 fTy = 27 f/fs = 2nT,/T é um adimensional, ou,
considerando os adimensionais radiano e amostra, uma frequéncia angular

dada em radianos por amostra, definida como

w=2nfTs =2nf/fs =2nTs/T (3.6)
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e designada frequéncia angula normalizada, ja que ela é normalizada por um

parametro dimensional associado a amostragem.

3.2.1 Ambiguidade da amostragem de senoides e o Te-

orema de Nyquist no Ensino Médio

Pela abordagem até aqui, fica bem estabelecida a no¢ao de amostragem e
sua representacao matematica. Resta o estudo das restricoes da amostragem
que vimos na secao [3.1.2| ser resolvida pelo teorema de Nyquist ao custo de
uma demonstracao demasiadamente avancada para o nivel médio. Por esta
razao, vamos observar o efeito da amostragem sobre o cosseno cos(2w ft),
supondo que ele seja a componente de um sinal qualquer. Ao amostrar esse

componente, pela substituicao t = nT, obtemos

cos(2m fnTy) = cos(—2m fnTy)
= cos(—2mfnTs + 2mn)

= cos |:27T (;5 — f) nTs}

cos(2m fnTy) = cos 2w (fs — f) nTs].

Ou seja, apenas pelo emprego da paridade e periodicidade da func¢ao cosseno

e por manipulagao algébrica, conclui-se que
cos(2m fnTy) = cos(2m f't) = cos 27 (fs — f) nTy], (3.7)

em que a frequéncia f' = f, — f se apresenta igual a frequéncia f quando
amostrada. Isto significa que ao observar amostras de cossenoides de frequén-
cia f ou f', elas se apresentam iguais e hé, portanto, uma ambiguidade na
distingao entre as amostragens destas duas frequéncias. Tendo conhecimento
apenas das amostras, o que se observa é uma oscilagao na frequéncia f ou
7

A solucao deste problema de ambiguidade também leva ao teorema de
Nyquist. A figura mostra a localizacao de f e f' quando f é pequeno.

Vamos considerar que em um sinal de interesse nao poderiam haver, como
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Figura 3.6: Localizagao no eixo de frequéncias de um componente f qualquer
e de sua contraparte f’ a medida que o valor de f cresce.

componentes, as frequéncias f e f/ ao mesmo tempo, pois elas teriam a
mesma representacdo, e, certamente, o sinal amostrado nao seria uma boa
representacao do sinal original.

Desta forma, podemos propor a nocao de limitacdo em banda para um
sinal. Um sinal limitado teria componentes de frequéncia até um valor méa-
ximo, que vamos identificar como fu4. Dentre f e f’, apenas f poderia
existir como componente nos sinais sob estudo, pois é uma frequéncia menor
e que estaria dentro do limite de fusc. A frequéncia ambigua, f’, deveria ser,
com certeza, maior do que fi 4.

Ora, pela figura [3.6] observamos que a medida que f cresce partindo da
frequéncia 0 e sua contraparte f’ diminui a partir de f,, a regiao ocupada
por possiveis valores de f e possiveis valores de f’ atinge um ponto limitrofe
em fy/2. Assim, se houver garantia de que qualquer componente de um sinal
tem frequéncia maxima fys < fs/2, garantimos que apenas f precisard ser
representada, sua contraparte f’, estaria fora da regido limitada do espectro
do sinal e nao haveria ambiguidade na representacao das componentes de
frequéncia.

Este resultado, sugerido pela eliminagao da ambiguidade na representagao
de cossenoides na forma cos(27 ft) amostrados com frequéncia de amostragem
fs, é exatamente o teorema de Nyquist. Como ele pode ser demonstrado
apenas por propriedades de trigonometria e argumentacao, ele é mais viavel
para apresentagao no Ensino Médio.

Para os alunos mais detalhistas, pode-se observar que o mesmo raciocinio

pode ser desenvolvido considerando que o componente em questao é tomado
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pela fungdo seno, caso em que se encontraria
sen(2m fnT,) = —sen(2w f't) = —sen [27 (fs — f) nTy]. (3.8)

Aqui seria necessario argumentar que nossa intengao é ponderar os compo-
nentes de frequéncia por meio de coeficientes, e, por esta razao, sen(2w fnTy) =
— sen (27 f't) diferem apenas no sinal do coeficiente e também seriam conside-
rados ambiguos levando ao mesmo resultado do teorema de Nyquist, afinal,
as fungoes seno e cosseno diferem apenas na fase.

Como exercicio complementar, e ainda considerando o emprego de ferra-
mentas de elaboragao de grafico, a visualizacao dos graficos das cossenoides
ambiguas ¢ um bom argumento para esclarecer o problema da representacao.
Como um caso especifico, consideremos a amostragem com T, = 5ms que
equivale a f, = 200 Hz e um componente com frequéncia f = 80Hz. Esta
frequéncia estd abaixo de fs/2 = 100 Hz e, portanto, seria uma frequéncia
valida para ser representada nesta taxa de amostragem. Sua contraparte,
f' = fs — f = 120 Hz teria a mesma representacao que f. Ao fazer o grafico
da figura de f (preto continuo) junto ao de f’ (vermelho tracejado) ao
longo de dois periodos de f ou trés de f’, vemos que, nesta regiao, se obtém
5 amostras que coincidem perfeitamente entre cos(2w80t) e cos(27120t). As
amostras de f sdo tomadas no grafico do tipo stem com um ramo amarelo e
as de f’ com um ramo verde tracejado, de modo que o que se observa, devido
a coincidéncia das amostras, sao ramos listrados em verde e amarelo.

E importante observar que 120 Hz é um sinal com variacio réapida demais
para que seja representado com amostragem a 200 Hz, o que se observa pela
perda de um trecho importante de sua variacao que ¢ o segundo vale do
grafico. Pareceria muito mais intuitivo tentar tragar a senoide de 80 Hz sobre
as amostras dadas do que a de 120 Hz.

Outra questao importante mas mais aprofundada é observar que existe,
na verdade, uma infinidade de frequéncias ambiguas com relacao a 0 < f <
fs/2. Elas sao todas as frequéncias distantes de f com relacdo a qualquer
frequéncia no formato mf,, para qualquer m € Z. Nenhuma delas deve estar

presente em um sinal cujas componentes estejam garantidas estar limitadas
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Figura 3.7: Gréfico ilustrativo da coincidéncia entre cossenoides de 80 e
120 Hz quando amostrados a 5 ms.

a fméx < fs / 2.
Com estas observagoes, conseguimos concluir os conceitos propostos na
tabela suficientes para estabelecer a nogao, a representagao matematica

e as limitagoes da amostragem num nivel de Ensino Médio.

3.3 Adaptacao da série de Fourier para o En-
sino Médio

Um sinal ou fun¢ao de tempo discreto z[n| que seja peridédico com periodo
N ou limitado com N amostras tem, nas obras de Ensino Superior, comu-
mente, a definicdo de sua série de Fourier de tempo discreto em termos de

exponenciais complexas no formato

i2m
zln] = Y Cpelmhm, (3.9)

keln
Nestas expressoes, trés generalidades costumam ser empregadas. A pri-
meira é que a variavel k que faz o percurso pelas diferentes frequéncias dis-
cretas pode estar em um subconjunto qualquer Iy de N nimeros inteiros

consecutivos. Ela surge da periodicidade da exponencial complexa expressa
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como

ej%’kn _ ej%‘(k—i—mN)n

para qualquer m € Z. Isto significa que sao necessarios apenas N valores
consecutivos de k para cobrir todas as exponenciais complexas distintas com
argumento na forma dada. Ao se escolher um conjunto com N nimeros
inteiros quaisquer, ganha-se em liberdade e generalidade mas se perde no
significado da variavel k. Podemos fazer k corresponder exatamente as ordens
dos harménicos, dando-lhe significado, fazendo 0 < k < N —1 ou —([N/2] —
1) <k < |N/2], ou seja, forcando o uso de

In=1Iyo={0,1,... N—2,N—1}
ou

In = Ins ={=([N/2] = 1), =([N/2] = 2), ..., [N/2] = 1, [N/2]}.

O intervalo Ino parte do harménico 0, atribuido & exponencial e/~ 9" =

, o A - j2T.1.n
1, que é o componente constante, e segue para o 1° harmonico e/~ =
cos(3F - 1-n) + jsen(3 - 1-n), associado a frequéncia angular normalizada

fundamental
2T
N

Ja o intervalo Iyg é aproximadamente simétrico com relacao a k = 0. Ele

w():wl:

nao é exatamente simétrico pois quando N é par, ha um valor a mais para
k > 0, que é aquele em que k = N/2, do que ha para k < 0. Com estes

intervalos, escrevemos

N-1
zln] = > Crel ¥, (3.10)
k=0
ou
IN/2)
zn] = > Cred N, (3.11)
k=—([N/21-1)

Esta ultima expressao pode ser reescrita de forma simplificada para cada caso
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da paridade de N, resultando em

Lv/2]

Z Cre’ %k", para N impar
k=—|N/2
z[n] = NL/Q[IJ , (3.12)
.o .
Z Cednhkn Cny2e’™, para N par
k=—(N/2—1)

ficando evidente o termo nao simétrico do caso par.

A segunda generalidade é o emprego de um coeficiente C} complexo e
a ultima é o uso de exponenciais complexas. Ambas tém a finalidade de
obter uma funcao trigonométrica qualquer contemplando as caracteristicas de
frequéncia e fase quando se considera a interacao entre o coeficiente complexo
O, e a funcdo a exponencial complexa, e’ Fkn,
O uso de nimeros complexos pode ser dispensado pois, se x[n] é real, ele

deve ser igual ao seu complexo conjugado, ou seja,

Utilizando a expressao para x[n] para N par da equagio m que contém

mais complicantes, obtemos

N/2-1 , _ N/2—-1 Y ,
Z CLed Tk 4 Cnje?™ = Z C’,’;e_JWk" + C]’Q/Qe_””.
k=—(N/2—1) k=—(N/2—1)

Mudando a varidavel k& — —k no somatério do membro direito, e desenvol-

vendo /™ = 7™ = cos(mn),

N/2—-1 . N/2—-1 .
Yo G/ N 4 COyppcos(mn) = Y CFel NP4 Oy, cos(mn),
k=—(N/2—1) k=—(N/2—1)

que, pela ortogonalidade de e’ Fkn para quaisquer valores de k num intervalo

de comprimento N, implicam
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Considerando

Cyp = Ay + j By, (3.14)
a equacao implicard em Re{C}} = Ay par com k e Im{C}} = By impar

com essa variavel, ou seja

A_k = Ak, (§ (315)
B_, = —By. (3.16)

Retomando a expressdo para x[n] para N par da equagao [3.12, podemos

agora desenvolver

N/2-1
x[n] = Z C’kej%ﬂk” + C’N/gejm
k=—(N/2-1)
SR e |
— Y GIET Gt S G R 4 O™,
k=—(N/2—1) k=1

Fazendo, novamente, a mudanca de variavel & — —k apenas no primeiro

somatorio, teremos

N/2-1 N/2-1
z[n] = Co + Z C,kefj%k" + Z C'kej%”m + C’N/gej’m
k=1 k=1
N/2-1
=Cot Y [Cope T4 CreI FF] 4 Cyppe?™
k=1
N/ 2 2
=Cy+ { A, — B [cos (k;n) — jsen (k’n)]
0 g::l (Ax — jBy) N J N

2 2
+(Ax + jBg) {cos (]zfrkn) + jsen (]z[rknﬂ} + Cy2 cos(mn)
N/2-1 9
T 2m
zln] =Co+ > {QA;C oS <k:n> — 2By sen (kn)] + Cy2 cos(mn).
k=1 N N

(3.17)

Desta tultima expressao, podemos ver que como z[n] € R, tanto Cy como

Cny2 devem ser reais pois a expressao no somatorio é real. Podemos concluir

20



Capitulo 3. Proposta de Curso de Andlise de Espectro para o Ensino Médio

que
Co = Ao, (3.18)
By =0, (3.19)
ON/Q = AN/27 e (320)
By = 0. (3.21)

Podemos observar que os termos e fungoes da equagao [3.17] ja estao ade-
quadas ao Ensino Médio, uma vez que todos os valores sao reais ou inteiros,
o unico operador utilizado é o somatorio e as tinicas fungoes empregadas sao
as trigonométricas. Todas essas entidades e ferramentas sao parte dos cur-
riculos comuns até o Ensino Médio e, em especial, do curriculo do Colégio
Naval para o qual nosso curso serd direcionado [9].

Podemos agora determinar os coeficientes Ag, 24y, —2B), e Ay a partir

do coeficiente complexo C} dado nos livros de Ensino Superior por

1 - 27
Cr = N > znle IV (3.22)

nely

Ao desenvolvé-la e adotando Iy = Ing, teremos

1= 2 2
Cp=—= > z[n] [COS (Wk:n> — jsen <7rk:n>}
N n=0
1 N—-1 2 1 N-1 2
=N 2 x[n] cos (;kn) - jN nz::O x[n] sen (jz;kn) :

de onde se obtém pela separagao das partes real e imaginaria

Ay = S Nz_:l x[n] cos (%kn) e (3.23)
k — N — N ’ :
1 2
By = N nz;; x[n]sen <Z\7;kn> . (3.24)

Vemos, também, que os coeficientes, compostos por A; e Bj também

utilizam apenas o operador somatorio e fungoes trigonométricas, verificando
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que tanto a expressao de Fourier adaptada da equagao|3.17 como as equagoes
[3.23] e [3.24] para cdlculo dos coeficientes se restringe & matematica do nivel
de Ensino Médio.

Para evitar o uso de multiplicadores nos coeficientes, vamos reescrever em
nossa proposta o formato para a equacao empregando apenas coeficientes

distintos entre os termos de seno e cosseno, obtendo
LN/2] 9 9
x[n] = ag + Z {ak COS (W/m> + by, sen <7Tk;n>} (3.25)
= N N

que chamaremos de equacao de sintese seguindo a convencao da literatura
para a equagdo que expressa x[n] em termos do somatoério de seus compo-
nentes de frequéncia.

Pela comparagao entre as equagoes [3.17} [3.25] e pelos valores obtidos nas

equagoes a podemos verificar que

ap =24, k#0ek#N/2 (3.26)
bp = —2B, k#0ek+#N/2 (3.27)
ag = Cy = A, (3.28)
by = By =0, (3.29)
an/2 = CN/2 = AN/27 €, ( )

(3.31)

bN/Z = Oa

de onde podemos obter as equagdes de andlise que determinam os coeficientes
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da equagao de sintese em termos do sinal x[n] como

2 = 2m
ap = — x[n] cos <k:n> , para k # 0, k# N/2; (3.32)
N = N
2 = 2m
by = — Y z[n]sen <k5n> , para k #0, k# N/2; (3.33)
N = N
1 N-1
ap=— > _ znl; (3.34)
N n=0
by = 0, (3.35)
1 N-1
anje = — > x[n]cos(mn), e (3.36)
N n=0
bnjz = 0. (3.37)

Uma das grandes desvantagens da transposicao da série de Fourier de
tempo discreto para sua forma trigonométrica é a obtencao de uma equacao
de sintese com grande quantidade de termos e a impossibilidade de expressar

a andlise por uma tunica equagao.

3.4 QOutros suportes para a construcao da sé-
rie de Fourier de tempo discreto e suas

equacoes de analise

3.4.1 Rearranjo das equacoes de sintese e analise na

forma matricial

Considerando a possibilidade de emprego repetitivo das equagcoes de sintese
e analise e o seu céalculo por meio de computadores, ¢ importante garantir
a possibilidade de uso de calculo matricial com a finalidade de diminuir o
tempo de processamento. Para tal, é possivel reorganizar as equagoes e
de [3.32] até por meio de trés equagoes matriciais.

Para realizar a analise, descrita pelas equagoes de até [3.37], precisa-

mos definir a matriz dos coeficientes dos cossenos, a matriz coluna a(| n/2)+1)x1
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que contém os coeficientes a; que multiplicam o cos(wgn); a matriz dos coe-
ficientes dos senos, a matriz coluna b(|n/2j4+1)x1 que contém os coeficientes by,
que multiplicam o sen(wgn); e a matriz das amostras, a matriz coluna Xy

que contém as N amostras do sinal x[n], ou seja,

| by | [ z[0] ]

ay b z[1]

a b x|2

a= ’ ; b= ? e X = 2
a|N/2)-1 biny2)-1 T[N — 2]
| GN/2] ] R z[N —1]]

Nas equagoes de até [3.37], estas grandezas estao relacionadas, pois
obtém-se a e b por meio dos valores de x relacionando-os com a matriz dos
cossenos da analise a matriz C, (|n/2)+1)xn das amostras de cossenoides cujos

elementos sao dados por

1 4
N 1 =
N’
1
Coij = i cosfw;—1(j —1)], i=|N/2] +1, N par, (3.38)

2
N cos[w;_1(j — 1)], caso contrario

em que wp = wok = %’rk é a frequéncia angular normalizada do k-ésimo

harmonico representavel com N amostras, e pela matriz dos senos da analise,
a matriz S, (|n/2j+1)xn das amostras de senoides cujos elementos sao dados

por

0 1 =1, ou
Saij =14 i=|N/2] +1,N par . (3.39)

2
N senfw;_1(j — 1)], caso contrario

Dadas as matrizes x, C, e S,, os coeficientes ay e b, da SFTD do sinal
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x[n] podem ser extraidos das matrizes a e b obtidas pelas equagoes

a=0C.x,e,

(3.40)
b =S,x.

Ja a equacao [3.25| pode ser obtida com as mesmas matrizes a, b e x, e
pela matriz dos cossenos da sintese, a matriz C; vy (| n/2/+1) das amostras de

cossenoides, cujos elementos sao dados por
Csij = COS[’UJj_l(i — 1)], (341)

e pela matriz dos senos da sintese, a matriz S, yx(|n/2)+1) das amostras de

senoides, cujos elementos sao dados por
Ssij = sen[wj_l(i - 1)] (342)

Dadas as matrizes a, b, Cy e S;, as amostras do sinal z[n| podem ser

recuperados da matriz x dada pela equacao
x = Cza + S;b. (3.43)

Assim, todos os calculos dos coeficientes de Fourier, ou o inverso, o calculo

do sinal a partir dos coeficientes de Fourier, podem ser realizados pelas trés

equagoes matriciais dadas em [3.40] e [3.43]

3.4.2 A SFTD compacta e o espectro de Fourier

A SFTD definida na equacao [3.25] é um primeiro passo na explicitacao das
intensidades dos componentes de frequéncia de um sinal. Com isso queremos
dizer que nao é 6bvia a intensidade de uma frequéncia angular normalizada
wy, pois ela esta dividida em a; e em b, o que pode ser resolvido ao se adotar

uma unica fungao trigonométrica, ja que

2T 2 2T
aj, COS (Nkn) + by, sen (Nkn> = ¢}, COS (N/m + ¢k> , (3.44)
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ou

2T 2T 2T
ayj, COS (Nkn> + by, sen (Nk:n> = ¢ sen (Nk:n + 9k> , (3.45)

onde

Cr = \/&%‘Fb%,

b
¢/€ = - arctg (CL[i) y € (346)
0, = arctg (ak) ,
by

conforme se pode provar pelas equagoes de seno e cosseno de soma de arco

ao multiplicar o membro esquerdo das equacoes e por ¢ /c.
Esta identidade permite definir as SF'TD compactas

IN/2) o
z[n] =ap+ > cpcos (lm + q§k> : (3.47)
k=1 N
ou
N/2) o
z[n] =ao+ Y cpsen (Nlm + 0k> : (3.48)
k=1

Pelas SF'TD compactas, as intensidades de cada frequéncia estdao evi-
dentes. A intensidade ¢;, amplitude de uma cossenoide, esta relacionada a
frequéncia wy. Esta observacao sera fundamental na definicdo de espectro

que daremos na secao |3.5|

3.4.3 Componentes de um sinal periédico a partir da

relagao basica de periodicidade

Nesta fase dos estudos, nenhuma ideia comprobatoria relativa a existéncia de
componentes de frequéncia estd bem desenvolvida. E raro o estudo da soma
de senoides e o estudo de equacoes de onda. Algumas nogoes de superposi-
cao de ondas costuma ser ilustrada e exercitada, principalmente considerando
ondas de propagacao em uma dimensao, como ocorre no deslocamento trans-
versal em uma corda.

Propomos uma demonstragado breve sobre componentes de uma func¢ao
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periddica partindo da relagao que define periodicidade em que se g(t) é pe-

riédica com periodo fundamental 7', entao
glt) = g(t +T).
A substituicao sucessiva de t — t + T leva a relacao
gt) =gt +T)=gt+27)=g(t+37T)=...
e, por indugao, a relacao geral
g(t) = g(t + kT).

Ora, kKT é um maultiplo inteiro do periodo fundamental. Isto significa que
se é sabido que h(t) é periddica e que h(t) = h(t + U), para um ntmero U
qualquer, entao a frequéncia fundamental 7T}, de h deve ser submultiplo de
U, ou seja,

U
Th:E

Y

para algum k € Z.
Vamos considerar, agora, que ¢g(t) é formado por fun¢bes componentes
g1(t) e go(t) por meio da soma, tal como na superposigdo de ondas. Assim,

g1(t) e go(t) serdo parcelas de g(t),

Pela periodicidade de g,

g(t) = g(t+T)

= qi(t) +92(t) =t +T) + g2t +T).
9(t) = 91(t) + 92(t)

Ora, a igualdade da direita nao implica periodicidade de g; ou de go,

implica apenas periodicidade da sua soma. Mas podemos propor, arbitrari-
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amente, a periodicidade de g; e de go, fazendo

Isto significa que as frequéncias fundamentais de g; e ¢o, dadas respectiva-

mente por T} e Ty, devem ser submultiplos de T', ou seja

Tl - T/kl
Ty =T/ks

e, invertendo estas relagoes, obtemos

=kt
fo=kaf

em que f, fi e fo s@o as respectivas frequéncias de g, g; e go. Isto significa que
se quisermos interpretar g com componentes periddicas, as frequéncias das
componentes deverao ser, necessariamente, miltiplos inteiros da frequéncia
de g.

Este é um importante resultado e, como vimos, facil de demonstrar. Por
indugdo, o que provamos para g composto por duas componentes, pode ser

provado para uma quantidade qualquer de componentes.

3.4.4 Obtencao dos coeficientes da SFTD por sistema
de equacoes

Como ferramenta de convencimento adicional com relagao a existéncia e uni-
cidade dos coeficientes e a possibilidade de obter seus valores, pode-se, tam-
bém, mostrar que a substituicdo de cada um dos N valores de n na equacao
de sintese resultara em N equagoes lineares com as incognitas ay e by.
Como no total, hd também N coeficientes considerando os a; e b para to-
dos os valores de k, temos um sistema com N equacoes e N incognitas e,

portanto, uma possivel solugao tinica que determina todos os coeficientes.
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A razao pela qual os coeficientes nao sao calculados pela solucao do sis-
tema de equacOes, é meramente computacional. Contemporaneamente, os
coeficientes da SFTD sao calculados empregando o algoritmo de Cooley-
Tookey [47], baseado no desenvolvimento do célculo matricial dos coeficien-
tes de série similar a da equagao [3.9) Este método é chamado de transfor-
mada rapida de Fourier e conhecido por sua sigla FFT do inglés fast Fourier
transform. Nossa proposta sugere inicialmente o uso do calculo matricial
para familiarizacao com as equacgoes de sintese e andlise e o significado dos
coeficientes da SF'TD, muito dificeis de extrair dos coeficientes da SFTD
exponencial, principalmente devido ao uso de coeficientes complexos, o que
tentaremos contornar com a maior simplicidade possivel e sem entrar nos
detalhes e dedugoes. Detalhamos a proposta de uso da FFT na secao [3.8

3.4.5 Senoides como base de um espacgo vetorial do RY

Um curso de Ensino Médio que consiga tratar aspectos de geometria analitica
ou algebra linear, mesmo que de forma introdutéria, como é o caso do Colégio
Naval [9], e que trate do produto interno ou produto escalar entre vetores

apresentando—o Ccomo
U-U= VoUg + V1U1 + VaUsg (349)

€ Ccomo

U -1 = |v]|t] cos b, (3.50)

em que v, vy, V3 SA0 0s componentes de U e ug, Uy € Uy SA0 0s componentes
de @, também pode tratar a definicdo de projecao e de apresentacao de um
vetor numa base qualquer.

Para tal, é necessario conectar as ideias de projecao e de base ortogonal
e que um vetor qualquer « pode ser representado numa base com vetores €7,
€y € €3 Como

U= ’06151 + Ueggg + U6353 (351)
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desde que os vetores €; sejam ortogonais entre si, ou seja

— —

€ -€; =0, para i # 7, (3.52)

que é o mesmo que o angulo 6 = 7 entre os vetores da base. A projecao do

vetor ¢ sobre o vetor 4 é o vetor v, dado por

Ty = ——ii = v,il (3.53)

que representa o vetor na direcdo de u que é a projecao geométrica de U ou
que mais se aproxima de 7.

Apresentamos as relacoes acima em R?, mas pode-se mostra-las, antes,
para R?, e, s6 entdo, para R3. Este processo, inclusive, ajuda a sugerir por
indugao o caso de N valores amostrados. As N amostras de um sinal podem

ser interpretadas como as N coordenadas de um vetor no RY. Neste caso,
as equacoes e sao generalizadas como

—_

k=0
e7
N-1
U= Z Vek€k, Para €; - €; = 0,1 # j. (3.55)
k=0

Daqui, pode-se mostrar que N amostras de cosseno e de seno de frequéncia
angular normalizada ZW“ sao todos ortogonais entre si. Vamos designar como

Cp e 55 os vetores com coordenadas ci, = Cos(%rlm) € Skn = sen(%’kn),
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respectivamente. Assim, considerando 1 <i,j7 < | N/2], teremos

- E o (n)on (r)
C; C]—ni COSs NZTL COS N]?’L

1N1{ {27r (,+.)}+ {27r (i )H
== cos |—n(i cos | —n(i —
2 2~ N N

1 (V-1 o N-1
=3 n_ocos{an—i-]]—i-nOc {nz—j)}}
=0, para i # j,

G5 = Nz_l cos (?\jm) sen <3\77Tjn)
ENX:I {sen an(z —l—])} + sen Bz;n(z — j)”

2B o i)

n=0

n=0
L5 o] o )
ey cos | —rn(i = j cos | (i +
_! _1cos [%n( - )} —N_lcos [QW (i + )]
_2 n=0 N ' / n=0 an /
=0, para i # j

Vemos que vetores ¢, e S, sao sempre ortogonais entre si e resta estudar
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o médulo destes vetores. Para ¢, temos

o Nl 2T 2
Cr - Cp = Z CoS (Nkn> coS (Nlm>

n=0

1=l 2
=3 2 cos? (]z;kn>

1N1[ (27T2/<; )+1]
= — cos | —2kn

2 = N

1 N-—1 27T 1 N—-1
S — 9k 1

27;)(:03(]\7 n>+2nz%

1N 2 N

Cp* Cp = 5 2 cos <]\7;2k:n> + 5

O somatério SN cos (%an) para 0 < k < |N/2], resulta sempre em
0, exceto quando k& = 0 ou quando N é par e k = N/2, caso em que
SN Lcos (%an) = N. Desta forma,

N,k=0ou N éparek =N/2
Cp+ Cp = N
—, caso contrario

J& para §j, temos

1=t 2
= — sen? <7Tk:n>
2 = N
1=t 2
= 3 nz::O [1 — COS (]\7;2/671)]
SIS LN (Sr2kn)
=3 2 ) 2 cos i n
N 17 27
gk . §k = —-— — = COS (2](571)
2 2 = N
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Pela mesma razao do que observamos no calculo de ¢ - ¢, teremos

0,k=0o0ou N éparek=N/2

1
21
I

N

ER caso contrario

Desta forma, considerando o vetor & a ser representado como composto
pelas amostras do sinal z[n], ou seja, x = x[k|, e tomando €y = ¢, €1 = Cp
e €y, = Sk, para 1 < k < | N/2], a equacao toma a forma da equagao
de sintese |3.25| com ag = o9, ar = T € by = x4, € as equagoes de analise de
a coincidem exatamente com a projecao de & sobre os vetores de
base ¢ e 5.

Efetivamente, tomemos como exemplo o célculo de a;, para 1 < k < N/2.
Pelas equacoes [3.32], [3.54) e [3.53] e pela relacao aj, = @, teremos

A = Tk
2 ) (27? 7,
— x|n| cos kn) = ——
T = ] N k* Ck
2 2! 2 1
= > x[n] cos <]\7;k:n> = T C

o

n=

NV/2 Zg:_ol z[n] cos(%’kn)
de onde se observa claramente que o multiplicador 2/N da equacao pode
ser interpretado como vindo do termo 1/(¢ - €) e o somatério nada mais é

que o produto interno entre ¥ - ¢, ambos os fatores sao os componentes do
calculo do coeficiente x., da projecao de Z sobre o vetor ¢.

Ou seja, pode-se concluir que um sinal z[n] com N amostras é analogo
a um vetor no RY, que hd N senoides amostradas que formam uma base
ortogonal deste espago e a que a SF'TD nada mais é do que a expressao do

vetor que representa este sinal neste espago nesta base.
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3.4.6 Calculo das equacgoes de sintese e analise da SFTD
com Python

Apenas como exemplo do que se espera na elaboracao dos cédlculos para
obter o espectro, vamos apresentar alguns cédigos em Python, linguagem
empregada na aplicagao descrita no Capitulo . O primeiro deles calcula x[n]
a partir dos coeficientes da SF'TD, implementando a equacgao por meio
de duas iteragoes com o comando de controle de fluxo for, um para correr
os valores de n e outro os de k de modo que se some, para todos os valores
de n, todas as parcelas ay, cos(2mnk/N) e by sen(2mnk/N) que o compdem.
Esta estratégia é mostrada no cédigo [3.1 Nele, consideramos importado o
modulo NumPy, que os coeficientes ay e by estdo nos vetores a e b e que a
quantidade de amostras se encontra na variavel N. Estas consideragoes serao

feitas em todos os codigos que se seguem.

w0 = 2xpi/N
x = zeros (N)
for n in range(N):
for k in range(int(N/2)):
x[n] = x[n] + a[k]*cos(wOxk*n) + b[k]*sin (wOxkx*n)

Cédigo 3.1: Implementacao da equacao de sintese com dois lagos for.

O cédigo é computacionalmente ineficiente. Em geral, lacos for ani-
nhados nao sao o melhor caminho para aproveitamento dos recursos de para-
lelismo disponiveis nos computadores contemporaneos. O laco que percorre
os valores de n pode ser dispensado se empregarmos um vetor com os valores
de n e recorrermos a operacoes matriciais elemento-a-elemento, resultando

no cédigo [3.2]
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w0 = 2xpi/N
n = arange (N)
x = zeros (N)
for k in range(int(N/2)):
x = x + alk]*xcos(w0xk*n) + b[k]xsin (wOxk*n)

Cédigo 3.2: Implementacao da equagao de sintese com um lagos for e

operacoes elemento a elemento.

Uma proxima abordagem faz uso do produto matricial descrito na equa-
¢ao |3.43] construindo as matrizes C; e S, pelas regras dadas nas equagoes
3.41) e [3.42] obtendo como resultado o c6digo[3.3] As linhas de 2 a 7 criam as
matrizes Cy e S, 0 que s6 precisa ser realizado uma vez no programa, com
a vantagem do calculo da sintese com uma unica linha, como a linha 8, de
aritmética matricial cujo calculo é extremamente eficiente nos computadores
contemporaneos. O programa serd tao mais eficiente, quanto mais a equacao

de sintese for realizada.

w0 = 2%pi/N

Cs = empty ((N,int (N/2)+1))
Ss = empty ((N,int (N/2)+1))
for i in range(N):

for j in range(int(N/2)+1):
i,j] = cos(wOxj=*i)
i (

Cs|
Ss [ ] = sin(wOxj=*i)

x = Cs@a + Ss@b

Cédigo 3.3: Implementacao da equagao de sintese pela construcao das

matrizes em lagos for.

Uma tltima abordagem apresentada no cdigo [3.4]leva ao extremo o em-
prego de matrizes partindo de uma matriz matrizIJ em que seus elementos
matrizIJ[i,j] = i*j, o que se obtém pelo produto matricial entre uma
matriz coluna com os valores de ¢ por uma matriz linha com os valores de j
e aplicando a fung¢do trigonométrica elemento a elemento sobre esta matriz

de base. Como resultado, nenhum lago é empregado, sendo toda atividade
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repetitiva relegada as operagoes matriciais.

w0 = 2xpi/N

i = reshape(arange(N) ,(N,1))

j = reshape(arange(int(N/2)+1),(1,int (N/2)+1))
matrizlJ = iQj

Cs = cos(wOxmatrizll])

Ss = sin (wO*matrizlJ)

x = Cs@a + Ss@b

Cédigo 3.4: Implementacao da equacao de sintese apenas com operagoes

matriciais.

Os codigos a encerram o que esperamos que seja obtido na apli-
cagao para a equacgao de sintese da SF'TD. Vemos que os c6digos sdo muito
curtos. Nenhum deles emprega mais de 7 linhas na preparagao e a operagao
matricial chega ao resultado 6timo de executar efetivamente a sintese com
uma unica linha de operacao matricial que é exatamente igual a sua definicao
matematica (exceto pelo uso dos simbolos especificos da sintaxe do Python).

Ideias progressivas e similares as que utilizamos para a sintese podem ser
empregadas para desenvolver as equagoes de andlise. O coédigo imple-
menta as equagoes a empregando dois lacos for, enquanto que o
codigo o faz com um tnico lago.
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w0 = 2xpi/N
a = zeros (int (N/2)+1)
b = zeros (int (N/2)+1)
for n in range(N):
for k in range(int(N/2)):

alk] = a[k] + x[n]*cos(w0Oxkxn)
b[k] = b[k] + x[n]*sin(wOxksn)
a = (2/N)=xa
b = (2/N)#b
al0] = 0.5%xa[0]
if N%2==0:
alint (N/2)] = 0.5xa[int(N/2)]

Cédigo 3.5: Implementacdo das equagoes [3.32] a [3.37] de sintese com dois

lagos for.

w0 = 2xpi/N

n = arange (N)

a zeros (int (N/2)+1)

b = zeros (int (N/2)+1)

for k in range(int(N/2)):

alk] = sum(x*cos (w0xk*n))

= sum(x*sin (wOxk*n))

a[0] = 0.5%a[0]
if N%2==0:
alint (N/2)] = 0.5xa[int (N/2)]

Cédigo 3.6: Implementacao das equagoes a de sintese com um laco

for.

Jé o codigo 3.7 constroi as matrizes C, e S, dos cossenos e senos para ané-
lise a partir das regras construtivas dadas nas equagoes e preenchendo-
a por meio de lagos for que percorrem todos os elementos destas matrizes.

As matrizes a e b sdo calculadas pelo par de rela¢oes dado na |3.40L
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w0 = 2xpi/N

Ca = empty ((int (N/2)+1,N))
Sa = empty ((int (N/2)+1,N))
for i in range(int(N/2)+1):
for j in range(N):

Cali,j] = COS(WO*I*J
Sa[l,'] n (wOxix*j)
(2/N)*Ca

= (2/N)xSa
Ca[ ,:] = 0.5%xCal0 ,:]
if N%2==0:
Calint (N/2) ,:] = 0.5%Ca[int (N/2) ,:]
a = Ca@x
b = Sa@x

Cédigo 3.7: Implementacao do par de relagbes matriciais da equagao [3.40

empregando lagos for para construir as matrizes auxiliares.

Por fim, o cédigo emprega apenas matrizes com mesma abordagem

do cédigo [3.4] evitando o uso de qualquer lago.

w0 = 2xpi/N
i = reshape(arange(int (N/2)+1),(int (N/2)+1,1))
j = reshape(arange(N) ,(1,N))
matrizl] = i@j
Ca = (2/N)
Sa = (2/N)*sin (wO*matrizlJ)
Cal0,:] = 0.5%xCal0,:]
if N%2==0:
Calint (N/2) ,:] = 0.5xCa[int (N/2) ,:]
a = Ca@x
= Sa@x

xcos (wOxmatrizl])

Codigo 3.8: Implementagao do par de relagoes matriciais da equagao

apenas com operagoes matriciais.

Vemos que, por haver algumas excecoes nas equacoes a [3.37 os

codigos para realizacao da andlise possuem poucas linhas adicionais para
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preparacao do resultado final considerando os casos especiais. Ainda assim,
podemos resumir que as operagoes de sintese e andlise exigem menos de uma
dezena de linhas cada para preparagao das operacoes e as operagoes matrici-
ais sao realizadas em uma tnica linha na sintese e em duas linhas na analise.
Além disso, estes codigos, uma vez aplicados a um caso, podem ser copiados
para novas aplicagoes, tornando-se trechos com excelente reusabilidade.

Na abordagem matricial, os coeficientes e a defasagem da SFTD compacta
dados na equacgao podem ser obtidos a partir das matrizes a e b em duas
linhas mostradas no c6digo 3.9 em que uma linha adicional ¢ empregada para
contemplar as duas possibilidade de fase (a que toma o seno como fungao

trigonométrica e a que toma o cosseno).

¢ = sqrt (axx2+bxx2)
phi = —arctg(b/a)
theta = arctg(a/b)

Cédigo 3.9: Obtencao dos coeficientes e defasagens da SFTD compacta das
relagoes da equagao [3.46]

Com o codigo [3.9 trouxemos trechos de c6digos suficientes para o com-
pleto estudo do espectro de um sinal amostrado, restando para a se¢ao [3.5 a
realizacao da representagao grafica e para a secao [3.8| a simplificacdo destes

procedimentos pelo uso das FFT ja implementadas no médulo NumPy.

3.5 Nocao e definicao de sinais, espectro e

conversores

J& discutimos na secao [2.3] a ideia de sinais tal como nos interessa e em
nivel suficiente para realizar as primeiras inferéncias a respeito de seu uso
na tecnologia. L&, consideramos um sinal x(t) similar a uma funcao z(t)
(Matematica) ou a uma grandeza x dependente da grandeza ¢ (Fisica), com
a diferenca de que maior importancia recai na possibilidade de que se possa

extrair informagao ao se observar a variacao de x ao longo de t.
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Nos interessa agora discutir as ideias de espectro de frequéncia e de banda
de frequéncias. Também na segdo [2.3] discutimos a introdugdao, no Ensino
Médio, dos conceitos de espectro pelo espectro de emissao, pelo espectro ele-
tromagnético e pelo fato de que as relagoes entre intensidade de componentes
de frequéncia versus frequéncia sao considerados compreensiveis no nivel do
Ensino Médio.

As nogoes de altura de um som também estao bem definidas neste nivel,
de onde se pode inferir no¢oes de ordem de grandeza de frequéncias funda-
mentais e de seus harmonicos. Na literatura, sdo comuns as discussoes acerca
da nocao de timbre recairem na existéncia de harmonicos e suas intensida-
des relativas, o que implica observacao de componentes em altas frequéncias
nos multiplos inteiros da frequéncia fundamental em uma emissao periddica,
mesmo que sua frequéncia fundamental seja baixa. Na secao [3.4.3] mostra-
mos que ¢ facil apresentar no nivel médio ser possivel decompor uma fungao
periodica qualquer em componentes periddicos. Estes terao, necessariamente,
frequéncia dada por um multiplo inteiro da frequéncia fundamental da fungao
original.

Desta forma, ha aspectos suficientes para argumentar que quando se ob-
serva os componentes de frequéncia num fenémeno aproximadamente perio-
dico, eles se distribuirao em uma faixa de frequéncias associada as potenciali-
dades e limitagoes fisicas do sistema emissor. Esta caracteristica é visivel na
escolha dos sistemas fisicos preparados para emissdo. Pequenos sinetes soam
agudos, enquanto grandes sinos soam graves. Instrumentos elaborados para
emitir em tessitura aguda sao pequenos, enquanto que os que devem emitir
nos tons mais baixos sao grandes e volumosos. As caracteristicas fisicas nao
estao dissociadas da regiao de emissao de um sistema fisico.

As nocoes de banda de emissao podem ser introduzidas seguindo esta
linha. A banda de emissao é importante para estabelecer com o minimo de
racionalidade uma frequéncia de amostragem funcional. Saber, por exemplo,
que os tons audiveis se encontram aproximadamente entre 20 Hz e 20 kHz,
permitem concluir que o estudo do som nao precisara ser amostrado acima
40kHz de acordo com o teorema de Nyquist.

A banda de emissao é a regiao de frequéncias em que uma fonte emite
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Figura 3.8: Nogao de banda de frequéncias, estimativa de frequéncia maxima
e de uma frequéncia de Nyquist razoavel.

as suas componentes de frequéncia. Para definir a frequéncia de Nyquist
¢ importante considerar o maior valor das componentes. Este valor pode
ser estimado considerando a maior frequéncia de uma emissao multiplicado
por um fator inteiro k£ que indique aproximadamente o maior harmonico
relevante. Esta ideia estd ilustrada na figura 3.8 A frequéncia fundamental
maxima emitida pela fonte é mostrada como fomax, a frequéncia maxima da
banda de emissao é estimada como fosx = kfomax. Embora teoricamente
justo de acordo com critério de Nyquist, nao é boa pratica fazer fisx = fs/2.
Chamamos a diferenga f;/2 — fiax de margem de seguranca da proposta de
amostragem.

Um sistema de amostragem emprega um conversor analégico para digital
(conversor A /D), que amostra a grandeza de entrada em intervalos regulares.
O exemplo mais simples de uma conversor A/D é a entrada para microfone
de um computador ou de um celular moderno. Ele converte a onda de pres-
sao do som em amostras de som que, como vimos na figura da secao
3.2 encontram-se amostrados internamente no computador. Este esquema é
apresentado na figura em que destacamos também o papel do elemento
sensor responsavel por converter a grandeza captada x(t) em uma grandeza
do tipo elétrica que chamamos de v(t). Como os conversores A/D recebem
em sua entrada uma grandeza do tipo elétrica, o sensor é necessario para
realizar esta transformacao.

Um tultimo aspecto importante com respeito a conversao de sinais é a
possibilidade de que z(t) ndo contenha apenas componentes de frequéncia

na regiao de interesse para o estudo. E o caso, por exemplo, da existéncia
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v(t) conversor
T () meepl SENSOT ety A/D — (1]

Figura 3.9: Esquema geral da conversao e a especifica realizada sobre audio
em um computador.

| f
U(t) 'U'(t) conversor
T(1) el SENSOT [y ﬁl;fo — A/D — (1]
o(t) c o) [s
[ N S
| foo Je fo = 2f.

Figura 3.10: Esquema geral do conversor A/D com filtragem.

de ultrassom no ambiente em que se deseja estudar apenas o som. Neste
caso, os componentes de ultrassom interferem na grandeza de pressao que
serda amostrada. Este problema pode ser superado pelo uso de filtros que
removam as componentes indesejadas fora da regiao de frequéncias do estudo
como ilustra o esquema da figura [3.10, O uso do filtro, além de eliminar
informacao indesejada para o estudo, garantira que o sinal que sera convertido
no conversor A /D respeitard o critério de Nyquist.

Por fim, a exata quantificagao dos componentes de frequéncia pode ser
feita pela analise da SFTD compacta das equagoes e de onde se
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pode observar que a frequéncia angular normalizada

2
wk:—ﬂk

N
estd associada a intensidade c,. Um grafico ¢ X fi, em que

1

= k
NT;

Jr

¢é a frequéncia em hertz associada a wy, fornece graficamente a relacao entre
frequéncia das componentes e suas intensidades e é uma boa definicdo do
espectro (de amplitude) de Fourier de um sinal. A construcao e interpretagao
deste grafico é o grande objetivo do curso.

Empregando o Python, o codigo mostra como pode ser feito o grafico
do espectro considerando dado o vetor ¢ dos coeficientes da SFTD compacta
calculada na cddigo 3.9 e que o médulo Pyplot do Matplotlib foi importado

como plt.

f = 1/(N«Ts) % arange(int(N/2) + 1)
plt.plot(f, ¢)
plt .show ()

Cédigo 3.10: Apresentacao grafico do espectro dados os coeficientes cy.

Com os cédigos para célculo das equagoes de sintese e andlise sugeridos
na secao [3.4.6| e este ultimo cédigo, consideramos concluidas as ferramentas
computacionais necessarias para realizacao da analise de espectro no nivel do
Ensino Médio. O codigo apresenta o que se espera obter em um codigo
curto de apenas 34 linhas para anélise de dois audios de uma flauta irlandesa
soando as notas ré (D) e sol (G). As trés primeiras linhas apenas importam os
modulos empregados, sendo o NumPy para uso das fungoes trigonométricas
e matrizes, o Matplotlib para elaborar o grafico e o Soundfile para leitura do
audio como uma matriz. As linhas que se seguem até a 11 apenas carregam
o audio e extraem as suas informacgoes de periodo de amostragem e limitam

o estudo a um total de N = 5000 amostras. As linhas de 12 a 26 sio uma
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c6pia dos codigos [3.9] e 3.8 que realizam o célculo dos coeficientes de Fourier,

e, portanto, a analise do espectro.

from numpy import x
import matplotlib.pyplot as plt
import soundfile

x1l, fsl = soundfile.read("flautaD .wav")
x2, fs2 = soundfile.read("flautaG .wav")
Tsl = 1/fs1

Ts2 = 1/fs2

N = 5000

k = arange(int (N/2)+1)

x1 = x1[0:N]

x2 = x2[0:N]

w0 = 2xpi/N

i = reshape(arange(int(N/2)+1),(int (N/2)+1,1))
j = reshape(arange(N) ,(1,N))

matrizlJ] = i@j

Ca = (2/N)xcos(wOxmatrizlJ)

Sa = (2/N)*sin (wOxmatrizlJ)

Ca[0,:] = 0.5%xCal0,:]

if N%2==0:

Ca[int (N/2) ,:] = 0.5%xCa[int (N/2) ,:]
al = Ca@x1

bl = Sa@xl1

cl = sqrt (alsx2+bl*%2)

a2 = Ca@x2

b2 = Sa@x2

c2 = sqrt (a2%%2+b2%%2)

f1 = 1/(N+Tsl)=xk

f2 = 1/(N*Ts2)*k

plt.subplot(2,1,1)

plt.plot (fl1,cl)

plt.subplot(2,1,2)

plt.plot (f1[:int(N/5)],cl[:int(N/5)]
plt.plot (f2 [:int (N/5)],c2[:int (N/5) ]
plt .show ()

~— —

Codigo 3.11: Anélise do espectro de Fourier de dois audios de uma flauta
irlandesa.

As linhas restantes do c6digo[3.1Tapenas estabelecem os eixos da frequén-
cia em hertz e plotam dois graficos mostrados na figura[3.11] A identificacao
dos eixos foi adicionada por meio de edi¢ao posterior por simplificacdo, mas

poderia ser adicionado ao cédigo. O eixo horizontal em ambos os graficos
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Figura 3.11: Espectros de Fourier de audios de flauta irlandesa obtidos pelo

codigo [3.11}

é a frequéncia em hertz obtida de fr. O vertical é a intensidade dos co-
eficientes ¢, obtidos na frequéncia f; correspondente. Embora tracado em
linha continua por haver grande quantidade de pontos (2500 no primeiro e
1000 no segundo), temos conhecimento apenas de alguns valores discretos de
frequéncia e sua intensidade correspondente.

No primeiro grafico (superior) da figura [3.11} o espectro completo é exi-
bido para o primeiro audio, onde se pode observar até a frequéncia maxima

de
£, 44100

5= "9 Hz = 22050 Hz,

pois o audio utiliza a frequéncia de amostragem padrao de 44100 Hz. Fi-
cam muito bem definidos os picos de intensidades em miltiplos inteiros de
frequéncia fundamental f, ~ 608 Hz emitida pela flauta quando soando a
nota ré, de acordo com a expectativa da Fisica da ressonancia em um tubo
com ambas as extremidades abertas. Fora das regides em que se tem as
frequéncias dos harmonicos, as intensidades das componentes é praticamente

nula.
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O segundo grafico sobrepoe os espectros devido a ambos os audios, sendo o
da nota sol (G) acrescentado em laranja, e destaca apenas as frequéncias mais
baixas onde ha harmonicos mais relevantes até a frequéncia aproximada de
8820 Hz. O mesmo fendmeno de ressonancia no tubo da flauta é observado em
ambos os tracados, mas para a nota sol temos uma frequéncia fundamental
de aproximadamente 829 Hz[|

O cbdigo é posposto ao codigo [3.11] e recupera o sinal x1 no sinal
xlrec a partir da equacao de sintese matricial implementada no cédigo
Ao fim da recuperacao de x1, comparamos ambos pela diferenca entre o sinal
original e o recuperado e apresentamos o grafico desta diferenca que reprodu-
zimos na figura [3.12] O algoritmo ainda indica o desvio absoluto maximo de
2,9581892491137296 x 10~ 13 e um desvio médio de 5,816073594955285 x 10~ 14
entre as amostras originais e a recuperada. Um desvio préximo da 142 casa
decimal, neste caso, é compativel com a precisao de pronto flutuante de dupla
precisao, ou seja, a diferenca entre o sinal original e recuperado é pratica-

mente nula.

i = reshape(arange(N) ,(N,1))
j reshape (arange (int (N/2)+1),(1,int (N/2)+1))
matrizlJ = iQj

Cs = cos(wOxmatrizll])
Ss = sin (wO0*matrizlJ)
xlrec =

Cs@al + Ss@bl
plt.plot (xlrec—x1)
plt.show ()

print ("Méximo desvio:

;max(abs(xlrec—x1)))

I

print ("Desvio médio: " ,mean(abs(xlrec—x1)))

Cédigo 3.12: Recuperagao do sinal x1 do cdédigo [3.11] a partir de seus coefi-

cientes de Fourier.

Um ultimo conceito associado a andlise de espectro de Fourier é o de
espectro de fase que complementa o espectro de amplitudes e dado pela

relacao 0y X fr ou ¢y X fr, entre a defasagem e a frequéncia de cada componente

!Para uma afinacio padrdo em que a nota 14 estd em 440Hz, a flauta empregada
encontra-se desafinada emitindo frequéncias acima das esperadas.
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Figura 3.12: Diferenca entre xlrec e x1 para cada uma das 5000 amostras.

da SFTD compacta. Os espectros de amplitude e fase, juntos, descrevem
completamente um sinal pois ilustram todos os valores de ¢ e ¢ ou 0 que,
como vimos na definicado da SF'TD e da SFTD compacta, sao suficientes para
obter z[n].

De forma resumida, as nogoes de sinais e de sua banda de frequéncias, o
emprego do conversor A/D e de possivel filtragem para limitacdo da banda
da gradeza as frequéncias sob estudo, e a defini¢ao do espectro como a relagao
fr X ci, sdo conceitos e questoes tecnologicas suficientes para empregar dados
reais, principalmente de audio, no estudo do espectro de Fourier de sinais,

como mostramos por meio do codigo [3.11}
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3.6 Construcao de uma sequéncia didatica para
obtencao da série de Fourier de tempo

discreto para Ensino Médio

Conseguimos obter na equagao e nas equacgoes de a expres-
soes que empregam Matematica ao nivel de Ensino Médio para a sintese e

analise da SF'TD. Quando nos as obtivemos, porém, seguimos um caminho
em que consideramos dadas a série e as equagodes de analise empregando co-
eficientes complexos e componentes de frequéncia exponenciais complexas e
tomamos como fonte dos desenvolvimentos a literatura disponivel para o ni-
vel superior. Ora, o emprego e os desenvolvimentos realizados pressupoem
o conhecimento de resultados que nao estao disponiveis no nivel do Ensino

Médio, principalmente a relagao de Euler,

e’ = cosf + jsenb,
cuja demonstracao exige calculo diferencial.

Desta forma, o conhecimento de nivel superior nao pode ser considerado
como dado, restando a adaptacao, também, de uma sequéncia na qual se
derive a equacao para a SFTD a partir de outras premissas. Nos materiais
didéticos dos apéndices [A] e [B] demonstramos que as equagoes a

podem ser feitas:

o Realizando o somatério para n de 0 até N — 1 em ambos os membros
da equagao [3.25 para obter ap;

o Multiplicando ambos os membros da equacao m pelo cos(%’rk’ n) e
realizando o somatoério para n de 0 até N — 1, também em ambos os

membros, para obter a; e,

o Multiplicando ambos os membros da equacao @ pelo sen(%”k:’n) e
realizando o somatoério para n de 0 até N — 1, também em ambos os

membros, para obter by.
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Tabela 3.5: Propriedades empregadas na demonstragao das equagoes de[3.32

a 337

Formulacao

Somatério de constante
b

Y C=Cb—-a+1)

k=a
Somatorlo de uma Soma

Zak—i-bk Zak—l—Zbk
k=a
Somatorlo de termo multlphcado por constante
Z Cak C Z Qj
Comutagao de somatério duplo
b

DD iy =) i
i=a j=c j=ci=a

Produto de Colssenos
cosacos 3 = 5[008(04 + ) + cos(a — 3)]

Produto de senos
senasen f§ = i[cos(oz — fB) — cos(a+ )]

Produto de cosseno por seno

cosarsen 3 = ;[sen(oz + ) + sen(a — ()]

O desenvolvimento também exige apenas o emprego de propriedades e identi-
dades do nivel do Ensino Médio, em especial as propriedades trigonométricas
e de somatorio listadas na tabela 3.5

O tnico resultado que nao estd expresso tipicamente em textos do nivel

do Ensino Médio e que também é necessario para demonstrar as equacoes de
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a é o das relagoes

N, k=0
N-1 ot
cos(Nk;n>: 0, 1<k<N-1
n=0
N, k=N,N par (3.56)

para 0 < k < N. Apesar disso, empregando a geometria do ciclo trigono-
métrico e simetria, estas expressoes sao faceis de demonstrar. Isto ocorre
pois o argumento das fungoes trigonométricas no somatorio sao sempre N
arcos multiplos inteiros do arco %”k, de sorte que para grande parte dos
valores de k, os pontos de onde se observa o cosseno e seno (abscissa e orde-
nada) sao simétricos radialmente sobre o ciclo e o somatério dos N termos é
nulo. Eles sempre se distribuem sobre os vértices de um poligono regular de
N/mdc(N,k) lados. Isto ndo ocorre apenas para k = 0 e k = N, caso em que
0 arco %’rk ¢é sempre congruente com o arco que mede 0 radianos, de cosseno

unitario, e o somatorio dos N termos unitarios resulta em N.

3.6.1 Analise de prerrequisitos para uso da SFTD no

Ensino Médio

Desta forma, observamos pela anélise das equacoes[3.25] de [3.32]a [3.37], [3.38],
3.39, [3.43] [3.47], 3.48], pelas propriedades da tabela [3.5]e da equagao[3.56, que

os seguintes topicos sao prerrequisitos priméarios para o curso:

» funcgoes e identidades trigonométricas;

 somatdério e suas propriedades (em especial as listadas na tabela [3.5));

o matrizes e as operagoes de produtos por constante, soma e produto de

matrizes; e,
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« emprego de matrizes (arrays) e comandos de controle de fluxo em pro-

gramagao para realizagao dos calculos.

Secundariamente, usamos a simetria do ciclo trigonométrico e a SFTD
compacta tem como argumento em seu cosseno um termo identificavel com a
posicao num movimento circular uniforme e cada parcela desta série coincide
com uma equag¢ao da posi¢cao no movimento harmoénico simples. Com isso,
¢ importante associar as fungoes trigonométricas a projecao de um ponto
sobre o ciclo trigonométrico. Por outro lado, nossas aplicacoes, mesmo as
que tenham maior relagdo com questoes tecnoldgicas, estao fortemente co-
nectadas a ocorréncia de fen6menos ondulatoérios, de sorte que o dominio dos
topicos de ondas e actstica do nivel do Ensino Médio é fundamental para
o sucesso no desenvolvimento dos problemas do apéndice [C} Devemos, com

isso, acrescentar os seguintes topicos como prerrequisitos:

e movimento circular uniforme;

e movimento harmoénico simples; e

e ondas e acustica.

Estes prerrequisitos estao ilustrados de forma esquemaética na figura(3.13
em blocos escritos com fonte direita. Devido ao carater interdisciplinar da
empreitada, destacamos as regides que acreditamos terem maior aderéncia
aos prerrequisitos como estando nas disciplinas de Matematica (vermelho),
Fisica (azul) e Computacido/Programagao (amarelo). Estamos considerando
que se trate de um curso em que um minimo de conhecimento de Programacao
é garantido ainda no nivel médio, o que é o caso de nossa aplicacao especifica,
realizada no Colégio Naval. Dentre os topicos do Ensino Médio no esquema,
0 Unico que pusemos mas ainda nao tratamos em detalhe ¢ o emprego de

niumeros complexos que discutiremos na se¢ao |3.8|
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Figura 3.13: Esquema da sequéncia didatica do curso de andlise de espectro.
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3.6.2 Resumo de téopicos relevantes para analise de es-

pectro de Fourier

Os tépicos que completam nossa aplicacao estao em grande parte numa “dis-
ciplina” inteiramente nova no esquema da figura que identificamos como
engenharia/tecnologia (verde). Todos os topicos do curso que nao sao tipicos
do Ensino Médio foram grafados em itdlico nos blocos e sao os topicos que
exploramos nas segoes [3.3 e e englobam a ideia de sinais, o calculo
da SF'TD, sua representacao grafica e as aplicagoes especificas de analise de

audio.

3.6.3 Desenvolvimento do curso

Considerando a experiéncia da aplicagao apresentada no Capitulo [4] as dis-
cussoes com os docentes participantes da aplicagao e a experiéncia compar-
tilhada com os alunos, resumimos na tabela a estimativa da duracao
das etapas do curso proposto. Nela, propusemos uma classificacao para a
apresentacdo como sendo opcional ou obrigatéria. A classificacao reflete a
importancia para o curso com o tema de “andlise de Fourier em gradezas
amostradas”.

Desta forma, os tépicos que comumente compoem um curriculo regular
do Ensino Médio, foram considerados como opcionais. E o caso daqueles as-
sociados a Matematica (itens 1, 2 e 5), a Fisica (itens 3 e 4) e Programagao
(itens 6, 7 e 8) no nivel médio. Os tépicos muito avangados (como demostra-
¢oes do item 12 e uso da FFT do item 13) também foram classificados como
opcionais. Neste caso, trata-se de tépico especifico de analise de Fourier, mas
que pode ser deixado para os alunos com um nivel de interesse e maturidade
em Matematica suficientes para nao interferir na conducao do curso.

Os temas inéditos e que dificilmente figurariam em um curriculo tipico do
Ensino Médio foram considerados como obrigatérios para o desenvolvimento
do curso, o que é o caso dos itens 9, 10 e 11. Como motivagao final e
pelo amplo interesse demonstrado pelos alunos e professores participantes,
a resolucao dos problemas finais do item 14 também figura como topico

obrigatorio.
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Tabela 3.6: Sugestdao de desenvolvimento do curso

CH Estimada [hora-aula]

Item Aula Opcional  Obrigatoéria
1 Revisao de somatorio 1 -
2 Revisao de fungoes trigonométricas 2 -
3 Revisao de movimento circular 1 -

uniforme
4 Revisao de ondas e acustica 3 -
) Revisao de matrizes 1 -
6 Comandos de controle de fluxo no 4 -
Python
7  Funcoes matematicas no Python com o 4 -
modulo NumPy
8 Gréficos no Python com o moédulo 4 -
Matplotlib
9 Nogoes de Amostragem - 4
10 Nocoes de espectro - 2
11 Série de Fourier de Tempo Discreto - 6
12 Demonstragoes da SFTD 2 -
13 Espectro por FF'T 2 -
14 Projetos finais - 20
Total 24 32

No caso de nossa aplicagao, as revisoes foram realizadas e, mesmo a Pro-

gramacao sendo competéncia curricular no CN e na EN, a linguagem empre-

gada nao é o Python. Isto implicou na necessidade de apresentacao desta

linguagem, permitindo a devida familiarizacdo antes do uso da mesma como

ferramenta para o calculo e apresentacao do espectro.
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3.7 Definicao de problemas para aplicacao

Como proposta metodolégica, vamos direcionar a aplicagdo a solugao de al-
guns problemas ou pequenos projetos resumidos no material instrucional do
apéndice [C] Listamos algumas caracteristicas dos problemas na tabela [3.7]
Ela ajuda a explicar a escolha dos problemas. Tentamos seguir um crescente
na complexidade da solucao e dos conceitos envolvidos, partindo daqueles que
sao mais familiares no nivel do Ensino Médio para aqueles mais propriamente
associados a tecnologia e engenharia. As solugoes e sugestoes para resolucao

destes problemas estao detalhados no material instrucional do apéndice [D]

3.7.1 Problemas direcionados a SFTD como instru-

mentacao na medida de frequéncias

Nos primeiros problemas, o objetivo principal é familiarizar o aluno com a
SFTD como instrumento de medida de frequéncia, explorando fenémenos
periddicos, efeito Doppler e altura das ondas sonoras. Os quatro primeiros
problemas, por exemplo, se resumem a estas questoes e sao fortemente in-
fluenciados por propostas como a de Souza [48]. A grande diferenga entre
estes problemas se encontra no tema e na area de aplicacdo, mas as com-
peténcias gerais para solucao sao as mesmas. Ela se inicia com a obtencao
das amostras, e segue para a sele¢do de trechos em que os fendomenos de in-
teresse se desenvolvem e estao aproximadamente isolados. Neles, a andlise
do espectro e realizacao das medidas das frequéncias estao melhor associa-
das ao fendmeno, possibilitando tirar conclusoes em direcdo a solugao dos
problemas. Sugerimos o uso do Audacity [46] para os cortes de trechos dos
audios muito extensos associado aos scripts em Python para analise como
ferramentas suficientes para o estudo.

O problema de identificagdo de digitos em dual-tone ja é o primeiro as-
sociado a questoes tecnoldgicas, em particular ao processo de transmissao
numérica por linhas de audio telefénicas. Embora o problema de identificar
os tons seja relacionado com a mera medida de frequéncias, a solicitagao da

proposicao de uma forma de automatizar a identificacdo pode demandar o
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Tabela 3.7: Lista dos problemas para aplicagdo e suas caracteristicas.

Problema

Competéncia

Conteudo

Quao rapido batem as
asas

Estimativa de velocidade

na F1

Velocidade do chute ao
gol

Identificacao da altura
de som monofénico

Identificacao de digitos
no dual-tone

Péndulo, dngulo de par-
tida e MHS

Comportamento massa-
mola com 2 graus de
liberdade

Filtragem da voz

Flauta sintética

Reconhecimento de al-
tura (pitch) automatico

Transmissao simultanea
empregando AM

Separagao de sinais AM

Demodulacdo AM

Amortecedor massa-
mola com atrito viscoso

Medida. de frequéncia

Medida. de frequéncia

Medida de frequéncia

Medida de frequéncia

Medida de frequéncia

Medida de frequéncia e
simulacao

Medida de frequéncia e
simulacao

Filtragem no dominio
da frequéncia

Filtragem no dominio
da frequéncia

Filtragem no dominio
da frequéncia

Anélise no dominio da
frequéncia
Filtragem no dominio

da frequéncia

Anjlise no dominio da
frequéncia

Anélise no dominio da
frequéncia e simulagao

Instrumentacao

Instrumentacao e efeito Doppler
Instrumentacédo e efeito Doppler
Escala temperada e ondas pe-
ridédicas

Codificagao eletrénica
Modelagem de sistemas dinami-
cos e MHS

Modelagem de sistemas dinami-
cos e mecanica classica
Processamento digital de sinais
Sintese de audio digital

Escala temperada e processa-
mento digital de sinais
Modulagao AM

Modelagem de telecomunicagoes

Demodulacdo AM

Modelagem de sistemas dina-
micos, resposta em frequéncia e
resposta ao impulso
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uso de recursos de légica adicionais. Por esta razao, o docente pode realizar
as medidas dos valores codificados em dual-tone e concluir a automatizagao
deste problema mais adiante, quando os alunos estiverem mais maduros com
a logica da programacao e até podendo empregar filtros para eventualmente
facilitar a solucao.

Seguimos com dois problemas de dinamica longe do trivial para solucao

no Ensino Médio. O primeiro, associado ao péndulo, devido a aproximagao
senf ~ 0 (3.57)

tipicamente feita para se obter um MHS no movimento do péndulo com
frequéncia fundamental de oscilagdo independente do angulo inicial. Ambas
as caracteristicas s6 sdo observadas enquanto a aproximagcao da equagao [3.57]
for verdadeira, o que s6 acontece para 6 pequeno. A medida da frequéncia
fundamental da oscilagdo é um problema de instrumentacao para a SF'TD,
enquanto que a oscilacdo nao-harmoénica pode ser vista na SF'TD pelo surgi-
mento de harmonicos de ordem maior. Propomos a simula¢gao do movimento
do péndulo pelo estudo aproximado de amostras de sua posicao tal como ja
documentado por Sousa [49]. Em nossa notacao, o menor intervalo de tempo
entre amostras ¢ o periodo de amostragem T, de modo que a velocidade

instantanea pode ser aproximada por

_Ax _.il:[n%—l]—x[n]'

11~ 27 =
vin+ 1~ T,

(3.58)

Seguindo o mesmo raciocinio, a aceleracao instantanea pode ser aproximada

por
[ 4 1] Av U[n + 1] — U[n] :r[n—l—;ls—:v[n} _ z[n]—j:fs[n—l]
an ~ — = —
At T, T
1] -2 —1
ol + 1) St U =20l 4ol =) (3.59

T?

Com algumas amostras iniciais da posi¢ao x[n], pode-se obter equagdes recur-

sivas para o calculo das posi¢oes sucessivas empregando a Fisica do sistema e
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as equagoes e[3.59] o que possibilita o estudo tanto do péndulo como do
sistema de duas massas acopladas por molas. A formulacao para o péndulo
¢ mais simples e tem algumas solucoes aproximadas propostas por Beléndez
et al. [51] e Quirino [50], a solugdo completa para o sistema de duas massas
acopladas com dois graus de liberdade ¢é discutido em livros de vibragoes [52],

permitindo a verificacdo do estudo realizados com estes problemas.

3.7.2 Problemas orientados ao uso de filtros no domi-

nio da frequéncia

Os problemas que se seguem sao todos mais associados a questoes de tecno-
logia e engenharia. Nos trés primeiros dentre eles ainda tratamos de questoes
mais basicas como uso de filtros e sintese e analise associados a musica. A
filtragem de voz tem o objetivo de familiarizar os alunos a operarem sobre
os componentes de frequéncia no dominio da frequéncia. Neste nivel, suge-
rimos, apenas, a alteracao das intensidades dos coeficientes por um artificio
que podemos designar de mascara. Esse processo € ilustrado na figura [3.14
O espectro Y (f) do sinal filtrado é obtido a partir do espectro X (f) pela

operacao

Este processo é similar ao efeito da resposta em frequéncia H(f) de um
sistema sobre a entrada X (f) para obter a saida Y(f).

O perfil da mascara pode ser escolhido arbitrariamente nesta metodologia
de trabalho no dominio da frequéncia. Ela deve ser montada considerando
que valores relativamente altos em uma regiao de frequéncias de H( f) acentu-
ardo as respectivas frequéncias com relagao aquelas em que H(f) tem valores
menores. No exemplo da figura[3.14] mostramos a filtragem passa-baixas, ou
seja, as baixas frequéncias passam e as altas frequéncias sao filtradas. Para
tal, nas frequéncias abaixo de f,, que designamos frequéncia de corte, fizemos
H(f) =~ 1, enquanto que para frequéncias acima de f., fizemos H(f) ~ 0.
Préximo de f. ha uma transicao suave. Desta forma, para frequéncias baixas

Y (f) = X(f) e para frequéncias altas Y (f) ~ 0, os seja, os componentes de
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Figura 3.14: Aplicagdo da mascara do filtro sobre o sinal original.

alta frequéncia sao atenuados enquanto que os de baixa passam inalterados
pelo processo de filtragem.

Para o nivel médio, propomos perfis de filtragem sigmoides

1

H(f) = wt (3.60)
para filtragem passa-baixas e
H(f) = iy (3.61)
1+ e—alf=fe)
para passa-altas. O perfil
H(f) = e o=/l (3.62)

¢é estreito, unitario em fy, se aproxima de 0 por um arco exponencial ao
se afastar de fp e é empregado para uma filtragem muito seletiva de uma

frequéncia préxima de fy. Em todos os perfis de filtro que sugerimos, o para-

89



Capitulo 3. Proposta de Curso de Andlise de Espectro para o Ensino Médio

metro a diz respeito a velocidade da transicao. Valores altos de « significam
uma transicao abrupta enquanto pequenos valores de « fazem transi¢coes mais
suaves.

Seguem-se aos problemas de audio, trés problemas associados a transmis-
sao AM que sdo discutidos em textos introdutérios de comunicagoes, pois se
trata da mais antiga técnica de transmissdo no meio eletromagnético [31,53].
Sendo um problema da area de tecnologia e engenharia, instrugoes detalha-
das sao dadas para que se obtenham os resultados desejados. Como efeito,

se observa o deslocamento do espectro na frequéncia.

3.7.3 Problema orientado a no¢oes de resposta em frequén-

cia e resposta ao impulso

O 1ltimo problema é o que trata de um tépicos mais avancado na engenha-
ria — a resposta em frequéncia ou ao impulso. Ja definimos esta medida
na segao como a razao entre a intensidade da entrada com relacao a
saida. Sugerimos a simulacao de uma excitacdo de um sistema massa-mola
com atrito viscoso, resultando em um sistema de 22 ordem, por uma forca
senoidal e indicamos que a resposta serd, também, senoidal e solicitamos que
sejam registradas as razoes entre a amplitude da saida e da entrada apods a
acomodacao do sistema.

Solicitamos a seguir que o sistema seja simulado com uma entrada do
tipo impulso e que seja levantado o espectro da saida quando o sistema é
estimulado pelo impulso. Verifica-se que o espectro da resposta ao impulso
é idéntica a resposta em frequéncia do sistema, resultado que é amplamente
empregado em andlise de sistemas lineares e provado desde as disciplinas de
analise de circuitos até as de processamento de sinais em sistemas lineares.

Trata-se de um resultado avancado e que nao queremos que seja detalha-
damente demonstrado e trabalhado. Esperamos apenas que o resultado cause
espanto e desperte curiosidade, mostrando que hé ainda uma grande quanti-
dade de fenomenos e interpretacoes a serem exploradas quando se emprega
o dominio da frequéncia.

Este tultimo conceito pode ainda ser empregado para mostrar o surgimento
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natural em sistemas fisicos do fenomeno da filtragem e ressonéancia, uma vez
que a razao entre as intensidade da entrada e da saida podem ser identificadas
aproximadamente com o H(f) que sugerimos empregar como méscara de

filtro nos exercicios com filtragem.

3.8 Uso e interpretacao da transformada ra-
pida de Fourier (FFT) no Ensino Médio

Com certos cuidados, é possivel trabalhar os problemas propostos apenas
empregando as formulagoes de somatorio implementados com iteragdes ou
matrizes que sugerimos na secao [3.4.6

O uso destes recursos mais simples, porém, tem um custo. As implemen-
tacgOes com iteracoes costumam ser ineficientes em termos de processamento,
tornando-se excessivamente lentas quando a quantidade de amostras N é em
torno de alguns milhares de amostras. Ja as operagdes matriciais sao especial-
mente otimizadas nos computadores contemporaneos, principalmente aqueles
com processamento paralelo em muitos niicleos, e poderiam ser ainda mais
aceleradas se fossem empregados artificios para delegar as operagoes matri-
ciais para a placa grafica. O NumPy, porém, emprega como padrao nimeros
com ponto flutuante de dupla precisao que ocupam 64 bits ou 8 bytes cada.
As matrizes C, e S, de andlise, tem, juntas, aproximadamente N? elementos.
Isto significa que a memoéria empregada apenas para armazenar estas matri-
zes ¢ 8N? bytes. A ordem da memoria principal dos computadores atuais é
de gibibytes ou 230 bytes. Isto significa que se N for da ordem de dezenas
de milhares de amostra as matrizes ja ocuparao um espacgo proibitivo na me-
moria. Ocorre que um audio com amostragem padrao de 44100 Hz tem esta
ordem de amostras em um trecho que nao chega a totalizar um segundo, o
que pode impedir o calculo pela formulacao matricial.

Uma solugao para estes problemas é empregar os algoritmos que otimizam
o calculo dos coeficientes, ou dos termos da transformada. Eles sdo conhe-
cidos genericamente como transformadas rapidas de Fourier e implementam

as transformadas de Fourier discretas (TFD). Estao disponiveis em biblio-
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tecas matematicas em linguagens de programagao populares e identificadas
pela sigla FFT de fast Fourier transform, transformada rapida de Fourier no
inglés. H4, porém, uma pequena diferenca entre a série de Fourier de tempo
discreto descrita pela equacao e a formulagao chamada transformada. Na
série, estuda-se o sinal como composto por uma ponderacao de exponenciais
complexas e o calculo dos coeficientes, enquanto que na transformada os co-
eficientes sdo interpretados como uma nova entidade independente. Ha neste
ultimo caso uma relagao entre o sinal x[n] do dominio da varidvel n e a sua
transformada X [k| existente no dominio da varidvel k. Uma das formulagoes

desta relacao é dada pelo par de equagoes

1 Nl 27\'

=¥ X[kleI Nk e (3.63)
k=0
N-1 .

=Y znle v (3.64)
n=0

A primeira é conhecida como transformada de Fourier discreta ou equagao
de sintese e a segunda como transformada de Fourier discreta inversa ou
equacgao de analise. Ambas as variaveis sao compostas de N amostras com
0<n<N-1e0<k< N-1. Podemos observar na documentacao [54] que
as formulagoes da transformada rapida de Fourier implementada no NymPy
como numpy . fft.fft, por exemplo, coincidem exatamente com a dada pelas
equacoes [3.63] e [3.64}

Comparando as equagoes [3.63] com [3.9) e [3.64] com [3.22], vemos que ambas

sao equivalentes quando
1

C = NX[I{:] (3.65)
e considerando que o conjunto Iy = Iyo definido na equagao [3.3] Isto sig-
nifica que podemos achar uma relacao entre os termos X[k| da TFD e os
coeficientes ay, e by, ou o coeficiente ¢ e a fase ¢, da SF'TD, com a vantagem
de que o célculo para obter X[k| é otimizado tanto em termos de velocidade

como de memoria.
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Pela manipulacao das equacoes [3.14] [3.26] a [3.31], [3.46] e [3.65] chegamos a

0 = ;Remk]), k40ek+ N2 (3.66)

b = —JQVIm(X[k]), kA0ek+N/2 (3.67)
1 1

a =co = Re(X[k]) = NX[k]’ 3.68

1 1
anj2 = Cnj2 = N Re(X[N/2]) = NX[N/QL e,
bN/2:07
2
k= N|X[k]| k#0ek+#N/2 e,

¢r = arg(X[k]).

Com estas relagoes, o codigo [3.11] que calcula e plota o espectro de um
audio e é realizado em 34 linhas, é reproduzido em apenas 17 linhas no
c6digo [3.13] com o emprego da FFT. Na comparagao, considere o fato de que
no primeiro c6digo sao feitos os espectro para dois audios e no segundo para
apenas o primeiro deles. Em particular, o cdlculo do espectro matricial do
codigo emprega das linhas 13 até 20 para preparagao das matrizes da
analise, totalizando 8 linhas, e o cdlculo dos coeficientes ¢;, é feito das linhas
21 a 23, totalizando 3 linhas. J4 com a FFT, como no cédigo [3.13] a andlise
é feita das linhas 11 até 15, totalizando 5 linhas.

Esta operacao é ainda mais simplificada no cédigo [3.14] por meio do em-
prego da definicao da funcdo analise que recebe o sinal x e retorna os co-
eficientes de sua SF'TD. Com isto, a fungdo para célculo dos coeficientes da
SFTD é definida nas linhas de 4 até 11 empregando FFT, totalizando 8 li-
nhas, para que a analise possa ser feita em uma tnica linha sempre que for
necessario. No codigo a andlise ¢ feita na linha 19.

O uso de fungoes nao é tao simples para o calculo matricial e muito lento
para o calculo por iteragoes. No caso matricial, a necessidade de preparacao
das matrizes de andlise ¢ um dificultante, principalmente se o valor de N

mudar em um programa de andlise de espectro mais elaborado.
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Capitulo 3. Proposta de Curso de Andlise de Espectro para o Ensino Médio

from numpy import x
import matplotlib.pyplot as plt
import soundfile

x, fs = soundfile.read("flautaD .wav")
Ts = 1/f1s
N = 5000
k = arange(int (N/2)+1)
x = x[0:N]
w0 = 2%pi/N
f = 1/(NxTs)xk
X = fft. £ft (x)
¢ = 2xabs(X[k]) /N
c[0] = 0.5%c[0]
if N%2==0:
clint (N/2)] = 0.5%xc[int (N/2)]
plt.plot (f,c)
plt.show ()

Cddigo 3.13: Anélise do espectro de Fourier de um dos audios do c6digo
empregando FFT.

from numpy import x
import matplotlib.pyplot as plt
import soundfile
def analise(x):
N = len(x)
X = fft. fft (x)
¢ = 2xabs(X[0:int (N/2)+1])/N
c[0] = 0.5%xc[0]
if N%2==0:
c[int(N/2)] = 0.5%c[int (N/2)]
return c
x, fs = soundfile.read("flautaD .wav")
Ts = 1/fs
N = 5000
k = arange (int (N/2)+1)
x = x[0:N]
w0 = 2xpi/N
f = 1/(NxTs)x*k
¢ = analise (x)
plt.plot (f,c)
plt .show ()

Codigo 3.14: Simplificacao do codigo empregando uma funcao definida
pelo usuério.
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Organizamos no 32 ano do Colégio Naval e no 12 ano da Escola Naval gru-
pos de estudo para aplicar o curso considerando o planejamento descrito na
secao Os grupos contaram com, respectivamente, 8 e 9 alunos destas
instituicoes.

Embora tentativas tenham sido feitas para realizar o curso em 2022 e
em 2023, os grupos de estudo se desenvolveram na forma de atividade ex-
tracurricular, o que diminui a disponibilidade dos alunos. Nestas tentativas
iniciais, com a finalidade de facilitar o trabalho e agilizar as interagoes, os
alunos demandaram videoaulas para o acompanhamento das atividades. As
videoaulas desenvolvidas estdo listadas no apéndice [B]

Com as videoaulas disponiveis, no ano de 2024, as reunioes dos grupos
se iniciaram em 5 de mar¢o na EN e em 14 de mar¢co no CN. A maior
disponibilidade de material e o inicio ainda no segundo més letivo possibilitou
a conducao dos trabalhos a contento neste ano. Os encontros dos grupos de
estudo ocorreram em salas reservadas das respectivas institui¢oes em horario
livre, acompanhando a disponibilidade dos alunos. Nao foram marcadas
atividades nas semanas de avaliacoes ou nas que as antecedia.

O acompanhamento das atividades no CN foi encerrado em 15 de agosto,
ap6s a conclusdo do segundo problema do apéndice |C| (Estimativa de velo-
cidade na F1). As atividades da EN foram encerradas em 21 de outubro

apds a conclusao do sexto problema do mesmo apéndice (Péndulo, &ngulo de

95



Capitulo 4. Aplicacao

partida e MHS).

Apesar do término prematuro antes da realizacao de todos os projetos
propostos, a aplicagao foi suficiente para observar a validade do curso nesta
fase e com os objetivos propostos conforme observaremos na segao |4.7|

As observagoes e discussoes descritos neste capitulo foram amplamente
debatidas com os docentes do CN participantes. Para tal, foram-lhes apresen-
tadas versoes preliminares do texto do capitulo para garantir a concordancia
e de modo que o texto pudesse representar com fidelidade as impressoes da

aplicacao em ambas as instituigoes, o Colégio Naval e a Escola Naval.

4.1 'Treinamento de docentes e acompanha-

mento das atividades

As tratativas com os docentes do Colégio Naval foram iniciadas em setembro
de 2021. As primeiras reunioes para treinamento e qualificagdo foram reali-
zadas em maio de 2022 por meio de videoconferéncia. Nas reunioes, foram
discutidos os objetivos do trabalho e apresentados os materiais instrucionais
e a forma de apresentacdo da analise de Fourier nesta fase experimental.
A decisao pelo estabelecimento dos grupos de estudo como caminho viavel
para desenvolver o curso ainda em fase extracurricular foi fruto das discussoes
nesta fase entre o autor e os docentes do CN.

Os docentes do CN solicitaram a inclusao da aplicagdo da andlise de es-
pectro em tecnologias de emprego naval como uma demanda constante dos
alunos. Esta demanda foi atendida em parte nos materiais dos apéndices de
[A]a[C] e em parte pela descrigdo de exemplos especificos encaminhados dire-
tamente aos docentes daquela instituicao nas reunioes de acompanhamento
de modo que os materiais elaborados como produto desta dissertagao nao
perdessem a generalidade.

Foram necessarios por volta de 6 horas de treinamento para apresentagao
completa dos objetivos do curso e da abordagem teodrica antes do inicio das
atividades dos grupos de estudo.

A partir destes encontros iniciais, as orientacoes e treinamentos se segui-
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ram de modo a acompanhar os encontros do grupo de estudo. Os docentes
foram orientados com relacao as atividades especificas a desenvolver a cada
semana seguindo aproximadamente o planejamento descrito na secao |3.6.3
durante o desenvolvimento das atividades dos grupos de estudo. Em média,
para cada 4 horas de reuniao do grupo de estudos, os docentes tiveram 1
hora de orientacao junto ao autor, em que foram discutidos os aspectos es-
pecificos, os detalhes foram aprofundados e as duvidas que poderiam surgir

no encontro da semana foram esclarecidas.

4.2 Motivacao dos alunos

Foi observado que as duas principais motivagoes dos alunos na participagao

no grupo de estudos foram

e 0 uso do Python, que ja se tornou uma linguagem suficientemente po-

pular para atrair o desejo dos alunos em domina-la, e

» a oportunidade de antecipar aspectos das tecnologias navais com as

quais esperam ter maior contato na formacgao superior e profissional.

Enquanto o primeiro aspecto motivacional é geral e deverd ser encon-
trado em qualquer instituicao de ensino, o segundo mostra uma necessidade
de conhecimento dos anseios profissionais em cada institui¢cao de ensino. No
Colégio Naval, como o caminho mais natural é o prosseguimento da carreira
para incorporacao na Marinha, esta tarefa é mais facil. Uma escola que deseje
introduzir este curso, podera buscar motivacao nos interesses de formacao de
seus alunos que tenham propensao aos cursos de engenharia elétrica, eletro-
nica, de telecomunicacoes e de controle e automacao etc. entre os candidatos

que poderao ter maior interesse no curso.
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4.3 Emprego do computador e programacao

em Python

Tanto na Escola Naval como no Colégio Naval, os alunos participantes pre-
feriram utilizar seus computadores pessoais para estudo e nas reunioes do
grupo de estudo. Foram utilizados apenas o Python, seus médulos e o Au-
dacity. Neste formato, nenhum aluno considerou relevante a “pegada” dos
recursos do curso em seus computadores quando consideraram o peso da
instalagdo dos programas necessarios para o desenvolvimento das atividades.
Também nao houve dificuldade em instalar e utilizar os programas. A
configuracao utilizada, em todos os programas, foi a padrao. Todos os alunos
empregaram o sistema operacional Windows. Neste sistema operacional, o
IDLE, programa que facilita o desenvolvimento e execugao dos cdédigos em
Python, compde a instalacao padrao. Nao foi necessario nem recomendamos
a instalacdo de nenhuma IDE mais avangada (como Anaconda, PyCharm
etc.), sendo o Python padrao e o IDLE suficientes para o nivel do curso.
Nos casos em que os alunos nao tenham computadores pessoais disponi-
veis para uso académico, é necessaria a instalacao e preparacao dos recursos
empregados em laboratorio de informatica previamente. Isto requer testes
prévios e a verificacdo das politicas da administracao dos computadores da
escola. Também é especialmente delicado no caso do emprego de moédulos
do Python que deverdo estar instalados antes das reunioes. Neste caso, o

suporte dos técnicos da escola é fundamental para o sucesso da aplicacao.

4.4 O que os alunos acharam da experiéncia

Durante as reunioes com os grupos de estudo as impressoes dos alunos foram
observadas com a finalidade de acompanhar o desenvolvimento dos objetivos.

Destacamos

« a manutencao do interesse geral no grupo de estudos ao longo de todo

o periodo de reunioces dos grupos;
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e 0 bom desempenho dos alunos na interpretagao das situagoes fisicas

subjacentes aos problemas propostos e ao longo dos estudos;

 a dificuldade de realizar as conversoes entre linguagem matematica e a

linguagem computacional; e

» a necessidade de interacao com o docente intermediario em quase todas

as fases do estudo.

Ao fim das atividades dos grupos, solicitamos aos alunos expressar sua

opiniao sobre as seguintes questoes:
» Se considerou a experiéncia proveitosa de forma geral.

» Se indicaria o curso a outros alunos caso o curso fosse eletivo da parte

diferenciada do curriculo.

e Se o curso influenciou positivamente em sua forma de observar as ques-
toes interdisciplinares de Fisica, Matematica, Programacao e tecnolo-

gia.

Dos 17 alunos participantes 7 responderam as perguntas. As respostas po-
sitivas foram unanimes. A inclinacao de indicar o curso a outros alunos foi
considerada um parametro fundamental para o futuro desenvolvimento de
uma disciplina eletiva, uma vez que um curso eletivo s6 faz sentido se houver
voluntarios e os voluntarios s6 aparecerao se a experiéncia for considerada
positiva pelos participantes anteriores, fortalecendo uma espécie de indicacao
boca a boca.

Também foi unanime a observagao de dificuldades no desenvolvimento
do grupo de estudos no formato extracurricular, uma inconveniéncia inevi-
tavel nesta fase experimental que devera ser contornada quando da eventual

formalizacao do curso como integrante do curriculo.
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4.5 O que os docentes acharam da experién-
cia

Os docentes consideraram excelente o tema escolhido para um curso de apro-
fundamento — a analise de Fourier de grandezas amostradas — ja que traz
aplicagoes reais fortemente associadas as matérias tipicas do Ensino Médio.
Fungoes trigonométricas, matrizes, nimeros complexos, ondas e acusticas
nao sao considerados temas simples ou faceis de trabalhar e de expor com
aplicagoes quando se acompanha um curso curricular tipico. O tema oferece
uma oportunidade de facilitar estas questoes.

A integragao entre as diferentes areas do conhecimento — em especial de
Programacao, Fisica e Matematica — impoem desafios aos docentes, uma vez
que sao, em geral, especialistas em apenas uma destas areas. Isto implica em
uma necessidade de tempo para qualificacao e familiarizacao com as formas
de abordagem e com os problemas tipicos que aparecem na SFTD e em
fenomenos e tecnologias tipicas que esta ferramenta auxilia a descrever.

O material instrucional escrito do apéndice [A] foi considerado suficiente
para compreensao dos objetivos propostos tendo sido amplamente empregado
como fonte de consulta durante o desenvolvimento das atividades.

Em materiais escritos é habitual encontrar temas mais densos que podem
ser dominados aos poucos com a releitura e com a depuracao do apresentado.
Isto ja nao é tao facil no formato de video. Por esta razao, nas videoaulas, ha
um conflito dificil de resolver entre complexidade do tema, que exige tempo
e detalhamento, e a dinamica esperada em materiais desta midia.

Enquanto o autor optou por videos detalhados, os docentes participantes
consideraram necessarios, também, videoaulas mais curtas e diretas, mesmo
que isto pudesse limitar a amplitude do que é apresentado a cada video.
Apesar desta demanda, os docentes participantes consideraram que nao é
facil a exposicdo em video do tema do trabalho, devido a sua complexidade,
nos formatos mais curtos e diretos. Isto significa que o material instrucional
pode ser melhorado, ampliado ou modificado para usos posteriores, mas estas
modificagoes exigem adaptacoes que precisam de estudo mais aprofundado.

Os docentes participantes também solicitaram acesso aos trechos dos co-

100



Capitulo 4. Aplicacao

digos fonte para facilitar a copia e reuso de maneira a dinamizar a conducao
dos encontros. Consideram que té-los a disposicao antes das aulas acelera
partes consideradas mais tediosas do processo de programagao e auxiliam a
disponibilizacao de tempo na solucao dos problemas e na logica subjacente
aos trechos do codigo.

Nesta primeira experiéncia, o acompanhamento do autor as atividades foi
considerada indispensavel pelos docentes participantes, devido as préprias
dificuldades relacionadas a novidade do tema e da interdisciplinaridade que
exige empregar técnicas e conteidos que nao sao especialidades de suas areas
de formacao. Apesar disto, consideram que em um futuro proximo a condu-
¢ao das aulas deste curso correrd independente do auxilio ou participagao do
autor.

Por fim observando o desenvolvimento da aplicagdo, o desempenho dos
alunos foi considerado satisfatorio mas suficientemente desafiador para difi-
cultar o desenvolvimento ostensivo da proposta para além do publico volun-

tario e preparado.

4.6 Dificuldades, melhorias futuras e obser-
vacgoes

Foi observado que o trabalho com “problemas abrangentes”, tais como os
propostos no apéndice [C], foge do habitual para os alunos. O ensino das
ciéncias exatas emprega exercicios que costumam enquadrar algum aspecto
e exigir o desenvolvimento de um raciocinio simples e relativamente direto
na sua solucao.

J& os problemas propostos para o fim do curso envolvem dados reais, a
necessidade de uma modelagem, e com ela, realizar consideracoes e aproxi-
macoes. Tomemos como exemplo o problema mais simples proposto, o da
estimativa da frequéncia do bater das asas de um beija-flor. A solucao que
sugerimos no apéndice [D]recorre ao som produzido pelo bater das asas. Para
que o som possa ser empregado como fonte da estimativa da frequéncia do

bater, é necessario uma modelagem dos fendmenos: a batida das asas agita
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os gases nas proximidades das asas que se propagam na forma de som. Como
o estimulo para a propagacao do som ¢é a agitacao das asas, espera-se que as
ondas de pressao oscilem na mesma frequéncia que as asas. Assim, a frequén-
cia medida no som, pode ser tomada como igual a frequéncia do bater das
asas.

Este raciocinio é apenas a primeira parte do problema, pois agora surge
o problema de medir componentes de frequéncia no som, o que se pode
resolver com a SF'TD. Por fim ainda ha duas outras etapas a cumprir — isolar
o fendmeno, o que pode ser feito pela segmentacao de um trecho do dudio em
que esteja claro o som do bater das asas e interpretar a SF'TD para extrair
a medida. Nesta ultima etapa, a SF'TD deve apresentar picos de amplitude
em frequéncias que sdo multiplos inteiros da frequéncia fundamental, e a
frequéncia fundamental coincide com o bater das asas.

Este encadeamento de modelagens, consideragoes, emprego de técnicas
e interpretagoes ¢ muito distinto do problema tipico disponivel no Ensino
Médio.

Os docentes participantes e o autor observaram, porém, que ao mesmo
tempo que os problemas sao dificeis — e talvez a melhor palavra para descrevé-
los seja desafiadores — eles sdao o grande diferencial do curso proposto e con-
siderados parte indispensavel de todo o trabalho.

Nos debates que se realizaram apds a conclusao desta primeira aplicacao,
foi considerada a mudanca de ritmo nas reunides com relagdo ao proposto
na secao [3.6.3l Uma sugestao é encurtar o tempo dedicado exclusivamente
as revisoes de Fisica e Matematica. Elas poderiam ser feitas aos poucos sob
demanda a medida que fossem necessarias no desenvolvimento da SE'TD ou
dos problemas. O tempo economizado pode ser empregado para aprofundar
os conceitos da série e de amostragem.

Uma segunda demanda é o emprego de exercicios para repeticdo e ope-
racionalizacao da SFTD, amostragem e dos conceitos correlatos. A proposta
inicial visou um curso sem os elementos tradicionais de fixagdo por meio de
exercicios, motivo pelo qual o curso é concluido com pequenos projetos. As
ideias de coeficientes de termos da série, taxa de amostragem, resolucao em

frequéncia etc. tinham sempre que ser consultados e revisados pois ainda
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nao eram naturais para os alunos participantes. A insisténcia nesses concei-

tos podera agilizar a realizacao dos problemas finais.

4.7 Conclusao

Desde a concepcao do trabalho, consideramos que a proposta de um curso
com analise de espectro de Fourier e amostragem para o Ensino Médio nao
seria simples. A garantia de que apenas conhecimentos desta fase do ensino
eram suficientes para introduzir com rigor estas competéncias foi o tnico
suporte para a consideracao da proposta.

A aplicacao confirmou o cardter desafiador do curso mas mostrou, tam-
bém, que alunos voluntarios e bem preparados conseguem acompanhar o
seu desenvolvimento com motivagao. Isto reforca a premissa de que um
curso desta natureza deva ser eletivo e orientado a alunos com este perfil,
cumprindo a parte diversificada do curriculo com a finalidade de aprofunda-
mento.

Nossas expectativas com relagao as vantagens da apresentacao prematura
de topicos de tecnologia integrados com as diversas disciplinas do nivel médio
em um formato interdisciplinar se confirmaram pela observacao da motivacao
dos alunos e docentes participantes. Em particular, a confirmagao por parte
dos docentes participantes da introducao do curso como disciplina eletiva no
Colégio Naval, com previsao de inicio em 2026, é suficiente para validar a

proposta do trabalho.
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Apéndice A

Material Instrucional —

Apostila

Este material instrucional é constituido de uma Apostila empregada como
material de suporte e referéncia para o curso de “Amostragem de grandezas
na Fisica e seus espectros de Fourier” proposto nesta dissertacao e desen-
volvido para os tltimos anos do Ensino Médio. Ele é composto de revisao
teodrica, exercicios de Matematica, Fisica e Programacao e pelo suporte ofere-
cido por alguns exercicios, além da demonstragao das teorias de amostragem

e espectro de Fourier de sinais amostrados limitados.
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Apresentacao

Caros professores,

Esta obra é parte da dissertacao “Amostragem de grandezas na Fisica e seus
espectros de Fourier — um curso para o Ensino Médio”, apresentada ao Pro-
grama de Pdés-Graduacdo em Ensino de Fisica do Instituto de Fisica da UFR.J,
formulada com o objetivo de orientar a condugdo do trabalho das instituigoes
de Ensino Médio em disciplina de aprofundamento para a parte diversificada de
itinerdrio formativo de matematica e suas tecnologias ou de ciéncias da natureza
e suas tecnologias empregando, para tal, um tépico especialmente relevante para
a Matematica, a Fisica e amplamente utilizados com finalidades tecnologicas —
a analise de Fourier. Trata-se, portanto, de um curso interdisciplinar que utili-
zarda amplamente programacao e recursos computacionais, tendo sido escolhido
o Python para basear os exemplos do texto.

O curso foi projetado visando prover aprofundamento para os alunos do Co-
légio Naval que cursarao o Bacharelado em Ciéncias Navais na Escola Naval e
que tenham interesse em compor os corpos da armada ou de fuzileiros navais.
Este tema também é de grande interesse para alunos vocacionados a continuar
seus estudos em cursos das engenharias elétrica, da computacdo, de telecomu-
nicagoes, de automagao e controle, biomédica etc. pois o curso trata de tema
fundamental na andlise de sistemas e no processamento de sinais como suporte
as tecnologias cujos projetos dependem da andlise no dominio da frequéncia.

Na elaboragéo do curso, selecionamos as aplicagoes de medida (instrumenta-
¢do) de frequéncia, filtragem e andlise no dominio da frequéncia. Consideramos
os contextos de fendmenos cotidianos, experimentos fisicos, musica, modela-
gem de sistemas, processamento e sintese de sinais, e aplicagoes de codificagao
e comunicagao eletronica. Grande énfase é dada em sinais de dudio que sdo
facilmente manipuldveis nos computadores comerciais.

Ao fim da apostila, disponibilizamos trés materiais que também podem ser
empregados no desenvolvimento do curso:

e O link e a lista das videoaulas elaboradas com o contetido do curso;

¢ Os enunciados para “Projetos para Analise de Espectro”, contendo uma
série de pequenos projetos para aplicacdo da andlise de espectro; e

e As suas respectivas solugoes nas “Sugestdes para Solucao dos Projetos
para Analise de Espectro”.

Todos os materiais adicionais acompanham o documento digital da apostila,
principal referéncia para o curso.

Tratando-se de um tema considerado avancado, recomendamos o curso para
alunos com bom desempenho em Matematica, Fisica e Programacao e com
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interesses nas areas supramencionadas sejam orientados a realizar este curso,
oferecido no formato eletivo.

Maiores detalhes sobre o espectro de Fourier e o desenvolvimento deste curso
podem ser encontrados na dissertacdo, disponibilizada no formato digital na
secao de dissertagoes dentre as produgdes académicas do site do Programa de
Pé6s-Graduagdo em Ensino de Fisica da UFRJ.



Capitulo 1

Introducao

Quando se escuta musica em um dispositivo com tela, é comum a exibicdo de
alguma forma de imagem que acompanhe a musica. Um dos efeitos visuais
mais comuns acompanha a intensidade da musica nas diferentes frequéncias que
compoem o som. Em sua forma mais simples, este efeito tem a forma de um
gréafico de barras do espectro do dudio. A figura 1.1 mostra o grafico de barras
do espectro da execugdo de um dudio no tocador VLC [1] para ilustrar do que
estamos falando.

Nestes aplicativos tocadores de dudio estes graficos costumam apenas distrair
o ouvinte que esté realmente interessado apenas em ouvir a musica. Por esta
razao, nao ha grande preocupagao com relacao a fidelidade entre os componentes
de frequéncia da musica em execuc¢ao e uma medida quantitativa clara de sua
intensidade, tanto é que estes graficos quase nunca exibem as escalas de seus
eixos vertical e horizontal. Se prestar bem atenc¢ao ao comportamento do grafico
ao longo das batidas e a dindmica com a qual a execugao de notas graves e agudas
modifica o grafico, o ouvinte podera inferir que o eixo vertical é a intensidade
do som e o eixo horizontal é a frequéncia.

Profissionais produtores musicais, que, dentre outras atividades, realizam a
mixagem e masterizagdo de gravagoes de audio, utilizam o termo cheias como
um dos qualificantes de boa mixagem. Este termo explica de forma figurada o
completamento com som das varias faixas de frequéncias no espectro de frequén-
cias do dudio. Neste caso, é importante identificar estas frequéncias com alguma
precisdo e, caso o som ainda nao esteja cheio, utilizar algum artificio como a

Figura 1.1: Espectro disponivel em visualizagdo do VLC [1].
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gravagao de sons adicionais ou a mudanca da equalizacao de modo a preencher
as frequéncias faltantes.

Este texto trata de uma ferramenta matemaética — a série de Fourier de tempo
discreto — que possibilita a andalise detalhada e precisamente quantificada das
diferentes frequéncias que compoem um sinal e de algumas de suas aplicagoes,
que, diga-se de passagem, parecem interminaveis. Quanto mais se estuda dife-
rentes campos da ciéncia, mas se observa a prevaléncia de vibragoes e fen6menos
periddicos e com isso se ampliam as possibilidades da aplicacdo desta série. O
exemplo da musica e do som que utilizamos como motivagao inicial para ilustrar
do que vamos tratar é apenas um caso popular e simples da aplicagdao de analise
de frequéncias.

1.1 Abrangéncia das aplicacoes

As aplicacoes da anélise por meio de frequéncias se tornou de tal forma popular
que ganhou um nome especial — a andlise no dominio da frequéncia — e com-
plementa a pratica mais comum e basica que passa a ser chamada andlise no
dominio do tempo para diferencia-la.

Em alguns casos, a analise no dominio da frequéncia é capaz de simplificar
a aplicacdo de algumas ferramentas matematicas. Ela pode, também, quebrar
o paradigma de como os dados sdo registrados e interpretados pois os sinais
podem deixar de ser representados como fungoes do tempo para serem repre-
sentados como fungoes da frequéncia. Mesmo que um sinal ndo seja periédico, a
série de Fourier de tempo discreto é capaz de reinterpreta-lo como oscilagoes su-
perpostas. Em outros casos, ela consegue evidenciar e caracterizar oscilagoes e
periodicidade tipicas de uma fisica subjacente a fen6menos que podem até nao
parecer periédicos em uma visualizacdo preliminar dos dados. Vamos trazer
mais alguns exemplos da importancia da analise do espectro de frequéncias.

1.1.1 Processamento de Sinais

O nome do campo amplo que estuda o as informacoes contidas nos sinais, que
vamos trabalhar em mais detalhes no capitulo 4, é chamado de Processamento
de Sinais. Quando os dados s@o amostrados, estamos no que chamamos ainda
mais especificamente do processamento digital de sinais. Ele abrange calculos e
métodos que se prestam a qualquer campo em que a observagdo e tratamento
de grandezas é fundamental para que se obtenha ou se interprete as informagoes
que podem ser obtidas no sinal.

As fronteiras das técnicas de processamento de sinais abrangem muito mais
do que as andlises no dominio da frequéncia. Identificacdo de voz, sintese de
voz, reconhecimento facial e deep fake sdo algumas das técnicas do estado da
arte do processamento digital de sinais.

Embora a série de Fourier, em si, auxilie a identificar as diferentes frequéncias
de um sinal, seu uso é muito mais abrangente. Vai além da mera possibilidade
de se observar o espectro de um sinal amostrado qualquer.
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Figura 1.2: Gréfico dos servidores de wi-fi com poténcia e ocupagao de canais
gerado no LinSSID [2].

1.1.2 Telecomunicagoes

Um exemplo quase onipresente em nosso planeta diz respeito as telecomuni-
cagoOes e transmissao de informagoes por meio de ondas eletromagnéticas. Na
televisao, por exemplo, diferentes informagcoes sao transmitidas em diferentes
canais. A verdade é que praticamente qualquer transmissdo sem fio utiliza o
conceito de canais — redes de wi-fi tém canais, redes celulares e de Internet mével
também.

A figura 1.2 mostra o grafico de canais da rede de wi-fi observados por meio
do software LinSSID. Neste grafico, o eixo horizontal estd enumerando os canais,
mas poderia, sem grandes alteracgoes, ser um eixo de frequéncias. Isto é verdade
pois um canal nada mais é do que um conjunto de frequéncias (ou uma banda
de frequéncias, em que o termo banda é usado significando pedago como em
banda de maga) reservado para organizar comunicagoes simultneas, o que visa
impedir as interferéncias na comunicacdo. No nosso grafico, vemos varias redes
empregando os mesmos canais. Isto significa que neste local a transmissdo na
rede wi-fi ndo serd ideal pois haverd interferéncia de uma rede sobre a outra.

As anélises no dominio da frequéncia sdo essenciais para a transmissao de
dados e é um tépico predominante nas engenharias elétrica, eletronica e de
telecomunicacoes.

1.1.3 Vibragoes mecanicas

As ondas produzidas por instrumentos musicais sdo vibra¢oes mecanicas. Além
da importancia na producao de musicas e sons agradaveis, matéria prima para
artistas, as vibragdes mecanicas costumam ser topico importante nas estrutu-
ras de construgoes, em maquinas, no estudo da geologia, dentre varios outros
fenémenos vibratorios de natureza mecanica.

Nas méquinas as vibracbes podem tanto ser empregadas como forma de
transmissao de energia e movimento como surgem como consequéncia do em-
prego de maquinas rotativas como motores. E comum que se empregue as vi-
bragdes do maquinario como um pardmetro para identificar seu funcionamento
normal. Uma das primeiras alteragbes percebidas pelo condutor de um vei-
culo que indica problemas é a ocorréncia de sons anormais resultantes do mal
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funcionamento.

A observacao de vibracgoes em estruturas é fundamental e estd associada a
sua ressonancia. Dois casos interessantes podem ser vistos hoje em plataformas
de compartilhamento de video, pois estes exemplos modernos possuem registros
impressionantes de ressonéncia — as pontes de Tacoma Narrows e Millenium
Brigde. A primeira colapsou devido as vibracgbes descontroladas. A segunda
nao chegou a colapsar mas precisou de corregoes estruturais para frear as altas
amplitudes de suas oscilacoes laterais.

1.1.4 Biofisica, biomedicina e engenharia biomédica

Algumas atividades biolégicas como os batimentos cardiacos e a respiragao sao
essencialmente ciclicas. Como consequéncia, a andlise da periodicidade destas
atividades funcionam como indicativos da situagdo de um paciente. Eletro-
cardiografia e eletroencefalografia sao dois exemplos de exames cujo objetivo
é observar as ondas associadas as variacoes das grandezas elétricas resultantes
das atividades do sistema nervoso. Na eletroencefalografia, por exemplo, as ob-
servagoes costumam ser classificadas como ondas teta, delta, alfa e beta, o que
também evidencia o aparecimento de oscilagoes das grandezas elétricas fruto da
atividade cerebral.



Capitulo 2

Bases matematicas e fisicas
para analise de espectro

Nosso estudo do espectro de frequéncias é feito pela soma de varias fungées
trigonométricas diferentes (mas todas do mesmo tipo, que chamamos generica-
mente de funcoes senoidais). Assim, cada funcdo é uma parcela em uma grande
quantidade de adi¢des, o que chamamos de somatdrio.

Por esta razao, para cumprirmos nosso objetivo, vamos revisar as nogoes de
somatério na se¢do 2.1 e as fungoes senoidais na segio 2.3.

O produto de matrizes é dado por um somatoério para cada elemento da
matriz produto. Como faremos mais de um somatoério, podemos representa-los
todos de uma vez como um produto de matrizes que revisaremos na segao 2.4.

O produto de matrizes facilitard significativamente o calculo da nossa série
se quisermos realizé-la em um computador (o que é indispensével quando esti-
vermos trabalhando com uma grande quantidade de ntimeros). Exploraremos
o uso do computador para realizar calculos com grande quantidade de ntimeros
no capitulo 3.

2.1 Somatoérios
Considere as somas S7 e So dadas por

S1=23+304+35+364+394+49+594+T72+ 74477, e,
So =114+ 15+ 19+ 23 + 27+ 31 + 35+ 39 4 43 + 47.

Ambas sdo relativamente longas, contendo dez parcelas cada uma. Na primeira
soma, a Sy, € dificil encontrar um padrao que relacione as parcelas. De fato,
se vocé encontrou um padrdo, considere um bom indicio de paranoia (ou de
genialidade), pois eu gerei as parcelas em um gerador de nimeros aleatérios
verdadeiros (existem sequéncias chamadas pseudo-aleatdrias que, de fato, tém
uma regra de formagao).

Ja na segunda, ha uma certa regularidade nas parcelas. Vemos que qualquer
parcela em Sy tem o formato 7 + 44, com i inteiro variando de 1 a 10.

Esta regularidade nos permite adotar uma simbologia sintética para nao
precisarmos expressar So pelo detalhamento de cada parcela numericamente.
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Ela consiste em empregar uma letra sigma (>_) indicando que serd expresso um
somatoério (a letra sigma equivale, no alfabeto grego, ao s do alfabeto latino).
Na parte inferior do sigma indicamos o valor inicial da varidvel inteira capaz
de expressar as parcelas e acima o valor final. Com esta regra, o somatorio Sy
poderia ser expresso como

10

Sy = (T+4k).

k=1

De forma geral, o simbolo de somatério pode ser utilizado se tivermos uma
regularidade nas parcelas possivel de expressar pela fungdo f(4), com 4 inteiro
variando de um valor a até b. O significado de seu uso sera

Y fk) = fla)+ fla+1)+ fla+2)+-+ f(b—1) + f(b).

Exercicios de revisao

Questao 2.1. Expanda os somatérios abaixo possibilitando a visualizacdo de todas
as parcelas.
7
(a) Soma dos oito primeiros nimeros pares. Z(Qk)
k=0
7

oma dos oito primeiros niumeros impares. +1).

(b) Soma dos oito primeiros nii impares. Y (2k +1)

k=0
6

(c) D (k+1)%

k=0

5
27
(d) Z aj cos (Hkn>
k=0
Questao 2.2. As parcelas abaixo tem uma lei de formacdo. Descubra a lei e reescreva

a expressao na forma de somatorio.
(@4t
4 9 16 25 36

3,3 .3, 3
12 S
(b) 1243+ 7+ 15+ o7 + 525

(¢) 1+ cos(wt) + cos(2wt) 4 cos(3wt) + cos(4wt).

(d) b1 sen (io ) + by sen (?O ) + b3 sen (?O ) + by sen (?O ) +bs sen (7n).
Questao 2.3. Expanda os somatoérios abaixo possibilitando a visualizacdo de cinco

de suas parcelas, sendo as trés primeiras e as duas tltimas.
1000

(@) > (2k+3)%.
k=0
0
b) Z 24k—1'
k=1
100 5
s
c) Z by sen (mkn)
k=1
512

(d) Zakcos (1024k )

k=0
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Questao 2.4. Somatdrios infinitos. As expressbes abaixo empregam somatério com
infinitos termos e possibilitam o cédlculo de alguns valores conhecidos. Faca o
célculo truncado (com uma quantidade finita de termos) com os dez primeiros
termos empregando uma calculadora. Verifique o erro percentual cometido com
o truncamento.

2.1.1 Propriedades de somatoérios
Somatério de uma constante

Pela definicado de multiplicagdo — uma soma de parcelas iguais — o somatério

b
Y C=Cb-a+1). (2.1)

k=a

O valor (b —a+ 1) é a quantidade de parcelas da soma da constante C.

Exemplo 2.1. Calcule o valor exato do somatorio
20
> 12
k=1

Solugao. Como temos termos constantes a medida que k varia,

20
D 12=12 412412+ + 12+ 12 = 1220 = 240,
1 k=1 2 3 19 20

onde vemos que a féormula proposta acima é valida neste caso, ja que

20
> 12=12-(20 - 1+ 1) = 1220 = 240.
k=1

Exemplo 2.2. Considerando que k é uma constante, simplifique o somatério
de modo a evitar o uso da notagao do sigma,

15
> k.

Solugao. Podemos utilizar imediatamente a propriedade da equagao 2.1

para obter
15

> k= (15-5+1)k =11k

n=>5
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Somatdério de uma soma

Pela associatividade e comutatividade da soma, o somatério de uma adicao pode
ser a adi¢do dos somatdrios, ou seja,

b b b

DUk +gk)] =D fk)+ D glk). (2.2)

k=a k=a k=a
Ou seja, pode-se somar primeiro todas as parcelas de f(k) e em seguida as
parcelas de g(k) j4 que pela associatividade e comutatividade a ordem em que
se realizam as adigdes nao importa.
Somatodrio de uma fungao multiplicada por constante

Se realizarmos o somatoério
b b
D Cfk)y=CY f(k) (2.3)
k=a k=a

devido a propriedade distributiva. A simbologia pode nao facilitar, mas do
membro esquerdo para o direito “pusemos o C' em evidéncia”.

Exemplo 2.3. Sabendo que

al N(N +1)
Nk=" e
2
=1
N

ikg N(N +1)(2N +1)

k=

—

Calcule o valor exato do somatério
20

> [k(k+3)].

k=1

Solugao. Podemos reescrever o somatério como

20 20
D [kl +3)] =) [k + 3K],
k=1 k=1

que usando a propriedade da equacao 2.2, resulta em

20 20 20
STk(k+3)] ="K+ 3k,
k=1 k=1 k=1

e utilizando a propriedade da equagao 2.3
20 20 20
D k(k+3)]=> K +3> k.
k=1 k=1 k=1

Agora podemos utilizar as férmulas dadas para obter

20

20(20 + 1)(2-20 + 1 20(20 + 1
> [k(k+3)] = 0(20+ )6( 0+1) 5. 2020+1) g+ ) _ 3500,
k=1
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Comutagdo de somatério duplo

Devido as propriedades comutativa e associativa, ndo importa a ordem em que
uma soma ¢é feita, de modo que

b d d b
ZZam— = ZZG@J. (24)

i=a j=c j=c i=a

Exemplo 2.4. Expanda os somatdérios, reorganize os termos e mostre que a
igualdade é vélida para

DD (i) =3 > (2i+)).

Solugao. Expandindo os somatérios, teremos

4

DD @i+g) =D [(2040)+ (2 + 1) + (20 + 2)]

i=1 j=0 i=1
=[(2-14+0)+(2-1+1)+(2-1+2)]+

+[(2-24+0)+(2-2+1)+(2-2+2)]+
+[(2-3+0)+(2-34+1)+(2-3+2)]+
+((2:440)+(2-44+1)+(2-4+2)]
=[2-140)4+(2-240)+(2-3+0)+(2-44+0)]+
+[2-14+1)+(2-24+1)+(2-3+1)+2-4+ 1)+
+[2-14+2)+(2-2+2)+(2-3+2)+(2-4+2)]

[(2-14+)+2-24+)+2-3+)+(2-447)]

I
.
ICEl Mw
=)

4
222—1—]

i=0 i=1

[

E visivel que todas as parcelas do primeiro somatério se encontram no
segundo somatério se observarmos que as parcelas que estdo organizadas
em linhas na segunda igualdade, encontram-se nas colunas da terceira,
esclarecendo que se trata apenas de um reordenamento das parcela, que é
livre devido a comutagao e associacao da operacao de adigao.

Exemplo 2.5. Sabendo que

i’f— N(N +1)

- ===

k=1

XN:kQ _NWNADEN+D)
- 6 ) )

k=1

15

> ay =120,

=1

=
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calcule o valor exato do somatorio

15 20 30

>0 sijta.

k=1i=1 j=1

Solugao. Vamos pér o termo constante em evidéncia e reordenar os so-
matorios, obtendo

15 20 30 20 30 15
§ § § 5ij2ak:5§ § § ij%ap.
k=1 i=1 j=1 i=1 j=1k=1

Neste tltimo somatério, o termo 52 é constante com relacdo a k, de modo
que podemos colocé-lo em evidéncia, resultando em

20 30 15 20 30
D HIELS) ) 378
i=1 j=1k=1 i=1 j=1

ja i, é constante com relagao a j, e podemos colocd-lo em evidéncia nova-
mente, resultando em

20 30 20
52 > i Zak—5Z > Zak
i=1 j=1 i=1 j=1

Podemos agora resolver as somas para seus valores numéricos sucessiva-
mente, obtendo

15 20 30 20
DRI ) 9 o
k=11i=1 j=1 i=1 j=1
20
=5 i 232120
=1 j=1
20 30
=5-120) iy _j°
i=1 j=1
20, 30(30 +1)(2-30 + 1)
—5~120;z o
=5-120-9455w
=5-120- 9455 - 210
15 20 30
2225@'2% = 1191 330 000.
k=11i=1 j=1

Exemplo 2.6. Sabendo que
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para k inteiro e 1 < k < N — 1, calcule o somatorio

8 4
2T
Z Z aj Cos <9kn>
n=0 k=1
Solugao. Vamos comecar invertendo a ordem dos somatorios
8 4 o 4 8 o
Z Zak cos (gkzn) = Z Z aj, cos <9kn) .
n=0 k=1 k=1n=0

Agora, aj, é constante com relagdo a n (pois, como o indice indica, ele
varia apenas com k) e podemos colocd-lo em evidéncia obtendo

4 8 9 4 8 9

$°3 agcos <9kn) — 0y cos (9;m) ,
k=1n=0 k=1 n=0

de modo que evidenciamos o somatério que sabemos ser nulo, pois os

valores de k estdo entre 1 e 4, e portanto também estdo entre 1 e §,

respeitando a necessidade de 1 < k < N — 1, pois por inspe¢ao vemos que

no nosso caso especifico podemos considerar N = 9. Logo,

8 4 o 4 8 o
Z Z aj cos (9kn) = Z ak Z cos <9kn)
n=0 k=1 k=1 n=0
4
= ar -0
k=1
8. & 2
Z Z ag cos ?kn =0.
n=0 k=1
Exercicios de revisao
Questao 2.5. Realize os somatorios abaixo:
15
(a) > 8.
k=1
82
(b) > 10.
k=13
2a—1
(©) Y 5.
N-1
(d) Z ao, considerando ao constante.
n=0
10 10
(e) Z 5ay, sabendo que Z ar = 50.
k=0 k=0
10 10 10

(6 Z[CL]’ + bj], sabendo que Zaj =9%e ij = 110.

j=0 j=0 j=0
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mébvel—a

semi-eixo de
referéncia

trajetéria

Figura 2.1: Esquema para descri¢do da cinematica do movimento circular.

10 8 8 10
() ZZaibj, sabendo que Zai =T5e ij = 110.
3=0

j=0 i=0 i=0
s 4 9 N-1 9
T T
(h) E_O kg_l bi. sen (gkn), sabendo que 5_0 sen (ﬁkn) =0.

2.2 Movimento circular uniforme

Revisaremos mais adiante nas sec¢bes 2.3.1 e 2.3.3, a relagdo entre oscilagoes
harmoénicas e a cinemética do movimento circular uniforme. Conhecer as carac-
teristicas bésicas deste tipo de movimento auxilia sobremaneira a compreensao
das grandezas e da algebra envolvida nas fungoes trigonométricas.

Tratamos como movimento circular aquele que pode ser descrito por um
Unico numero, designado posi¢do angular, e em que o mével esteja restrito a
girar sobre uma trajetoria circular conhecida. Para localizar o objeto, basta
saber sua posicao angular 6 definida a partir de um semi-eixo partindo do centro
da circunferéncia onde convencionamos adotar a posicdo angular como sendo

nula, como ilustrado na figura 2.1. Nesse esquema, o semi-eixo OO’ define a
posicao angular em que 6 = 0.

Duas outras convengoes sao empregadas. Na primeira, ha dois sentidos de
giro — horério e anti-hordrio. E comum que uma medida de posicao feita a partir
do eixo de referéncia no sentido anti-horédrio seja considerada uma medida de
posicdo angular positiva (6 > 0). Nesta conven¢do a medida feita no sentido
horério seria negativa. E possivel, mas ndo muito comum, adotar a convencio
inversa.

Além da quest@o relacionada ao sinal, a medida que gira, um mével pode
passar por um mesmo ponto diversas vezes ao das mais de uma volta. Isto
admite medidas, por exemplo, de 8; = w/4 e 3 = 97/4 = /4 + 27, que a rigor
registrariam uma mesma posicao (posi¢oes congruentes), mas que na cinemética
do giro significa que de 6; para 62 o modvel deu uma volta completa no sentido
anti-horério (considerando a convencdo mais comum para o sinal do giro)

Ha total analogia entre esta forma de movimento e o movimento retilineo,
com a unica diferenca de que, aqui, as posi¢oes sdo angulares e medidas pelo
comprimento do arco dado em radianos (ou pelo angulo central medido em
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graus). J& no movimento retilineo, a posi¢do é medida pelo comprimento, que
no SI é dado em metros.

Como consequéncia, as velocidades também sdo analogas e medem o quao
rapido muda a posicdo do mével. Porém, enquanto no movimento retilineo esta
medida é de comprimento por unidade de tempo (metro por segundo no SI), no
movimento circular ela é dada em comprimento de arco por unidade de tempo
(que no s1 é dada em radianos por segundo).

Para nossas aplicag¢oes, nos interessa o movimento circular uniforme, em que
a velocidade angular (andloga & velocidade instantdnea) é constante e, portanto,
igual a velocidade angular média (andloga & velocidade média). Se w é a veloci-
dade angular instantanea, w,, é a velocidade angular média, o mével passa pelo
0o quando t = 0, e # é uma posicdo angular qualquer por onde o mével passa
num instante ¢ genérico, entao

w=w _ A6 _9-b
S At t-07
que resulta em
0 = wt + 0. (25)

Como esperado, esta equagao é andloga a equagao horaria do espago para o
movimento uniforme (dada por expressoes como s = sg+vt ou x = xg+vt), com
os papéis da posicao angular ocupando o da posi¢ao e o da velocidade angular
o da velocidade.

Se empregarmos T' para representar o tempo necessario para completar uma
volta, e chamado periodo, entdo wT deve resultar em 27 rad (pois w = % = 2%),
que corresponde a uma volta completa, de modo que a relagido entre o periodo
e a frequéncia angular é dada por

27

T

w (2.6)

E comum em aplicacdes de engenharia utilizar como parametro de veloci-
dade das oscilagbes a frequéncia medida em ciclos por unidade de tempo. Se
a unidade de tempo é o segundo, teremos ciclos/s ou s™! = Hz (hertz), pois
o ciclo é considerado uma quantidade adimensional. Se o periodo informa o
tempo decorrido por ciclo, a frequéncia sera seu reciproco,

==, 2.7
=7 (27)
e mede a quantidade de ciclos por unidade de tempo. Se o tempo estiver em se-
gundos (unidade do s1), a frequéncia serd dada em hertz. Daqui, também, pode-
se chegar por substituicdo a relagao entre frequéncia (em hertz) e a frequéncia
angular (em radianos por segundo) dada por

w = 2mf. (2.8)

Observagao de amostras do giro — ambiguidade de posicao

Imagine que é feito um instantdneo de um movel que se desloca em uma trajeto-
ria circular e se obtém o resultado do canto superior esquerdo da figura 2.2 em
que ja definimos um eixo de referéncia e tracamos alguns segmentos de suporte
para observar a simetria.
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Figura 2.2: Medidas da posi¢ao angular para um instantdneo do mével.

Como determinar a posicdo angular 8 do modvel a partir do instantaneo?
Pela simetria observada, podemos inferir que § = 7/3 = 6,. Esta é a medida
que adotamos naturalmente apenas devido a nosso viés de empregar o menor
angulo de giro anti-horario. Nada diz que a medida efetiva ndo deveria ser a
do menor angulo do giro horario § = —57/3 = ), ou ainda que é devido a uma
medida de giro anti-hordrio com uma volta completa em que § = 77/3 = 6. De
forma geral, se se observa o instantdneo de uma posi¢ao angular e uma possivel
medida desta posicao é 6 = 0,,

0, = 0, + 27k, para qualquer k inteiro,

também sdo medidas possiveis. Isto significa que observando um instantaneo
do movimento circular, h4 uma ambiguidade com relacao a sua medida de po-
sicdo. Podemos afirmar também que se 6, e 0, sdo medidas de posigdo validas
(geometricamente congruentes), elas devem diferir entre si de um multiplo de
2.

Ora, ao longo de uma circunferéncia s6 ha posi¢oes reais ao longo de uma
amplitude de uma volta. Por exemplo, qualquer posicdo angular serd unica-
mente identificada se utilizarmos como convengao 0 < 6 < 27 ou —7 < 6 < 7.
Qualquer outra medida é virtual. Elas podem ser justificadas pelo uso da ex-
pressao

0 = wt + (90.

As medidas fora de uma margem de 27 podem significar que o mével deu mais de
uma volta. O problema é que a verificagdo da ocorréncia de mais de uma volta
s6 € possivel se se acompanha o movimento continuamente pois, como vimos,
em um instantaneo ha sempre ambiguidade na medida da posi¢ao angular.

Exemplo 2.7. Um mével gira sobre um circunferéncia com velocidade cons-
tante. No instante t; ele é observado em uma posi¢do coincidente com
a marca de /6 com relagdo a um eixo de referéncia e no instante pos-
terior t3 na posi¢do coincidente com a marca de 7/2. Pelas observagoes,
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responda: (a) é possivel determinar a variacdo da posi¢iao angular? Qual
seria a sua medida? (b) E possivel determinar a velocidade angular do
mével se t1 = 1s ety =587

Solugao. (a) Podemos dizer que duas possiveis posigoes angulares para os
instantes t; e to sdo 01 = 7/6 e O = 7/2, respectivamente. Isto significa,
efetivamente, que quaisquer posigoes nas formas

01; = w/6 + 2mi, para qualquer ¢ inteiro, e,

02 = m/2 + 2mj, para qualquer j inteiro,

sdo possiveis para o mével em t; e em ty. Assim, variacdo da posigcao
angular Af = 6, — 6 serd

A =m/2+21j — (7/6 + 2mi)
=n/2—7/6+271j — 2mi
=7/3+2n(j —1)

AO =7/3 + 21k = Ab,

em que k = j — i, a diferenca entre dois inteiros, também é um inteiro.
Isto significa que a variagao de posi¢do angular nao esté determinada pois
nao hé certeza de seu valor por uma parcela dada por um multiplo inteiro
de 27. Seu valor tem a forma Af = 7/3 + 27k e significa que nio se sabe
quantas voltas inteiras se d4 quando se sai de 6, para 0.

(b) Para obter a velocidade de um mével que se move com velocidade
angular constante, precisamos determinar o valor da razao

Ag

Neste caso, a variacao de tempo At estd determinada e vale At = to—t1 =
4s. A variacido de posi¢do, porém, ndo pode ser conhecida, mas seus
possiveis valores podem ser expressos em termos de um inteiro £ como
A, = 7/3 + 27k, o que significa que hd, também, possiveis valores para
w expressos em termos de k como

Aby,
W = ——
"TA
_ /34 27k
B 4
T
Wk = 15 + §k‘ [rad/s].

Exercicios de revisao

Questao 2.6. Qual é a equacdo da posicdo angular de um mével que gira com velo-
cidade angular de & rad/s e parte da posigdo % rad quando t = 07

Questao 2.7. A figura 2.3 mostra a sobreposicdo de duas posi¢oes de um mével em
movimento circular uniforme, quando ¢t = ¢; = 0 e quando t = t2 = 0,1s. (a)
Quais s@o as possiveis velocidades angulares do mével? (b) Em valor absoluto,
qual é a menor destas velocidades?
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Figura 2.3: Localizacdo do mével para a questao 2.7.

Questao 2.8. Um mével em movimento circular com equagdo horaria dada por
0 = 507t 4 /6

é iluminado por uma luz estroboscépica que pisca a cada 10 ms, sendo o primeiro
flash em ¢t = 0. (a) A medida que gira, em que posi¢des se encontra o mével no
momento do flash? Tente achar uma regra geral para as posigoes em termos da
ordem do flash. (b) O que ocorre quando se reduz estas posi¢des angulares a
uma medida de posi¢do com 0 < 0 < 277

Questao 2.9. Um mdvel realiza um movimento circular uniforme iluminado por uma
luz estroboscépica que emite 11 flashes em rajada, sendo Ts o tempo entre cada
flash. Deseja-se que no 112 flash o médvel se encontre coincidente com a posi¢ao
em que ele estava no 12 flash. (a) Qual é a velocidade angular minima, diferente
de zero, que o mével deve estar para cumprir esta restrigio? (b) Qual é a regra
geral para a expressdo da velocidade angular que garante o cumprimento desta
restricdo? (c) Esboce as posicdes do mével em cada flash para cada velocidade,
considerando que o médvel estd inicialmente coincidente com o eixo de referéncia.

Questao 2.10. Repita a questdo 2.9 para N + 1 flashes.

Questao 2.11. Suponha que duas amostras sdo observadas do giro de um mével em
movimento circular uniforme. A primeira amostra é feita em ¢t; = 0 quando
a posi¢do do moével coincide com o eixo de referéncia. A segunda em to = Ts.
Se desejamos ter certeza da velocidade angular do mével a partir destas duas
amostras (a velocidade w deve ser unicamente determinada), é necessério limitar
|w| a um valor méximo. (a) Qual é esta velocidade méxima? (b) Qual é a
localizacao limitrofe da amostra feita em t2 = Ts que fornecerd esta velocidade
méaxima? (c) E permitido que entre ¢1 e t2 0 mével dé mais de uma volta e ainda
assim consigamos determinar w unicamente? (dica: pense nas trés perguntas
das letras (a), (b) e (c) de forma integrada pois ndo hd ordem entre elas e, em
geral, elaborar um raciocinio que auxilie a responde uma, também auxilia a
responder outra)

2.3 Funcoes trigonométricas

O wuso do seno e do cosseno em nosso trabalho serd abundante, e, com uma
frequéncia um pouco menor, a tangente. Estas entidades podem ser conside-
radas operadores (operador seno, operador cosseno e operador tangente), uma
medida (medida de uma razdo) ou uma fungio (como veremos na se¢ao 2.3.2).
Importa saber que surgem historicamente como niimeros associados a razoes de
comprimentos em tridngulos retdngulos. Como todos os tridngulos retangulos
que possuem um angulo 6 sdo semelhantes, as razoes entre seus lados sdo sem-
pre as mesmas (pois os seus lados sdo proporcionais). Assim, podemos dizer
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cateto oposto

0

cateto adjacente
a

(-1

Figura 2.4: Exemplo de um tridngulo com um angulo 6 e a designacao tipica de
seus lados.

que os valores do seno, cosseno e tangente dependem apenas de §. Elas sdo
representadas, respectivamente por senf, cosf e tgf.
No tridngulo retangulo, elas podem ser calculadas como

cateto oposto

senf = —
hipotenusa
cateto adjacente
cosb = —‘] (2.9)
hipotenusa
cateto oposto
tg9 = 71)

adjacente

em que hipotenusa é o maior lado no tridangulo retangulo, que estd oposto ao
angulo reto, e os catetos, os dois outros lados menores, sdo distinguidos ao
qualificd-los como ou oposto ou adjacente (préximo) considerando sua localiza-
¢ao em relagdo ao angulo 6.

Assim, no tridngulo retangulo da figura 2.4, o cateto adjacente é o lado de
comprimento a, o oposto o de comprimento b e a hipotenusa o de comprimento
c. Nele, temos

b
senf = —,
c
cosf = 9, e, (2.10)
c
b
tgf = —.
a
E facil ver que podemos calcular a tangente como
sen 6
tgh = . 2.11
& cos 6 ( )

Exercicios de revisao

Questao 2.12. Calcule o seno, cosseno e a tangente do tridngulo pitagérico com
relacdo ao angulo a que tem cateto adjacente de comprimento 4 e oposto de
comprimento 3.

Questao 2.13. Empregue um dos tridngulos formados pelo corte de um tridngulo
equildtero por sua altura para determinar cos 30°, sen 30°, tg 30°, cos 60°, sen 60°
e tg60°. Use as relagdes de simetria dos tridngulos formados e o teorema de
Pitagoras.
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0
O cos 6

Figura 2.5: Tridngulo retangulo padrao de hipotenusa unitéria.

Questao 2.14. Empregue um dos tridngulos formados pelo corte um quadrado por
sua diagonal para determinar cos45°, sen 45° e tg45°. Use as relagoes de sime-
tria dos poligonos da figura e o teorema de Pitagoras.

2.3.1 Circulo trigonométrico

As defini¢bes para as fungdes trigonométricas dadas nas equagbes 2.9 estdo
vinculadas a existéncia de um tridngulo retangulo com angulo 6, o que limita a
explorarmos apenas angulos 6 entre 0° e 90° (ou entre 0 e w/2rad).

A defini¢do para valores de seno, cosseno e tangente pode ser expandida
para um angulo qualquer se em uma primeira proposta adotarmos um tridngulo
padréo de hipotenusa unitaria como o apresentado na figura 2.5. Neste caso, os
préprios comprimentos dos catetos oposto e adjacente coincidem com o senf e
cos #, como pode ser verificado fazendo ¢ = 1 nas equagbes 2.10.

Neste paradigma intermediario para definir o seno e cosseno, a variagao de
# acaba tragando um arco de circunferéncia de raio unitdrio em torno do ponto
O em que se localiza o angulo 6. Os valores de cos# e sen  se apresentam como
as medidas dos comprimentos horizontal e vertical da posicao do ponto A.

J& em um paradigma final apresentado na figura 2.6, podemos fazer de O
a origem de um sistema cartesiano, de 6 o angulo que o segmento OA, de
comprimento unitério, faz com a horizontal, e cos 8 e sen 6 sdo, respectivamente,
a abscissa e ordenada do ponto A. Neste esquema, mudar o valor de 6 faz o
ponto A descrever a circunferéncia de raio unitario centrada em O e chamada
de circulo trigonométrico.

Agora, podemos determinar cos # e sen 6 para qualquer valor de 6 € R. Para
contemplar os valores negativos, costuma-se convencionar ¢ > 0 a medida do
angulo no sentido dextrogiro (anti-horério) conforme indica a seta que desenha-
mos para o dngulo 6 na figura 2.6 e # < 0 no caso contrario. Uma comparagio
entre os dois casos estd ilustrada na figura 2.7.

Definidos o seno e o cosseno, pode-se obter a tangente pela razdo da equacao
2.11, de modo que a definicdo que demos até agora do circulo trigonométrico
possibilita a cdlculo dos valores para as trés medidas. E comum, porém, aferir a
tangente pela coordenada do ponto A’ na reta t, tangente ao circulo trigonomé-
trico no ponto O’. O ponto A’ é obtido pela da intersecao do prolongamento de
‘OA com a prépria reta t. Ela é orientada para cima e tem O’ como origem. A
figura 2.8 apresenta esta estratégia para obter a tgf. Mostramos também um
exemplo da tg ¢ em que o prolongamento toca a reta t no semi-eixo negativo da
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sen 6

>

133

Figura 2.6: Circulo trigonométrico e defini¢ao de cosf e sen @ véilida para qual-

quer 6 € R.

>

0>0

v

#<0

Figura 2.7: Convengédo para determinar o sinal do arco 6.
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At
A'ltgo
A
A
¢
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Figura 2.8: Convencao geométrica para determinar a tangente.

reta orientada ¢, implicando um caso de tg¢ < 0.

Exercicios de revisao

Questao 2.15. Use os angulos de 30°, 45° e 60° e o circulo trigonométrico para
elaborar uma tabela com os seno, cosseno e tangente de —120°, —90°, —60°,
—45°, —30°, 0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°,
270°, 300°, 315°, 330°, 360°, 405°, 450°, 495°, 540°, 585°, 630°, 675° e 720°.
Inclua uma coluna com a medida do arco em radianos.

Questao 2.16. Quais sdo as regularidade que se observam nos valores de seno, cos-
seno e tangente observando os dados da tabela realizada na questao 2.157 Quais
sdo os valores de maximo e minimo para o seno e cosseno? Quando eles sdo nu-
los?

2.3.2 Fungoes senoidais

Agora, se considerarmos a funcéo dada apenas pela operagao do seno sobre uma
variavel independente, digamos, x, teriamos

f(z) =senx. (2.12)

E mais comum tratar esta funcdo considerando z a medida do arco, o valor
adimensional convencionado como radianos.

Tlustramos na figura 2.9 a construgao do grafico da fungao seno. Se partirmos
de x = 0, por exemplo, vemos que o valor inicial para f(0) é f(0) = sen0 = 0,
pois a ordenada do ponto A quando o arco é z = Orad é nula, pois A se encontra
sobre o eixo horizontal.

A medida que aumentamos o valor do arco z, o ponto A comega a girar no
sentido anti-horario sobre o circulo trigonométrico, de modo que o valor de sua
ordenada comeca a aumentar. Este comportamento se encerra quando x = /2
e a ordenada chega ao maior valor que pode atingir (o ponto verticalmente mais
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1“f(x) = senw

A senx
Aﬁ w 37/2 3 /2 4g

i 7;/2 \/% 57%/2 \/ '

Figura 2.9: Construcio do grafico de f(z) = senz.

-1

f(l) = senx

w/ QWQW T/ w

Figura 2.10: Construcao do grifico de g(x) = cosx.

-1

acima que A atinge quando gira no circulo trigonométrico). Neste ponto, temos
f(7/2) =sen(n/2) = 1. A partir dai, seu valor passa a diminuir novamente até
atingir f(7) =senm = 0.

Quando os valores m < x < 2w, o ponto A se encontra abaixo do eixo
horizontal e f(x) é negativo, seguindo um comportamento simétrico ao de 0 <
x < m. Por fim, quando = = 27, o ponto A termina uma volta completa e retorna
ao mesmo ponto, com mesma ordenada, de quando x = 0. O comportamento
ciclico da fungao seno mostra que ela é periddica e, pelo circulo trigonométrico,
vemos que o periodo é 27, ou seja,

senx = sen(z + 27k), (2.13)

para qualquer k inteiro.

Vamos agora tratar a fun¢do g(z) = cosz. Ora, o cosseno é também obtido
por uma coordenada do ponto A. Se girarmos os eixos cartesianos do circulo
trigonométrico em 90° no sentido anti-horario, vemos a abscissa, onde medimos
0 cosseno, tomar a posi¢ao vertical de onde vinhamos observando a ordenada
que media o seno. Como diferenga, vemos que quando z = 0 = ¢(0) = 1, o
que s6 acontece no seno quando z = 7/2. Dizemos que o cosseno tem o mesmo
comportamento do seno, mas ele é adiantado com relagdo ao seno em m/2rad.

O efeito sobre o gréfico é um deslocamento horizontal (ao longo da direcao
de x) como ilustra a figura 2.10. Estar “adiantado” com relagdo ao grafico do
seno, significa que ocorre no grafico do cosseno o comportamento do seno em
valores menores de z. Isto se apresenta como uma translagdo para a esquerda.
Algebricamente, podemos escrever

sen(x + 7/2) = cosx. (2.14)
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Exercicios de revisao

Questao 2.17. Utilize os valores da tabela obtida na questdo 2.15 para esbocar os
gréaficos de f(z) = sen(z) e g(z) = cos(z) para =2 < x < 4.

2.3.3 Caracteristicas das senoides

As funcgoes f(z) = senx e g(x) = cosz sao as fungbes mais simples que empre-
gam as operagoes trigonométricas. Vimos que ambas sdo capazes de descrever
um comportamento oscilatorio com a diferenca de um deslocamento no eixo
x. Por esta semelhanca, vamos apresentar as caracteristicas com base na fun-
¢do seno, mas todas as caracteristicas sdo vdlidas para ambas as fungoes (pois,
conforme veremos, elas diferem apenas com relagdo a caracteristica chamada
fase).

E mais didético ao trabalhar com fun¢des senoidais imaginar que a varidvel
dependente é uma grandeza (pressio, por exemplo) que estd sofrendo um osci-
lacdo ao longo do tempo. Por isto, vamos adotar como variavel independente
a letra t de tempo. Esta escolha é meramente didatica e a variavel dependente
pode ser de qualquer natureza. As caracteristicas que estudaremos valeram para
qualquer uma delas.

Para estudar as caracteristicas das fungoes senoidais vamos considerar uma
func¢do seno com algumas constantes e dada por

f(t) = F,, sen(wt + 60p). (2.15)

Elas é que descrevem caracteristicas distintas das oscilagbes. O termo entre
parénteses coincide com a descri¢do cinemdtica de um movimento circular uni-
forme. Como o seno é a ordenada do ponto A no circulo trigonométrico, entdo
podemos interpretar sen(wt + 6y) como a coordenada vertical do ponto A a me-
dida que ele gira no circulo trigonométrico com velocidade angular w e partindo
de 6y (quando t = 0).

Amplitude

Vimos que as fungoes seno e cosseno puras sio tais que
—1<sent<1l,e —1<cost<l1. (2.16)

Ou seja, entre o eixo de simetria da onda e a crista e o vale (0 méximo e o
minimo da oscilagdo) hd uma amplitude unitaria.

Ao multiplicar a fung@o senoidal por uma constante, que chamamos de F,,
na equagao 2.15, teremos

—F, < F,sent < F,,,e, —F,<F,cost<F,, (2.17)

fazendo a amplitude da oscilagdo valer F;, conforme ilustrado na figura 2.11,
que mostra também a distin¢ao entre as amplitudes para F,, = 1 e F,, = 3. Por
esta razao, a primeira caracteristica que apresentamos para a senoide é chamada
amplitude e é representada pela constante F,.
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Figura 2.11: Trés senoides com amplitudes 1, 3 e F},.

Frequéncia angular, frequéncia e periodo

Costuma-se convencionar que o argumento das fungoes senoidais é um arco
medido em radianos. Entéo, se se faz sen(u), supde-se que a “unidade” de u é
dada em radianos. Propusemos a funcgdo genérica f(t) = F,, sen(wt + 6y). J&
estudamos a constante Fj,, que chamamos de amplitude. Vamos isolar o efeito
da constante w.

Se observarmos isoladamente sen(wt), wt devera ter unidade de radianos. Se
t for de fato a variavel de tempo, sua unidade pode ser segundos. Pela anélise
dimensional, a constante w deverd ter unidade de rad/s. Ela tem significado fi-
sico andlogo ao da velocidade angular estudada no movimento circular uniforme
que revisamos na secao 2.2, e pode ser interpretada como a velocidade com que
o ponto A circula ao longo do circulo trigonométrico. Assim, quanto maior for
w, menor é o tempo necessario para completar um ciclo da oscilagao.

Para as oscilagoes do argumento de senoides, emprega-se os mesmos termos
de periodo T e frequéncia f que vimos na secao 2.2.

A figura 2.12 ilustra o efeito da variagdo da frequéncia angular. Percebe-se
que as oscilagbes ficam mais rapidas ao comparar os periodos que cada fungdo
leva para completar um ciclo. A fungao de maior frequéncia angular tem periodo
mais curto, ou seja, completa um ciclo mais rapidamente.

Utilizando a relacgao entre as frequéncia w e f dada por w = 27 f, a expressao
geral de uma senoide poderd vir no formato

f(t) = Fipsen(wt 4 0g) = Fy, sen(2m ft + 6p). (2.18)
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4 sen(wit) sen(wat)
-

v

T,
Ty

Figura 2.12: Duas senoides com frequencias angulares w; e ws com ws > w €,
portanto, Ty < T7.

sen(wt + @) sen(wt\;!— 0) sen(wt)

Figura 2.13: Trés senoides com fase nula, § e ¢ com ¢ > 6 > 0 e uma quarta
com fase —6.

Fase ou defasagem

O dltimo elemento de uma senoide genérica de que ainda nao tratamos é o 6.
Como vimos na se¢ao 2.2, o termo 6y estd associado a posi¢ao angular quando
t = 0. Na expressao

f(t) = Fy, sen(wt + 6p),

costuma-se trabalhar com duas convencdes terminolégicas. Umas designa toda
expressdo entre paréntese (todo argumento da funcido trigonométrica) de fase.
Neste caso, 6y pode ser chamado de fase inicial ou defasagem. Esta convencao é
mais popular entre fisicos e matematicos. A segunda convengdo, mais empregada
na engenharia, chama apenas o 6 de fase.

A figura 2.13 ilustra o efeito da mudanca de fase. Dentre os sinais, sen(wt) =
sen(wt + 0) é uma espécie de referéncia, pois sua fase é zero. H4 duas senoides
adiantadas. Esta caracteristica pode ser observada se escolhermos uma refe-
réncia (0 ponto em que a onda corta o eixo ¢, ou o ponto em que atinge uma
crista ou um vale, por exemplo). Observa-se que os valores de ¢t em que a onda
definida por sen(wt + #) atinge pontos de referéncia sdo sempre menores que na
curva de sen(wt), o que significa que ela atinge determinados valores mais “pre-
cocemente”, mais “adiantada” do que o sen(wt). A funcdo sen(wt + ¢) atinge
um mesmo ponto de referéncia ainda mais cedo. Ela é ainda mais adiantada do
que sen(wt) e sen(wt + 0), ja que ¢ > 6.

Por outro lado, o gréfico de sen(wt — 0) é sempre mais atrasado do que
o de sen(wt). Podemos resumir o comportamento da fase da seguinte forma:
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senoides adiantadas tem fases positivas e aparecem no gréafico transladadas para
a esquerda com relagdo a uma referéncia; ja as senoides atrasada tem fases
negativas e aparecem transladadas para a direita com relacdo a uma referéncia.

Exercicios de revisao

Questao 2.18. Esboce os gréficos das senoides abaixo.
(a) %sen(t) e 3sen(t).
(b) 4,3 cos(2nt) e 2,5cos(2mt).
(c) cos(2mt) e cos(8t).
(d) cos(3t) e cos(4t).
(e) sen(27t + w/3) e sen(27t + 7/6).
(f) 2sen(t) e 3cos(t —w/4).
(g) cos(2nt + 7/6) e 2 cos(3mt).

2.3.4 Funcoes trigonométricas inversas

As fungoes trigonométricas recebem como argumento um angulo ou arco e indi-
cam uma razao entre comprimentos. As fungoes trigonométricas inversas fazem
o caminho contrario. Recebem uma razao e informam o angulo ou arco para o
qual essa razdo ocorre.

Cada funcdo trigonométrica tem sua inversa. arcsen ou sen™! indica o in-
verso da fungdo seno. Temos, por exemplo,

sen—! <\/§> = Erad,

2 3
ja que
(5)-%
sen|— ) =—.
3 2
Da mesma forma como definimos a inversa do seno, arccos e cos™! sdo as
inversas do cosseno e arctg e tg~! sdo as inversas da tangente.
O problema de obter os valores de um arco dado o seu seno, que possibilita
o célculo das fungoes trigonométricas, é um problema tipico de equacédo trigo-
nométrica. Isto porque a forma de obter o valor do arco para o qual o seno vale
V3 /2 pode ser expresso para equagio

senf = /3/2.

A solugdo obtida para 6, representa um valor vilido para a inversa, de onde

teriamos,
3
sen”! <\2f> =60.

A rigor, neste nosso tltimo exemplo, dizer que sen~! (§> = % ¢ incompleto
por dois motivos, que podemos resumir no fato de que § = 7/3 néo é a tnica
solugdo de senf = /3/2. O primeiro é devido a existéncia da ambiguidade
da posicao angular com relacdo a quantidade de voltas completas como vimos
na se¢do vimos na se¢do 2.2. Como nosso problema é achar um arco 6 tal

que sen(f) = v/3/2, sabemos que ele deve estar associado a posi¢do angular
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Figura 2.14: Ambiguidades na determinacio do arco 6, tal que sen = /3/2.

de um ponto sobre o circulo unitério que tenha ordenada /3/2. Por inspecio
da figura 2.14, podemos ver no caso superior esquerdo que o ponto A tem esta
propriedade. Ora, mas o ponto a tem posicdo angular ambigua. Ela pode ser
dada por 6y, mostrado no canto superior esquerdo da figura, pode ser, também,
dada por 87 ou qualquer outro arco em que a diferenga com relagdo a 6y e 67 seja
um multiplo inteiro de 27. Estes arcos tem a forma 7/3 + 27k, com k inteiro.

O segundo motivo é devido a simetria em torno do eixo vertical de pontos
que tem mesma ordenada e estdo no circulo unitario. O ponto B é o simétrico
ao ponto A com relacio ao eixo vertical e também tem ordenada dada por v/3/2.
Uma posicdo angular associada ao ponto B é 6] = 4w /6. Assim, 6 também
seria solugdo de sen § = v/3/2. Além de 6}, ha também 6] e uma infinidade de
outros arcos que diferem deles em um multiplo inteiro de 2.

Assim, o conjunto de solugbes para

senf = /3/2, ¢

{00 =7/3 + 27k, ou, 0 = 47 /6 + 27k, k inteiro}

Por esta razao, as fungoes trigonométricas inversas, como precisam retornar
um tunico valor, serdo limitadas a um conjunto reduzido de valores de arco. Isto
impacta, também, no uso de calculadoras para o calculo das fungées trigono-
métricas inversas, pois devemos lembrar que a calculadora (ou fungdo de uma
linguagem de programagao) terd uma predefinicdo dos arcos que ela retorna
como resultado da aplicagdo de uma funcao trigonométrica inversa.

Exercicios de revisao

Questdo 2.19. (a) Determine todas as possibilidades para sen™'(—+v/2/2). (b) De-
termine os valores do arco sen*(—+/2/2) limitando-o a valores entre —7/2 e
/2.

Questéo 2.20. (a) Determine todas as possibilidades para cos™'(1/2). (b) Determine
os valores do arco cos™*(1/2) limitando-o a valores entre 0 e 7.
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Figura 2.15: Tridngulo empregado para determinar a soma de senoides.

Questdo 2.21. (a) Determine todas as possibilidades para tg~'(—+/3/3). (b) De-
termine os valores do arco cos™'(—+/3/3) limitando-o a valores entre —7/2 e
/2.

2.3.5 Soma e produto de funcgoes senoidais

E possivel encontrar em livros de matemaética do ensino médio as féormulas

cos(a + ) = cosacos B — sen arsen f3, (2.19)
cos(av — 8) = cosacos B + sen avsen f3, (2.20)
sen(a + ) = cosasen 4 sen o cos 3, e, (2.21)
sen(a — 8) = cosasen § — sen acos (2.22)

que sao as férmulas para os cossenos e senos das somas e diferencas de arco.
Somando as equacoes 2.19 e 2.20, subtraindo-as ou somando as equacoes
2.21 e 2.22, obtemos, respectivamente, as equagoes

cosacos 3 = %[cos(a + ) + cos(a — )], (2.23)
senasen 3 = %[cos(a — ) — cos(a + B)], e, (2.24)
cosasen f§ = %[sen(a + B) + sen(a — 38)], (2.25)

que sdo as férmulas para produtos entre senos e cossenos.
Agora considere a soma

A cos(wt) + Bsen(wt),

que representa a soma das duas fungoes trigonométricas com amplitudes dis-
tintas e fases nulas (porém com diferenca de fase de 7/2 entre as fungdes, pois
como vimos cos(z) = sen(z + 7/2)).

Agora considere um tridngulo retangulo com lados de catetos coincidentes
com as amplitudes A e B, com a amplitude do cosseno como cateto oposto
ao angulo de interesse 0. Este tridngulo é mostrado no figura 2.15, em que a
hipotenusa pode ser obtida pelo teorema de Pitagoras. Ele tem

A
senf = \/ﬁ, (226)
B

) € 2.27
Ve (2.27)

cosf =
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A A
tgl = B & 0 = arctg (B) . (2.28)
Se multiplicarmos a soma de seno por cosseno por 1 = \/j“:zi‘gz, teremos
VA2 + B?
A cos(wt) + Bsen(wt) = ;[A cos(wt) + Bsen(wt)]
v A2 + B2
=+ A%+ B? {A cos(wt) + __B sen(wt)
«/A2+B2 ‘/A2+B2

= \/ A% + B2[sen  cos(wt) + cos 6 sen(wt)]
=/ A2 + B2?sen(wt + 0)

=1/ A? 4+ B?sen {wt + arctg <g)] ,

que é a expressao que queriamos para a soma de senoides
A
A cos(wt) + Bsen(wt) = v/ A2 + B?sen [wt + arctg (B)} . (2.29)

Se trocarmos os papéis entre cateto oposto e adjacente realizados por A e B no
triangulo da figura 2.15, chegaremos a

Acos(wt) + Bsen(wt) = v/ A% + B2 cos [wt — arctg (i)} . (2.30)

As expressoes 2.29 e 2.30 nos dizem que quando somamos duas senoides
de mesmas frequéncia, obtemos uma senoide, também na mesma frequéncia,
porém, defasada com relagdo as originais. A amplitude e a fase da senoide
resultante sdo fung¢des das amplitudes das senoides iniciais.

Exemplo 2.8. Reescreva a fungao
f(t) = 5v2cos(wt — 31/4) + (5 + 5V/3) cos(wt)

empregando uma tnica fungao trigonométrica.

Solugao. Reescrevamos inicialmente o primeiro cosseno em termos da
soma de cosseno com seno, utilizando o caminho inverso mostrado na
equagao 2.29, expressando

5v/2 cos(wt — 3m/4) = 5v/2sen(wt — 37 /4 + 7/2)

= 5v/2sen(wt — 7/4)
= Acos(wt) + Bsen(wt),

em que
VAZ + B2 =52
B
COS(*T('/ZL) = @
PRz
2 = tg(-m/4).
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Por estas relacoes entre A e B, podemos determinar
A=-B=-5,
que implicara

5v/2 cos(wt — 3m/4) = —5 cos(wt) + 5sen(wt)

Retomando a expressao para f(t), teremos

f(t) = 5v2cos(wt — 31/4) + (5 + 5V/3) cos(wt)
= —5cos(wt) + 5sen(wt) + (5 4 5v/3) cos(wt)
= 5V/3 cos(wt) + 5sen(wt),

que, empregando 2.29 novamente, resulta em

f(t) = 10sen |wt + arctg(\/g)} = 10sen(wt + 7/3).

Exercicios de revisao

Questao 2.22. Reduza as fungdes abaixo a uma tnica senoide.
(a) f(t) = 4cos(1207t) + 4+/3 sen(1207t)
(b) g(t) = 3sen(wt + 37/4) + 1,5v/2 sen(wt)
(¢) h(t) = 10v/2 cos(880mt — 27 /3t) + 2276 sen(880mt + )

2.4 DMatrizes

Matrizes sdo entidades mateméticas que organizam nimeros em um arranjo de
linhas e colunas. Chamamos estes nimeros de elementos da matriz. As matrizes
podem vir com uma grande quantidade de linhas e colunas. O arranjo

n? de linhas x n2 de colunas,

nesta ordem, é o que designamos ordem da matriz ou dimensdo da matriz. A
matriz

23 30
A=135 36
39 49

tem ordem 3 X 2, pois possui trés linhas e duas colunas. Se for importante,
podemos explicitar a ordem de uma matriz apondo a ordem ao nome da variavel
que representa a matriz como em Ajzyo.

E comum indicar os termos de uma matriz identificando seus elementos por
uma letra mindscula seguida de dois indices (dois nimeros em subscrito) para
indicar a linha e a coluna, nesta ordem. Na matriz A que apresentamos, por
exemplo, o elemento as; = 35, pois o elemento da segunda linha na primeira
coluna vale 35 em A. Se os elementos a;; sdo os componentes da matriz A,
escrevemos A = [a;;].
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Igualdade de matrizes

Duas matrizes s6 sdo iguais se elas tem cada um de seus termos iguais e elas
tem mesma dimensao, ou seja,

aij = bij
Anisn = Bqu S {m=p . (231)
n=gq

2.4.1 Regularidade nos elementos de uma matriz

Nos interessa a construgao de uma matriz seguindo uma regra de formagao para
seus elementos. Podemos definir uma matriz B como Bsyxs = [b;;], tais que
bi; = i+ j. Neste caso, pela substituicao dos valores de i e j correspondentes
as linhas e colunas expressos na regra geral, podemos obter a matriz

2 3 4
B= |3 4 5]. (2.32)
45 6

Como a diferenga entre um elemento e outro dentro da matriz esta em sua
localizacao no arranjo de linhas e colunas, se houver uma regularidade, estamos
falando em uma regra que associa a posicao do elemento ao seu valor, e portanto,
o elemento da i-ésima linha e j-ésima coluna estd em funcgdo de i e j. Isto estd
explicito nos indices que escrevemos em b;;. De forma redundante, poderiamos
escrever b;; = b;;(i,j) para explicitar a relagao funcional.

2.4.2 Produto de matrizes

Podemos multiplicar duas matrizes A,,x, € Bpxq desde que a quantidade de
colunas de A coincida com a quantidade de linhas de B, ou seja, desde que
n = p. Isto ocorre pois se o resultado do produto ¢ C = AB, entao o termo c;;
é dado pela multiplicacao dos elementos da linha i de A pela coluna j de B um
a um e depois somados. Como exemplo, temos

Lol e, 1-440-(-1) 1-(-1)+0-1 4 -1
2 -2 [ ) 1}= 2:4+(=2)- (1) 2-(=1)+(=2) -1} = 110 —4
1 3|t 1-443-(-1) 1-(-1)+3-1 12

Talvez seja mais facil visualizar uma multiplicagdo Azx2Baxs = Csx2 pelos
termos genéricos

air  a12 by bis a11b11 + ai2bar  ai11b1z + a12b2o
azy a2 | - {bzi b;] = |a21bi1 + ag2ba1  a21b12 + azabaa | ,
asy  asp a31b11 + azgbor  az1biz + asaboo

ficando claro a multiplicacdao termo a termo de uma linhas de A por uma coluna
de B.

E por conta da multiplicacdo termo a termo que a quantidade de elementos
da linha de A (dado pela quantidade de colunas) deve ser igual a quantidade
de elementos da coluna de B (dado pela quantidade de linhas de B), e por isso
n = p é necessario.
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Vale perceber, também, que se C = AB, e A« ¢ By, entdo C terd
ordem m X p.

Em notacao de somatério, podemos expressar os elementos da matriz pro-
duto C = [¢;;] como

Cij = Zaikbkj, (233)
k=1

em que o incremento no valor da varidvel k faz o somatério percorrer os n
elementos i-ésima linha da matriz A e os n elementos da j-ésima coluna da
matriz B.

Veremos mais adiante que a possibilidade de organizacao de matrizes criadas
por meio de uma regra e o uso de produto de matrizes para realizar somatorios
serd fundamental para organizar os calculos para obter a série de Fourier.

Produto de matrizes como representacao de sistema de equagoes

Uma das utilidades do produto de matrizes é seu emprego para representar
um sistema de equacgoes, ou, de forma geral, um conjunto de equacoes. Vamos
tomar como exemplo um sistema linear de equagdes com trés equagoes e trés
incégnitas. O sistema

2z +y —z =8
—3r +2y +z =-8
T +3y +4z =2

pode ser reescrito como

2 1 -1 |=x 8
-3 2 1 yl = -8
1 3 4 z 2
A matriz
2 1 -1
A=1|-3 2 1
1 3 4

é chamada de matriz dos coeficientes, a matriz

»
Il
SISO

é chamada de matriz das varidveis, e

B=|-8
2

é chamada de matriz dos termos livres. Assim, o sistema de equacoes pode ser
expresso pelo produto
Ax =B.
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O produto das matrizes é igual ao sistema pois se resolvermos o produto,
obtemos

20 +y— =z 8
—3rx+2y+z| =|-8,
T+ 3y + 4z 2

e como a igualdade de matrizes implica que os termos correspondentes tém que
ser iguais, temos

20 +y— 2 8 2z +y —z =8
—3drx+2y+z| =|-8| & -3z +2y +z =-8
x+ 3y +4z 2 T +3y +4z =2

Logo, o produto de matrizes expressa exatamente o mesmo que o sistema de
equagoes.
Exercicios de revisao

Questao 2.23. Dadas as regras de formacéo, apresente a matriz resultante.
(a) Azxs com os elementos a;; = (i — 1) + 3.
(b) Baxa com os elementos b;; = 2(: — 1) +3(5 — 1).
(¢) Cax7 com os elementos

i1=1

2
cos [Wﬁ(z —1)(5—1)|, nos outros casos

Questao 2.24. Expresse os sistemas de equagdes a seguir na forma matricial.
T 3y =5
(a){ —dr -y =2

r +y —z =2
b)S 2z +y +2z =3

3xr -2y —z =11
2a0 +a1 +a2 +az =5
—2a0 +a1 —as —as =

(C) —4a0 +2a1 —2as +tas =
2a0 +a1 —3as +2a3 =11

Questao 2.25. Considere as matrizes

0 . .
I ) O el R [
*= 1| a_b]’ _lll’
B : ”

8

T
1 1 1 1
o b 1 4 1 6
— |1 1 2m) 1 Am 1 6m
C= 2 %COSEII; %cos§84; 12005(151 , €
s ™ us
T oqcos () jeos (%) feos ()
0 0 0 0
— 1 2m 1 4an 1 6m
S= |0 2sen(4) 2sen(4) 2sen(4)
0 0 0 0

Determine o conjunto das equagdes para ao, a1, az, bo, b1 e bz sabendo que

a=0Cx,e, b=Sx.
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Questao 2.26. Realize o produto matricial entre as matrizes A e B abaixo expres-
sando cada elemento da matriz produto C na forma de somatério, organizando
os calculos dos valores destes elementos antes de expressar a matriz produto

resultante.
1 2 1 2 3
1 -1 3 B=|1 -2

0o 1 1 -2 0

A =
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Capitulo 3

Python, iteracoes,
somatorios e graficos

Ha varias formas de instalar o Python e rodar seus cédigos. Um dos mais simples
é pela instalacdo do Python disponivel em https://www.python.org/ e pelo
uso do Python IDLE (Integrated Development and Learning Environment), um
software que integra a possibilidade de elaborar a programacao, editar o cédigo
e executd-lo em um mesmo ambiente. Na instalagao para Windows, o IDLE
é padrao. E importante, também, ter a capacidade de instalar e empregar 0s
moédulos do Python. A forma mais empregada para realizar estas instalagoes é
por meio do pip.

Sugerimos, para seguir com o que apresentamos neste material, que o aluno
siga um tutorial que o capacite a:

« Instalar o Python (costuma vir instalado nas distribui¢oes Linux);

— Ter o Python e a ferramenta de instalacio de médulos (sugerimos
pip) disponiveis na varidvel PATH do sistema operacional;

o Instalar o Python IDLE (padrédo na instalagdo do Python para Windows);

Instalar, pelo menos, os médulos NumPy e Matplotlib; e

o Executar scripts de teste no Python IDLE (ou com o workflow com que
vocé melhor se adaptou).

3.1 UsodoIDLE, execucao de comandos e scripts

Uma das formas de utilizar a linguagem Python é por seu Shell, em que co-
mandos na linguagem Python podem ser inseridos e executados um a um ao
pressionar a tecla Enter, como em um terminal do Linux ou do DOS (também
conhecido no Windows como prompt de comandos ou cmd). O IDLE, assim que
aberto, é inicializado em um Shell. A indica¢do de que um comando pode ser
inserido ¢ feita pelo indicador >>> como mostra a figura 3.1.

No Shell os comandos podem ser digitados e executados um por vez. Isto
é 1util na realizacao de testes, em algum procedimento curto ou quando se tem

149
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IDLE Shell 3.8.10 - o O

File Edit Shell Debug Options Window Help

Python 3.8.10 (default, Mar 15 2022, 12:22:08) B
[GCC 9.4.8] on linux
Type "help", “"copyright", "credits" or "license()" for more information.
>>> |
=
Ln: 4 Col: 4

Figura 3.1: Python Shell do IDLE.

certeza que nao ha interesse em executar esta sequéncia de comandos repetidas
vezes.

Se se deseja executar um codigo mais extenso ou que podera ser executado
varias vezes, é mais comum recorrer a criagdo de um script. Empregando o
IDLE, pode-se criar o arquivo do script pelo caminho File — New File em seu
menu superior. O IDLE abrird uma nova janela similar a de um editor de
texto para elaboracdo da sequéncia de comandos que formard o programa em
linguagem Python. Ao salvar este script, convenciona-se empregar a extensao
.py. Ele podera ser aberto no futuro para nova execugao.

A execugdo de um script pode ser realizada a partir do menu superior da
janela do cédigo pelo caminho Run — Run Module, ou pelo uso da tecla de
atalho F5. O resultado da execucdo do script serd exibido no IDLE Shell.

3.2 Aspectos basicos da sintaxe do Python

De forma geral, vamos seguir as seguintes diretrizes para construir um programa
em Python:

e Nao é necessério declarar varidveis ou inicializa-las;

o Cada comando é posto em uma linha (varios comandos podem ser escritos
em uma mesma linha desde que separados por ponto-e-virgula);

e Nao é necessério identificar o fim do comando; e

o Os blocos de comando (os comandos que serdo executados dentro de uma
iteracdo ou condicional, por exemplo) tém seu inicio e fim identificados
pela indentagao.

3.2.1 Atribuicao — o sinal de igual

A atribuicdo de um valor a uma varidvel em Python é realizada por meio do
operador de atribuicdo = (sinal de igual), seguindo a regra:

[varidvel] = [valor a ser atribuido]

O cédigo 3.1 mostra a atribuicdo de niimeros as variaveis z, y e z.
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IDLE Shell 3.8.10 - o0 0

File Edit shell Debug Options Window Help

Python 3.8.18 (default, Mar 15 2022, 12:22:88) =
[GCC 9.4.8] on Llinux
Type "help", "copyright", "credits" or "license()" for more information

>>> X=3
=== y=4.5
s=> 7=X
22> X

3

==y

4.5

>m> 7

7.5

>>> |

Ln: 13 Col: 4
Figura 3.2: Execucdo do codigo 3.1 no Shell.
tribui o wvalor 3 a waridvel x

3 # a
= 4.5 # atribui o valor 4.5 a varidvel y
x +y # atribui o valor 7.5=3+45 a varidvel z

N < M

Cédigo 3.1: Exemplo de atribuicdo e comentarios em Python.

3.2.2 Comentarios

A principal forma de comentar cédigo em Python é por meio do comentério
na linha feito pelo identificador #. A partir deste identificador, qualquer texto
adicionado na linha serd ignorado na interpretacdo e execugdao do programa.
Assim, no cédigo 3.1, os textos “atribui o valor 3 a varidvel 2”7, “atribui o valor
4.5 a varidvel y” e “atribui o valor 7.5 = 3 + 4.5 a variavel z” sdo comentérios
que sao ignorados pelo Python, pois sdo todos precedidos na mesma linha por
#.

3.2.3 Execucgao de comandos no Shell do IDLE

Teste rodar cada linha do cédigo 3.1 escrevendo-as no Shell apés o indicador de
linha >>> e pressionando Enter ao fim de cada comando (nao é necessario copiar
os comentérios). No Shell, digitar uma varidvel e pressionar Enter retornaré na
tela o valor atual da varidvel. Ao digitar o nome das varidveis x, y e z seguidas
da tecla Enter apés executar o cédigo 3.1, o Shell mostrard os valores 3, 4.5 e
7.5, relativos aos valores armazenados nas respectivas varidveis. Os resultados
da realizacdo deste procedimento ilustrado na figura 3.2.

Exercicios de revisao

Questao 3.1. Repita as operagoes no Shell realizadas na figura 3.2.
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3.2.4 Exibicao basica — a fungao print

O artificio de digitar o nome da variavel e pressionar Enter para visualizar seu
valor s6 funciona no Shell. Se desejarmos o mesmo em um script, a forma mais
simples é pelo uso da fun¢do print. Sua sintaxe é

print ([ varidveis ou objetos separados por virgula], sep=’ 7,

end="\n’, file=None, flush=False)

Os argumentos precedidos por palavras chave (sep, end, file e flush) sdo
opcionais. Indicar um caractere em sep define o que separa a impressdo das
varidveis ou objetos e end o que é posto ao fim da impressdao e podem ser tteis
na defini¢do da aparéncia da exibicdo dos dados.

3.2.5 Execucao de um script em Python

Podemos, agora, repreduzir os comandos que realizamos no shell utilizando um
script. Basta criar um novo arquivo no IDLE pelo caminho File — New File (ctrl
+ N). Na janela de edi¢ao que é aberta, podemos digitar o c¢ddigo 3.2, salvar o
arquivo do cddigo e executd-lo no Shell pela caminho Run — Run Module (F5)
disponivel no menu do editor.

Xx = 3

y = 4.5

zZ =X +Yy

print(x, y, z, sep=";")

Cédigo 3.2: Exemplo de cdédigo para um script simples.

Com isto, o script serd executado e seu resultado serd exibido no Shell, que
mostrard 3;4.5;7.5, o resultado da impressao dos valores de x, y e z separados
por ponto e virgula. Lembre que, por convencao, os scripts de Python sao
arquivos com a extensio .py.

Exercicios de revisao

Questao 3.2. Crie um arquivo .py com o cédigo 3.2 e execute o script, verificando o
resultado da execucdo no Shell.

3.2.6 Strings

Strings sdo conjuntos de caracteres que podem ser atribuidos & varidveis. Para
declara-los, basta digitar os caracteres entre aspas duplas ou simples. O codigo
3.3 mostra a declaracdo dos strings = e y e a impressdo dos mesmos com a
funcdo print. Como nao foi declarado o tipo de separagao desta fungao, ela usa
o separador padrao que consiste em um espaco.
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Tabela 3.1: Operagoes matematicas, de comparagdo e légicas definidas no
Python.

operagao comparador operador
légico
adicao + igual == negacao not
subtragao - diferente 1= e-légico and
multiplicacao * maior que > ou-légico or
divisao / menor que <
divisdo // maior ou >=
inteira igual
resto da % menor ou <=
divisao igual
potenciagao *%
multiplicagdo @
de matriz
x = "imprimindo"
y = ’dois strings’
print (x,y)

Cédigo 3.3: Uso de strings.

3.2.7 Entrada de dados basica — a fung¢ao input

O script pode solicitar ao usuario que digite um valor que podera ser passado
para uma variavel como um string utilizando a func¢do input cuja sintaxe é

input ([ mensagem |)

O cdbdigo 3.4 solicita ao usudrio para digitar seu nome e idade. A entrada é
realizada quando o usudrio pressiona Enter. Em seguida as varidveis nome e
idade, ja preenchidas com os strings contendo a informagao sao empregadas na
funcdo print.

nome = input("Informe seu nome: ")
idade = input("Informe sua idade: ")
print ("Vocé é", nome, "e tem', idade,"anos.")

Cédigo 3.4: Uso da funcdo input.

Exercicios de revisao

Questao 3.3. Ponha o c6digo 3.4 em um arquivo e o execute como script.

3.2.8 Operagoes matematicas basicas, comparagoes e ope-
ragoes légicas

O Python tem definido como padrao as operagoes basicas listadas na tabela
3.1. A execugdo do codigo 3.5 tem como resultado a listagem dos valores
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5.5; -25.5; 24.64; 6.428571428571429; 6; 3; 7776.0, correspondentes ao
resultado respectivo das operagoes realizadas no codigo.

[\]
- w ot

0
e

I
W ok W
SRS s

a

b

c .2 %
d=45 / 7
e =45 // 7

f =45 % 7

¢ = 36 % 2.5
print(a,b,c,d,e,f,g, sep="; )

Cédigo 3.5: Cbddigo para exemplificar emprego de operadores matematicos.

As operacdes de comparacao da tabela 3.1 retornam verdadeiro ou falso. E
importante observar que, tal como na linguagem C, o sinal de igual é empregado
para a operacao de atribuicdo. Por esta razdo, a comparacao utiliza um par
de sinais de igualdade. O cddigo 3.6 apresenta exemplos de comparagoes e
operacoes logicas sob o formato da impressdo dos valores true ou false de acordo
com o resultado dos testes colocados como parametro da fungdo print.

x =3

print('x é igual a 37 R:" ,6x==3)

print("x é igual a 4?7 R:" x==4)

print("x é diferente de 4?7 R:" x!=4)

print("x é maior do que 47 R:" ,x>4)

print("x é menor do que 37 R:",x<3)

print("x é maior ou igual a 47 R:" ,x>=4)

print("x é menor ou igual a 37 R:" ,x<=3)

print("x é menor do que 6 e maior do que 4?7 R:", x<6 and x>4)
print("x é menor do que 6 ou maior do que 4?7 R:", x<6 or x>4)
print("x ndo é igual a 57 R:", not x==5)

Cédigo 3.6: Exemplo do uso de comparacoes e de operadores légicos.

Vamos retomar a multiplicagdo de matriz que emprega o operador @ na segao
3.3.2 quando conseguiremos definir as matrizes utilizando o médulo NumPy.

Exercicios de revisao

Questao 3.4. Repita as operagoes dos codigos 3.5 e 3.6 no Shell, verificando o em-
prego dos operadores aritméticos e l6gicos. Mude o valor da varidvel x na pri-
meira linha para 2, 4, 5, 6 e 7, execute o script em cada caso e veja o resultado
dos novos testes.

3.2.9 Controle de fluxo condicional — uso do if

Os scripts que vimos até aqui realizam os comandos listados na ordem em que
sao escritos. E possivel alterar esse fluxo de execugdo invocando uma condigao
por meio da construcdo conhecida como if, que deve seguir a sintaxe
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if [teste condicional]:
[primeiro comando que serd realizados se o teste &
verdadeiro |
[segundo comando, etc.] #os comandos devem estar indentados
para estarem mo bloco do if

Pode-se realizar testes sucessivos apds uma falha (um resultado falso no teste
condicional) empregando uma construgdo idéntica ao do if (se) chamada elif
(de else, if — sendo, se), que também demandard um novo teste condicional.
Este novo teste pode ser repetido véarias vezes. Um condicional final pode ser
feito opcionalmente com o uso do else, (sendo), e que ndo demanda um teste.
Simplesmente serd executado se todos os outros testes condicionais falharem.
Um exemplo desta construgao é mostrada no cédigo 3.7

x = 4 # mude o wvalor de x para 5, 5.5, 6 ou 7 para wverificar o
funcionamento do if
if x<5:
print("x é menor do que 5")
elif x==b5:
print("x é igual a 5")
print ("est4 mensagem s6 vai ser exibida quando x for igual

a 5")
elif x==6:
print("x é igual a 6")
elif x>6:
print("x é maior do que 6")
else:

print("x estd entre 5 e 6")

Cédigo 3.7: Uso de controle de fluxo condicional.

3.2.10 Controle de fluxo por iteracbes — uso do while e
for

Uma segunda forma de realizar mudanca no fluxo dos comandos é pela repetigao
de um trecho de cédigo de forma repetitiva. Chamamos cada repeticao de
iteracdo. A construgdo mais simples que realiza iteragoes é a while (enquanto),
cuja sintaxe é

while [teste condicional]:
[primeiro comando da iteracdo]
[segundo comando, etc]| #os comandos devem estar indentados
para estarem no bloco do while

Enquanto o teste condicional for verdadeiro, os comandos indentados abaixo do
while serao repetidos.

O codigo 3.8 é um exemplo do uso das iteragoes do while. A varidvel texto
é alimentada com um string inicial que é substituido dentro do while pelo string
dado pelo usuario. Enquanto o usudrio nao digitar encerrar, o loop continuard
a solicitar que dé uma entrada de texto e a exibir o que foi digitado.
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texto = "inicial"
while texto != "encerrar":

texto = input(’Digite "encerrar' para terminar o script: ’

"

print ("Vocé digitou:", texto)
print("As iteragdes foram encerradas')

Cédigo 3.8: Realizagao de iteragoes com while.

A segunda construcdo que veremos para realizar iteracoes é o for, cuja
sintaxe é

for [varidvel] in [objeto iterdvel]:
[primeiro comando da iteracdo]
[segundo comando, etc] #os comandos devem estar indentados
para estarem no bloco do for

O Python possui alguns objetos classificados como iterdveis, capazes de prover
uma iteragdo por estarem organizados em uma sequéncia ou ordem. Na constru-
¢ao for, vamos utilizar com frequéncia os objetos iteraveis gerados pela fungao
range. Ela tem trés possiveis sintaxes

range ([ valor de parada])
range ([ valor inicial], [valor de paradal)
range ([ valor inicial], [valor de parada], [passo])

Se é fornecido apenas uma variavel, como range (6), por exemplo, o valor inicial
é tomado como 0 e o passo € unitario. Este comando gerard a sequéncia 0, 1,
2, 3, 4 e 5, pois o valor de parada nunca é incluido. Se forem fornecidos dois,
valores, como range(3,6), teremos a sequéncia 3, 4 e 5. Temos um novo valor
inicial mas ainda com passo unitario. Por fim, com os trés valores, como em
range(1l, 6, 2), geraremos 1, 3 e 5, uma vez que comecaremos do valor 1 e
teremos um passo de tamanho 2.

Como exemplo do uso do for e range, veja o codigo 3.9 que gera o texto
mostrado no comentario.

print ("Os ntmeros pares menores do que 20 sdo:",end=" ")
for i in range(20):
if i%2==0:
print (i, end=", ")

print('"e s6.") #termina o texto "Os nimeros pares menores do
que 20 sao: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, e so."

Cédigo 3.9: Realizacdo de iteragdoes com for empregando iterdvel gerado por
range.

Exercicios de revisao

Questao 3.5. Faca um script para pedir repetidamente niimeros inteiros ao usuario.
O programa informa se o nimero é divisivel por 3, 5 e/ou 7. Caso o usudrio
escreva “encerrar”, o script é concluido. Se a fungdo input for empregada, ela
retorna uma variavel do tipo string, de sorte que para realizar contas com esta
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varidvel, poderd ser necessario empregar a funcio int(x), que converte o string
para inteiro interpretando o valor escrito como niimero.

3.2.11 Importando médulos

As funcionalidades nativas do Python sfo muitas e eficazes, mas ndo sdo sufi-
cientes para cobrir alguns calculos mais complexos. Em especial, ele ndo tem
suporte para cdlculos com fungées trigonométricas ou com matrizes, que, como
ja dissemos, serao fundamentais em nosso estudo. A comunidade de programa-
dores do Python é forte e capaz de acrescentar novas funcionalidades ao Python
pelo uso de mdédulos, muitos dos quais gratuitos e capazes de acrescentar as
mais diversas funcionalidades a esta linguagem de programacao.

A vérias formas de incluir as funcionalidades de um médulo em um pro-
grama. Uma das formas mais comuns é pelo uso do comando import utilizando
a sintaxe

import [nome do mddulo] as [apelido para o médulo]

tornando disponivel todas as funcionalidades do médulo importado utilizando
o apelido dado.
Pode-se ainda utilizar a sintaxe

from [nome do médulo] import [pacotes ou partes do mdédulo
separados por virgula]

Neste caso, como foi feita uma selecdo de partes do médulo, ndo é necessario
repetir o nome do médulo (ou seu apelido) para invocar suas partes. Em um
caso extremo, pode-se importar todo um mddulo com esta sintaxe ao poér um
asterisco (*) nos pacotes ou partes do médulo. Esta prética nao é recomendada
pois podera sobrepor uma grande quantidade de nomes empregados pelo médulo
e causar conflitos.

Vamos ilustrar exatamente a diferenga entre estas sintaxes com o pacote
NumPy na se¢ao 3.3.2.

3.3 Uso do Python para auxilio na matematica

Agora vamos utilizar o Python para explorar algumas das questoes matematicas
que ja apresentamos e que nos auxiliarao a estudar as séries de Fourier de tempo
discreto.

3.3.1 Realizacao de somatoérios com iteragoes

Um emprego matemético importante das iteragoes é a automatizacao do calculo
de somatorios. Isto s6 é verdade se pudermos calcular os termos do somatério a
cada iteracdo. Uma forma de fazer isto é criando uma varidvel, que em nossos
exemplos chamaremos de soma, e inicializd-la com o valor 0 (zero), elemento
neutro da soma. Dentro da iteracdo, calculamos o proximo termo da soma, que
chamaremos de parcela e calculamos

soma = soma + parcela

Para compreender este comando, lembre que o sinal de igual realiza a atribuicao.
No computador, primeiro ¢ feito o cdlculo indicado no lado direito, para s6 entao
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a atribuicdo modificar o valor da variavel do lado esquerdo. Isto significa que
o computador soma o antigo valor registrado na varidvel soma com o valor de
parcela e s6 apoOs a realizagdo da conta, é que ele atribui este resultado a
variavel soma novamente, atualizando seu valor. Com uma iteragdo contendo
este comando, o valor do somatoério vai sendo calculado sucessivamente pela
adicdo de cada parcela a varidvel soma até que seu valor final seja atingido ao
fim de todas as iteragoes. Este processo em que uma varidvel recebe o seu valor
anterior somado com uma nova parcela é conhecido como acumulagdo.

Uma anedota conta que um professor solicitou a turma de Gauss que calcu-
lassem a soma de todos os ntimeros inteiros até 100 ao que em pouco tempo, e
para a surpresa do professor, Gauss respondeu 5050 por ter usando a férmula

100

100 + 1)100
Z k= % = 5050
k=1

que ele teria descoberto ali mesmo. No6s podemos utilizar o computador para
realizar a soma mitica de Gauss na forca bruta fazendo uma variavel k percorrer
os valores de 1 a 100, utilizando a funcao range(1,101), e realizando as 100
iteragoes com um for como descrito no cédigo 3.10 fazendo parcela = k a cada
iteracgao.

soma = 0

for k in range(1,101): #lembre que o 101 nao é incluido
parcela = k
soma = soma + parcela

print ("O somatério 1 + 2 + 3 + ... + 99 4+ 100 =" ,soma)

Cédigo 3.10: Realizacdo do somatério da progressao de Gauss por iteragoes.

Como um ultimo exemplo, vamos calcular o somatério da letra b questao
2.2 utilizando uma iteracdo do tipo while. Vemos que a regra geral para as
parcelas py é

para 0 < k < 5. Como o while ndo tem uma regra para atualizar uma variavel
a cada iteragdo, devemos inicializar o valor de k e atualiza-lo dentro da regiao
identada referente ao while. Com isso, o seu valor atual pode, além de calcular o
nome valor da parcela, auxiliar no teste condicional que encerraré as iteragoes.
Empregamos estas ideias e elaboramos o cédigo 3.11 cuja execugao responde 0

somatério & 15.99609375, coincidente com 4095/256, o valor do somatério.



3.3. USO DO PYTHON PARA AUXILIO NA MATEMATICA 159

soma = 0
k=0
while k <= 5:
parcela = 12 % (1/4)#xk
soma = soma + parcela
k =k + 1 #atualiza¢cdo do wvalor de k
print ("O somatério é" ,soma)

Cédigo 3.11: Realizacado do somatério da letra b questao 2.2.

Exercicios de revisao

Questao 3.6. Faga dois scripts para verificar o resultado do somatério do exemplo
2.3 pelo célculo do somatério parcela a parcela (sem uso de férmulas). Em um
script utilize o while e no outro o for.

Questao 3.7. Faca um script para realizar o somatorio

50 25
S = Z ZBkn2

k=0 n=1

parcela a parcela.

Questao 3.8. Use o Python para recalcular os somatérios da questdo 2.4 com um
script. Desta vez, empregue 1000 termos. Calcule o erro do truncamento nestes
casos.

Questao 3.9. Faga um script que pede ao usudrio um valor de erro e indica quantas
parcelas sdo necessarias para obter m com este erro através do somatorio alter-
nado para 7/4. (Sugestdo: use um while para calcular o somatério parcial a
cada parcela enquanto o erro nao é atingido).

3.3.2 Modbdulo NumPy, fungoes trigonométricas e matrizes

O NumPy é um moédulo do Python desenvolvido como um projeto de codigo
aberto para prover esta linguagem com capacidades de computagdo numérica.
Nossos calculos de fungoes trigonométricas e matrizes serdo realizados com as
funcionalidades obtidas com o NumPy. Uma delas é a definicdo da constante
m & 3,14. O codigo 3.12 importa o médulo NumPy sem dar-lhe nenhum apelido
e imprime o valor de 7 deste mddulo.

import numpy

print ("O valor de pi no médulo NumPy é:" ,numpy.pi) #Obtemos na
saida o texto "O wvalor de pi mo mddulo NumPy é:
8.141592653589793".

Cédigo 3.12: Importando NumPy e utilizando sua defini¢ao para .

Veja que para ser capaz de invocar o valor de m cujo nome, no moédulo,
é pi, é necessario usar a sintaxe numpy.pi ao longo do cddigo, pois apenas
importamos o médulo NumPy, o que permite o acesso a suas partes pela sintaxe
numpy . [nome da parte].
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O c6digo 3.13 simplifica essa invocagdo dos componentes do médulo NumPy
pelo uso do apelido np. Fizemos referéncia a 7 e a constante natural e definida
neste moédulo utilizando np.pi e np.e.

import numpy as np
print ("O valor de pi no médulo NumPy é:'
print ('O valor da constante natural é:"

,np. pi)
,np.e)

Cédigo 3.13: Importando NumPy com o apelido np.

J& o codigo 3.14 importa apenas a variavel pi do NumPy. Durante a execu-
¢do0, a linha 2 faz referéncia a esta constante apenas como pi pela forma como
ela foi importada na linha 1. J4 a linha 3 resulta em erro durante a execucao,
pois o programa desconhece qualquer definicdo de e, j4 que o mesmo nao foi
importado nem definido.

from numpy import pi
print ("O valor de pi no médulo NumPy é:",pi)
print ("O valor da constante natural é:' e)

Cédigo 3.14: Importando NumPy com o apelido np.

Por fim, o c6digo 3.15 funciona perfeitamente pois todas as partes do médulo
NumPy foram importados, podendo ser referenciados pelo nome.

from numpy import =x
print ("O valor de pi no médulo NumPy é:",pi)
print ('O valor da constante natural é:" ,e)

n

Cédigo 3.15: Importando NumPy com o apelido np.

Como desvantagem deste tltimo c6digo, todos os nomes definidos no NumPy
agora estao em uso, resultando no uso de um grande nimero de varidveis e fungao
com os quais deve-se ter especial cuidado para que nao sejam sobrescritos.

Funcoes trigonométricas

O médulo NumPy nos disponibilizara todas as fungoes trigonométricas que
precisamos. Os nomes empregados no mddulo sdo idénticos ao padrao para
estas fungbes em inglés e sdo mostrados na tabela 3.2.

As fungoes trigonométricas do NumPy aceitam como argumento apenas an-
gulos pela medida do arco em radianos. O cédigo 3.16 apresenta um script
que calcula os seno, cosseno e tangente dos angulos notdveis de 30° = /6 rad,
45° = 7w/4rad e 60° = 7/3rad, bem como as tangentes inversas que resultam
nestes angulos.
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Tabela 3.2: Defini¢oes de fungodes trigonométricas no NumPy.

fungao nome implementado
sen sin
cos cos
tg tan
arcsen ou sen ! arcsin
arccos ou cos” ! arccos
arctg ou tg~! arctan

from numpy import x
print ("O seno de 30° é', sin(pi/6)
)

)
print ("O seno de 45° é",sin(pi/4))
print ("O seno de 60° é",sin(pi/3))
print ("O cosseno de 30° é",cos(pi/6))
print ("O cosseno de 45° é" ,cos(pi/4))
print ("O cosseno de 60° é" cos(pi/3))
print ("A tangente de 30° é' ,tan(pi/6))
print ("A tangente de 45° é' ,tan(pi/4))
print ("A tangente de 60° é",tan(pi/3))
print ("O arco cuja tangente vale (370.5)/3 é', arctan
(3%%x0.5/3))
print ("O arco cuja tangente vale 1 é", arctan(l))
print ("O arco cuja tangente vale 370.5 é", arctan (3x%0.5))

Cédigo 3.16: Utilizando NumPy para calcular seno, cosseno e tangente dos
angulos notaveis e a inversa da tangente para estes mesmos angulos.

Matrizes

No NumPy, as matrizes sdo chamadas pelo termo array, que em inglés significa
matriz (embora também haja a tradugdo matriz) ou arranjo. O termo array é
mais abrangente, e pode representar espécies de matrizes multidimensionais ou
arranjos multidimensionais, j4 que as matrizes convencionais sdo entidades de
duas dimensdes (com componentes horizontal e vertical ou de linha e coluna).
Podemos criar uma matriz utilizando a fungdo array, que recebe como para-
metro os elementos da matriz. Uma matriz linha recebe esta tinica linha entre
colchetes com os elementos separados por virgula como a matriz A definida no
cbdigo

from numpy import x*

A = array([3,4,—1])

que representara a matriz

A=[3 4 -1].

Para criar uma matriz com vérias linhas, cada linha deve estar entre colchetes
com os elementos separados por virgula, e o conjunto das linhas também deve
estar entre colchetes e cada linha separada da outra por virgulas como em

B = array ([ [3,4,—1] , [1,—2,6] , [5,—1,2] ])
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que representard a matriz

Na tabela 3.1 j& haviamos listado o operador @ (arroba) como o reservado
para multiplicagdo de matriz. O codigo 3.17 é a realizagdo no Python da mul-
tiplicacdo que fizemos como exemplo na secao 2.4.2.

from numpy import x
A:arraY([[ 1, 0]7[27 72]5[ 1, 3“)

B = array ([ [4,—1], [—1,1] ])
C = A@B
print (C)

Cédigo 3.17: Multiplicagdo de matrizes.

Matrizes unimensionais

Matematicamente, toda matriz é um ente bidimensional, possuindo linhas e
colunas, e isto faz diferenca na matematica. Os arrays do NumPy tendem a
interpretar matrizes linha e matrizes coluna como idénticos e unidimensionais.
A matriz A que criamos como A = array([3,4,-1]) serd, no NumPy, unidi-
mensional. Podemos verificar isto executando A.shape e observando ter como
resultado o tnico valor (3,), o que significa que para o NumPy, o array A s6
tem uma dimenséo de tamanho 3 (contendo 3 elementos).

J& se definirmos C = array([ [3,4,-1] 1) e executarmos C.shape, tere-
mos como retorno o par (1,3), indicando a existéncia de duas dimensoes, sendo
a primeira com um unico elemento (uma linha) e a segunda com trés (trés colu-
nas), que é como querfamos que uma matriz de fato fosse. Isto ocorre pois cada
aninhamento de colchetes aumenta em um a dimensdo de um array. O ideal
na definicdo de qualquer matriz bidimensional seria que ela fosse realizada com
aninhamentos de exatamente dois nivel de colchetes.

As diferencas entre os dois casos também se tornam evidentes quando se
tenta obter as matrizes transpostas (em que os elementos tem suas posigoes de
linha e coluna trocados) de A e C por meio da funcio transpose. As matrizes
D = transpose(A) e E = transpose(C) terdo dimensdes (3,) e 3,1, respecti-
vamente. Veja que para o NumPy, transpor A, um array unidimensional, resulta
em uma entidade também unidimensional e com mesma quantidade de elemen-
tos. Ja na transposicdo de C, um array bidimensional, vemos que a quantidade
de linhas fica invertida com relagdo a de colunas ja que este é o efeito esperado
da transposicao.

Apesar deste detalhe e deste preciosismo com as matrizes de uma dimensao,
os calculos que realizaremos com matrizes linha ou coluna sé terao uma tnica
forma de interpretagdo para a sua geometria, de sorte que realizar o produto
matricial resultard na matriz produto desejado, mas o programador deve estar
atento a este detalhe na implementacao das matrizes no NumPy.
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Acessando e modificando elementos de uma matriz

Se tivermos criado um array A com o médulo NumPy representando uma ma-
triz A, seus elementos a;; podem ser acessados como A[i,j], ou seja, ponto o
nimero da linha e coluna separadas por virgula entre colchetes. Hd uma dife-
rengca muito importante entre ¢ e j comumente empregado na matemaéatica e o i
e j utilizados na localizacao de linha e coluna de um elemento de matriz. Em
A,,«n O primeiro elemento é a1 e o Ultimo é o elemento a,,,. Ja no Python,
matriz A de ordem m X n tem como primeiro elemento A[0,0] e como ultimo
Al(m-1), (n-1)]. Ou seja, no Python, o niimero que convenciona a ordem de
uma linha ou coluna inicial é 0, e ndo o 1. Cuidado deve ser tomado, portanto,
quando se estiver tomando como base um texto matematico pois na sua im-
plementacao em Python deverda haver uma compensagao de uma unidade com
relacdo a estes valores seguindo

i = ) —1.
~~ ~—~
ordem ordem
no Python convencional

na matematica

O codigo 3.18 acessa os elementos de A[2,1] e A[0,1] e os imprimi. Em
seguida, modifica os valores de A[0,0] e A[1,1].

from numpy import =*

A= arraY([[ 1, 0]7[27 _2}7[ 1, 3]])

print (A[2,1], A[0,1]) #resulta em 3 0, os elemento da terceira
linha , segunda colunas e primeira linha, segunda coluna.

A[0,0]=4

Al1,1]=5

print (A) #ezibe a matriz A modificada e dada por [[4 0],[2
5).[1 3]]

Cddigo 3.18: Acessando e modificando os elementos de uma matriz.

Preenchimento de matrizes com iteracées

Podemos empregar as iteracoes provenientes das construgoes for ou while e
preencher uma matriz que possua uma regra de formacao. Na segdo 2.4.1 utili-
zamos a matriz Bsxs = [b;;], tais que b;; = i + j como exemplo de matriz com
regularidade de onde obtivemos a matriz

2 3 4
B=|3 4 5. (3.1)
45 6

Podemos fazer o mesmo com um script, tomando dois cuidados:

¢ Criar ou inicializar a matriz usando as fungdes zeros, ones ou empty, por
exemplo. Todas recebem como pardmetro um par de niimeros, designado
tuples. Eles devem estar dentro de paréntese e separadas por virgula, e
determinardo a ordem da matriz criada. A chamada empty((4,3)), por
exemplo, cria uma matriz 4 x 3 “vazia” (o que na préatica significa que
nao se tem controle sob seu contetido inicial). Ja as fungdes zeros e ones
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cria matrizes com todos os elementos iguais a zero e um, respectivamente.
A funcdo empty é computacionalmente a mais eficiente para criar uma
matriz “vazia’.

e Lembrar que a primeira linha e primeira coluna sdo identificadas pelo
indice 0, o que pode acarretar alguma modificacdo na regra de formagao
dos elementos da matriz definido no formato matematico, que convenciona
0 1 como indice da primeira linha ou primeira coluna.

Tomados os cuidados acima, a regra geral para gerar uma matriz B a par-
tir da mesma regra acima serd B[i,j] = (i+1) + (j+1). O cddigo 3.19 cria
esta matriz a partir de uma matriz vazia usando a func¢do empty e a preenche
utilizando duas iteracoes for aninhadas (uma for dentro da outra) de modo a
percorrer todos os valores de i e j entre 0 e 2. Por fim exibe o valor da matriz
obtida, que serd idéntica a obtida na equacao 3.1.

from numpy import x
B = empty ((3,3))
for i in range(3):
for j in range(3):
Bli,j] = (i+1) + (j+1)
print (B)

Cédigo 3.19: Determinacao dos elementos da matriz por iteracoes.

Atribuicao com matrizes

As matrizes do NumPy sdo objetos e o efeito da operacédo de atribui¢do funciona
de uma forma particular. Se criarmos uma matriz A como no cédigo 3.20 e em
seguida fizermos a operacdo de atribuicdo B = A, o efeito é de fazer com que
ambas as varidveis, A e B, estejam vinculadas ao mesmo contetido da matriz
que originalmente foi criada sob o nome de A. Assim, as operagoes que alteram
valores dos elementos A[0,0] = 5 e B[1,1]= 10 nas linhas 7 e 8 deste codigo,
estdo modificando a mesma matriz. Este efeito é observado quando imprimimos
as matrizes pela variavel A ou B nas linhas 11 e 12, observamos que ambas as
modificagoes alteraram a matriz chamada originalmente de A, que é a mesma
matriz que chamamos também de B.

Desta forma, se quisermos que duas matrizes tenham mesmo contetido mas
que apo6s a atribuicdo nao haja vinculo entre as matrizes, podemos recorrer
as fungdes copy ou copyto do NumPy, como fizemos para as variaveis C e D,
respectivamente, também no cédigo 3.20. A execugdo do codigo revela que, apos
a cHpia do contetido da matriz A e sua atribuigao as variaveis C e D, modificagoes
que empregam as variaveis C e D como as das linhas 9 e 10 afetam apenas as
respectivas matrizes, que agora tem contetido separado da matriz A.
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from numpy import =

A = array ([[1,—-2,3],[2,0,-3]])

B = A #a matriz A agora também pode ser acessada pela varidvel
B

C = A.copy () #cria uma cdépia de A e atribui a C

D = empty ((2,3)) #para usar a fun¢do copyto, a matriz de
destino deve ezistir

copyto(D,A) #na func¢dao copyto, a primeira matriz é a matriz de
destino e a segunda a de origem

A[0,0] =5
B[1,1] = 10
C[1,1] = 15
D[1,1] = 20
print("A =", A)
print ("B =", B)
print ("C =", C)
print('D =", D)

Cédigo 3.20: Atribuic¢do de matrizes e a relacdo das varidveis que ela representa.

Exercicios de Revisao

Questao 3.10. Facga um script que cria as matrizes Asxs e Bsx2 cujos elementos sdo
dados pelas regras
ag =i—2j, by =3(j+2)° -4,
realize a multiplicagio C = AB e exiba as matrizes A, B e C. A multiplicacdo
BA poderia ser realizada?
Questao 3.11. Facga um script para resolver aproximadamente o sistema de equagoes
{ x +2y +z =0,76

—2x +y —2z =-183
—6,18

- -y 43z

por tentativa e erro pelo método matricial, escrevendo Ax = B. Considere que
—2 < z,y,z < 2 e a solugdo aproximada com uma resolucdo de 0,05. Faca cada
tentativa gerando um conjunto solugdo proposto

calculando B’ = Ax’ e comparando B’ com B. Varie z’, ¥’ e 2’ por meio de
iteracdes e adote como solucdo aproximada o valor de x’ que determina o B’
mais préximo (geometricamente) de B. Verifique se a solucao aproximada é boa
comparando com a solugdo exata x que pode ser obtida por

Ax=B
A'Ax=A"'B
Ix=A'B
x=A"'B,

em que A~! é a inversa da matriz A e pode ser calculada com o numpy . linalg.inv (A)

(a fungdo inv do submodulo linalg do numpy).
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Corte de matrizes — o operador : (dois pontos)

O operador : pode ser empregado para cortar um extrato de uma matriz utili-
zando uma das sintaxes

A[linha_inicial:linha_parada,coluna_inicial:coluna_parada] # o
inicio e o fim do corte sdo indicados

A[:linha_parada,coluna_inicial:coluna_parada] # o inicio do
corte é a primeira linha

Aflinha_inicial:,coluna__inicial:coluna_parada] # o fim do
corte é a tdltima linha

A[:,coluna_inicial:coluna_parada] # emprega todas as linhas no
corte

em que variamos a sintaxe apenas nos cortes das linhas. Os valores empregados
correspondem aos indices das linhas e colunas da matriz. O valor de parada ndo
é incluido. Por exemplo, A[1:3,2:] corresponde as linhas de indice 1 e 2 (a
de indice 3, empregada como valor para parada, estd excluida do corte) e todas
as colunas a partir da de indice 2. O codigo 3.21 mostra varios exemplos de
cortes sobre uma matriz 4 x 4. Ele realiza os cortes e mostra o array resultante
e a dimensdo do array de acordo com o informado no shape do array. Note
que nas matrizes G e H ndo fizemos um corte em uma das dimensoes, mantendo
fixo o indice da coluna no primeiro caso e da linha no segundo. Com isto, os
arrays F e G deveriam ser idénticos, mas perceba que ao estabelecer um corte nas
linhas e colunas (mesmo que o corte s6 contemple uma coluna), o resultado em
F é um array bidimensional com shape de (4,1), tal como uma matriz coluna,
enquanto G e H viraram arrays unidimensionais de mesma dimensao e shape de

4,).

from numpy import x

A= array ([[ 1, 0,2,4],[2, —2.,5,2],[ 1, —3,0,—1],[1,-6,3,2]])
print (A, A.shape)
B =A[1:3,1:3]
print (B, B.shape)
C=A[:3,1:3]
print(C C shape)
—A[1:,1:]
prlnt D D shape)
E=A 1:]
print E E.shape)
F=A[,0:1]

0]

[1

(

[:

(

[

prlnt(F F.shape)
Al:,

prlnt(G G.shape)
H=A[0,:]
prlnt(H H.shape)

Cédigo 3.21: Emprego de corte sobre um array 4 x 4 com o operador :.

Esta sintaxe também pode ser empregada para atribui¢do como mostra o
codigo 3.22. Nele, os valores iniciais de A[2,1], A[2,2], A[3,1] e A[3,2] sdo
substituidos pela matriz B de ordem 2 x 2.
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from numpy import =
A= arraY([[1305254]5[25*275a2]7[17*330571]7[17*63352“)

print (A)

B = array ([[7,=7],[=7,7]])
print (B)

Af2:,1:3] =B

print (A)

Cédigo 3.22: Modificagdo de valores de um corte de um array empregando o
operador :.

Operagoes aritméticas elemento a elemento

Muitos dos simbolos aritméticos que vimos na tabela 3.1 também podem ser
empregados para realizar operacoes elemento-a-elemento sobre matrizes. Isto
significa, por exemplo, que se tivermos matrizes A e B de mesma ordem e cal-
cularmos C = A*B, entdo C[i,j] = A[i,j] * B[i,j] — ou seja, cada elemento
de C é a multiplicacdo de um elemento de A pelo elemento correspondente em
B — e C terd também a mesma ordem de A e B. Veja que a existéncia da multi-
plicacdo elemento-a-elemento justifica o emprego de um simbolo especial para a
multiplicacdo de matrizes. Nao se deve, portanto, confundir A*B com A@B, que
em geral resultardo em matrizes totalmente diferentes.

Esta é uma excelente forma de realizar uma grande quantidade de operagoes
sem precisar recorrer a iteracoes. O codigo 3.23 mostra a realizagao de operagoes
elemento a elemento na matriz A ou entre A e B.

from numpy import x

A = array ([[1,2,3],[4,5,6]])

print (A)

B = array ([[1,1.5,2],[1,1.5,2]])

print (B)

C = A+5 # cada elemento de A adicionado em 5

print (C)

D = 3%A # cada elemento de A multiplicado por 3

print (D)

= AxB # cada elemento de A multiplicado pelo correspondente

de B

print (E)

F = A/B # cada elemento de A dividido pelo correspondente de B

print (F)

G = Axx2 # cada elemento de A elevado ao quadrado

print (G)

Cédigo 3.23: Operagoes realizadas elemento a elemento nas matrizes A e B.

O célculo elemento-a-elemento é muito til para aplicar uma fungdo a uma
sequéncia, formando uma matriz linha ou uma matriz coluna com os valores
sequenciais. Por exemplo, podemos criar uma matriz linha em que cada um de
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seus elementos é um dos termos do somatério que ja fizemos na questdo 3.8

999 1 999 .
; s ;(Qk +1)72, (3.2)

partindo de uma matriz com os valores de k, que sao todos os inteiros de 0 a
999. A funcdo arange é similar a fun¢do range, com a diferenca de que arange
cria um array linha (a rigor um array unidimensional) NumPy e range cria um
list, que é um tipo nativo do Python. Tanto o array quanto o lista sao iteraveis
e podem ser empregados em um controle de fluxo do tipo for.

O cbédigo 3.24 cria esta matriz linha. Como seus elementos s@o do tipo
inteiro, eles ndo séo passiveis ao calculo de poténcias negativas. A funcéo double
converte os valores para o tipo ponto flutuante de dupla precisdo. Na linha
4, por trés operagoes elemento a elemento (multiplicagdo por 2, soma de 1
e potenciagdo com —2) é obtida a matrizParcelas contendo as parcelas do
somatorio que calculamos. Por fim, a funcdo sum do NumPy calcula a soma de
todos os elementos da matriz de parcelas.

from numpy import x

k = arange (1000)

k = double (k)

matrizParcelas = (2xk+1)*x(—2) #Matriz com elementos iguais ds
parcelas do somatdrio.

soma = sum(matrizParcelas)

print (soma)

Cédigo 3.24: Obtencao de um dos somatérios da questao 3.8 por meio de matriz
linha e operagdes elemento-a-elemento.

Exercicios de Revisao

Questao 3.12. Faca um script que:

(a) Construa a matriz Cgx10 em que

1
707 'L: 1
]1 2m . . .
Cij = 10 8 {1—0(1—1)(]—1)}, 1=6
2 cos 2—7T(z - 1)(5 — 1)} n0s outros casos
10 “ 110 / ’

Como sugestdao, vemos que dentre as seis linhas, quatro respeitam uma regra
geral, e a primeira e a ultima respeitam uma regra particular. Trate a primeira
e ultima linha separadamente empregando corte de matriz e observando que
estas linhas diferem do caso geral apenas devido a um fator de 1/2.

(b) Construa a matriz x10x1 dada por
2m 2T
0 =0, 36— 1)| +1, A —1)].
Ti1 03005{103(2 )}—i— 5COS|:10 (¢ )}
(c) Obtenha a matriz a = Cx. Analise os termos da matriz a, sua localizagdo

na matriz e os coeficientes dos cossenos e suas frequéncias angulares. H4 alguma
regularidade?
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Tabela 3.3: Pontos para esbocar a pardbola y = 2% — 6x + 5.

P;  adicional
P raiz

P;  adicional
Py vértice
Ps  adicional
Py raiz
P; adicional

S UTA WO
[
CLO L, O o=

(d) Considere um caso mais geral em que a matriz x é definida pelos termos
2 . 2 ;
Ti1 = €1 COS [Tgkl (i— 1)] + c2 cos [%kz(’l — 1)} .

Escolha valores reais quaisquer para c; e ca e valores inteiros entre 0 e 5 para
k1 e k2 e observe se a regularidade observada na letra (c) se manteve para as
modificacdes realizadas.

Questao 3.13. Utilizando operagdes elemento-a-elemento, construa as matrizes uni-
dimensionais com a quantidade de elementos e seguindo as regras descritas.

(a) Com 10 elementos em que z; = 2,57 — 3, iniciando com i = 0.

(b) Com 20 elementos em que x; = —2 (%)2 +3 (%) — 2, iniciando com ¢ = —5.
(¢) Com 16 elementos em que x; = sen (%), iniciando com 7 = —8.
(d) Com 100 elementos em que z; = 2 cos (127“02‘), iniciando com 7 = 0.

3.3.3 Modbdulo Matplotlib e graficos

O que vimos até agora em termos de programacao é suficiente para calcular tudo
necessario para as séries de Fourier. Porém, estaremos tratando com grande
quantidade de dados e a visualizacao grafica é fundamental para potencializar
a compreensao e a andlise. Um importante instrumeto que empregaremos, o
espectro de frequéncias, é visual.

Para isto, vamos ver como obter trés tipos de graficos com base em amostras
e como realiza-los utilizando o médulo Matplotlib.

O principal processo empregado por computadores para tragar graficos é si-
milar ao que nés utilizamos quando esbogamos um grafico a mao livre. Suponha
que vocé tenha que visualizar o grafico da parabola

y=a%—6x+5.

Conhecendo uma parabola, sabemos que ha pelo menos um ponto importante
— o vértice da pardbola. Se ela corta o eixo = teremos uma raiz (que coincidiria
com o vértice) ou duas raizes distintas. Assim, a pardbola pode ter até trés do
que chamamos de pontos notdveis.

Nesta pardbola, em particular, temos como raizes * = 1 e x = 5 e como
vértice * = 3. Para complementar o tracado do esbogo, escolhemos quatro
pontos adicionais simétricos com relagdo ao vértice, sendo dois entre o vértice e
as raizes e dois para além das raizes. Para cada um deles encontramos os valores
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Figura 3.3: Esboco tracado a méo da pardbola y = 22 — 62 + 5.

do y correspondente de modo a obter 7 pontos, do P; ao P; que organizamos
na tabela 3.3.

Para finalizar o esbogo, langamos os pontos de P; a P; em um papel quadri-
culado e ligamos a mao livre estes pontos no mais sincero esforco para desenhar
uma parabola. O resultado final devera ter um aspecto como o da figura 3.3.

Pois bem, os pontos P; a P; sdo amostras da parabola a partir das quais
tentamos esbocar a sua geometria, composta, em teoria, por uma infinidade
de pontos. Em geral escolhemos uma quantidade reduzida de pontos pois é
muito custoso em termos de tempo construir uma tabela como a 3.3. Acontece
que agora temos a excelente ferramenta das iteracoes e matrizes que utilizam o
potencial de calculo dos computadores modernos e podem calcular uma tabela
com centenas e até milhares de amostras em menos de um segundo.

Assim, um computador pode fazer um grafico de uma pardbola em que as
imperfeicbes sdo imperceptiveis pois a quantidade de amostras pode ser muito
superior ao que costumamos fazer nos desenhos a mao livre. Deste modo, é
possivel adotar um critério de erro aceitavel entre o grafico real e o grafico
exibido pelo computador e escolher uma quantidade finita, porém grande de
amostras, que sejam suficientes para a aplicacdo ou finalidade do grafico.

Tomemos um critério. Se a funcao da construcao do grafico é exibi-lo na tela
para fins ilustrativos, entdo a quantidade de pixeis e a grossura da linha com a
qual o grafico é tragado, podem ser pardmetros na determinacdo da quantidade
de amostras. Um grafico com as dimensoes que fizemos, ocupando menos de 5
cm, poderia ser tracado com 100 pontos sem que sobrasse sequer espago para
tracar uma linha entre os pontos, o que tenderd a possibilitar o tragado da
pardbola com precisao.

Para isso, precisamos definir 100 valores para = e calcular os 100 valores
correspondentes de y. Se tomarmos como extremos do grafico os mesmos pontos
que utilizamos no gréafico tracado a mao, pondo z entre 0 e 6, o espagamento
entre os valores de x para que utilizemos 100 pontos deve ser de (6 — 0)/100.
Vamos definir os valores de z utilizando a fun¢do arange como fizemos na se¢ao
3.3.2 quando tratamos das operagoes aritméticas elemento a elemento. Podemos
iniciar com o valor de x = 0, tomar como critério de parada x = 6 e utilizar
(6 —0)/100 como passo, e definir um array com os 100 valores de z utilizando
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o cédigo
x = arange(0,6,(6—0)/100)

Ele gerard um array para x com os valores 0, 0,06, 0,12, 0,18 ...5,988 e 5,994.
O valor 6, definido como parada, é excluido.

Dados os valores de x organizados em um array, fica facil calcular os valores
de y utilizando operagoes com array elemento a elemento como vimos na se¢do
3.3.2, e calcular todos os valores de y de uma s6 vez fazendo y = x**2 -6*x +5.

Com estes dois comandos, teremos a “tabela” com 100 valores de x e os 100
valores de y correspondentes. Basta, agora, utilizar a fun¢ao plot disponivel no
moédulo matplotlib. pyplot para que ela desenhe o grafico. Esta fungao utiliza
a sintaxe

plot ( [array dos valores de x], [array dos valores de y], |
formato] )

Vamos explorar algumas opgoes aos poucos, mas basta dizer que se pusermos
como formato um string com a letra x, ele desenhara o grafico marcando cada
amostra com um xis. Com isso, podemos realizar o desenhar do grafico com
o comando plot(x,y,"x"). A funcdo plot desenha o grafico “internamente”.
Para exibi-lo, usamos a funcao show, que nao tem argumentos.

O cbdigo 3.25 mostra o script final com os comandos que sugerimos postos
em sequéncia. Note que nele, importamos todas as fungoes do NumPy para
utilizarmos arrays e importamos o matplotlib.pyplot com o apelido plt, que
deve preceder todas as chamadas das fungoes deste médulo.

from numpy import x

import matplotlib.pyplot as plt
x = arange(0,6,(6—0)/100)

y = x*x%2 — 6%xx + 5
plt.plot(x,y, "x")

plt .show ()

Cédigo 3.25: Determinacdo dos elementos da matriz por iteragoes.

O resultado da execugao do cédigo 3.25 é mostrado na figura 3.4. Conforme
nossa estimativa, o uso de 100 pontos deixa bem delineado o perfil da parabola.
Préximo ao vértice, onde as variagoes verticais sao pequenas, os marcadores em
xis empregados para localizar as amostras quase se sobrepoem. Mesmo quando
nos afastamos do vértice, hd pouco espago entre os pontos, ndo sobrando espaco
para que ela exiba curvatura acentuada. Ligar estes pontos com um pequeno
segmento de reta nao seria muito perceptivel em sua exibicao em uma tela. Para
isso, podemos alterar o formato de x para - para deixar de marcar as amostras
com um xis e passar a desenhar um segmento de reta entre cada amostra. O
desenho da parabola resultante é suave, (ndo é possivel perceber se tratar de
um desenho feito pela ligagdo de segmentos de reta) devido a grande quantidade
de amostras, mas, na realidade, é um grafico aproximado por 99 segmentos de
reta (e ndo uma pardbola exatamente). O resultado desta alteracéo ¢ ilustrado
no grafico da figura 3.5.

Os graficos que fizemos até agora com o matlibplot tem um estilo “cienti-
fico”, diferente do que costumamos encontrar em textos de matematica. Como
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Figura 3.4: Marcacdo de 100 amostras da funcio y = 22 — 62 + 5.
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Figura 3.5: Tracado de 99 segmentos entre as 100 amostras da funcao y =

z2 —6x + 5.
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ultimo exemplo, vamos utilizar varias opgoes deste médulo para ajustar a apa-
réncia do grafico para que fique similar ao que costumamos fazer & mao como
mostramos na figura 3.3. Estes ajustes sao mostrados na figura 3.6 e obtidos
com o cédigo 3.26.

from numpy import x

import matplotlib.pyplot as plt

plt .rcParams.update ({"text.usetex": True, "'font.family": "serif
"}) #Usa TeX para texto

x = arange (0,6,(6—0)/100)

y = x*%2 — 6%xx + 5

fig, ax = plt.subplots() #Cria os objetos de figura e eizos

ax.plot (x,y,"—")

ax.spines|[’left ’].set__position(’zero’) #Pde o eizo wvertical
esquerdo na origem

ax.spines [’ right’].set__visible (False) #Retira o eizo wvertical
direito

ax.spines [ bottom’].set__position(’zero’) #Pde o eizo
horizontal inferior mna origem

ax.spines|[’top’].set_ visible(False) #Retira o eizo horizontal
superior

ax.set_xlabel("z", loc="right") #FEscreve z no lado direito do

eizo horizontal
ax.set__ylabel ("y", loc="top") #Escreve y na parte superior do
eizo wvertical
ax.xaxis.get_major_ticks()[1].labell.set__visible(False) #
Remove a etiqueta do 0 ma escala horizontal
ax.yaxis.get_major ticks()[3].labell.set_ visible(False) #
Remove a etiqueta do 0 ma escala horizontal
plt .show ()

Cédigo 3.26: Determinacao dos elementos da matriz por iteragoes.

Grafico de amostras ou grafico de ramos

Vamos ver mais adiante que nosso principal interesse recaird sobre dados e
fungdes que sdo amostrados, ou seja, os valores da varidavel independente nao
estdo contidas em um continuo, mas em uma quantidade finita e selecionada de
valores chamadas amostras. Nossa intencao na construcao do grafico da figura
3.4 era tragar a linha da pardbola, e, portanto, a natureza do que estdvamos
estudando era de um x continuo. A amostragem foi uma simplificacdo para
conseguirmos cumprir nosso objetivo de realizar um tragado continua. Neste
caso, marcamos com uma cruz cada ponto da amostra.

E comum na literatura e na pratica da representacio grafica de sistemas
naturalmente amostrados adotar o grafico de ramos, do inglés stem. A realizagao
deste grafico é feita no Python pela fun¢io stem, similar a plot, que vimos na
secao anterior.

O cédigo 3.27 faz o grafico da fungao

oon (5T 4o (10
y=sen| - cos | 5@
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Figura 3.6: Gréfico de y = 22 — 62 + 5 com eixos detalhados similares ao dos
graficos desenhados a mao.
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Figura 3.7: Gréafico de ramos (stem) gerado pelo cédigo 3.27.

com valores inteiros de x entre 0 e 24 (25, usado como critério de parada, ndo
entra no array de x) no formato de grafico de ramos. O resultado da aplicagdo
do cbdigo é mostrado na figura 3.7.

from numpy import x

import matplotlib.pyplot as plt

x = arange (0,25)

y = sin ((3%2xpi/25)*x) + cos((b*x2%xpi/25)#*x)
plt.stem(x,y)

plt .show ()

Cédigo 3.27: Determinacao dos elementos da matriz por iteracoes.

Exercicios de Revisao

Questao 3.14. Faca os graficos das fungoes indicadas abaixo empregando a biblioteca
Matplotlib.

(a) 22% — 3z — 2, para valores de = entre —1 e 3.
(b) 2® — 72? + 142 — 8, para valores de x entre 0 e 5.

(c) sen (g—gm) + 2 cos (3%ZE) para valores de x entre —10 e 30.

Questdo 3.15. Faga os graficos de 5v/2 cos(wt —3m/4) + (5+5v/3) cos wt e 10sen(wt +
7/3) e verifique graficamente que s@o iguais conforme previamos no exemplo
2.8. Considere w = 1rad/s e elabore o grafico de dois perfodos para ilustrar.
Sugerimos ao usar os comando de plot empregar linha continua em um gréafico
e outro em tracejado com cores distintas, nesta ordem, antes de empregar a
funcdo show. Desta forma, serd possivel ver as duas cores, a da linha continua
por baixo e a da tracejada por cima e se as duas expressdes forem realmente
iguais, elas devem se sobrepor.
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Capitulo 4

Amostragem

Terminamos o capitulo 3 trazendo uma evidéncia breve da importancia da amos-
tragem. L& observamos o comportamento de uma funcao (ou de uma entidade
qualquer) por meio de uma quantidade selecionada de valores especificos da va-
riavel independente. Nesse capitulo, concluimos apenas pela observacao, sem
recorrer a grande rigor matematico, que com uma quantidade razoavel de amos-
tras nao é possivel distinguir uma curva de um conjunto de segmentos de reta,
de modo que amostrar a funcdo resolveu o problema da visualizacdo de uma
funcdo em um grafico. Vamos entrar em maiores detalhes na natureza e nos
efeitos da amostragem.

4.1 Ideia de sinais

O tema central desta obra, a série de Fourier de tempo discreto, é topico tra-
dicionalmente tratado na disciplina chamada Processamento de Sinais. Esta
disciplina estuda como tratar informacoées, chamadas genericamente de sinais.
Nao hé distingdo rigorosa entre as ideias de sinais na engenharia e de fungdes na
matematica, ou seja, um sinal é tratado matematicamente como uma funcao.
Na pratica de engenharia, os sinais costumam ser grandezas fisicas reais que car-
regam informagoes relevantes para o funcionamento de um sistema e tratadas
como varidveis dependentes. A grandeza pode ser uma corrente elétrica, uma
intensidade luminosa, uma velocidade, uma posi¢ao angular, etc. J& o sistema
é algum aparato tecnoldgico como um computador, um robd, um radio, um
eletrocardidgrafo, etc.

As tensoes elétricas geradas pelo sistema nervoso para o estimulo do coragao,
por exemplo, sdo sinais de interesse para um eletrocardidgrafo. Poderiamos
representar este sinal como v(t), uma tensao elétrica em func¢do do tempo.

Os sinais costumam ser grandezas que variam com o tempo, sua representa-
¢do matematica toma a forma de uma variavel dependente em fungao da variavel
independente de tempo. Outro tipo de variavel independente comum é o espaco,
que, por vezes, pode vir como varias variaveis correspondente as varias coorde-
nadas do espago. Neste texto vamos tender a interpretar a variavel independente
como tempo e vamos trabalhar com func¢oes de apenas uma variavel.

Para finalizar, Vamos dar dois exemplos de sinais: um sinal de 4dudio e
uma imagem em preto e branco. O primeiro é fruto do som. O som pode

177
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Figura 4.1: Exemplo de sinal de dudio.

Figura 4.2: Exemplo da projecdo de uma imagem.

ser considerado em si um sinal, pois sua natureza é a variacdo de pressao ao
longo do tempo em um determinado ponto P, ou seja, pode ser um sinal p(t)
de pressao mostrado na figura 4.1. Havendo um sensor elétrico capaz de captar
estas variacoes de pressao, como o microfone, elas podem se tornar um sinal de
tensdo que varia ao longo do tempo v(t). E utilizando este sinal elétrico que
se torna mais facil “gravar” o dudio, como vamos detalhar ainda mais na segao
4.2.

Podemos considerar uma fotografia como um caso do segundo exemplo, a
imagem em preto e branco. A imagem, estatica no tempo, é o exemplo de uma
grandeza que varia no espaco. Isto é mais facil de ilustrar se considerarmos a
fotografia em uma tela de computador, ou projetada em uma parede branca
de uma sala escura. A auséncia de imagem, nestes casos, é o monitor apagado
(escuro), ou a sala escura, quando o quadro de proje¢ao também se encontra no
escuro e visto como preto. A imagem clareia a medida que se acrescenta luz em
alguns locais do monitor ou da parede, formando uma imagem pelo contraste
de regides claras e escuras. Podemos considerar, entao, que a imagem em preto
e branco é a intensidade da iluminagdo que varia com a posigdo, I(z,y). Se em
um local a intensidade assume um valor baixo, 0, por exemplo, entao neste local
temos uma regiao preta da imagem (ou escura de forma geral). A medida que
o valor da intensidade aumenta, teremos a representacao de tons de cinza cada
vez mais claros. Quando a intensidade de iluminagao atinge seu valor méximo,
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p(t)

Figura 4.3: Forma do gréfico de p(t) obtido pela amplificagdo da vibracio das
ranhuras em um vinil.

teriamos uma regiao branca na imagem.

O sinal do tipo imagem em preto e branco (a rigor, em tons de cinza) estd
ilustrado na figura 4.2 para o caso de uma imagem projetada sob uma tela.
Pusemos trés pontos de exemplo, P; = (z1,y1), P> = (z2,42) ¢ P3 = (23,y3).
Se supusermos que a intensidade méxima da iluminagdo, que torna a imagem
branca, é Inax, entao, I(z1,y1) = Imax ¢ a intensidade no ponto P;. Em P a
imagem é preta, de modo que I(x2,y2) = 0. Por fim, em Ps, temos um valor
intermedidrio como I(x3,y3) = 0,5 msx-

4.2 Exemplos de sistemas amostrados e de “tempo”
continuo

Imagine agora que se deseja registrar o sinal do som como p(t) da figura 4.1.
Uma solugdo do fim do século XIX consistiu em utilizar a variagdo de pressao
sonora para mover um mecanismo amplificador capaz de controlar uma agulha
“dura” e criar sulcos sobre um disco de resina (substituido pelo vinil por volta
de 1940). Depois de criados os sulcos com material duro e abrasivo, uma agulha
de material “mole” era utilizada para reproduzir o som gravado pelo processo
inverso. Ao mover-se sobre o disco, seu movimento era amplificado para esti-
mular uma variagdo de pressao pela vibragdo de uma membrana e gerar o som
como uma reproducdo do originalmente gravado.

O video do canal Applied Sciences [6] mostra uma sucessdo de imagens ob-
tidas com microscopio eletrénico das ranhuras de um disco de vinil e seu efeito
na agulha a medida que o disco gira. E possivel ver como o movimento da agu-
lha é suave, o que tem como consequéncia uma representacao do sinal do som
resultante p(t) continuo como o esbogado na figura 4.3.

Vamos agora ver como um audio estd gravado em um computador. Utiliza-
mos um software gratuito e popular de edi¢ao de som, o Audacity [7], e abrimos
um arquivo de dudio contendo os 18 segundos iniciais da 52 Sinfonia de Be-
ethoven. O programa nos exibe uma espécie de p(t), que é a gravacao do dudio
armazenado no computador, em um grafico que reproduzimos na figura 4.4. Ele
é similar ao gréafico da figura 4.3 em que o eixo horizontal é o tempo e o vertical
estd ligado a intensidade do som, mas nao é necessariamente a intensidade da
pressdo mas apenas uma representacao da pressdo em uma escala entre —1 e 1.
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Figura 4.4: Grafico de 18 segundos de dudio da 52 sinfonia de Beethoven obtido
no Audacity.

o~ o
Wite [ Solo | 10

e e OO

=0 o. [T T T L e s s s e T LTI T e e s s e T T TP
Eonan |05

| seeeen| |10

Figura 4.5: Grafico de aproximadamente 1 milisegundo de dudio da 52 sinfonia
de Beethoven obtido no Audacity.

Ora, na figura 4.4 ndo conseguimos ver a linha suave de variacdo da inten-
sidade, pois 18 segundos é um tempo muito grande durante o qual hd muita
variagdo do valor da grandeza de pressao no som. Para observar um tragado
claro, utilizamos o préoprio Audacity para ampliar a escala do eixo horizontal
e “dar um zoom” no grafico. O trago fica visivel quando o grafico cobre algo
em torno de dezenas de milisegundos até que algo de muita importancia para
nos ocorre. Estamos observando uma escala de tempo tao curta que o Audacity
mostra a real natureza de como o som é representado no computador — por meio
de amostras. Neste momento, o software muda a exibi¢do da onda do som para
um formato similar ao da figura 4.5, que cobre apenas por volta de 1 milisegundo
de um trecho do mesmo dudio. Nele, o Audacity explicita o cardter amostrado
do som pelo emprego de um grafico de ramos, tal como ja vimos na sec¢ao 3.3.3.

Vulgarmente, as diferencas entre o 4udio armazenado por um disco de vinil
e por um arquivo de dudio no computador sdo explicitadas pelas qualificagoes
de analdgico e digital. Diz-se que o dudio do disco de vinil é armazenado em
formato analégico enquanto que o do computador é armazenado em formato
digital. Esta terminologia vulgar ndo estd completamente incorreta, mas ela
cobriria caracteristicas adicionais e alguns complicantes que ndo vamos cobrir
nesta obra. A rigor, a principal distingdo que estamos salientando aqui é que a
natureza do tempo no disco de vinil é de um tempo continuo, enquanto que o
tempo no audio digital é amostrado, o que chamamos de tempo discreto.

O termo discreto aqui vem do mesmo radical de discriminar que significa
perceber diferencga, distinguir. Ou seja, cada momento de tempo é bem distinto
pois eles sdo instantes separados e nao aglutinados uns sobre os outro em um
continuo.

Outra caracteristica importante é que, embora a convencao da terminologia
seja dizer que os sinais sdo de tempo continuo e de tempo discreto, nem sempre
a varidavel independente é o tempo. Para o processamento de sinais, a principio,
o tipo da grandeza da varidvel independente ndo importa (isso ndo é verdade
quando as ideias de passado e futuro, de causa e consequéncia e de estimulo
e resposta podem ser importantes). Apenas para ilustrar, a mesma diferenca
entre o registro de dudio obtido no vinil e o armazenado no computador, aparece
entre as imagens obtidas a partir de filmes fotograficos com relacdo aquelas
armazenadas no computador obtidas por cAmeras digitais (ou escaneadas).
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Figura 4.6: Imagem do veleiro da projecdo da figura 4.2 reduzida a 20 x 15
pixeis.

Na fotografia analdgica a luz causa uma reagdo no filme. Trés produtos
quimicos — revelador, interruptor e fixador — interrompem as reacoes e garantem
que as regides sensibilizadas pela luz tenham seu grau de transparéncia alterado.
As areas mais expostas a luz ficam mais opacas gerando um filme chamado
negativo. Neste caso, a variacao da sensibilizacdo é o que causa as diferencas na
intensidade da luz na imagem, e esta variacdo é continua com relacdo aos eixos
espaciais x e y da imagem.

Em uma camera digital, as regides que sdo “sensibilizadas” sio discretas! e
chamadas de células do sensor. Como resultado, a imagem digital é formada
por varios pontos designados pixeis. Uma TV digital exibindo uma imagem
no formato convencionado como 720p, por exemplo, estd exibindo uma imagem
com 921 600 pixeis organizados em 720 linhas e 1280 colunas.

Reduzimos a imagem do veleiro da figura 4.2 a uma figura digital de 20 x 152
pixeis (um total de 300 pixeis, muito menos do que o 720p e, portanto, uma
qualidade muito inferior) para obter a imagem da figura 4.6.

Nas imagens digitais em preto e branco, temos um conjunto discreto e finito
de valores de = e y para varidaveis independentes que determinam a posigdo
e também uma quantidade finita e discreta de valores de intensidade I(z,y).
Nesta imagem, z estd limitado a valores inteiro entre 0 e 19 e identifica da
primeira a vigésima posicdo possivel para abscissa da posi¢do do pixel. De
forma semelhante, o y cobre valores inteiros de 0 a 14 para identificar as suas
ordenadas.

Isto significa que uma possivel representacido da intensidade é por meio de
uma matriz. A imagem da figura 4.6 tem tdo poucos pixeis que podemos ser

1Uma discussdo mais profunda de como funcionam os quimicos na foto podera nos levar a
divagar sobre a natureza discreta dos elementos que se sensibilizam no filme. Esta discussdo é
infrutifera pois muitos fenémenos sdo, em ultima instancia, resultados macroscépicos de uma
grande quantidade de fené6menos discretos em nivel microscopico e nossa distingdo aqui sobre
o que é continuo ou discreto é mais frouxa, desleixada, e ndo merece este aprofundamento.

2E comum descrever as dimensées de uma imagem na ordem largura x altura, o que acarreta
na ordem contraria de matrizes que utiliza a ordem linha X coluna.
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ousados o suficiente para mostrar toda a matriz I que a representa.

64 73 80 76 81 116 255 216 129 129 123 112 115 133 129 129 121 105

70 68 82 95 114 189 255 240 130 124 110 115 131 145 129 119 108 82
140 121 109 97 91 222 255 255 121 98 94 92 91 109 80 128 108 75
160 161 167 172 170 251 255 255 178 91 86 86 99 88 87 143 120 86

156 158 154 162 178 255 255 255 216 127 124 121 128 117 113 150 160 106
178 177 169 167 220 255 255 255 240 148 131 131 139 141 145 172 187 157
188 222 217 210 229 255 255 255 251 182 162 158 143 129 147 143 127 124
158 184 176 166 244 251 255 255 255 198 145 152 146 143 150 151 161 141
168 165 167 170 255 255 229 237 255 232 196 192 177 161 155 157 152 147
149 153 154 173 255 255 246 203 193 229 183 181 175 181 194 180 163 164
148 151 153 204 254 255 251 219 192 184 163 170 168 164 164 161 161 161
135 139 143 165 162 157 163 175 140 153 137 160 161 162 160 156 155 153
57 70 84 120 216 206 217 228 254 188 103 114 115 118 117 114 111 108

13 12 10 64 90 133 123 64 98 54 2 3 4 3 2 1 3 1
3 8 13 60 126 147 135 112 82 41 15 8 3 7 5 9 1 2

Nesta matriz, a intensidade maxima (branco) é, por convengao, Imax = 255
e a intensidade minima (preto) é 0. Na regido central da imagem (e da matriz)
onde se encontra a vela branca, vemos varias amostras com valor 255. J4 na
parte do mar escuro e quase preto, temos amostras com valores préximos de 0.
Esta imagem é o um exemplo de sinal de “tempo discreto” em que a varidvel
independente ndo é o tempo, mas o comprimento, especificamente duas variaveis
para os comprimentos vertical e horizontal que chamamos de z e y.

Exercicios de Revisao

Questao 4.1. Abra um dudio qualquer no Audacity e confira a natureza discreta dos
dudios. Se desejar, abra o mesmo dudio que empregamos de exemplo da 5
Sinfonia de Beethoven.

Questao 4.2. Simulando uma amostragem. (a) Faca um grafico com trago continuo
para a funcao
z(t) = 5 cos(27 ft)
para f = 1kHz. Considere t como o tempo continuo e, portanto, empregue
grande quantidade de amostras para realizar o gréafico da linha suave, exibindo
dois periodos a partir de t = 0.

(b) Sobre o grafico da letra (a), plote o grafico de ramos das amostras se fosse
realizadas com periodo de amostragem de 0,05 ms.

Questao 4.3. Abrindo dudio no Python. Utilize o submédulo wavfile do submé-
dulo io® do médulo SciPy para abrir um audio em wAv. Podemos importé-
lo empregando from scipy.io import wavfile. Para tal, empregue a funcdo
wavfile.read(). Esta fungdo recebe como pardmetro um string contendo o
caminho para o arquivo de dudio em formato WAV e retorna dois pardmetros, a
taxa de amostragem e um array no formato NumPy contendo as amostras do
adudio. Podemos usar a sintaxe

f s, arrayAmostras = wavfile.read ([string com caminho do
dudio])

em que a varidvel f_s receberd a taxa de amostragem em amostras/s e a
arrayAmostras receberd um array NumPy com as amostras. Caso o dudio
tenha um unico canal, o array serd unidimensional de tamanho N em que N é a
quantidade de amostras. Se o dudio tiver mais canais o Array serd bidimensi-
onal de tamanho (N, N_c) em que N_c é a quantidade de canais. Ou seja, as
amostras de dudio estdo organizadas nas colunas. A cada coluna hd N amostras
do canal de audio da referida coluna. Plote o grafico da variacdo do sinal de
dudio completo em um gréfico de linha e de um trecho curto com a fungéo stem.

30 termo 10 diz respeito as iniciais de input/output e é o submédulo do SciPy que con-
tém funcdes que podem empregar arquivos como entrada e saida (file input/outout). Em
particular, vamos empregar um arquivo de dudio como entrada.
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4.3 Nocoes de espectro de frequéncias

Desde o fim da década de 80 que as midias digitais tém se estabelecido como o
estado da arte em termos de tecnologia, ou seja, aquilo que hé de mais moderno
e de melhor qualidade é digital. Para o estudante nascido depois do final da
década de 90, é possivel que ele sequer conheca as midias analdgicas (de tempo
continuo) — discos de vinil, fitas cassete, e até fotos obtidas com filmes — o que
significa que a maioria dos sinais que ele terd acesso sdo amostrados. Este fato
destaca a importancia do estudo dos sistemas com sinais de tempo discreto pois
eles sdo hoje predominantes, principalmente em aplicacoes de tecnologia. As
méquinas que trabalham com amostragem se tornaram mais confidveis e mais
baratas, o que justifica sua abundéancia.

E evidente, porém, que cuidados devem ser tomados para que se possa re-
alizar a amostragem e ainda assim o sinal amostrado poder substituir com se-
gurancga o sinal correspondente de tempo continuo. Nossa intencdo é conseguir
quantificar estes cuidados, e, para isso, vamos explorar a ideia de espectro de
frequéncias de um sinal.

Imagine um contra-baixo, um violoncelo e um violino. A nota mais grave
que ¢é possivel reproduzir em um contra-baixo tem aproximadamente 30 Hz,
e a mais aguda aproximadamente 300 Hz. No violoncelo estes limites estdao
aproximadamente entre 60 Hz e 600 Hz e no violino entre 200 Hz e 2 kHz.

Fisicamente, sabemos que uma corda costuma vibrar na frequéncia que de-
fine a nota e nos seus multiplos inteiros, chamados harmoénicos. O violino to-
cando o seu d6 mais grave, por exemplo, vibra em 261,6 Hz e ao mesmo tempo
em 523,2 Hz, 784,6 Hz, 1046,4 Hz, etc. pois elas sao as frequéncias da nota, cha-
mada frequéncia fundamental ou primeiro harmoénico, do segundo harmonico,
do terceiro e assim sucessivamente.

A tendéncia é que os harmonicos superiores tenham intensidades de vibracéo
cada vez menor. Isso significa que a energia nas vibragdes em um instrumento
qualquer tende a estar concentrada nas frequéncias das notas que ele é capaz de
reproduzir e a partir dai passam a decrescer.

E comum ilustrar de forma simplificada estas limita¢des de vibracdo por
um esquema que chamamos de espectro de frequéncias. A figura 4.7 mostra os
esbocos de como seriam os espectros dos trés instrumentos. No contra-baixo,
por exemplo, a quantidade de energia nas vibracoes se concentra entre 30 Hz e
300 Hz, havendo alguns harmonicos de ordem maior a partir destas frequéncias
que tendem a decrescer. Vamos propor, como estimativa, que deve haver uma
quantidade relevante de energia nas vibragoes deste instrumento até o terceiro
harménico da nota de maior frequéncia (de frequéncia 3 - 300 Hz = 900 Hz).
A partir dai, consideramos que as energias em vibragoes sao irrelevantes (lem-
brando que trata-se de um esbogo e de uma estimativa), de modo que podemos
formar uma figura para o que estamos chamando de espectro de frequéncias do
contra-baixo ocupando uma regido do grafico energia x frequéncia entre 30 e
900 Hz como no grafico mais a esquerda da figura 4.7.

O espectro de frequéncia é, portanto, um esquema gréafico que relaciona com-
ponentes vibracao e sua respectiva frequéncia em um grafico energia x frequén-
cias, embora seja comum graficos que mostram intensidade da amplitude das
vibragbes X frequéncias. Empregando estimativas semelhantes a que emprega-
mos no contra-baixo para o violoncelo e violino podemos estimar as extensoes
dominadas por sinais sonoros emitidos por estes instrumentos e esboga-las nos
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Figura 4.7: Esbocgo dos espectros de frequéncia para contra-baixo, violoncelo e
violino.

instantes de amostragem
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Figura 4.8: Eixo da variavel independente t e os instantes de amostragem n7Ty.

graficos dos espectros de frequéncia da figura 4.7.

O espectro do sinal emitido por uma fonte — no nosso exemplo a fonte sdo
instrumentos musicais — tem o que chamamos de limitacdo em uma banda de
frequéncias. No caso do contra-baixo, podemos dizer que estimamos o som que
ele emite por um sinal limitado a uma banda entre 30 Hz e 900 Hz.

Exercicios de Revisao

Questao 4.4. (a) Faca uma estimativa da banda de frequéncias da voz humana na
fala. (b) Quais s@o as frequéncias de interesse no dudio para humanos?

4.4 Representacao matematica e convencao de
amostragem

Se a variavel independente é o tempo ¢ e fizermos uma amostra a cada 5 ms, por
exemplo, entao teremos como amostras 0, 5ms, 10 ms, 15ms, etc. Trabalhare-
mos apenas com este caso em que as amostras sdo coletadas regularmente em
intervalos fixos.

A amostragem passa a ser uma atividade periddica e ao tempo que se leva
a cada repetigdo da amostragem chamamos de periodo de amostragem, Ts. A
letra s é utilizada no subscrito pois € a inicial de sample, amostra em inglés.

A regra geral é que a amostragem de ¢ é nos instantes 0, Ty, 27, 37T, etc.
ou ainda nTy para n inteiro. Ou seja, nos instantes de amostragem, temos

t =nTs. (4.1)

Estes instantes de amostragem sdo mostrados no eixo t na figura 4.8.
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Se o sinal de interesse é z(t), quando o mesmo é amostrado, s6 nos inte-
ressa os valores x(nTs). Utilizaremos a convengdo de chamar z(nTy) de z[n],
utilizando os colchetes para explicitar que a varidvel dentro dos colchetes é uma
varidvel independente discreta (inteira).

Ora, se Ty é chamado de periodo de amostragem, sua unidade deve ser de
tempo, ou de tempo por amostra, ja que amostra é um adimensional. Podemos
quantificar o processo de amostragem, também, pelo que chamamos de taza de
amostragem ou frequéncia de amostragem dada pelo reciproco do periodo como

Se no sistema internacional Ty tem unidade de s ou s/amostra, a unidade da
taxa de amostragem é s~! = Hz ou amostra/s.

Veja nas figuras 4.4 e 4.5 que ha a informacio da taxa de amostragem do
dudio no lado esquerdo, onde s@o mostradas informacées sobre os canais de
dudio. Ele indica que o exemplo que usamos foi amostrado a 44 100 Hz ou
44100 amostras/s.

4.5 Efeito da amostragem em uma senoide pura

Esta implicito na ideia de espectro de frequéncias apresentada na segdo 4.3
que os sinais sdo, de certa forma, compostos por uma grande quantidade de
vibragbes. Veremos no capitulo 5 que, de fato, é possivel descrever qualquer
sinal como a soma de varias parcelas de senoides.

Podemos, entdo, estudar um “efeito elementar” da amostragem em um pro-
cesso com oscilagao se observarmos o que ocorre quando amostramos um nico
seno. Pela periodicidade das fungoes senoidais, vista na equacao 2.13, podemos
afirmar que se n é inteiro, entéo

sen(wt) = sen(wt + 27n) , e, cos(wt) = cos(wt + 2mn). (4.2)

Ao amostrarmos estas senoides com taxa de amostragem é Ty, observamos
o tempo ¢ apenas nos instantes em que t = nT, com n inteiro. Se fizermos esta
substituicdo, w = 27 f e estudarmos o efeito sobre a fungao cosseno, teremos

cos(2m fTsn) = cos(2m fTsn + 27n)
=cos[2n(fTs + 1)n]

= cos {27r <f + jl’> Tsn}

cos(2m fTsn) = cos[2m (f + fs) Tsn).
——
f/
A dltima equacdo nos diz que devido a periodicidade do cosseno o uso da
amostragem (que impde o uso de argumentos inteiros no fungéo cosseno), cos-

senos amostrados com frequéncia f e f’ se apresentam iguais! Ou seja, apds
amostradas, nao é possivel distinguir f e f' = f + f.

Exemplo 4.1. Verifique os sinais senoidais puros x; e x5 com frequéncias de
80 Hz e de 280 Hz se apresentam idénticos quando amostrados a cada 5ms.
Apresente o grafico que ilustra as coincidéncias das amostras.
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Solugao. De fato, a taxa de amostragem em questéo é de

fo =1/(0,0055) = 200 Hz

280Hz = f' = f + fs = 80Hz + 200 Hz.
Os sinais nas frequéncias de 80 Hz e 280 Hz podem ser expressos como
x1(t) = cos(160mt) e wxa(t) = cos(5607t),
que se amostrarmos com t = nTy = 0,005n resulta em
x1[n] = cos(0,8mn) e x3[n] = cos(2,8mn).

Vemos que a distingdo entre eles é de exatamente 2wn, com n inteiro.
Pela periodicidade da cossenoide temos cos(0,87n) = cos(2,8mn), o que
significa que, quando amostradas, as cossenoides dos sinais x; e x2 sdo
iguais.

O cb6digo 4.1 constréi 4 gréaficos sobrepostos. Os dois primeiros sdo os
cossenos de 80 e 560 Hz tracados com grande quantidade de amostras
para observarmos o trago da linha de dois periodos do cosseno de menor
frequéncia como se fossem continuos. Os outros dois sdo graficos de ramos
da amostragem proposta no problema. Nao é facil distinguir os dois grafi-
cos de ramos pois eles ficam exatamente sobrepostos. Pusemos a linha do
ramo do primeiro em amarelo continuo e a do segundo em verde tracejado
para possibilitar a visualizacao pois, devido a sobreposicao, todas as linhas
ficaram amarelas listradas de verde. O grafico resultante da aplicagdo do
c6digo é mostrado na figura 4.9.

from numpy import =x

import matplotlib.pyplot as plt

T s = 0.005

t = arange(0,0.025,(0.025—0) /200) # 80 Hz implica periodo de
1/80s. Vamos fazer dois periodos ou 0,025 s. Uso de 200
amostras.

n = arange(0,0.025/T s + 1) # A quantidade de amostras vai de
0 até o fim da escala. Somamos com 1 para incluir o dltimo
ponto.

x_1 = cos(160xpixt) # Define grande quantidade de amostras
para x1 tracado do grafico em linha.

x_2 = cos(560xpixt) # Idem para za.

x_1_amostrado = cos (160 pi*T_s*n) # x1 amostrado.

x_2_amostrado = cos (560« pixT_s*n) # Idem para x2.

plt.plot(t,x 1,"k=", t, x_2,"r—") # Plot das linhas de xz1 em
preto com linha continua e x2 em vermelho tracejado .

plt.stem (n*T_s,x_1_amostrado, linefmt="y") # Plot do stem das
amostras de x1.

plt .stem (nxT_s,x_2_ amostrado, linefmt="g—") # Idem para as
amostras de xs.

plt .show ()

Cédigo 4.1: Criagao de gréaficos de cossenoides de 80 e 280 Hz.
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valor [u.a.]

Figura 4.9: Grafico ilustrativo da coincidéncia entre cossenoides de 80 e 280 Hz
quando amostrados a 5 ms.

O que vimos até entdo indica que nao adiantaria amostrar uma onda com
frequéncia de f + fs pois ela se confundiria com a frequéncia f, que é menor do
que ela. A pergunta que devemos fazer é: se amostrarmos um sinal com taxa de
fs, haveria uma regido dentre baixas frequéncias em que todas elas sdo tnicas,
e nao se confundem entre si? Para responder esta pergunta, vamos tentar um
outro caminho algébrico para verificar se ha uma frequéncia ainda menor do que
f =+ fs que se confunde com f quando amostrada.

Para tal, vamos utilizar tanto a periodicidade do cosseno como a sua pari-
dade, que nos diz que cos(z) = cos(—z). Com isso, para a cossenoide cos(wt) =
cos(2m fTgn), teremos as igualdades quando amostrada dadas por

cos(2m fTsn) = cos(—2m fTsn)
= cos(—2m fTyn + 2mn)
= cos [2m(1 — fTs)n]
1
= cos {277 <Ts — f> Tsn}
cos(2m fTsn) = cos[27 (fs — f) Ten).
——
fl
Com este desenvolvimento vemos que as frequéncias f e f' = f, — f também

sao se apresentam idénticas quando amostradas.

Exemplo 4.2. Repita a comparagao feita entre os sinais no exemplo 4.1, desta
vez empregando as frequéncias de 80 e 120 Hz, de x; e x3, respectivamente,
amostrados a 5ms.

Solugao. Neste caso, temos
120Hz = ' = f, — f = 200 Hz — 80 Hz.
Os sinais podem ser

z1(t) = cos(160mt) e wa(t) = cos(240mt),
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Figura 4.10: Gréfico ilustrativo da coincidéncia entre cossenoides de 80 e 120 Hz
quando amostrados a 5ms.
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Figura 4.11: Localizagao das frequéncias f e f' = f;, — f com relagao a f, no
eixo de frequéncias.

que amostradas se tornam
x1[n] = cos(0,8mn) e x3[n] = cos(1,2mn),
e, para n inteiro, vale
cos(0,8mn) = cos(—0,8mn) = cos(—0,87n + 27n) = cos(1,2mn).

Logo, os sinais x; e x3, quando amostrados, sdo iguais.

Modificamos minimamente o cédigo 4.1 (foi necessario apenas substituir
560*pi ou 240%pi) e obtivemos os graficos da figura 4.10.

Nao vamos provar rigorosamente nesta obra, mas a frequéncia f' = f, — f é
a menor que coincide com a frequéncia f quando amostradas com taxa fs. Isto
implica na configuracao de frequéncias ilustrada na figura 4.11. Ela mostra a
localizacdo de f e f’, que tem mesma representagdo quando amostradas, com
relacdo a taxa de amostragem f, para um valor pequeno da frequéncia f.

Em uma aplicacao real, ndo poderiamos ter ambas as frequéncias compondo
o espectro de frequéncias do sinal, pois elas seriam indistinguiveis. Assim, vamos
priorizar o uso da menor entre elas, f.

Deverfamos limitar, entdo, os valores de possiveis frequéncias f para 0 <
f < fmax de modo a garantir que dentre elas todas tém representacido tnica
quando amostradas.
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Figura 4.12: Localizagdo no eixo de frequéncias da relacdo entre a frequéncia
maxima de um sinal e da frequéncia de Nyquist.

Assim, vemos pela figura 4.11 que fisx estd entre f e f' na figura. Vemos
também que a medida que aumentamos f, ele e sua contra-parte f’ se aproxi-
mam de f;/2, onde se encontrariam. Aumentar f a partir dai causa a inversio
dos papéis pois f ja seria maior do que f.

Isto significa que se 0 < f < f;/2, a senoide que tem menor frequéncia
e também tem mesma representagio estd na faixa fs/2 < f' < f,. Logo, se
limitarmos f ao intervalo de 0 a f/2, garantimos que todos os f nesta faixa
tem representagao unica, implicando em fiax = fs/2.

4.6 Critério de Nyquist

O resultado obtido na segdo 4.5 para a amostragem de uma senoide pura é
generalizado no critério de Nyquist. Ele pode ser expresso como: se um sinal
tem espectro com banda limitada até f, s, se for adotada taxa de
amostragem f; > 2f,sx ndo havera perda de informacao.

Equivalentemente, o limite f;,sx da banda de um sinal deve ser menor
que a metade da taxa de amostragem, ou seja, fiax < fs/2. A taxa f;/2
é chamada de taza de Nyquist.

A figura 4.12 ilustra a distribuicdo do espectro de um sinal hipotético e a
localizagao esperada da taxa de amostragem.

As provas rigorosas da veracidade do critério de Nyquist estdo além do al-
cance deste curso, mas o que vimos com relacao a senoide pura auxilia a compre-
ender o tipo de problema que pode ocorrer quando ele nao é respeitado. Dizemos
que quando o critério de Nyquist ndo é respeitado, acorre subamostragem. O
erro que o sinal subamostrado apresenta se chama aliasing.

Exercicios de Revisao

Questao 4.5. Liga¢io com dual-tone. A figura 4.13 ilustra o aspecto de um teclado
numérico convencional como os empregados em telefones. Um dos padrées para
sinalizar que uma tecla foi pressionada é o conhecido como dual-tone que con-
siste na emissdo, pelo aparelho, da soma de dois tons (duas senoides) quando
uma tecla é pressionada. Os tons empregados sdo padronizados e a composicao
dos mesmos é organizada de acordo com a posicdo da tecla, ou seja, variam com
linha e coluna em que a tecla estd disposta. As frequéncias associadas a cada
linha e coluna também estdo mostradas na figura. (a) Estime a banda necessa-
ria para operar o dual-tone. (b) Escolha uma taxa de amostragem compativel
com a banda e crie um sinais no formato de dual tone de modo que ele tenha
uma duracdo suficiente para que fosse audivel e escute o resultado empregando
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Figura 4.13: Esquema do teclado dual-tone com as frequéncias atribuidas as
linhas e colunas.
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a funcdo sounddevice.play(arrayDeAudio,Ts) do médulo sounddevice que re-
cebe como pardmetros o sinal de dudio no formato de array do NumPy e a taxa
de amostragem Ts. Escute o som emitido e compare com o emitido por seu
celular (em geral, é possivel ouvir o som do dual-tone quando o celular estd no
discador). (c) Crie um programa que pede sucessivamente que o usudrio informe
teclas e emite o som da tecla correspondente até que ele digite “encerrar”. (d)
Tente realizar uma ligacdo pelos sons emitidos pelo dual-tone em seu computa-
dor aproximando a sua caixa de som ao microfone de um telefone convencional.
(e) Mude a taxa de amostragem para abaixo da Taxa de Nyquist e compare os
sons emitidos neste caso. Tente realizar a ligacdo novamente. O que se percebe
com relagdo ao som emitido e a tentativa de ligagido?

4.7 Frequéncia angular normalizada

A convengdo para a frequéncia angular é ser medida em rad/s. Ela costuma
aparecer multiplicando uma variavel independente de tempo em expressées como

cos(wt) (4.3)

de modo a obter no argumento do cosseno um valor em radianos. Quando
realizamos a amostragem, estamos observando os instantes de tempo em que
t = Tsn, em que Ts, o perfodo de amostragem é medido em s/amostra. Se
substituirmos este valor numa expressao como a da equagao 4.3, temos

cos(wt) = cos(wTgn) = cos(wn), (4.4)

em que w, definido como o produto entre a frequéncia angular e o periodo de
amostragem, tem unidades de rad/amostra e é designada frequéncia angular
normalizada. A rigor, tanto rad como amostra sdo adimensionais, de modo que
a frequéncia angular normalizada é adimensional. Note, também que adotamos
para distinguir a frequéncia angular da frequéncia angular normalizada a sutil
substituicdo da letra grega 6mega (w) pela letra dabliu (w).

O processo de amostragem faz “desaparecer” a dimensdo do tempo, que
passa a ser contado de amostra em amostra, normalizando-o por periodos de
duracdo da amostragem. Podemos, entao, reescrever o critério de Nyquist em
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Tabela 4.1: Comparagao entre as frequéncias dos exemplos 4.1 e 4.2.

f w situagao

fs =200Hz 2

fs/2=100Hz =«
f1 =80Hz 0,87 80Hz<100Hz 087 <m atende ao critério
fo =280Hz 2,87 280Hz > 100Hz 287 > nao atende ao critério
f3 =120Hz 1,20 120Hz > 100Hz 1,27 > 7 nao atende ao critério

termos das frequéncia angular normalizada maxima, pois

fs Z 2fméx

i > QWméx

Ts — 27
wméxTS S T,

que resulta no critério
Wnax < T (4.5)

Ou seja, em um processo em que o critério de Nyquist é respeitado, as frequén-
cias angulares normalizadas tem valor maximo de 7 rad/amostra.

Exemplo 4.3. Analise os sinais senoidais proposto nos exemplos 4.1 e 4.2 com
relagdo a sua concordancia com o critério de Nyquist. Utilize as frequéncias
em Hz e normalizadas.

Solugao. Chamamos a frequéncia de amostragem de fs, a taxa de Nyquist
de fs/2 e as frequéncias de 80, 280 e 120 Hz do problema respectivamente
de f1, fo e f3 e as listamos na tabela 4.1. Nas terceira e quarta colu-
nas fizemos as comparagdes entre as frequéncias de interesse e a taxa de
Nyquist em hertz e normalizada e pusemos a situacao do atendimento ao
critério de Nyquist na ultima coluna. Como esperado, apenas a menor
das frequéncias, de 80 Hz, atende ao critério de Nyquist. Todas as outras
que se apresentam iguais a ela quando amostradas tem maior frequéncia
e nao atendem ao critério.

4.8 Incompatibilidade da banda do sinal e da
frequéncia de amostragem

Argumentamos sobre a limitagdo da banda do sinal de alguns instrumentos mu-
sicais na secdo 4.3 pelas caracteristicas do som emitido pelos instrumentos. Na
pratica, o tamanho da caixa de ressondncia, o comprimento do braco, a espes-
sura e a tensdo das cordas etc. sdo aspectos fisicos que acabam condicionando
como o instrumento reage aos estimulos mecénicos e impedem que os instrumen-
tos tenham uma resposta em um espectro que cubra qualquer frequéncia. Pelo
contrario, o artifice, conhecendo as limitagoes da fisica, escolhe as caracteristicas
do instrumento para que ele responda aos estimulos mecéanicos de acordo com
a tessitura para a qual o instrumento se presta.
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Figura 4.14: Esquema de sistema de amostragem com sensor, filtro e conversor.

Em alguns casos, os limites fisicos da banda de frequéncias de um sistema néo
sao faceis de estimar. Ou ainda, os sinais de interesse se misturam com outros
que abundam em frequéncias altas muito além dos limites do sinal de interesse.
Quando isto ocorre, é importante que o sistema que realiza a amostragem faca
uma filtragem prévia do sinal captado.

Com isto, vamos mostrar um esquema tipico que realiza a amostragem na
figura 4.14. Ele costuma ser composto de 3 partes. A primeira é a que consegue
observar a grandeza em estudo e é designada sensor. Como os sistemas elétricos
sdo aqueles que mais facilmente processam e tratam dados e informagoes, em
geral, o sensor percebe uma grandeza qualquer z(t) e a converte em um sinal
elétrico v(t).

A segunda parte é um filtro que chamamos de passa-baixas (pois ele s6 deixa
passar as baixas frequéncias). Este filtro tem uma caracteristica que chamamos
de frequéncia de corte f.. A saida do filtro é um novo sinal de tensdao v'(t)
em que as frequéncias acima de f. existentes em v(¢) foram removidas, ou seja,
estdo ausentes pois foram filtradas. Com isso, v'(¢) tem banda limitada a f..

Por fim, a parte que de fato realiza a amostragem é chamada de conversor
analdgico-digital ou simplesmente conversor A/D, que recebe v'(t) e gera o sinal
x[n] amostrado. Neste sistema, se a frequéncia de amostragem do conversor A /D
é fs, para que o critério de Nyquist seja cumprido, é necessario que

fs > 2fc-

Este esquema garante que ndo haja aliasing ao realizar uma pré-filtragem no
sinal amostrado e garantir que sua banda serd limitada e adequada ao conversor.
O efeito sobre os espectro sobre os sinais durante o processo também é mostrado
na figura 4.14.

E importante observar que o filtro remove algumas informagdes. A escolha de
fe deve ser tal que ele remova apenas informacgoes indesejadas, que costumamos
chamar de ruido, permitindo a amostragem posterior do sinal de interesse. Ou
seja, a escolha de f. nao deve ser arbitraria, mas adequada a aplicacao especifica.



Capitulo 5

Série de Fourier de tempo
discreto

O sinal z;(t) de tempo continuo da figura 5.1 é o que chamamos de “onda
triangular”. Desenhamos este sinal com periodo 7' = 30 ms.

Considere agora que amostramos este sinal com periodo de amostragem T =
5ms gerando sua versdo amostrada x;[n|. Para este perfodo de amostragem,
temos como frequéncia de amostragem

fy = 1/T, = 200 Hz.

O sinal amostrado também é apresentado na mesma figura e também é perié-
dico, repetindo-se a cada 6 amostras. Dizemos que ele tem periodo N = 6
amostras.
Agora vamos considerar o sinal
32 2m 1 2m 2V3 2m
2i(t) = = — —cos [ — fst ~cos | —3fst ——sen [ — fst 5.1
tragado em linha continua sobre as amostras e sob x;(t), denotando que a va-

ridvel ¢t € R.
Duas coisas interessantes ocorrem:

1. x}(t) tem aspecto muito semelhante a x:(t), ou seja, x}(t) ~ z:(t) para
qualquer t; e

2. se x4(t) ou z}(t) forem amostradas, obtém-se sinais de tempo discreto x¢[n]
e z4[n] iguais, ou seja, z;(t) = z4(t) para t = Tsn. Em outras palavras,
indica que as amostragens de z; e de x} sdo indistinguiveis.

Em particular, temos

z¢[n] = zyn] = g - %cos (2(:71) + %COS <2§3n) + 2—\2/3 sen (2gn> .

Este exemplo especifico nos induz a propor que as fungoes seno e cosseno
podem ser utilizadas para representar aproximadamente sinais quaisquer de
tempo continuo e identicamente as fungdes de tempo discreto.

Estes somatdérios de senos e cossenos ponderados que utilizamos para definir
x¢[n] e z}[n] chamamos de representagdo em série de Fourier de tempo discreto
destes sinais.

193
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T = 30ms

) zi(t)
2 /
1

t[ms]
5 10 15 20 25 30 35 40 45 50 55 60 65
Sﬂt[”]
3
9
1

n
1 2 3 4 5|6 7 8 9 10 11 [12 13

Figura 5.1: Onda triangular de tempo continuo.

5.1 Sinais periddicos e sinais limitados

Iniciamos nossos exemplos com o sinal da onda triangular periédica. Faz mais
sentido pensar que um sinal desta natureza possa ser representado como uma
soma de senos e cossenos. Veremos, porém, que um grupo importante de fun-
¢oes, as funcdes limitadas na varidvel independente, também podem ser repre-
sentadas por fungdes senoidais.

Na matemadtica pura, é comum trabalharmos com funcées f de ¢ em que
qualquer valor de ¢ é importante para o estudo, muitas vezes desde —oo a +o0,
a depender do quao vasto possa ser o dominio das fungoes que compoem f. No
mundo real, toda andlise de sinal costuma ter um valor inicial e um valor final
de interesse, ou seja, a < t < b, em que a e b sdo respectivamente os valores
inicial e final de interesse. Isto ocorre pois se t é uma variavel que representa
o tempo, por exemplo, a e b podem ser os instantes em que um experimento
comega ou termina. Se t é um comprimento, a e b pode ser o alcance do sensor
ou o limites de deslocamento de um aparato mecanico que restringem os valores
de interesse de t.

Nestes casos, dizemos que a funcéo é limitada para t entre a e b. Caso esta
fungdo seja amostrada, teremos f[n] também limitada para n, < n < n.

Veja as fungdes z:[n], que ji trabalhamos, e z[n], uma fun¢do limitada a
0 < n < 5dafigura 5.2. Dentro do limite em que z[n] estd definida, z.[n] = z[n],
de modo que sempre podemos trabalhar uma fungao limitada como uma
funcgao periédica, desde que definamos a regiao limitada coincidente
com um periodo.

Desta maneira, a importancia deste estudo recai sobre as fungoes limitadas e
amostradas (de tempo discreto), que estudaremos por meio de séries de Fourier
de tempo discreto.
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Figura 5.2: Sinal limitado x[n] e seu correspondente periédico z¢[n].

5.2 Funcgoes senoidais de interesse num sinal li-
mitado

Para obter a série de Fourier de um sinal amostrado limitado ou periédico,
devemos primeiro restringir quais senos e cossenos sdo de interesse. Para tal,
vamos considerar o exemplo da onda triangular que demos. Como ela tem
periodo N = 6, vamos comegar pelas fungdes seno e cosseno que também tém
este periodo. Na secao 2.3.2, vimos que um cosseno com periodo 6 deve respeitar

Como os cossenos sdo iguais, significa que a diferenca entre seus argumentos
(6 — ¢) deve ser um miultiplo inteiro de uma volta completa (27k, com k inteiro),
ou seja,

0 — ¢ =2rk
wn + 6w — wn = 2wk
6w = 27k.

Isto significa que hé vérias frequéncias normalizadas w no formato

_ 2k
6

w

para as quais um cosseno ¢é periddico com periodo N = 6, a depender do valor
de k. Vamos chamé-la de wg. A expressdo que obtivemos é para o caso em que
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N = 6. Para o caso geral em que N é um inteiro positivo qualquer teriamos

_ 2k
ok

W

O valor de wg = 0 é aquele que torna o cosseno constante e igual a 1 (e o seno
constante e igual a zero). Como ela ndo pode ser empregada para descrever um
sinal varidvel, ela nao é exatamente uma “frequéncia”, mas tem uma importancia
que veremos mais adiante (veja que x[n] do exemplo da onda triangular tem
um termo constante ¢ igual a 3/2).

A menor destas frequéncias é

2w -1
w1 =

=T rad /amostra.
6 3

Todas as outras frequéncias sdo miltiplos inteiros de wy, ou seja,
wg = wy - k.

A préxima frequéncia, wy = 27 /3 rad/amostra, também tem perfodo N = 6
(essa foi nossa premissa), mas ela tem o “dobro da velocidade” de w;. Dizemos
o dobro da velocidade para indicar que quando cos(win) completa um ciclo,
cos(wen) completou dois. Por fim, ws = wrad/amostra tem o triplo da velo-
cidade de wy. Também, ndao ha variacdo mais abruta do que a que podemos
observar em cos(7n), j4 que em uma amostra este cosseno apresenta o valor 1 e
na amostra seguinte apresenta o valor oposto.

Estas quatro frequéncias, wg, wy, we € ws, resultam nos quatro primeiros
graficos das fungoes cosseno que apresentamos na figura 5.3. Para mostrarmos
as frequéncias de interesse, colocamos o grafico de cos(w;n), de tempo discreto,
junto com seu correspondente cos[(w;/Ts)t], de tempo continuo. Veja que a
partir de wy, apesar de em termos de do tempo continuo termos graficos distintos
(todos os graficos em vermelho sdo diferentes), quando eles sdo amostrados, o
resultado da amostragem de cos[(w4/T5s)t] é igual ao de cos[(wa/Ts)t].

Algebricamente, é ficil observar que

4
cos(wyn) = cos (3n>

cos(wgn) = cos

que é o que o grafico nos mostra.

Esta demonstracdo de igualdade dependeu do fato de que cos (%”n) =
cos (%’n — 27m), 0 que s6 é verdade se n é inteiro. Isso significa que esta é
uma particularidade do universo dos sinais amostrados — ha apenas 4 frequén-
cias normalizadas de interesse de periodo N = 6: wg, wy, we e wz. Todas as
outras frequéncias se comportam exatamente como uma destas quando amos-

tradas.
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Acos(ouon) = cos(0)

n
1 2 3 45 6 7 8 9 10111213

cos(win) = cos (3n)

1W5 6 7W111213’

cos(wgn) = cos (27n)

1) 2| [3] |4] (5| 6] |7| (8] |9

Figura 5.3: Amostragem de cossenos com periodo N = 6.
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Vejam que o resultado que encontramos aqui se relaciona com a ideia ex-
pressa no critério de Nyquist que vimos na se¢ao 4.6. Estamos trabalhando com
frequéncias angulares que devem estar sujeitas a duas restrigdes

e o critério de Nyquist que as limita a 0 < wp < 7, e

e serem peridédicas com periodo N que implica em sua expressao geral ser
21
w, = —k. 5.2
= (52)

Nao devemos contar que apenas cossenos sejam suficientes para representar
uma fungao (ou sinal) qualquer de frequéncia N = 6, pois a fungdo cosseno tem
uma fase fixa, e os sinais podem ter fases diversas. Uma soma de senos e cossenos
ponderados é suficiente para resolver funcoes periddicas com qualquer fase como
vimos na equagao 2.29, de modo que poderemos escrever, particularmente para
a onda triangular (ou para a fung¢do limitada z[n] com N = 6) que estamos
utilizando como exemplo,

x¢[n] = x[n] = ag cos(won) + a1 cos(win) + ag cos(wan) + az cos(wsn)+

+ bg sen(won) + by sen(win) + be sen(wan) + b sen(wsn).
Se simplificarmos cos(wen) = 1 e sen(wen) = 0, teremos

x¢[n] = x[n] = ag + a1 cos(win) + as cos(wen) + ag cos(wzn)+
+ by sen(win) + be sen(wan) + bz sen(wsn).
3

=ap + Z [ax, cos(wgn) + by sen(wgn)] .
k=1

Aqui, fortalecemos nosso argumento de que deve ser possivel representar
x¢[n] = x[n] desde que consigamos determinar ai, aq, as, by, b2 e b3, que sdo os
“pesos” da ponderacao dos senos e cossenos, além do ag que é uma espécie de
termo constante.

Em nosso exemplo, para N = 6, precisamos determinar o termo indepen-
dente, ag, e os coeficientes para 3 frequéncias. Estas trés frequéncias sdo as que
estamos chamando de frequéncias de interesse. Como regra geral, considerando
a expressao geral para wy, e o critério de Nyquist, para [N amostras, é necessario
determinar o termo independente ag e mais os coeficientes dos senos e cossenos
de |N/2] frequéncias de interesse. O simbolo |x] denota o arrendondamento
para baixo. Por exemplo, [3,3] =3 e [3,9] = 3.

A forma geral de uma fungéo expressa como série de Fourier discreta podera
ser dada, portanto, como

LN/2) 2w 2w
x[n] = ag + Z [ak cos (Nk‘n> -+ by, sen (Nkn)] . (5.3)

k=1

A equagao 5.3 é conhecida como equagio de sintese, que expressa x[n] como um
somatorio de senos e cossenos ponderados. Este termo vem do significado de
sintese como construgdo ou montagem. Ela mostra como z[n] pode ser “cons-
truida” com componentes senoidais.
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5.3 Determinacao dos coeficientes a; e by

As férmulas para calculo dos coeficientes ay, e by sdo dadas por

1 Nl
0=y 3 el (5.4)
| Nl
anyz = x[n] cos (mn) , para N par; (5.5)
n=0
N-1
2 27
ap = — x[n]cos | —kn |, para k #0, k# N/2; (5.6)
N o N
by = 0, (5.7)
b2 =0, para N par; e, (5.8)
2 = o
b = N 7;) x[n] sen <Nkn) , para k # 0, k# N/2. (5.9)

As equagoes de 5.4 a 5.9 sdo conhecidas como equacdes de andlise e expressam
os coeficientes ay, e by em termos de x[n].

5.3.1 Demonstracao das féormulas de andlise da série de
Fourier de tempo discreto

Para demonstrar como obter as férmulas para ax e by faremos uso ostensivo das
propriedades

N—1 o

cos (Nkn> =0,8e 1 <k <(N-1), (5.10)
n=0
N-1 o

sen (Nk:n> = 0, para qualquer k inteiro, e, (5.11)
n=0
N—1 o

cos (Nkn> =N,sek=0ouk=N. (5.12)

0

n

Demonstragao do calculo de ag

Como estamos propondo

/2]
2 2m
x[n] = ap + kZ_l [ak cos (Nkn> + by sen <Nkn>} ,

se somarmos todas as amostras de z[n] dos valores de 0 até N — 1, o que pode
ser interpretado como o somatério de termos do membro esquerdo para todos os
valores de n, isto sera igual ao mesmo somatério com os termos do lado direito,
ja que ambos os lados sdo iguais. Algebricamente, isto significa

N—-1 N-1 [N/2]

Z x[n] = Z ag + ; {ak cos (%kn) 4+ by sen (%kn)}

n=0 n=0
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N—1[N/2] N—1|N/2]
= Z ag + Z Z aj cos (kn> Z Z by sen (kn)

n=0 k=1 n=0 k=1
[N/2] N—1 [N/2] N—1

= Nag + Z Zakcos (kn> Z Zbksen (kn)
k=1 n=0 k=1 n=0

[N/2]  N-1 [N/2]  N-1
= Nagy + Z ak Z cos (kn> + Z br Z sen (kn)

LN/2J LN/2]

= Nag + z a0+ Z b - 0
k=1 k=1

z[n] = Nao,
0

P

n

de onde, isolando ag, obtemos sua férmula

Veja que ap é a média dos valores das amostras de z[n]! Isto ocorre
pois os componentes senoidais tem uma simetria entre seus valores positivos e
negativos ao longo de N amostras pois todos sdo peridédicos com esta quantidade
de amostras. Esta simetria faz os componentes senoidais se anularem, sobrando
apenas o componente constante ag que deve coincidir com a “parte” constante
que z[n] tenha na média.

Demonstracio do céalculo de ai, com k # N/2

Novamente partimos de

st =ao+ 3 Jowcos (2kn) + e sen (2kn)|

k=1

mas antes de somar todos os termos do membro esquerdo e direito, vamos
multiplicar ambos os membros por cos (%’rk' n), em que k' é um dos valores de k
de interesse, e, portanto, 1 < k' < | N/2| (excluimos k' = 0 pois j& o estudamos
na segdo passada), obtendo

27 2T
cos (Nk:’n) x[n] = cos (Nk’n> ap+

2 LN/2) 2
+ cos (Nk’n> E aj, COS (kn)
k=1
[N/2]
27, 27
+ cos (N n) E br sen (Nkn> ,

k=1
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para entao somar todos os termos do lado esquerdo e, consequentemente todos
do lado direito, de n = 0 até N — 1, obtendo

N-1 o N-1 o
Z cos (Nk’n> x[n] = cos <Nk’n> ao+

n=0 n=0
i 2 LN/2] 2m
!
+ Cos (Nk‘ n) Z aj CoS (Nkn) +
n=0 k=1
N-1 o [V/2]
+ cos (Nk"n> Z by sen (k:n)
n—=0 k=1
N-1
2
= ag > cos (;k’n) +
. N-1[N/2] 21]@’ 211{7 .
ag cos | 1-k'n | cos { <-kn
n=0 k=1
Nop L2l 2r 2
+ Z by cos (Nk’n> sen (Nkn>
n=0 k=1
[N/2] N—1
=ag-0+ aj cos <k’n> cos <Im) +
k=1 n=0
LV/2I Nt 2m 2m
+ ; HZO by cos <Nk’n> sen (Nlm>

_ %k 3 {cos Bz;(k/ n k)n} + cos Bz;(k’ - k‘)n] } +

(K — k)n] } .

Aqui temos quatro termos de somatorio de senoides que precisamos verificar
se se anulam como nos casos previstos nas equacoes 5.10, 5.11 e 5.12. De
imediato, podemos ver que os senos sao todos nulos devido a equacao 5.11.

Resta-nos analisar os cossenos. Vemos que como 1 < k' < |N/2] el <k <
| N/2], entédo

2|

2<k +k<N,

em que a igualdade k¥’ +k = N s6 ocorre se N for par e quando k' = k = N/2.
Deste modo, com excegdo do caso N par e k' = k = N/2, que vamos estudar na
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préxima secao,
N—-1 o
Z cos {N(k/ + k)n} =0.
n=0
Resta analisar a diferenca k' — k. Ela é tal que
—N/24+1<K —k<N/2-1.

Nesta faixa, as condi¢oes da equacao 5.10 s6 nao sao atendidas quando k' = k
e, k' —k = 0, quando ocorre a condi¢ao da equagao 5.12. Temos entao

N-1
2 N, k' =
cos |:]\7;(k‘/ - k;)n] = { ’

0, caso contrério

Este é o tinico somatério nao-nulo.
Retomando estes valores na equacao original, teremos

N—1
. 27‘(‘, _Nak/
Zcos(Nkn>x[n}— 5

n=0

Utilizando a varidvel k genérica no lugar de k', j4 que ndo ha mais varidvel com
nome k, e isolando ax, obtemos o resultado que esperavamos de
2 N (2
ap = — Z cos (Nkn) z[n], k#0, k#N/2.

N
n=0

Demonstragio do célculo de a;, com N par e k= N/2

Na demonstragao anterior, quando tinhamos

e 27 LN72) g 22 27
/ Yk / /
E cos (Nk n) E {COS { (K" + k) } + cos [N(k - k)n} } +

n=0

k=1 =

vimos que os somatérios de seno sao sempre zero, mas o primeiro somatério de
cosseno, que era sempre nulo na se¢ao passada, nesta se¢ao, com k' = N/2, este
primeiro somatério é ndo nulo quando k' = k = N/2. Assim temos dois casos
dentre os somatério nao nulos, em que ambos caem no caso da equagao 5.12,
resultando em, quando substituimos k' = N/2

B ()= E 5 o ] o]

n=0
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= Y SIN+N]
k=N/2

N-1
Z cos (mn) z[n] = Nayyz,
n=0

que, isolando o termo a2, resulta na férmula que esperada
1 N-1
an/2 = Z cos (mn) z[n], para N par.
n=0

Demonstracao do calculo de by

O termo by é nulo por definicdo pois podemos considerar que ele nao existe, ji
que ele multiplicaria o sen(%7r -0-n) =0. Como esta componente de senoide é
sempre nula, nao faz sentido pensar em um termo com by.

Para os outros termos, faremos o processo analogo realizado com os casos
gerais de a; — multiplicaremos ambos os membros por sen(2%k'n) e somaremos
os termos dos dois membros para todos os n de 0 até N — 1. Com isto, teremos

= 2r = 2m
Z sen <Nk:’n> z[n] = sen (Nk’n) ao+
n=0 n=0
N-1 9 [N/2]
+ sen (Nk'n) Z ay, cos (lm) +
n=0 k=1
N-1 o [N/2]
+ sen (Nk'n) Z by, sen (lm>
n=0 k=1
o ()
= ay sen | —k'n | +
n=0 N
oy N~ 2 Min) +
agsen | <=k'n | cos | <kn
n=0 k=1
N—-1|N/2] o
+ Z‘; Z:l by, sen <k'n> sen (Nkn>
IN/2] N—1
2 2
=ag-0+ aj sen (;kz’n) cos (]:frlm> +
k=1 n=0
LN/2I N1 21 27
+ bpsen | —k'n ) sen [ =—=kn
> 3 peen (e (70
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=y = {sen B\f(k + k)n} +sen B;T(k - k’)n} } +

k=1 n=0
[N/2] ) N-1
+ 2 b?k nz:% {cos Bz;(k’ — k)n} — cos [?\7;(/{’ + k)n] } :

Aqui, os dois primeiros somatoérios, sobre func¢oes seno, sao sempre nulos pois
coincidem com o caso da equagdo 5.11. J& o primeiro somatério de cosseno, é
nao nulo para k' = k, qualquer que seja o valor de k', pois é sempre o caso da
equagao 5.12. O segundo somatoério de cosseno é, também, sempre nulo, exceto
quando N é par e k' = k = N/2, quando acabamos caindo, também, no caso
da equagdo 5.12. Teremos, entdo, quando k' # N/2 o caso

Sn (Zen) = 3 5 oS0 ] om0 ]

n=0
N ’
:E EN: i
2
k=k’

que implica no resultado esperado de

N—-1

e quando N é par e k' = N/2, teremos
bN/2 = 07

pois, a senoide da qual by/s é coeficiente,

2t N
sen (;211) =sen (mn) =0,

é sempre nula, tal como a senoide do termo by, de modo que ele nao precisa
existir.

5.4 Forma matricial das equacoes de analise

Quando vimos produtos de matrizes, antecipamos na questiao 2.25 exatamente
o conjunto de equacdes que possibilitam obter ag, ai, as, by, b1 e ba que sdo
os coeficientes da série de Fourier de tempo discreto quando a quantidade de
amostras ¢ N = 4. Ela nos ajuda a observar que como os termos ay, como regra
geral, sdo obtidos pelo somatério do produto entre cos(2Fkn) e z[n] e os termos
by, pelo somatoério do produto entre sen(%kn) e x[n], é possivel obter todos os
coeficientes se definirmos

ag bo Z[O}
ay bl {E[l}
a2 b2 ‘r[Q]
a = . 9 b= . , X = )
a|N/2|-1 bin/2j-1 z[N — 2]
L a2 L bz [z[N —1]]
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como a matriz coluna de coeficientes ay, a matriz coluna dos coeficientes by e a
matriz coluna de amostras, respectivamente, a matriz de cossenos, C(| n/2)+1)x N>
composta pelos elementos

1
Y
T, , .
Cij = { 3y 08 W(z—l)(g—l) , Nopar,i=N/2+1
2 2
W 08 Wﬂ(i—l)(j—l) ,  T10S outros casos

e a matriz de senos, S(|n/2)+1)x N, composta pelos elementos

0, i=1
g. =0, N par,i=N/2+1
iy = 5
2 27r(, DG —1) ¢
—sen | —(i — — nos outros casos
N N J )

nas duas operacdes entre as matrizes

a=Ckx,e, (5.14)

b = Sx. (5.15)

Com estas defini¢bes, temos contas simples e ficeis de realizar em progra-
macao por meio de produto de matrizes, j4 que a matriz dos coeficientes dos
cossenos ¢é o produto da matriz dos cossenos pela matriz das amostras e a ma-

triz dos coeficientes dos senos é o produto da matriz dos senos pela matriz das
amostras.

5.5 Série de Fourier de tempo discreto compacta

Vimos na equagao 2.29 da secdo 2.3.5 que a soma de um seno com um cosseno
resulta em um seno defasado seguindo a regra geral

A
A cos(wt) + Bsen(wt) = / A2 + B?sen {wt + arctg (B)} . (5.16)

Ora, o somatério de nossa série de Fourier é justamento composto de somas
de cosseno e com senos de amplitudes ay e by, respectivamente, que podem ser
reescritas como

ay, cos(win) + by sen(wyt) = msen [wkn + arctg (Z:):l

= ¢ sen(wgn + Ox),
em que definimos

cr =/ai + b2, e, (5.17)

a

0, = arctg (bk) . (5.18)
k
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Com esta mudanga, podemos reescrever a série de Fourier de tempo discreto
como uma constante somada a uma tnica senoide defasada para cada frequéncia
como

[N/2]
x[n] = ag + Z cx sen(wgn + 6x). (5.19)
k=1
Demonstragao similar pode ser realizada com a equac¢do2.30 para obter
[V/2]
zln] = ao + Z c cos(wyn + ér,) (5.20)
k=1
com ,
¢ = —arctg (k) : (5.21)
Qg

Estas formas, além de mais sucintas, deixam explicita a existéncia de uma
Unica componente de frequéncia angular normalizada wy com sua respectiva
amplitude ¢ e por esta razao podemos chama-la de equacdo de sintese compacta.
No nosso nivel de matematica, nao é possivel substituir as equagoes de anélise.
Devemos, entdo, continuar a calcular ay e by pelas equacdes 5.4 a 5.9 e obter ¢y,
e 0 ou ¢ pelas equagoes 5.17 e 5.17 ou 5.21.

5.6 Espectro de frequéncias de um sinal limi-
tado

Agora que chegamos a uma expressio que associa frequéncias wy a uma medida
de sua intensidade dada pela sua amplitude cg, podemos dar algumas defini¢oes
mais rigorosas de espectro de frequéncias, de modo a complementar significati-
vamente e quantificar precisamente o que apresentamos na secao 4.3.

Podemos, definir o espectro de frequéncia como a associagdo entre uma
medida da intensidade de componentes de vibragao e uma medida da
respectiva frequéncia, em geral, apresentada em um grafico que tem
a medida da frequéncia como eixo horizontal (varidvel independente)
e a medida da intensidade no eixo vertical (variavel dependente).

Com esta definicao, alguma possibilidades surgem, pois devemos escolher as
medidas da intensidade da componente e a medida da frequéncia. Sao populares
os usos dessas trés medidas da intensidade da componente:

1. o valor absoluto da amplitude da componente |cg|;
2. o quadrado da amplitude da componente ci; ou
3. a energia da componente que, em geral, é proporcional a 3.
Ja para a quantificacao da frequéncia, as quatro medidas a seguir sdo usuais:
1. o niimero de ordem k da componente;
2. a frequéncia angular normalizada wy da componente;
3. a frequéncia angular wy da componente; ou
4. a frequéncia f; em hertz da componente.

Desta forma, é comum que chamemos um grafico fi X |cx| dos coeficientes da
amostragem de z(t), por exemplo, de espectro de frequéncias deste sinal.
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Respostas, sugestoes e
solucoes

Questdo 2.1 (a) 0+24+4+6+8+10+12+14. (b) 1+3+54+7+9+11+13+15.
() 12422 + 32 + 42 + 52 + 62+ 72 (d) aocos<§1 -0- n)—i—alcos(?l )+

az cos (21211) + as cos (2—71-371) + a4 cos (2—7T4n> —+ as cos (21571)
11 11 11 11
6 5 & 4
Questao 2.2 (a) Z % (b) Z 12 (i) (c) cos(kwt) Z bi, sen (10 kn)
k=2 k=0 k=0
1 1

115 + 119
981

(c) b sen( ﬂ )+b Sen(4 )er sen(6 )+~~+b sen(l—n)+
! 200 2 200 3 200 % 200

bioo sen (mn). (d) ao+az cos (ﬂn>+a cos (—4 k)+"‘+a COS(IOQQWn)+
100 . otai1 1024 2 1024 511 1024

Questdo 2.3 (a) 3> +5°+7°+---+2001°+2003%. (b) 2—,+—7+T+-~+

as12 cos (mn)

Questiao 2.4 (a) 1,208721311. Erro de aproximadamente 2% para baixo. (b) 0,7604599047.
Erro de aproximadamente 3,2% para baixo. (¢) 1,499974597. Erro para baixo
de aproximadamente 0,0017%.

Questao 2.5 (a) 120. (b) 700. (c) 5a. (d) Nao. (e) 250. (f) 205. (g) 8250. (h) 0.
Questéo 2.6 0 = ¢t + 3.

Questao 2.7 (a)...—1007/3rad/s, —407/3rad/s, 207 /3rad/s, 807 /3rad/s, 140w /3rad/s. ..

regra geral é wy, = 207/3 + 207k [rad/s]. (b) 207 /3rad/s.

Questao 2.8 (a) Adotando para o 12 flash k = 0, a regra geral é 0 = 7 /6+nk/2, com k
inteiro. As posigoes do mével sio todas sobrepostas as posigoes /6, 27/3, T /6
e 5m/3, que correspondem a giros de 7/2 com relagdo a posicdo inicial. Apés
quatro flashes, o quinto ocorrerd com o mével sobreposto a primeira posi¢ao pois
4.-7/2 =2m.

Questao 2.9 Vamos chamar a posi¢do no 12 flash de 6y, no 22 de 6; e assim suces-
sivamente até 019 no 112 flash. Se ao fim dos flashes eles se encontravam em
posicoes coincidentes, podemos dizer que se 0y = 0,427, entdo 019 = 0, +27j e
teremos A6 = 019 — 60y = 2wk. Se o primeiro flash ocorre em tg, 0 segundo ocorre
em t; = to + Ts, o terceiro em to = t1 +Ts = To + 2T e assim sucessivamente
até tio = to + 1075 no 112 flash, de modo que At = t10 — to = 107s. Assim,

a velocidade tem como regra geral a expressdo wi = 10T , que € a resposta

207
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da letra (b). Fazendo k = 1 (ou, identicamente k = —1, que significaria que
o mével gira no sentido horério), teremos a velocidade minima ndo nula dada
por w = 1(2)—;5, que é a resposta da letra (a). (c) As posi¢oes coincidem com os
vértices de um poligono regular com L lados em que um dos vértices esta sobre
o eixo de referéncia e a trajetéria é a circunferéncia circunscrita ao poligono. E
possivel ver que L = 10/ mdc(10,k).

Questdo 2.10 (a) w = 22 (b) wp = 2Z&. (c) As posi¢des coincidem com os vértices
s s

de um poligono regular com L = N/ mdc(N,k) lados em que um dos vértices

estd sobre o eixo de referéncia e a trajetéria é a circunferéncia circunscrita ao

poligono.

Questao 2.11 (a) |w| < 7/Ts. (b) 02 préximo de . Se 62 = m, j4 havera ambiguidade
no sentido do giro. O mével poderd estar com velocidade w = 7/Ts ou w =
—n/Ts. (¢) Nao é permitido que o mével dé mais de uma volta. E justamente a
possibilidade de ocorrer mais de uma volta que gera a ambiguidade na variacdo
da posicdo angulare consequentemente na velocidade angular.

Questao 2.12 Pelo teorema de Pitdgoras, a hipotenusa é 5, e sena = 3/5 = 0,6,
cosa=4/5=0,8tga=3/4=0,75.

Questao 2.13 Obtém-se cos30° = 73, sen30° = %, tg30° = 73, cos60° = %,
sen 60° = é e tg60° = /3.

Questao 2.14 Obtém-se cos45° = %, sen 45° = g e tg4h° = 1.



angulo arco seno cosseno tangente
o 21 V3 1
—-120° -—-Z 3 -1 V3
—90° -3 -1 0 o0
o \/3 1
—60 -3 —? \5[ -3
o ™ 2 2
S e S S
o s 1 3 3
-300  —-§ -3 2 -5
0° 0 0 1 0
o s 1 V3 V3
A
o s 2 2
o s 3 1
60 z v 1 V3
90° 5 1 0 o0
o 2n V3 1
120 5 5 -3 -3
A T -
180° m 0 -1 0
Questdo 2.15  9q(e T _1 _V3 V3
6 2 2 3
225° B _¥2 _¥2 1
o 4 V3
240 e -1 V3
270° ¢ -1 0 00
o 5T V3 1
300 = _\TF \5[ -3
° 7 2 2
315 T -5 ? —\1[
o 117 1 3 3
330 S T2 3 —5
360° 2m 0 1 0
o 91 V2 V2
450° & 1 0 00
o 117 V2 V2
425 o 2 T3 -1
540° 3m 0 -1 0
n V2 V2
R I
630° = -1 0 00
15w V2 V2
675°  SF =% 5 -1
720° 4T 0 1 0

209

Questao 2.16 Os valores de seno e cosseno se repetem a cada 360°. Os valores de
tangente a cada 180°. Os valores do cosseno em um angulo sdo iguais aos do
seno 90° a mais. O seno é impar e o cosseno é par. Os valores de maximo e
minimo do seno e cosseno sdo iguais a 1 e —1 respectivamente. O cosseno é nulo
nos angulos congruentes a 90° e —90° e o seno é nulo nos angulos congruentes

a 0° e 180°.
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)
sen(27rt%

Questao 2.18

p cos(2mt)

b cos(4t)

75

1

cos(8nt)

cos(3t)

4w /3
3m/2

sen(2nt + 7/6) sen (27t + 7/3)

21

3cos(t —m/4)

b 2cos(3nt)
cos(Ymd+ 7/

Questao 2.19 0 = —7w/4 + 27k ou 0 = —3w/4 + 27k, para k inteiro. Na margem

entre —7/2 e /2, teremos sen”*(v/2/2) = —w /4.

Questao 2.20 0 = 7/3 + 2wk ou § = —7/3 + 27k, para k inteiro. Na margem entre
0 e T, teremos cos™'(1/2) = /3.

Questao 2.21 § = —7/6 + 27k ou 6 = 27/3 + 2wk, para k inteiro. Esta resposta
pode ser resumida como § = —7/6 + wk. Na margem entre 0 e 7, teremos

tg™ (—/3/3) = —7 /6.

Questdo 2.22 (a) 8sen (1207t +7/6); (b) 1,5v/2 cos(wt); (c) %\/g sen (8807t — 2m/3).

Questao 2.23 (a) A = [

(b) B =

DN O

3
5
7
9

9

11
13
15

2 3
2 3 4

5 6 7
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1 1 1 1 1 1
(¢)C = 20075(0) %cos(Zuo - 1) %cos(:uo -2) %Cos(7wo -3) %cos(Zuo -4) %COS(ZJ}O -5)
2cos(0) 2cos(wo-2) Z2cos(wo-4) Z2cos(wo-6) 2cos(wo-8) 2 cos(wp - 10)
écos(O) 2 cos(wo - 3) écos(wo 6) Z2cos(wo-9) Zcos(wo-12) 2 cos(wp - 15)
0,1429  0,1429 0,1429 0,1429 0,1429 0,1429 0,1429
C~ 0,2857 0,1781 —-0,0636 —0,2574 —0,2574 —-0,0636 0,1781
0,2857 —0,0636 —0,2574 0,1781  0,1781 —0,2574 —0,0636 |
0,2857 —0,2574 0,1781 —0,0636 —0,0636 0,1781 —0,2574

em que wo = 27/7.

Questdo 2.24 (a) {14 31] m - m

n 1 -17 [z 2
oL A [
3 —2 -1 |z —11

2 1 1 17 [ao 5
-2 1 -1 =1 |a]| |1
O I N N P e
(2 1 -3 2] |as 11

Questao 2.25

ao = (0] + 1x[1] + ix[Q] + 1z[3]
o b0+ o )10 50+ ()l
s = $el0)+ §oon (5 al) + §cos (%) ol2 +  con (22) o1
bo=0
b= gsen (3) x[l] +  sen (4) 22 + 5 sen () (3]
b2 =0

Questao 2.26
3
c11 = Zambm = a11b11 + a12b21 + a13b3z1 =

k=1
3

c12 = Zalkbk2 = a11b12 + a12b22 + a13bz2 =1-34+2-(=2)+1-0= -1
k=1

1-242-141-(-2)=2

3
C32 = Za3kbk2 = as1bi2 + asaba2 + assbz2 =0-3+1-(=2)+1-0= -2

k=1
2 -1
-5 5

-2

Questao 3.7 § =21133125.

Questdo 3.8 72/8 ~ 1,2334505501570059 com erro de aproximadamente 0,0203%.
/4 = 0,7851481634599485 com erro de aproximadamente 0,031%. Na aritmé-
tica aproximada do Python obtemos um valor exato para o ultimo somatorio
com 1000 termos.

Questao 3.13 Empregue operagoes elemento a elemento sobre matriz para, partindo
de uma matriz com os valores da variavel independente, calcular todos os valores
da variavel dependente.

1
7

2 cos(wo - 6)

2 cos(wo - 12)

2 cos(wo - 18)

)
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Apéndice B

Material Instrucional —

Videoaulas

As 35 videoaulas listadas a seguir, produzidas para auxilio na condugao do
curso de Amostragem de grandezas na Fisica e seus espectros de Fourier
proposto para o curso de Analise de Espectro para o Ensino Médio. O acesso
as videoaulas ¢ facilitada pelo uso da lista de roprodugéoﬂ disponibilizada no
YouTube.

 Introdugao ao Espectro de Frequéncias [1]
« Introdugdo ao Espectro de Frequéncias [2]
 Introducdo ao Espectro de Frequéncias [3]
 Introdugdo ao Espectro de Frequéncias [4]
o Espectro e a modulagao AM

« Somatérios [1]

« Somatorios [2]

e Movimento Circular Uniforme

!Disponivel no link:
https://youtube.com/playlist?list=PLdny05X-pNRIGw_003X9N7uluEqLFixgX.
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https://youtube.com/playlist?list=PLdny05X-pNRIGw_OO3X9N7uOuEqLFixqX

Apéndice B. Material Instrucional — Videoaulas

Fungoes Trigonométricas [1]

Fungoes Trigonométricas [2]

Fungoes Trigonométricas [3]

Fungoes Trigonométricas [4]

Ondas [1]

Ondas [2]

Ondas [3]

Ondas [4]

Matrizes

Aspectos Gerais do Python

Sintaxe Basica Python Nativo

Comandos de Controle de Fluxo

Python na Matemética [1]

Python na Matematica [2]

Python na Matemética [3]

Amostragem

Nocao de Espectro e Amostragem de Senoides
Série de Fourier de Tempo Discreto [1]

Série de Fourier de Tempo Discreto [2] - Recuperagao do Sinal
Calculo dos Coeficientes da Série de Fourier de Tempo Discreto
Demonstracao das Equacoes de Andlise [1]

Demonstracao das Equacoes de Andlise [2]
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Equagoes de andlise da SF'TD na forma matricial

Equacao de sintese da SFTD na forma matricial

Espectro com SFTD [1]. Série de Fourier de tempo discreto compacta
Espectro com SFTD [2]. Espectro do ping do sonar

Espectro com SFTD [3]. Espectro do ping do sonar real
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Apéndice C

Material Instrucional —
Projetos para analise de

espectro

O material instrucional a seguir é uma lista de pequenos projetos ou exerci-
cios mais aprofundados criados com a finalidade de aplicar as competéncias
desenvolvidas durante o curso de “Amostragem de grandezas na Fisica e seus
espectros de Fourier”. Seu uso deve ser integrado ao curso e as solugoes e

sugestoes para solugao dos problemas se encontram no apéndice [D]
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PROJETOS PARA ANALISE DE ESPECTRO

Quao rapido batem as asas. Estime o quao rapido batem as asas de um
beija-flor empregando um video comum como o “How to tame wild humming-
birds” (disponivel em https://www.youtube.com/watch?v=vVjkAnbcDqw). Tente
empregar mais de um método de estimativa. Repita o processo para estimar
0 quao rapido batem as asas de uma mosca. Explique como vocé realizou as
estimativas.

Estimativa de velocidade na F1. Estime a velocidade com a qual os car-
ros passam pelo espectador no video “BEST F1 Sound exhaust V8” (disponivel
em https://www.youtube.com/watch?v=hpvuubMfasSk) Tente empregar mais
de um método de estimativa com a finalidade de validar a medida. Explique
como vocé realizou as estimativas.

Velocidade do chute ao gol. Estime a velocidade do seu chute ao gol.
Tente empregar mais de um método de estimativa com a finalidade de verificar
a confiabilidade da medida. Explique como vocé realizou as estimativas.

Identificacdo da altura de som monofénico. Escolha um trecho de
dudio de uma musica monofonica (uma dnica nota é tocada por vez) e identifique
a altura das notas executadas. Empregue algum método para validar se as
notas identificadas conferem com as executadas. Explique como vocé realizou a
identificacao.

Identificagao de digitos em dual-tone. Grave a discagem de algumas
sequéncias numéricas empregando o simulador “Online Tone Generator”. (Dis-
ponivel em: https://onlinetonegenerator.com/dtmf.html). Identifique a
sequéncia discada. Explique como vocé realizou a identificacdo. Tente automa-
tizar o processo de identificagao.

Péndulo, angulo de partida e MHS. Discuta qual é o perfil do espectro
de um MHS. Obtenha 0[n] para o péndulo da figura abaixo que é largado do
repouso a partir de 6y para diversos valores de 0. Ele é composto por uma massa
pontual m e por uma haste de massa desprezivel e comprimento L. Discuta se o
espectro coincide com aquele esperado para um MHS e se a possivel coincidéncia
ocorre para qualquer 8y. Faca o grafico da proporgao do harmoénico fundamental
na composigio de §[n] com relagdo ao angulo de largada 6. Verifique o quanto
a frequéncia fundamental se afasta da frequéncia teérica

Comportamento massa-mola com 2 graus de liberdade. Considere
o sistema de massas e molas da figura em uma superficie sem atrito. Descreva
como vocé supde que seria o movimento das massas mj no eixo xp e Mg NO
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eixo xo caso uma perturbagdo temporaria fosse introduzida anteriormente no
sistema. Considere que no momento do estudo apenas as forcgas elasticas agem
horizontalmente sobre as massas. Descreva a posicdo das massas a partir da
equacao para a forga resultante em cada bloco.

0x 0x
k1 ”—ka #kQ
mq mo

Filtragem da voz. Aplique uma madscara sigmoide (em formato de “S”)
sobre o espectro de um dudio de voz. Uma boa funcao sigmoide direita (comega
com valor baixo e aumenta o valor a medida que k cresce) é dada por

1
k—kg *

bl = ——=g
l1+e 71

O valor kg é o valor de k no qual ocorre a inversdo da curva do “S” e o de
L determina o espalhamento da curva. Quanto maior for o seu valor, mais
espalhada sera a curva e menos abrupta ¢é a transicdo entre valores proximos de
0 e préximos de 1. J& a curva sigmoide

1
k—kg ?

gkl = ———=
l1+e T

é invertida, mas os parametros tém o mesmo significado (veja que muda apenas
o sinal da exponencial). Escute o 4udio da voz recuperada apds a aplicagio das
maéascaras. Descreva qualitativamente o efeito da aplicagdo da mascara sobre o
audio.

Flauta sintética. Analise o espectro de uma flauta tocando um tom. Es-
time quais harmoénicos sao os mais relevantes. Tente replicar o som pelo soma-
torio de componentes senoidais na propor¢ao do obtido na anélise de espectro.
Escute e analise qualitativamente o som. Gere um dudio com uma grande
quantidade de ntimeros aleatérios (com a func¢do numpy.random.normal, por
exemplo). Faca vdrios espectrogramas de trechos consecutivos deste dudio obte-
nha a média da intensidade das componentes. Estime quais sdo as frequéncias
presentes no dudio composto com nimeros aleatérios, na média. Aplique uma
madscara sobre o espectro do ruido (o sinal gerado com nimeros aleatérios) com
perfil similar ao do espectro da flauta. Uma funcdo capaz de gerar uma faixa
estreita similar a um harménico é dada por

g[k’] — efa|k7kg|,

ela cresce exponencialmente proximo a kg, em kg ela atinge o valor maximo de
1 e a partir dai ela decresce exponencialmente formando um pico simétrico em
torno de kg. Mude o valor de o para mudar o quao abrupta é a passagem até o
maximo em kg. Escute o dudio resultante e analise qualitativamente o som.

Reconhecimento de altura (pitch) automatico. Dado um 4udio de
musica monofonica, proponha um script que identifica a altura das notas tocadas
automaticamente.

Transmissao simultdnea empregando AM. Obtenha o espectro de um
sinal de voz mq[n] e observe qual é a frequéncia maxima wpsx1 de suas compo-
nentes. Empregue-o como amplitude de um sinal cossenoidal p1[n] = coswpin
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para obter
s1[n] = ma[n]p1[n] = ma[n] coswyin.

Este esquema é chamado de modula¢do em amplitude em que mi[n] é o sinal
modulante da portadora p; [n], ou seja, p1[n] é uma senoide de amplitude varidvel
dada pelo valor de m;[n|. Escolha para a frequéncia da portadora w,; um valor
que seja ao menos o dobro da frequéncia maxima das componentes de mq[n].
Caso necessario recorra a superamostragem para “abrir espago” no espectro e
possibilitar o estudo. O espectro do estudo deve possibilitar a visualizacao de
frequéncias até wp1 + wmax1. Descreva o que acontece com o espectro de sq[n]
quando a frequéncia da portadora wy; é modificada e verifique se ha justificativa
para a necessidade de empregar frequéncias até wp1 + Wmsx1. Proponha uma
explicagdo que justifique a forma do espectro de sj[n]. (Obs.: é possivel obter
uma explicagdo algébrica descrevendo m;[n] por usa série de Fourier de tempo
discreto.)

Agora faga 0 mesmo com um segundo sinal de voz mg[n] e uma portadora
pa[n] = coswpan para obter o sinal modulado sa[n]. Considerando o efeito da
mistura da portadora com o sinal que vimos em s; [n], descreva como poderfamos
transmitir si[n] e s3[n] de modo que, na frequéncia, um sinal ndo se misture
com o outro. Apresente o espectro do sinal resultante s[n] = si[n] + sa[n] em
que é possivel ver as duas transmissoes sem que haja mistura. Se s1[n] é o sinal
de uma onda eletromagnética gerada por uma estacao 1 de radio AM e sy[n] o
sinal gerado pela estagdo 2, que efeito faz com que, para um receptor, o sinal
percebido seja s[n]?

Separacado de sinais AM. Considere o sinal s[n] do problema anterior.
Aplique méscaras sobre seu espectro para separar o sinal s1[n] do sinal s3[n] e
obtenha os sinais AM recebidos 71[n] e r2[n| de cada estacao.

Demodulagdo AM. Aplique sobre r1[n] e rq[n] os sinais p1[n] = coswpin
e pa[n] = coswpan, respectivamente, tal como na modulagdo AM e observe o
espectro dos sinais mj[n] = r1[n]p1[n] e mh[n] = ra[n]p2[n] comparando seus
espectros com os de mq[n] e mz[n]. Obtenha my[n] e ma[n] a partir de mf[n] e
m4[n]. Proponha uma explicacdo que justifique a forma do espectro de m/[n]
ou de mj[n]. (Obs.: é possivel obter uma explicagdo algébrica utilizando o
resultado do problema da modulacdo.) Descreva a operagio realizada para
recuperar my[n] e mz[n]. Escute mi[n] e ma[n] recuperados e compare com os
originais utilizados na operacgao de modulacao.

Amortecedor massa-mola com atrito viscoso. Considere uma forga
F(t) de intensidade F = F,,, cos(wt) sendo aplicada sobre o bloco de massa m.
A superficie em que o bloco se desloca é livre de atrito, mas o fluido em que a
massa se encontra causa uma forca de atrito viscoso F,, contréria e proporcional
a velocidade, e para a qual a constante de proporcao é 3, ou seja,

Foy = _ﬂﬁ
Apoés algum tempo sobre agdo da forga ﬁ(t), a posigdo z(t) do bloco deve
se aproximar, também, de uma senoide z(t) = X,, cos(wt + 6), com mesma
frequéncia do estimulo de F (t). Faga o grafico );—:; X w da razao da amplitude

do deslocamento de z(t) pela amplitude da forca F(t) a medida que se altera a
frequéncia w. Este grafico é chamado de resposta em frequéncia.

Obtenha o espectro de z[n] para uma forca F [n] impulsiva, ou seja, ﬁ[n] é
sempre nula, exceto em uma amostra ng em que F|ng] = 1. Compare o grafico
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de ?FL X w com o espectro de x[n] para este estimulo. Por fim, compare os
resultados com o resultado esperado obtido empregando célculo diferencial e
dada por

X 1
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Apeéndice D

Material Instrucional —
Sugestoes para realizacao dos
projetos

O material instrucional a seguir resolve ou apresenta sugestoes aos projetos

propostos no apéndice [C] para emprego como referéncia no curso de “Amos-

tragem de grandezas na Fisica e seus espectros de Fourier”.
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SUGESTOES PARA SOLUCAO DOS PROJETOS
PARA ANALISE DE ESPECTRO

1 Quao rapido batem as asas

Videos comuns tem taxa de atualizacdo de quadro muito baixa comparada a
velocidade do bater das asas de um beija-flor. As asas aparecem como um borrao
devido ao efeito conhecido como motion blur, o rastro devido & movimentacao.
Por esta razdo, sugerimos empregar o dudio’ como fonte de informacio para
estimativa.

Para tal, é necessario uma breve modelagem da situagao fisica para verificar
que o som se relaciona com o quao rapido as asas do beija-flor batem. Isto é
possivel considerando que as asas causam uma variacao de pressao nas vizinhan-
cas da asa e sabemos que o som se origina na propagacao de ondas de pressao.
Logo, é razoavel supor que o bater das asas gere som, e que as cristas e vales,
por terem origem no movimento das asas, devem acompanhar seus padroes de
repetitividade. Assim, se se sabe qual a frequéncia dos componentes do som do
bater da asa, poder-se-4 estimar a frequéncia do bater das asas.

Utilizamos um aplicativo web do tipo “conversor de Youtube para mp3”
que escolhemos arbitrariamente dentre os resultados da pesquisa empregando
os termos em inglés “youtube to mp3” na ferramenta de busca. Com este
aplicativo, conseguimos acesso ao audio do video sugerido.

O video completo tem 3 min 28 s, mas desejamos estudar um fenémeno em
uma escala de tempo muito menor. Para isso, fizemos a anéalise grossa do dudio
no Audacity onde observamos que aproximadamente entre 21,95s s e 22,70 s hé
um trecho em que o som do bater das asas é bem evidente e que representa bem
o fendmeno que desejamos estudar. Isolamos este trecho no audacity, reduzimos
o dudio para mono e exportamos para o arquivo beijaflor.wav para fazer a
andlise fina no Python.

1.1 Analise no dominio do tempo

O cédigo 1 gera o grafico t x intensidade do trecho de dudio em que o bater
das asas é isolado e forte. Plotamos o grafico exibido na figura 1 que editamos
para marcar dois vales da ondulacgao gerada. Contamos contamos 34 ondulagoes
entre t; ~ 0,00925s e t3 ~ 0,7861 s onde localizamos os vales. Se considerarmos
que o as ondulagoes sdo aproximadamente periddicas com periodo Ty, entao

34Ty = to — 1, (1)

o que implica T ~ 22,8 ms, correspondente a uma frequéncia fundamental fy =~
43,8 Hz.

IInteressante notar que o nome em inglés do beija-flor, hummingbird, se traduz, aproxi-
madamente como péassaro-zumbido, destacando o efeito sonoro perceptivel da batida de suas
asas.
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Figura 1: Trecho de dudio do bater de asas obtido pelo cédigo 1.

from numpy import =

import matplotlib.pyplot as plt

import soundfile

amostras, fsArquivo = soundfile.read("beijaflor.wav")

NArquivo = len(amostras)

TsArquivo = 1/fsArquivo

t = arange (0,len(amostras))

t = txTsArquivo

print ("Quantidade de amostras no arquivo:"', NArquivo,"amostras

)

12

print ("Taxa de amostragem do arquivo:", fsArquivo, "Hz")
print ("Duracdo do 4udio:",t[—1],"s")

"

print ("Estimativa de consumo de memébria:
*xx2x64/(8%2%%30)) ,"GiB")

plt.plot (t,amostras)

plt .show ()

,(NArquivo

Cédigo 1: Anadlise do dudio do beija-flor no dominio do tempo.

1.2 Analise no dominio da frequéncia

Imprimimos as informagoes abaixo no cédigo 1 que empregaremos para tomar
algumas decisoes para realizar a anédlise no dominio da frequéncia.

¢ Quantidade de amostras no arquivo: 35270 amostras

e Taxa de amostragem do arquivo: 44100 Hz

e Duracao do audio: 0.799750566893424 s

e Estimativa de consumo de memoria: 9.268320351839066 GiB

Vemos que o trecho de dudio que contém o fendmeno a estudar tem uma
grande quantidade de amostras, mais de 35 mil. Pela estimativa que fizemos
na andlise de tempo, a frequéncia fundamental presente no audio é por volta de
40Hz. Se considerarmos que o dudio tem 10 harmoénicos relevantes, precisaria-
mos estudar até 400 Hz. Como consequéncia, a taxa de amostragem minima é
de 2-400 Hz = 800 Hz, e a taxa de amostragem do dudio é a taxa de amostragem
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padrao de 44100 Hz, mais de 50 vezes maior do que a necessaria para estudar
até o 102 harmonico.

E esta alta taxa de amostragem que leva a uma grande quantidade de amos-
tras. A estimativa de consumo de memoéria para os cdlculos com essa quantidade
de amostras é de mais de 9 GiB2, o que esta nos limites da memoéria disponivel
em computadores comuns de escritorio.

Para realizar a anélise no dominio da frequéncia, vamos, antes, reduzir forca-
damente a taxa de amostragem por um processo chamado de dizimagao. Trata-
se de, simplesmente, ignorar algumas amostras. Por nossa estimativa, podemos
ignorar até por volta de 49 de cada 50 amostras, mas vamos adotar uma dizi-
magao mais conservadora e coletar apenas 1 de cada 20 amostras. Chamaremos
este nimero de Kgizimacao = 20.

Desta forma, das 35270 amostras iniciais, sobrarao apenas 1764 amostras,
reduzindo o consumo de memoria para menos de 30 MiB. Este processo é equi-
valente a ter um amostrador 20 vezes mais lento do que o que realizou a amos-
tragem do dudio, ou seja, a nova frequéncia de amostragem serd 44100/20 =
2205Hz. Processos para alterar a frequéncia de amostragem para baixo sdo
chamados de downsampling, sendo a dizimacao o mais simples deles.

Pusemos o codigo 2 apéds a execucgao do codigo 1 para realizar a dizimagao
das amostras de dudio, calcular os coeficientes da SFTD compacta ci e plotar
o espectro do dudio dizimado. A dizimagao é feita na linha 2 empregando um
recurso mais avancado da indexacao dos arrays do NumPy. Vimos na apos-
tila duas formas de indexar. Utilizando amostras[i], acessamos o i-ésimo
elemento e utilizando amostras[inicio:fim], fazemos um corte dos elemen-
tos de amostras do elemento de indice inicio até o elemento de indice fim
(exceto). O corte com trés elementos como fizemos na linha 2 do cédigo 2,
em que empregamos amostras[0:NArquivo:kDizimacao], tem como sintaxe
inicio:fim:passo, ou seja, o corte ndo é feito coletando todos os elementos,
mas a distancia entre os elementos é dada pelo passo, que é exatamente o efeito
que desejamos na dizimagao.

2Para chegar & estimativa de consumo de meméria, consideramos o tamanho de 64 bits
de um ntmero da matriz, relativo ao tamanho empregado por um nimero no padrao double
(representagdo em ponto flutuante de dupla precisdo), que 1 Byte corresponde a 8 bits e que
1 Gi é o multiplicador equivalente a 23°. Por fim, a quantidade de nimeros empregado nas
matrizes de andlise é aproximadamente o quadrado da quantidade de amostras.
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Figura 2: Espectro do trecho de dudio do bater de asas obtido pelo codigo 2.

kDizimacao = 20

x = amostras [0: NArquivo: kDizimacao]
fs = fsArquivo/kDizimacao

N = len(x)

w0 = 2xpi/N

i reshape (arange (int (N/2)+1),(int (N/2)+1,1))
j = reshape(arange(N) ,(1,N))

matrizlJ = 1iQ@j

Ca = (2/N)xcos(wOxmatrizlJ)

Sa = (2/N)xsin (wOxmatrizlJ)

Cal0,:] = 0.5%xCa[0,:]
if N%2==0:
Calint (N/2) ,:] = 0.5xCal[int (N/2) ,:]
a = Ca@x
b = Sa@x
¢ = sqrt(a*x+x2 + b*x2)
f = arange (0,int (N/2)+1)x(fs/N)
plt.plot(f,c)
plt.plot ()
plt .show ()

Cédigo 2: Analise do dudio do beija-flor no dominio da frequéncia.

O espectro do dudio dizimado obtido é mostrado na figura 2, em que adi-
cionamos por fora as frequéncias dos picos observados. O seu eixo vertical é
a frequéncia em hertz e o vertical é a intensidade do harmoénico em unidades
arbitrarias oriundas do processo de conversao analégico-digital.

Este espectro exibe as caracteristicas tipicas de um espectro de um sinal
aproximadamente periédico mas nao-senoidal. Neste caso, os componentes pre-
sentes no sinal sdo devidos a frequéncia fundamental e aos harmoénicos de ordem
mais alta que tém, necessariamente, frequéncias multiplas inteiras da frequéncia
fundamental. Os principais picos de intensidade dos componentes encontram-se
nas frequéncias fy =~ 43,75, 86,25, 128,75, 171,25 e 215 hertz, que sdo, respec-
tivamente, a frequéncia fundamental e seus 4 harmonicos seguintes que vao do
dobro de fy ao seu quintuplo.
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A resolucdo da medida da frequéncia neste espectro é de

fs 2205
Af===—— =1,25Hz.
I=N = Trea ~ 1201
Com este valor de resolugao, temos uma frequéncia fundamental 42,5 Hz < f; <
45Hz. Este valor confere com a estimativa de fy = 43,8 Hz que fizemos no
dominio do tempo. Vemos, também, que 86,25, 128,75, 171,25 e 215 hertz estao
dentro das margens aceitaveis para 2fq, 3fo, 4fo e 5fy, respectivamente.

1.2.1 Qualidade da medida de frequéncia

A medida de frequéncia feita pelo espectro da figura 2 tem duas imperfeiges: o
limite superior da frequéncia e a resolugao. O limite superior de nossa medida
foi de 1102,5 Hz, metade da frequéncia de amostragem ap6s a dizimagao (que era
de 2205 Hz). Grosseiramente (sem um critério quantitativo rigoroso), podemos
dizer nao haver, efetivamente, qualquer componente de frequéncia relevante nas
frequéncias acima de 400 Hz do espectro. Isto significa que nossa estimativa
inicial foi boa. Pode-se testar uma dizimagao com kgizimacao = 125, por exemplo,
e observar o efeito que a frequéncia de amostragem de 352,8 Hz tera sobre o
espectro®. Além do deslocamento aparente de alguns componentes, observar-se-
4 que nao haverda “folga” entre os tltimos componentes de frequéncia relevantes
e o limite da escala de de frequéncia. Sempre que isto ocorrer, é provavel que
seja um caso de subamostragem.

Ja a resolugao de 1,25 Hz, considerando que estamos com medidas relevantes
de frequéncia em torno de 40 Hz, representa um desvio de por volta de 3%, o que
é um valor razoavel para uma estimativa e, portanto, com qualidade suficiente
para a aplicagao.

Estas duas observagoes sdo sempre necessarias no estudo de um fenémeno e
na medida de frequéncias por meio da série de Fourier de Tempo Discreto. Se a
taxa de amostragem é adequada para observagdo do fendémeno e se a resolugao
possibilitara a precisao necessaria para as medidas.

1.3 Estimativa do quao rapido batem as asas do beija-flor

Tanto no dominio do tempo como no dominio da frequéncia, obtivemos uma
frequéncia fundamental em torno de 40 Hz para o som emitido pelo bater das
asas do beija-flor no curto trecho estudado. Empregamos duas metodologias
distintas para tal. Pode-se argumentar que como o movimento de descida das
asas ¢ muito distinto do de subida, podemos supor que um ciclo descida-subida
corresponde a um periodo do som. Dali, entéo, estimar a frequéncia do bater
das asas nas dezenas de batidas por segundo.

Para uma verificacgao final, sem realizacao de andlise de dados, pode-se recor-
rer & pesquisa bibliografica como no trabalho de Warrick [1] que pde um limite
superior para o bater de asas de um beija-flor em torno de 80 Hz.

Como ultima avaliagdo quantitativa, pode-se buscar outros trechos do mesmo
video e ainda outros videos e tentar estabelecer uma estatistica para uma melhor
estimativa. Neste caso, a pesquisa bibliografica pode auxiliar na escolha de

3A frequéncia de Nyquist de 176,4 Hz parecera um espelho que rebaters as frequéncias mais
altas do que este limite. A frequéncia do quinto harmoénico, por exemplo, de 215 Hz, aparecerd
na frequéncia de 137,8 Hz = 176,4 — (215 — 176,4) Hz.
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videos buscando diferentes espécies de beija-flor que tenham uma frequéncia de
batida distinta, de modo a estabelecer bons limites para a estimativa.

1.4 Bater das asas de uma mosca

A estimativa do quéo rapido bate as asas de uma mosca pode ser feita de maneira
analoga ao realizado para estimativa do bater das asas do beija-flor. Ou seja,
partir de uma fonte do dudio do bater das asas e, pela medida da frequéncia
fundamental do som gerado pelo fendmeno, estimar a frequéncia do bater das
asas.

2 Estimativa de velocidade na F1

Vamos fazer uma breve andlise da situacdo encontrada no video. Os automédveis
passam rapidamente em um trecho do circuito por um observador que grava
a corrida de uma mureta colada com o limite da pista. Pelo video, é possivel
falar pouco sobre valores exatos de velocidade pois a posicao é dificil de verificar
quando o observador grava o movimento a partir do chdo. N&o ha referéncias
seguras de posi¢do ou comprimento e o movimento é acompanhado em uma pro-
jecdo em que a escala muda devido ao afastamento. Nao ha escala de distancia
definida no video. Isto significa que o video, apenas, nao facilita a estimativa
da velocidade pois nao é facil definir as posi¢oes dos méveis, apenas os instantes
de tempos que estao bem definidos no progresso dos quadros.

A descrigao do video nos informa que o video é gravado na Bélgica no Circuito
de Spa-Francorchamps, nas proximidades (ou observando) dos trechos chamados
de Fau Rouge e Raidillon. Pesquisamos na Internet pelo circuito, localizamos
seu mapa com as referéncias dos trechos no guia RacingCircuits.info [2]. Com o
video e o mapa, foi possivel localizar a pista em imagens de satélite do Google
Maps e a posicao aproximada do observador do video na latitude 50,442900° e
longitude 5,969823°.

Com a imagem de satélite, que dispoe de uma escala, pode-se fazer uma
primeira estimativa por meio da cinematica do video comparada com o mapa.
Pode-se definir aproximadamente dois pontos em que se possa ter alguma cor-
respondéncia no mapa e no video. No mapa, pode-se achar a distdncia entre eles
e, no video, o tempo aproximado que o movel leva para passar entre um ponto e
o outro, de modo que se pode estimar a velocidade pela velocidade média dada
pela razao da distancia pelo tempo.

2.1 Estimativa empregando o efeito Doppler

Uma segunda estimativa pode ser feita por meio do efeito Doppler sobre as emis-
soes dos carros ao passarem pelo observador. Para tal, é necessario uma breve
modelagem da situacdo fisica de modo a garantir que a estimativa é coerente
com a situagdo. Observa-se que o trecho é aproximadamente reto e que o ob-
servador, no limite externo da pista, estd o mais préximo possivel da trajetéria
dos méveis onde ainda ha seguranca.

No nivel do Ensino Médio, a modelagem do efeito Doppler pressupoe que
o mével e o observador se encontram na mesma trajetoria retilinea. Este nao
é o caso da nossa situacdo. De fato, no caso geral, hd uma dependéncia da
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Figura 3: Descri¢io da situagdo em que o video da férmula 1 foi gravado.

frequéncia percebida pelo observador com o cosseno do angulo 6 que a velocidade
instantanea do moével faz com a direcao entre entre o observador e o mével como
ilustrado na figura 3.

Quando o observador se encontra na trajetéria retilinea, a relacdo entre a
frequéncia percebida f, pelo observador, a frequéncia emitida f. pelo emissor é

fe
fo= 1ty
Pl

C

(2)

em que v é o médulo da velocidade do movel e ¢ é a velocidade do som. O sinal
positivo ocorre no afastamento e o sinal negativo é o caso da aproximagao. No
caso geral, quando o observador nao se encontra na mesma trajetéria retilinea,
temos

Je

fo= vecosf’ (3)

c
Neste caso, a aproximagao para a expressao da equacdo 2 s6 é valida quando,
se aproximando, 6 é pequeno de modo que cosf = 1 ou 6 é préximo de 180° de
modo que cosf =~ —1.

Isto significa que durante a passagem do moével, hd um trecho de transigao
em que cos f é muito diferente de 1 ou —1. Nesta regido, ndo podemos empregar
a expressao da equacdo 2 com exatidao, o que nao é um grande problema para
a finalidade de estimativa.

De qualquer maneira, ainda temos uma outra variavel para tratar se deseja-
mos determinar a velocidade v do mével que é a frequéncia que ele emite. Isto
pode ser resolvido com as seguintes consideragoes

e 0 trecho em que héa a transicido entre aproximacao e afastamento é curto
e a velocidade v é aproximadamente constante logo antes e logo apds a
transicao; e

o a frequéncia de emissdo f. do automédvel depende de sua velocidade (esta
predominantemente associada a rotagdo do motor que é proporcional a ve-
locidade em uma mesma marcha) e portanto também é aproximadamente
constante.

Com elas, podemos estudar a frequéncia percebida na aproximacao logo antes
da transigdo, que chamaremos f,), € a frequéncia percebida no afastamento logo
apés a transicdo, que chamaremos de f,y. Consideraremos que em ambos os
casos v e f. permanecem constantes. Com isso

Jo=T"w o Jor =T (4)

229



© L N e o A W N e

I T ~ S~ S S S R
S © ® N o o A W N R O

o
e

0.150 1
0.1254
0.100 1
0.075
0.050 1

0.025
o S

intensidade [u.a.]

0.000 q

T T T T
0 5000 10000 15000 20000

frequéncia [Hz]

Figura 4: Espectro de trecho do dudio da aproximagao do carro.

Resolvendo para v, temos

fap - faf

! ‘ fap + faf ' (5)

Basta-nos realizar as medidas de f,p € for. Vamos fazé-lo com uma passagem

de um automével por volta dos 10 s no video. Consideramos como aproximagao

um trecho de dudio entre 9,77s e 9,865s. O trecho que escolhemos tinha apenas

3937 amostras, o que resulta em menos de 200 MiB de memoria e efetivamente

utilizamos o dudio original para a medida. O espectro deste trecho é mostrado

na figura 4 e foi obtido pelo cédigo 3. O primeiro pico é o mais intenso e de

menor frequéncia, sendo, portanto o componente da frequéncia fundamental.
Ela é medida no espectro como f,, = 728,09 Hz.

from numpy import x
import matplotlib.pyplot as plt
import soundfile

x, fs = soundfile.read("Flap.wav")
N = len(x)
w0 = 2xpi/N

i = reshape(arange(int(N/2)+1),(int(N/2)+1,1))
j = reshape(arange(N) ,(1,N))

matrizlJ = iQj

Ca = (2/N)*cos(wOxmatrizllJ)

Sa = (2/N)xsin (wOxmatrizlJ)

Ca[0,:] = 0.5%xCa[0,:]
if N%2==0:
Calint (N/2) ,:] = 0.5%Calint (N/2) ,:]
a = Ca@x
b = Sa@x
¢ = sqrt(a*x+2 + bxx2)
f = arange (0,int (N/2)+1)*(fs/N)
plt.plot(f,c)
plt.plot ()
plt .show ()

Cédigo 3: Obtencao do espectro do som de trecho da aproximacao do carro de
F1.

Vemos no espectro que praticamente nao hé componentes com frequéncia
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maior do que 5000 Hz e, por esta razao, aqui também poderiamos ter empregado
dizimacao com Kqizimagio ~ 4 sem prejuizo & andlise do espectro.

Para estimar f,r fizemos um processo similar com um trecho entre aproxi-
madamente 11,250 e 11,330 s obtendo f,r = 445,80 Hz.

Aplicando os valores obtidos para fqp € for € considerando ¢ = 343 m/s na
equacdo 5, obtemos v = 82m/s = 297 km/h, uma velocidade tipica da F1 em
uma reta. Neste problema, também é valida a andlise estatistica, j4 que ha a
passagem de varios carros, o que possibilita o estabelecimento de uma média e
um desvio padrao para a medida.

3 Velocidade do chute ao gol

Este problema comporta a solugao tipica da cinemaética, como a medida da
velocidade como a razao entre a distancia entre o ponto em que a bola é chutada
e o ponto em que ela colide com a rede, por exemplo. Considerando nossa
sugestao de realizar mais de uma estimativa e a possibilidade de realizacdo de
medidas de frequéncias, podemos tentar uma medida da velocidade explorando
o efeito Doppler.

A figura 5 prop6e uma configuracio que possibilita a medida por meio desse
efeito. Para tal, é necessario uma fonte de dudio por meio da qual se possa
controlar a frequéncia da emissdo. Isto é facil de obter empregando uma caixa
de som sem fio e a emissdo de uma frequéncia conhecida. Nao é dificil encon-
trar aplicativos, inclusive com funcionamento no navegador, que emitem uma
frequéncia controlada. Eles podem ser encontrados pesquisando por gerador de
tom, sendo mais facil encontra-los em ferramentas de pesquisa empregando os
termos em inglés (tone generator).

fonte[ﬂff, ) ,L@E
it =

microfone f,

Figura 5: Esquema para medi¢ao da velocidade da bola empregando o efeito
Doppler.

Como alternativa, pode-se empregar o Python, gerar uma senoide com a
frequéncia desejada, com uma taxa de amostragem arbitraria, e por um tempo
suficiente para realizar o experimento. Pode-se reproduzir o dudio executando
a funcdo sounddevice.play ou ainda salvando a matriz em um arquivo com
a funcdo soundfile.write e executd-lo em um aplicativo de reproducao de
midia.

Ao mesmo tempo em que a frequéncia é emitida, é necessario capta-la com
um microfone, que pode ser um microfone de um celular. Se a bola fosse um
observador, ele estaria em movimento com relagdo a fonte que se encontra em
repouso com relagao a atmosfera. Neste caso, sabemos que a frequéncia que a
bola “perceberia” o som é

=t (142). (6)
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Ora, essa é justamente a taxa com a qual a onda se choca com a bola e, portanto,
a taxa com a qual a bola reflete a onda. Ou seja, pode-se determinar a velocidade
da bola isolando v, obtendo
fr )
v=c|*F—-1). (7)
(7

Da equacgao 7 sabe-se a frequéncia emitida f., que deve ser definida na confi-
guracao do experimento, e a velocidade ¢ do som. Pelo espectro do sinal captado
pelo microfone que esbogamos na figura 6, pode-se determinar a frequéncia re-
fletica f.. Tipicamente nesta configuragdao, nao é facil evitar que o microfone
receba a emissao da caixa de som, que poderd, inclusive, se apresentar com
maior amplitude do que as componentes de dudio refletido. O dudio devera ter
dois picos, um na frequéncia emitida e outro, possivelmente menor, na frequén-
cia refletida f,.. Observando este segundo pico, pode-se medir f,. e estimar a
velocidade da bola pela equacao 7.

|ex]

.

! fe fr

Figura 6: Esboco do espectro do sinal de dudio captado pelo microfone no
experimento da figura 5.

4 Identificacao da altura de som monofonico

Se o a musica é monofonica, espera-se que a tnica nota tocada possa ser iden-
tificada por sua frequéncia fundamental e, portanto, mensuravel pelo espectro.
Pode-se separar os trechos de cada uma das notas no Audacity e verificar suas
frequéncias fundamentais pelo espectro com um algoritmo similar ao do cédigo
3.

Obtida a frequéncia fundamental, pode-se recorrer as convengoes para a
definicdo das notas musicais na escala temperada, convengdao mais comum na
musica ocidental. A escala temperada respeita as convencoes:

e Nota padrdo A4 = 440 Hz.
« Outras notas seguem uma progressao geométrica.

e 132 nota da escala cromadtica recebe o mesmo nome da 12 nota, chamada
de oitava (na escala nido cromdtica utiliza-se apenas 7 notas).

e A oitava tem o dobro da frequéncia da nota original. Ay = 440 Hgz,
As = 880 Haz.
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Tabela 1: Oitava completa das notas da escala croméatica ocidental.

ordem alfabética solfejo
0 A (Ay) 14 (natural)
1 Ag ou Bb 14 sustenido ou si bemol
2 B si (natural)
3 C (As) dé (natural)
4 Ct ou Db d6 sustenido ou ré bemol
5 D ré (natural)
6 D¢ ou Eb  ré sustenido ou mi bemol
7 E mi (natural)
8 F fa (natural)
9 F¢ ou Gb  fa sustenido ou sol bemol
10 G sol (natural)
11 G# ou Ab  sol sustenido ou 14 bemol

Logo, se considerarmos a nota A, como o termo de ordem 0 da PG, ou seja
ag = 440 Hz, entdo o Aj serd o termo de ordem 12, ou seja a2 = 880 Hz. Com
isso, é possivel encontrar a regra geral na qual, dada a ordem da nota (neste caso
Ay tem ordem 0 e As tem ordem 12), temos a sua frequéncia, pois é possivel
obter a razio ¢ = 2'/12 e a expressio geral para o termo da PG

a, = 440 - 272" [Hz]. (8)

Ora, se os termos desta PG determinam as frequéncias, para identificar a
nota, devemos tentar descobrir a ordem n dado o termo. A tabela 1 mostra a
ordem de todas as notas da escala cromética (a que contém todas as 12 notas
desta convengdo). Se medirmos, por exemplo, uma frequéncia fundamental de
an, = 790 Hz, pela inversao

A
n=12 1Og2 m, (9)

chegamos a n &~ 10,13. Como n deve ser um inteiro, a ordem da nota, vemos que
hé ou uma imprecisdo na execucdo da nota ou na sua medida, sendo a ordem
mais proxima n = 10 que corresponde a nota G (sol natural).

A sequéncia das notas da tabela 1 é ciclica, repetindo-se a cada 12 notas. A
nota de ordem 0 é a mesma nota de ordem 12. A nota de ordem 1 é a mesma
nota da de ordem 13 e assim sucessivamente, inclusive para valores negativos
da ordem. Assim, se se obtém a, = 2220 Hz, se obtém n = 28, que, pelo ciclo,
é 0 mesmo que a nota que tem n = 4 pois 28 = 4+ 122, ou seja, sdo dois ciclos
adiante da nota de ordem 4. Como a nota de ordem 4 é o C4§ (d6 sustenido) e
o primeiro ciclo é o ciclo do C#s (ou seja, da oitava de ordem 5), entdo a nota
que tem n = 28 é o C#7, ou seja, duas oitavas & frente?.

Por outro lado, uma nota com frequéncia fundamental a,, = 165 Hz, tem
n ~ —17. Ora, —17 = 7+ (—2) - 12, ou seja, é a mesma nota que a nota de
ordem 7 mas duas oitavas abaixo da apresentada na tabela 1. Como a nota
de ordem 7 na tabela é o E5, entdo a nota que tem frequéncia fundamental de
165 Hz é o Es.

4Observe que o A (14 natural) é a nota padréo de frequéncia e primeira letra do alfabeto mas
o C (dé natural) é a nota que determina a numeracdo das oitavas, apresentada no subscrito.
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4.1 Verificacao das notas

Pode-se procurar algum registro das notas que estdo sendo tocadas como a
sua partitura, por exemplo. Este caminho é facil se a musica escolhida for
classica com direitos autorais abertos. Uma segunda possibilidade é procurar
um instrumento afinado ou até um aplicativo de piano e repetir as notas obtidas
e comparar sensorialmente com as notas na musica. Ha uma grande quantidade
de aplicativos, inclusive alguns web, que podem ser utilizados no navegador,
permitem a reproducdo das notas e, inclusive, indicam a nota tocada e a sua
oitava.

5 Identificacao de digitos em dual-tone

O uso do dual-tone consiste na execucdo de duas frequéncia ao mesmo tempo,
sendo uma delas referente a linha e a outra a coluna da tecla, de modo a associar
o par de tons aos simbolos arranjados em linha e colunas como mostra a figura
7 reproduzida da norma ITU-T Rec. Q. 23 [3]. As frequéncias sdo 697, 770, 852
e 941 Hz para as linhas (baixas frequéncias) e 1209, 1336, 1477 e 1633 Hz® para
as colunas (altas frequéncias).

High group frequencies (Hz)

A
r ~

Hz, 1208 | 1338 [ W7 | 6%

R p———

HBJ

€ — 4= = - - —_— »—-—-1»—

w| 7] I8] I9HC]

_d_._._ ___)_

L s E}f‘]ﬁﬂlﬁ]

J
T

Low group frequencies (Hz)
H
(3]
(o2

Figura 7: Teclado do dual-tone e as suas frequéncias.
Fonte: ITU-T Rec. Q. 23[3].

Como cada tecla emite duas frequéncias muito préximas de senoidais (a
norma determina que o contetido na frequéncia seja 10 vezes maior na frequéncia
fundamental do que aqueles em outras frequéncias durante a transmissao e um
desvio maximo de £1,8% na frequéncia emitida), o espectro apresentard apenas
dois picos acentuados nas frequéncias relativas a tecla pressionada.

Assim, basta ler ambas as frequéncias num trecho de emissdo para deter-
minar a tecla pressionada. A leitura pode ser feita pelo espectro da mesma

5Note que a tltima coluna foi reservada na norma para as teclas A, B, C e D que foram
previstas mas acabaram nao sendo implantadas nos telefones e teclados com este formato.
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maneira que empregamos o espectro para leitura de harmoénicos nos problemas
anteriores.

5.1 Automatizacao de leitura da sequéncia de teclas

Esta fase admite muitas solugbes, pois a automatizacdo da identificacao da
sequéncia é um verdadeiro problema de engenharia. Vamos propor uma solugao
com muitas regras mas, todas elas, simples. Nesta fase da aprendizagem, nao
é possivel propor um programa de identificagdo automatica infalivel e os algo-
ritmos propostos poderdo apresentar falsos positivos ou falsos negativos com
frequéncia e isto nao deve ser considerado um problema.

Para nossa solugdo gravamos uma sequéncia de teclas no audacity a partir
do dudio gerado pelo aplicativo Dual Tone Generator® e o empregamos como en-
trada do script de Python. Como uma sequéncia de discagem é um audio longo,
criamos uma regra para analisid-lo em partes. A primeira parte do algoritmo
é mostrada no cédigo 4. Ele cria as varidveis de apoio que empregaremos. A
primeira delas, o criterioEnergia é a proporg¢do minima de energia (associada
ao quadrado da amplitude da componente de frequéncia) na frequéncia para
considerarmos que ela estd presente como parte de uma emissao de dual-tone.
Ou seja, se a tecla 6 for pressionada, deve haver pelo menos 10% da energia do
sinal na frequéncia 770 Hz e pelo menos 10% da energia na frequéncia 1477 Hz
pois empregamos criterioEnergia = 0.1.

6Disponivel em https://onlinetonegenerator.com/dtmf .html.
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#Defini¢dGo de wvaridveis da légica da sequéncia
criterioEnergia = 0.1

freqLinha = array ([697, 770, 852, 941])
freqColuna = array ([1209, 1336, 1477, 1633])

teclas = array ([["1","2","3","A","'n"],
[*4","5",'6","B","n"],
["7","8","9" ) 'C","n"],
["«","0","#",'D","n"],
["n","n","n","n","n"]])

sequencia = "'

#Carrega o dudio

discagem , fs = soundfile.read("discagem.wav")

#Prepara as varidveis para realizar SFTD

N = 5000

Deltaf = fs /N

w0 = 2xpi/N

i = reshape(arange(int(N/2)+1),(int(N/2)+1,1))
j = reshape (arange(N) ,(1,N))

matrizlJ = iQj

Ca = (2/N)xcos(wOxmatrizlJ)

Sa = (2/N)xsin (wOxmatrizlJ)

Ca[0,:] = 0.5%xCa[0,:]
if N%2==0:

Calint (N/2) ,:] = 0.5xCa[int (N/2) ,:]
#Prepara¢do para percorrer o dudio
inicio = 0
fim = N
i=0
teclaAtual = "n'

Cédigo 4: Definicdo de variaveis gerais e para calculo do espectro para a iden-
tificagdo automatica de dual-tone.

Os vetores freqLinha e freqColuna guardam as frequéncias padrao das
linhas e colunas na ordem em que aparecem no padrdo. J4 a matriz teclas,
carrega em seu elemento teclas[i, j] a tecla correspondente em formato string
da i-ésima linhas e j-ésima coluna. A tultima linha e dltima coluna é utilizada
com o caractere identificador "n" com a finalidade de indicar que o toque de uma
das frequéncias da linha ou da coluna nao foi identificado. Estas trés variaveis
foram criadas para facilitar a localizacdo da possivel tecla tocada pela compa-
racdo entre as posigoes das frequéncias nos vetores freqLinha e freqColuna e
localizé-lo na matriz teclas.

Apos cada teste, caso o resultado da avaliacdo da matriz teclas resulte em
uma das teclas, ela serd gravada no string sequencia, que ¢ inicializado vazio
para que seja preenchido a medida que a presenca das frequéncias do dual-tone
forem sendo identificadas.

O fim do c6digo 4 apenas define as matrizes que serdo empregadas no célculo
do espectro e as variaveis de controle do lago que efetivamente fard a identificagao
das teclas.

O algoritmo que propomos aqui divide o 4udio em fra¢des x com N amostras.
Esperamos que N seja muito menor que a quantidade total de amostras do audio
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Figura 8: Fluxograma do algoritmo para definir a sequéncia dual-tone presente
em um audio.

que contém a sequéncia. O que fazemos com x a cada iteragdo é mostrado no
fluxograma da figura 8.

Os seguintes testes sdo feitos para que se possa, enfim, registrar uma tecla
como sendo parte da sequéncia:

e A energia total no sinal deve ser nao-nula, caso contrario, trata-se de um
trecho de siléncio absoluto.

o Identificados dois picos de frequéncia e sua ordem (qual tem frequéncia
maior que o outro), s6 haverd registro se a energia nos picos for alta o
suficiente para ser considerada uma frequéncia de dual-tone intencional e
nao a simples presenga ocasional destas frequéncias no audio.

e O valor da frequéncia medida dos picos deve estar dentro da tolerancia de
1,8% com relacao as frequéncias esperadas no dual-tone.

o A tecla deve ser nova para ser registrada, caso contrario, consideramos
que este trecho x ainda continua o toque da tecla iniciado em trechos
anteriores.

O codigo 5 implementa o fluxograma da figura 8. A forma como ele iden-
tifica dois picos é, localizando o primeiro pelo seu indice dentre os valores dos
coeficientes ¢ com a fungdo argmax que retorna o indice do item de ¢ que tem o
maior valor. Apds calcular sua poténcia, o algoritmo zera o valor do pico e de
suas adjacéncias de modo que a proxima aplicacdo de argmax tenda a localizar
o préoximo pico.

Para comparar a frequéncia dos picos com as frequéncias padrao, o algoritmo
utiliza o argmin, analogo ao uso do argmax, mas para obter o indice do valor
minimo, o que é feito sobre o vetor que contém as frequéncias padrao subtraidas
do valor do pico. Se o pico for préximo de alguma frequéncia padrao, a célula
correspondente apresentard um valor préximo de 0.
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while fim < len(discagem):

X =
C:

discagem [inicio : fim ]
sqrt ( (Ca@x)**x2 + (Sa@x)*x2 )

energiaTotal = sum(cx*%2)
if energiaTotal = O0:

linha = 4
coluna = 4

else:

picoLinha = argmax(c)*Deltaf
energial = c[argmax(c)]|*%x2/energiaTotal
c[argmax(c)—3:argmax(c)+4] = 0
picoTemp = argmax(c)=*Deltaf
energia2 = c[argmax(c)]|**2/energiaTotal
if picoTemp < picoLinha:
picoColuna = picoLinha
picoLinha = picoTemp
else:
picoColuna = picoTemp
if energial<criterioEnergia or energia2<
criterioEnergia:
linha = 4
coluna = 4
else:

linha = argmin (abs(freqLinha — picoLinha))
if abs(freqLinha[linha] — picoLinha) > 0.036%

freqLinha [linha ]:
linha = 4

coluna = argmin (abs(freqColuna — picoColuna))
if abs(freqColuna[coluna] — picoColuna) > 0.036x

freqColuna [ coluna ]:
coluna = 4

if ((teclas[linha ,coluna] != teclaAtual) and (teclas]|

linha ,coluna] != "n")):

sequencia = sequencia + teclas[linha ,coluna]

teclaAtual = teclas[linha ,coluna]

i =

i+1

inicio = Nxi
fim = Nx(i+1)
print (sequencia)

Cédigo 5: Implementagao do fluxograma da figura 8 em continuacao ao cédigo
4.

O audio criado continha a sequéncia “77367150” que foi testado em dois
cenarios. No primeiro o dudio puro obtido do aplicativo Dual Tone Generator
foi empregado como entrada. O dudio puro tem siléncio absoluto nos periodos
em que nenhuma tecla esta sendo pressionada, configurando um audio ideal de
dual-tone. No segundo cenéario, empregamos o Audacity para misturar o dudio
puro com o som ambiente’ em uma mistura de volumes realista. Em ambos os
cendrios o algoritmo identificou a sequéncia de dual-tone corretamente.

70 som ambiente empregado foi https://www.soundjay . com/human/crowd-talking-1.mp3.
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6 Péndulo, angulo de partida e MHS

6.1 Discussao do espectro do MHS

O movimento harmoénico simples é aquele definido como andlogo ao da projegao
do movimento circular uniforme, e, portanto, consiste de um movimento senoi-
dal. Por esta razao, seu espectro contém apenas 1 componente, com intensidade
igual a amplitude e frequéncia igual a frequéncia de repeticdo do movimento.
Por esta razao, o seu espectro deve conter apenas um pico, e o resto do espectro
deve ser nulo.

6.2 Obtencao de 0[n]

A forga resultante sobre o péndulo tem dois componentes. A centripeta, que
mantém a trajetdria circular e o tangente a trajetéria, que efetivamente altera o
médulo da velocidade do mével ao longo da trajetéria. E este segundo que nos
dard a equacdo do movimento. O componente tangente a trajetéria da forca
resultante é dada por mgsen . Com isso, a equa¢do do movimento do péndulo
é

mgsen § = may, (10)
em que a; € o componente tangente da aceleracdo, e é a aceleracao linear sobre
a trajetéria circular, e, portanto, dado por

a; = al, (11)

em que a é a aceleragio angular dada em rad/s?.
Podemos usar as relagoes

_Aw  wn] —wln —1]

N — = 12
R T, (12)

¢ A6 O] — 6 — 1]

n] —6[n —
W= - (13)
sucessivamente e isolar 6[n] para obter
Tg

O[n] = —— senfn — 1] + 20[n — 1] — 0[n — 2]. (14)

Nestas expressdes w é a velocidade angular e 6 é a posicdo angular. Os
valores entre colchetes sao a ordem da amostra, ou seja, € uma simulagao que
nos dard amostras das posigoes angulares §. Como estamos trabalhando com
amostras, a melhor aproximagao para At é o periodo de amostragem T.

Vemos que o valor de 6[n] depende de duas amostras anteriores, valores de
Oln — 1] e de O[n — 2], isto porque, de certa forma, para determinar o valor
sucessivo, deve-se ter conhecimento da posi¢ao anterior, que poderia ser dada
por O[n — 1] e da velocidade anterior, que precisaria de uma variagio Af =
f[n — 1] — f[n — 2]. Com isso, se o péndulo é solto (velocidade inicial nula) de
0 = 0y, podemos fazer 0]0] = 0[1] = 6y, garantindo tanto a velocidade inicial
nula como a posicao inicial dada por 6y. A partir destes dois valores, é possivel
obter quantos valores de 6 se desejar.
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6.3 Simulacao no tempo

O c6digo 6 simula 500 mil pontos de §[n] considerando L = 10m, g = 10m/s?
e 6y = 0.1rad e tomando como referéncia para o periodo de amostragem 10000
pontos por periodo, considerando o periodo tedrico de

T0:27T

L
- (15)

from numpy import x
import matplotlib.pyplot as plt
L =10
g = 10
omegal = sqrt (g/L)
f0 = omegal/(2xpi)
TO = 1/£0
Tssim = T0/10000
Nsim = 500000
thetaO0 = 0.1
theta = empty (Nsim)
k = (—=1)*(Tssim#*%2)*g/L
theta [0] = thetal
theta[1] = thetal
for n in range(2,Nsim):
theta [n] = k#sin(theta[n—1])+2xtheta[n—1] — theta [n—2]
t = arange (0,50000) *Tssim
plt.plot(t,theta[:50000])
plt .show ()

Cédigo 6: Célculo de 500000 valores de [n] empregando aproximadamente
10000 amostras por periodo.

6.4 Espectro para 6, pequeno

O espectro do sinal do codigo 6 é mostrado na figura 10 para 6y = 0,1rad,
considerado um valor pequeno e com uma dizimacéo de Egizimacao = 100. Vale,
portanto, a aproximacao de que o péndulo realiza uma oscilagdo harmoénica com

frequéncia fundamental
wo = ,/%, (16)

que para as escolhas da simulacdo resultam em wy = 1rad/s, valor no qual se
observa o 1inico valor relevante de componente. Para nossas escolhas de N e
fs apos a dizimagdo, a ordem do harménico com frequéncia de 1rad/s é o csp.
Seu valor deveria ser igual a amplitude da oscilagdo dada pelo dngulo de onde
o péndulo é solto, porém, o valor calculado é de c59 = 0,09981449749198941,
0,18% menor do que deveria ser.

Os componentes préximos a csg sdo em torno de duas ordens de grandeza
menores do que o valor de pico e os valores dos componentes préximos dos
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Figura 9: Simulagdo da oscilagdo do péndulo para L = 10m, g = 10m/s? e
0o = 0.1rad.
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Figura 10: Espectro de 6[n] obtido no cédigo 6.
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harmoénicos de 22 e 32 ordens sdo quatro ordens de grandeza menor do que o
valor de pico, mostrando que o espectro parece, efetivamente, o espectro de um
MHS, composto de um tinico componente na frequéncia de oscilacio®.

6.5 Estudo da frequéncia de oscilagdo com a variacao do
angulo inicial 6,

Para estudar a variacdo da frequéncia da oscilacdo com 6y, é necessario um
lagco em que, a cada iteracdo, fazemos uma simulagao, calculamos o espectro e
estimamos a frequéncia da oscilacdo pela ordem do componente de frequéncia
com méaxima amplitude empregando a fun¢io argmax, o que fizemos no cédigo
7. Assim, dada a ordem k do componente de frequéncia maximo, o que poderia
ser feito com k = argmax(c), pode-se chegar a frequéncia de oscilacdo por

27 f
Woscilagio = Tfk (17)

Assim, para cada valor de y no vetor thetalniciais, que varre os angu-
los 0,1 < 0y < 7/2 em intervalos de um centésimo de radiano, calculamos a
frequéncia de oscilagdo e pusemos no grafico em azul da figura 11. Nele, vemos
que quanto maior é o d&ngulo de onde o péndulo é solto, mas lentamente o pén-
dulo oscila. O grafico da “saltos” pois a precisao da medida da frequéncia de
oscilagao é

27 fs

Aw = N = 0,02rad/s (18)

em nossos espectros.

Para verificar a aderéncia dos resultados simulados e calculados por meio do
espectro com valores teéricos, comparamos o nosso resultado com o proposto
por Beléndez et al. [4] para o periodo de oscilagdo do péndulo dado aproxima-

damente por
g 1 11
Toscilagéo = 277\/2 (1 + EG% + m@é + .. ) (19)

e apresentamos o grafico do wWoscilagao tedrico em vermelho tracejado. Vemos uma
excelente adesao entre as medidas de nossas simulagées com o comportamento
tedrico esperado.

8Se mudarmos no modelo sin(theta[n-1]) por theta[n-1], estabelecendo um modelo efe-
tivamente de MHS, o erro na frequéncia de pico cai para 0,0000058%, as frequéncias adjacentes
a frequéncia de pico caem para 7 ordens de grandeza abaixo do pico e nas préximidades dos
22 e 32 harmonicos entre 8 e 9 ordens de grandeza abaixo.

242



© N o w A W N e

W oW oW W W W W oW W oW N NN NNNNNNN R R R e R e e s e e
© ® I O A ® KN B O © ® N O 0 A W@ N = O ©® ® N O O A W N = O

IS
o

41

42

43

44

45

from numpy import =x

import matplotlib.pyplot as plt

L =10

g = 10

omegal = sqrt(g/L)
f0 = omegal/(2xpi)
TO = 1/£0

Tssim = T0/10000
Nsim = 500000

theta = empty (Nsim)

#Varidveis para cdlculo dos espectros

kDizimacao = 100

Ts = TssimxkDizimacao

N = int (Nsim/kDizimacao)
fs = 1/(Ts)

w0 = 2xpi/N

i = reshape(arange(int(N/2)+1),(int(N/2)+1,1))

j = reshape (arange(N) ,(1,N))
matrizlJ = iQj

Ca = (2/N)xcos(wOxmatrizlJ)
Sa = (2/N)xsin (wOxmatrizlJ)
Ca[0,:] = 0.5%xCa[0,:]

if N%2==0:

Calint (N/2) ,:] = 0.5xCa[int (N/2) ,:]
#Simulacdes com varia¢do do thetal

k = (—1)*(Tssim#*%2)*g/L

thetalniciais = arange (0.1, pi/2, 0.01)
omega = empty(len(thetalniciais))

i=0

for thetaO in thetalniciais:
theta [0] = thetal
theta[1] = thetal
for n in range(2,Nsim):

theta[n] = k#sin(theta[n—1])+2«theta[n—1] — theta[n—2]

x = theta [0:Nsim:kDizimacao]

¢ = sqrt ((Ca@x)*x2 + (Sa@x)*%2)
omega[i] = 2xpixargmax(c)*fs/N

i=i+l

#Cdlculo tedrico segundo Beléndez et al (2011)
TTeorico = 2#pixsqrt (L/g)*(1+thetalniciais**2/16+11x

thetalniciais*%4/3072)

omegaTeorico = (2xpi)/TTeorico

#Plot dos grdficos
plt.plot(thetalniciais ,omega)

plt.plot(thetalniciais ,omegaTeorico,"r—

plt .show ()

Cédigo 7: Célculo da frequéncia de oscilagdo para valores de 0,1 < 0y < /2.
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Figura 11: Variagdo da frequéncia de oscilagao do péndulo em termos do dngulo
inicial fy. Azul continuo obtido pela simulagdo e vermelho tracejado o valor
tedrico aproximado da equacao 19.

6.6 Estudo da proporgao do harmoénico fundamental com
a variagao do angulo inicial 6,

Alteramos o cddigo 7 na sua linha 28 para inicializar um vetor para registrar o
célculo da proporgao:

proporcao = empty(len(thetalniciais))

e a linha 37 para efetivamente realizar a proporgao:

proporcao[i] = (c[argmax(c)])/(sum(c)).

Também modificamos o trecho para gerar o grafico da varidvel proporcao em
termos de 6.

Como resultado das alteragoes no codigo 7, geramos o grafico da figura 12
para a proporc¢ao entre a amplitude do componentes de maior intensidade com
relagdo ao somatério de todas as amplitudes de componentes, ou seja

Cmaior componente
Cmaior componente (20)

> ck

Podemos ver que em alguns pontos esta razao estd muito préoxima de 1 para
0,169 < 7/2, ou seja, o maior componente de frequéncia é o componentes pre-
dominante em todo o espectro, o que condiz com um MHS que possui um tnico
harmoénico na frequéncia de oscilagao.

Fora destes pontos de pico, ha uma queda abrupta na relevincia da compo-
nente de pico. Isto se deve & imprecisdao da medida da frequéncia por meio do
espectro. A medida que o 4ngulo 6y muda, vimos que a frequéncia de oscilagio
muda, mas como a SF'TD sé mede exatamente as frequéncias no formato

27 fs
w=—
N

proporgao =

k = Awk (21)
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Figura 12: Proporcdo do componente da frequéncia fundamental com relagao
ao total para 0,1 < 6y < /2.

para valores inteiros distintos de k. Assim, quando a frequéncia de oscilacéo real
fica fora destes valores, outras frequéncias préximas a frequéncia de oscilagao
acabam sendo “usadas” pela SF'TD para conseguir realizar a representacdo do
sinal por meio de frequéncias que usam necessariamente frequéncias no formato
da equacao 21.

Tomemos o caso em que 0y = 0,4rad, por exemplo. Neste caso, temos
Woscilagio = 0,99rad/s. Como em nossa simulagdo e calculo de espectro nosso
Aw = 0,2rad/s, as melhores leituras seriam para woscilagao = 0,98 OU Woscilagio =
1,00, e para 6y = 0,4 temos uma medida exatamente no meio, resultando na
pior leitura possivel. O espectro deste caso é apresentadona figura 13 em que a
proporcao calculada utilizando a equacao 20 mede aproximadamente 0,108 e ha
uma grande quantidade de componentes em torno de w = 0,99 rad/s com valor
ndo nulo na tentativa de representar esta frequéncia que nao estd disponivel
com exatiddo na representacio em que Aw = 0,2rad. Observe como ele é
diferente do espectro apresentado na figura 10 em que o pico de frequéncia é
bem concentrado em um ponto.

0.25 f
= 0.20

0.15 A

0.10 4

intensidade [rad.

0.05 A

0.00 +; . . ;
0.0 0.5 1.0 1.5 2.0

frequéncia angular [rad/s|

Figura 13: Detalhe do Espectro do péndulo para 6y = 0,4 rad.
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Desta forma, sé é segura a andlise do comportamento da proporcao da figura
12 nos seus pontos de maximo, quando ela é capaz de melhor representar a
oscilagdo do péndulo. Esta figura, porém, mostra uma queda muito sutil na
proporgao, mostrando que até 6y = 7/2, a oscilacdo ainda é aproximadamente
senoidal. Por esta razdo, repetimos este processo para 0,957 < 6y < 99,
obtendo o resultado da figura 14. Nela, observamos que nos picos, onde a medida
é mais precisa, a proporc¢ao do componente mais intenso é por volta de 80% do
total, o que significa que para representar a forma da onda, sdo necessarios mais
componentes de frequéncia, possivelmente harmoénicos, senoides em multiplos
inteiros da frequéncia fundamental.

1.0 mmm e e e
Q
9
(é 0.8
< —
=@
z ==
= QDO O
= 0.6
o = 8
2 5 3
oRi=lye
fav) o g
2 E 04
)
2,
o
=
0.2

2.98 3.00 3.02 3.04 3.06 3.08 3.10
angulo inicial, 6y [rad]

Figura 14: Propor¢do do componente da frequéncia fundamental com relagao
ao total para 0,957 < 6y < 0,997.

Para ilustrar a distor¢do do formato senoidal, mostramos na figura 15 a
simula¢do no tempo do caso extremo em que 6y = 0,997. Para este dngulo
extremo, obtivemos Woscilagao = 0,283515 rad/s, muito distante da frequéncia de
1rad/s = /g/L e uma curva completamente diferente de uma senoide, que foi
posta no grafico em vermelho tracejado com mesma amplitude e frequéncia para
a finalidade de comparacao.

Uma onda tao diferente da senoide nao pode ser composta de um tinico com-
ponente de frequéncia. O seu espectro é mostrado na figura 16. Nela, ajustamos
N para alterar Aw de modo a coincidir com um submdultiplo da frequéncia de
oscilagao do péndulo. Assim, podemos ver claramente a frequéncia fundamental
Woscilagao = 0,283515rad/s e pelo menos mais trés ou quatro harmoénicos, todos
de ordem fmpar (nas frequéncias 3wosci1a§50a 5Wosci1agéo; 7wosci1a§50 € 9w05cila§z§0)~
Este caso especial encerra nossa andlise com relacdo a distor¢ao da oscilagao
com relacgdo aquela do MHS.
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Figura 15: Simulacao das oscilagdoes do péndulo para 6y = 0,997 rad ao longo
do tempo. Linha continua azul dada pela simulagdo e a linha tracejada em
vermelho uma senoide com mesma amplitude e frequéncia.

intensidade [rad]

0 2 a 6 8 10
frequéncia angular [rad/s|

Figura 16: Espectro da oscilagdo do péndulo para 6y = 0,997rrad. O eixo
vertical é a intensidade do componente de frequéncia dado no eixo horizontal
em radianos.

7 Comportamento massa-mola com 2 graus de
liberdade

7.1 Descricao do movimento

Neste nivel, é muito dificil deduzir qual é efetivamente o movimento das massas
num sistema com este nivel de complexidade. Talvez seja facil inferir apenas
que serd alguma espécie de oscilagao, e certamente nao tao simples como uma
oscilagao senoidal harménica. N&o é facil supor qual é o comportamento quali-
tativamente e muito menos quantitativamente. Este exercicio busca, inclusive,
mostrar como é complexa a descricdo de um sistema desta natureza apenas
“dobrando” a quantidade de elementos com relacao ao sistema massa-mola con-
vencional para o qual se sabe que o movimento é harmonico simples.
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Figura 17: Diagrama de corpo livre do esquema de massas e mola.

7.2 Analise do movimento a partir da forga resultante

A figura 17 mostra o diagrama de corpo livre das massas m; e mo. Com eles,
determinamos as equagoes do movimento de ambos os corpos como

mia; = —kix1 + kia(ve — 11) (22)
maaz = —ki2(z2 — 1) — ka2
Substituindo as relagoes
Az z[n] —x[n—1]
e ) k| 2
YA T, 23)
Av  w[n]—vn—1]  zn] - 2zxx— 1] + z[n — 2]
CEAL T T, - T2 (24)

em que o periodo de amostragem T é tomado como um tempo curto o sufici-
ente para uma boa aproximacao das medidas instantaneas da aceleracao e da
velocidade, obtemos o sistema de equacoes

(Tjr’i?l + k1 — kz) x1[n] —kioza[n] = 1;331 (2z1[n — 1] — z1[n — 2])

—ki2z1[n] + (% + k1 + kz) xo[n] = T (2za[n — 1] — xa[n — 2])
(25)
para obter os valores atuais das posi¢oes dos blocos, z1[n] e x2[n], a partir dos
valores anteriores de suas posigoes, x1[n — 1], 1[n — 2], z3[n — 1] e xza[n — 2] e
dos parametros do sistema.

7.3 Simulando comportamento das massas no tempo

Para simular o comportamento das massas, escolhnemos os parametros

k1 =100N/m; mq =1kg; 21[0] =0,2m; x2[0] = 0,1 m;
k12 =200N/m; mo =2kg; 21[1] =0,2m; x2[1] =0,1m; e
k2 = 300N /m.

A escolha de duas amostras na mesma posicao simula o efeito das massas my
e mgy serem soltas a partir do repouso quando estao deformadas, respectiva-
mente, de 0,2m e 0,1 m. Como At = Ty, escolhemos 10 us e coletamos 1 500 000
amostras.

Estes pardametros da simulagao correspondem as linhas de 3 a 11 do cédigo
8. Em seguida, criamos as matrizes A, A; e As por meio das quais resolveremos
o sistema da equagao 25 pelo teorema de Cramer dentro do lago for fazendo

det A1 D1 det A2 DQ

nhl=ga = “M=Gga =D (26)
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para valores sucessivos de n. O determinante das matrizes é calculado pela
fun¢do linalg.det do NumPy.

from numpy imports:
import matplotlib.pyplot as plt
ml=1; m2= 2
k1l = 100 ; k12 = 200 ; k2 = 300
x10 = 0.2 ; x11 = 0.2
x20 = 0.1 ; x21 = 0.1
Tssim = 0.00001
Nsim = 1500000
x1 = empty (Nsim) ; x2 = empty (Nsim)
x1[0] = x10 ; x1[1] = x11
x2[0] = x20 ; x2[1] = x21
A = array ([[ml/(Tssim=*%2) + k1 + k12, —k12],[—k12,m2/(Tssim
#x2) + k12 + k2]])
D = linalg.det(A)
ka = ml/(Tssim*x2)
kb = m2/(Tssim*%2)
Al = A.copy ()
A2 = A.copy ()
for n in range(2,Nsim):
B = array ([ka % (2xx1[n—1]—x1[n—2]),
kb x (2xx2[n—1]—x2[n—2])])
Al[:,0] =B
A2[:,1] =B
D1 = linalg.det (Al)
D2 = linalg.det (A2)
x1[n] = D1/D
x2[n] = D2/D
t = arange (0,Nsim)*Tssim
plt.subplot (2,1,1)
plt.plot (t,x1)
plt.subplot (2,1,2)
plt.plot (t,x2)
plt .show ()

Cédigo 8: Simulacdo do movimento do sistema de massas e molas.

Ao fim do calculo de todos os valores de x; e x3, sdo exibidos seus graficos
que reproduzimos na figura 18. Observa-se uma espécie de “oscilacdo bagun-
cada”. Neste nivel e olhando apenas para o grafico ndo é facil descrever as
caracteristicas especificas da oscilacdo, mas parece uma espécie de movimento
composto, especialmente para os valores escolhidos dos pardmetros.

7.4 Caracteristica oscilatoria do movimento das massas

Para extrair caracteristicas adicionais do movimento das massas, analisamos
o comportamento do deslocamento z; no dominio da frequéncia por meio do
codigo 9 posposto ao cddigo 8.
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Figura 18: Movimento das massas simulado pelo cédigo 8.

kDizimacao = 1000
N = int (Nsim/kDizimacao)
Ts = Tssim*kDizimacao
x = x1[0:Nsim:kDizimacao]
w0 = 2xpi/N
i = reshape(arange(int (N/2)+41),(int(N/2)+1,1))
j = reshape(arange(N) ,(1,N))
matrizlJ = iQ@j
Ca = (2/N)xcos(wOxmatrizlJ)
Sa = (2/N)xsin (wOxmatrizlJ)
Cal0,:] = 0.5%xCa[0,:]
if N%2==0:
Calint (N/2) ,:] = 0.5xCal[int (N/2) ,:]
¢ = sqrt ((Ca@x)*x2 + (Sa@x)*x2)
omega = 2xpixarange (0,int (N/2)+1)/(Ts*N)
plt.plot (omega,c)
plt .show ()
Termol = ((kl+k12)+m2+4(k12+k2)*ml) /(ml+m2)
Termo2 = ((kl1+k12)*(k124+k2) — k12%%2) /(ml*m2)
omegal = sqrt( 0.5%xTermol — 0.5%(( Termolx*2 — 4xTermo2 )

xx0.5) )

omega2 = sqrt( 0.5%*xTermol + 0.5%(( Termol#*2 — 4xTermo2 )
*%0.5) )

print ("omegal =" omegal)

print ("omega2 =" omega2)

Cédigo 9: Espectro e valores tedricos das frequéncias de ressonincia para a
simulagdo do codigo 8.

O resultado é um espectro com dois picos acentuados mostrados na figura
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Figura 19: Espectro do movimento da massa m;. O eixo horizontal é a frequén-
cia angular em radianos por segundo e o vertical a amplitude do deslocamento
em metros.

19. Isto indica um movimento composto por dois componentes senoidais puros,
ou seja, uma espécie de MHS composto por duas frequéncias.

De fato, Rao [5], em seu livro, indicado para nivel superior, deduz analiti-
camente que se trata de um movimento de dupla oscilagao senoidal em que as
frequéncias de oscilacdo sdo as raizes positivas® de

w? = 1 (kl + klz)TTLQ + (]{312 + k‘g)ml
o 2 mimso

2

1 (kl + klg)mg + (k12 + kz)ml 2
mimso

g Gtz 1) - K }1/2 @

Pelo gréfico da figura 19, os picos se localizam em w; = 11,31rad/s e
wy = 20,53rad/s com uma precisdo Aw = 0,42rad/s da SFTD. Pelo célculo
da equagdo 27 que também fizemos no cdédigo 9, obtivemos w; = 11,46rad/s
e we = 20,46 rad/s, o que mostra uma excelente adesdo da simulagdo ao valor
teodrico esperado.

8 Filtragem da voz

Preparamos um dudio muito curto com aproximadamente 1s de voz com um
pouco mais do que 50000 amostras de um dudio. Como a quantidade de amos-
tras de dudio é muito grande, fizemos a filtragem por partes a cada N = 5000
amostras. O processo de filtragem é muito simples e consiste apenas em aplicar
a funcdo f[k] ou g[k] sobre os coeficientes ay e b,. Para a aplicacdo de f, por
exemplo, fizemos

ak filtrado = f[k}ak original € bk iltrado = f[k]bk original - (28>

9Veja que poderiam ser 4 valores de w, as rafzes positiva e negativa e um valor para cada
escolha do sinal indicado pelo simbolo F (“menos ou mais”). Os valores negativos ndo tem
significado de frequéncia distinto de sua contrapartida positiva, razdo pela qual basta-nos
olhar as raizes positivas e obter as duas frequéncias de oscilagao.
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Para tal, transformamos os valores de f[k] em um vetor f e realizamos a mul-
tiplicacao elemento a elemento a = f*a e b = f£*b, jd que ji temos ax e by em
vetores.

O codigo 10 consiste, simplesmente, na carga do dudio, seguida da defini¢ao
dos parametros. Escolhemos kg de modo que ele coincidisse aproximadamente
com o k correspondente & frequéncia feorte = 600 Hz. A decisdo do feorte € dos
outros parametros foi feita por tentativa e erro.

Em seguida criamos o perfil do filtro. Na linha 11 calculamos f[k] e na
linha 12 g[k], mas empregamos o mesmo nome f para ambos 0s casos para nao
ser necessario alterar todo o codigo pela mudancga da expressdao do perfil do
filtro. Pode-se mudar a expressao escolhendo, dentre as linhas 11 e 12, qual serd
comentada.

Utilizando a expressdo para f[k], obtivemos o perfil de filtro mostrado na
figura 20 e com a expressao g[k] o perfil mostrado na figura 21.

As linhas de 16 a 31 do cédigo 10 apenas definem as matrizes de sintese
e andlise. Logo em seguida, um lago escolhe trechos sucessivos das amostras
do 4dudio de voz de tamanho N = 5000, obtém o espectro, realiza a filtragem
pela multiplicacao elemento-a-elemento e determina o trecho correspondente do
audio filtrado pela sintese a partir dos valores de a, e by modificados por f[k]
ou g[k].

Elaboramos as figuras 22 e 23 para mostrar o efeito da filtragem sobre o
espectro original (em azul tracejado). Onde o valor de f[k] ou g[k| s@o baixos,
o grafico do espectro original é visivel pois ele ndo estd presente no espectro
resultante da filtragem (em preto). J4 onde seus valores sdo altos (préximos
a 1 na escala original), os gréficos do original e do resultante da filtragem séo
praticamente iguais e, com a sobreposicao, fica visivel apenas o grafico resultante
(preto).

Assim, na figura 22, em que f[k] é aplicado, observa-se que os componen-
tes de baixa frequéncia sao filtrados no processo e os de alta frequéncia sdo
preservados. Este processo é chamado de filtragem passa alta (em referéncia
a passagem das altas frequéncias). J4 o processo da figura 23 faz o contrario,
sendo designado filtragem passa baixa.

Reproduzimos o dudio utilizando a fun¢do sounddevice.play para os dois
tipos de filtro. Em termos qualitativos da percepcdo do dudio, o filtro passa
alta faz o audio soar como um radio velho ou um megafone, ja o passa baixa
torna o som abafado, como se houvesse uma dificuldade na passagem do som.
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from numpy import =x
import matplotlib.pyplot as plt

import s
import s
voz, fs
N = 5000

oundfile
ounddevice
= soundfile.read("voz.wav")
; Deltaf = fs/N ; fCorte = 600 ; L = 10

voz = voz [0:int (len(voz)/N)=N]
vozFiltrada = empty(voz.shape)
kCorte = int (fCorte/Deltaf)

k = arange(0,int (N/2)+1)

£ =1/

1 + exp( — (k—kCorte)/L ) )

#f = 1/( 1 + exp((k—kCorte)/L) )
freq = kxfs /N

plt.plot (freq,f)

plt .show ()

w0 = 2xpi/N

#Definindo matrizes de andlise

i = resh

ape (arange (int (N/2)+1),(int (N/2)+1,1))

j = reshape(arange(N) ,(1,N))
matrizlJ = 1iQ@j
Ca = (2/N)xcos(wOxmatrizlJ)
Sa = (2/N)xsin (wOxmatrizlJ)
Cal0,:] = 0.5xCa0,:]
if N%2==0:
Calint (N/2) ,:] = 0.5xCa[int (N/2) ,:]
#Definindo matrizes de sintese
i = reshape(arange(N) ,(N,1))
j = reshape(arange(int (N/2)+1),(1,int(N/2)+1))
matrizlJ = 1iQ@j
Cs = cos(wOxmatrizlJ)
Ss = sin (wO0xmatrizlJ)

#Laco de filtragem
inicio = 0

fim = N
i=0

while fim<len (voz):

T oo K
I

voz [inicio: fim |

Ca@x

Sa@x

fxa #filtragem sobre coeficientes a
fxb #filtragem sobre coeficientes b

vozFiltrada [inicio:fim] = Cs@a + Ss@b

i =
inic
fim

i+1
io = ixN
= (i+1)«N

Cédigo 10: Filtragem da voz por meio do perfil de filtro £.
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Figura 20: Perfil do filtro f[k] obtido com ko = [600N/ fs].
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Figura 21: Anélogo & figura 20 para g[k].
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Figura 22: Efeito da filtragem de f[k] (perfil vermelho tracejado fora de escala)
sobre o espectro do dudio original (azul tracejado) para obter o espectro filtrado

(preto continuo.
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Figura 23: Anélogo a figura 20 para g[k].
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Figura 24: Espectro de um trecho do dudio de uma flauta.

9 Flauta sintética

9.1 Anadlise do audio de uma flauta

Escolhemos um dudio de uma flauta de bambu soando em fy = 667 Hz. O espec-
tro de um trecho do dudio é mostrado na figura 24. Nele, extraimos a frequéncia
fundamental e as intensidades aproximadas da componente fundamental e dos
seis harmoénicos seguintes dados aproximadamente por 0,336, 0,149, 0,174, 0,052,
0,024, 0,011 e 0,004.

9.2 Reproducgao do som da flauta por componentes senoi-
dais puros

Montamos um sinal com o somatoério de sete senoides com as intensidades ex-
traidas do espectro do dudio da flauta no cédigo 11. Escutamos o som gerado
empregando sounddevice.play(flautaSintetica,fs). O resultado é um som
extremamente artificial mas cujo espectro é muito similar ao da flauta original
e que mostramos na figura 25. Observamos que ele é muito parecido com o
espectro original da figura 24, ainda que os dudios reproduzidos sejam muito
diferentes.
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Figura 25: Espectro de um trecho do som similar a flauta elaborado com o
codigo 11.

from numpy import x
import sounddevice

fo = 667
fs = 44100
N = 100000

t = arange (0,N)/fs
intensidades = (0.336472468501187, 0.14908012775965768,
0.1738175811205412, 0.05220254193671233,
0.024395951321697543, 0.011099601727655806,
0.004297160535376037)
flautaSintetica = zeros(N)
i=1
for k in intensidades:
flautaSintetica = flautaSintetica + kxcos(2xpixi*fOx*t)
i =i+l

Cédigo 11: Construcdo de um dudio com componentes nas intensidades de um
dudio de uma flauta empregando componentes senoidais puros.

9.3 Espectro de sinal gerado por valores aleatérios

No c6digo 12 construimos 500 sinais a partir de N = 5000 ntimeros aleatérios
gerados pela fun¢do numpy.random.normal, um a cada iteragdo de um laco
for. Ao longo do lago, separamos 5 espectros para estes sinais, mostrados nos 5
graficos superiores da figura 26. Observando estes espectros, vemos que nao hé
regularidade para a presenca de determinadas componentes. Frequéncias altas,
médias e baixas estdo presentes, mas de forma pouco uniforme.

J& o dltimo grafico da figura 12, mostra a média entre os valores das compo-
nentes dos espectros dos 500 sinais gerados. Nele, uma regularidade é observada
— a média dos componentes de frequéncia cobre todas as frequéncias com
intensidade quase constante. Isto significa que os nimeros aleatérios da
fun¢do numpy.random.normal sdo bons para “criar quaisquer frequéncias”.
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from numpy import =x
import matplotlib.pyplot as plt
N = 5000
w0 = 2xpi/N
i = reshape(arange(int(N/2)+1),(int(N/2)+1,1))
j = reshape (arange(N),(1,N))
matrizlJ = iQj
Ca = (2/N)xcos(wOxmatrizlJ)
Sa = (2/N)x*sin (wOxmatrizlJ)
Ca[0,:] = 0.5%xCa[0,:]
if N%2==0:
Calint (N/2) ,:] = 0.5xCal[int (N/2) ,:]
cAcumulado = zeros (int (N/2)+1)
for i in range(500):

x = random.normal(size=N)
¢ = sqrt( (Ca@x)*%x2 + (Sa@x)*%2 )
if i%100==0:

plt.subplot (6,1 ,int (i/100)+1)
plt.plot(c)
cAcumulado = cAcumulado + ¢
plt.subplot (6,1,6)
plt.plot (cAcumulado/500)
plt .show ()

Cédigo 12: Geragdo do espectro obtido para um sinal composto por ntimeros
aleatorios.

9.4 Geracao de audio a partir de ruido

Empregamos o cbédigo 13 para gerar um som parecido com o de flauta a partir
de ruido. As linhas de 10 a 17 geram uma méscara com o perfil mostrado na
figura 27, similar ao do espectro da flauta que estudamos na se¢do 9.1. No
lago das linhas de 34 a 29, geramos sinais a partir de ntimeros aleatérios, lhes
aplicamos a mascara do filtro e concatenamos seus valores na variavel flauta
até que tenha por volta de 100000 amostras, totalizando por volta de 2s de
audio.

O tnico detalhe que adicionamos neste algoritmo foi o emprego de uma mas-
cara de volume. Isto foi necessario pois nossa intencéo era gerar um audio com
por volta de 100 000 amostras a partir de trechos de 4udio mais curtos para que
pudéssemos utilizar as matrizes da SFTD com um valor razodvel (escolhemos
N =5000). Acontece que o fim de um trecho nao precisa necessariamente coin-
cidir com o inicio do trecho seguinte, ja que eles foram criados separadamente,
néo tendo correlacdo um com o outro. Estas descontinuidades causam efeitos de
“estalos” no dudio. Por esta razao, misturamos um trecho ao outro diminuindo
gradualmente o volume do anterior, enquanto o misturdvamos com o seguinte
cujo volume vai aumentando aos poucos a medida que o anterior abaixa. Esco-
lhemos uma mascara de volume com formato trapezoidal para esta finalidade.
Ela cresce a partir do 0 até 1 (que corresponde a 100% do volume), passa a
maior parte das amostras neste volume maximo para, entdo, reduzir de 1 até 0
ao fim.

257



intensidade [u.a.]

Figura 26: Espectro de cinco trechos de um sinal gerado a partir de ntimeros
aleatérios com a fun¢io numpy.random.normal (cinco primeiros superiores) e
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da média entre 500 espectros (inferior).

O resultado é muito melhor em termos de dudio sintético para representar o

som de uma flauta do que a proposta com senoides puras.
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from numpy import =x
import matplotlib.pyplot as plt
import sounddevice
f0 = 667 ; fs = 44100 ; N = 5000 ; alpha = 0.5
Deltaf = fs/N
intensidades = (0.336472468501187, 0.14908012775965768,
0.1738175811205412, 0.05220254193671233,
0.024395951321697543, 0.011099601727655806,
0.004297160535376037)
k = arange (0,int (N/2)+1)
f = kxDeltaf
mascara = zeros (k.shape)
i=1
for ki in intensidades:
k0 = i*xf0/Deltaf
mascara = mascara + kixexp(—alpha =xabs( k—k0 ))
i =i+l
w0 = 2xpi/N
i = reshape(arange(int(N/2)+1),(int(N/2)+1,1))
j = reshape(arange(N) ,(1,N))
matrizlJ = 1@j
Ca = (2/N)x*cos(wOxmatrizlJ)
Sa = (2/N)*sin (wO*matrizlJ)
Cal0,:] = 0.5%xCa[0,:]
if N%2==0:
Calint (N/2) ,:] = 0.5xCa[int (N/2) ,:]
i = reshape(arange(N) ,(N,1))
j = reshape(arange(int (N/2)+1),(1,int(N/2)+1))
matrizlJ = iQ@j
Cs = cos(wOxmatrizlJ)
Ss = sin (wO0xmatrizlJ)
volume = concatenate ((linspace (0,1,500) ,0ones(4000) ,linspace
(1,0,500)))
a3 flauta = zeros (20%(N—500)+500)
32 for i in range(20):

© N o w A W N e
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w
N

35 x = random.normal(size=N)

36 a = mascara*(Ca@x)

37 b = mascara*(Sa@x)

38 flauta [i*(N—500):1i%(N—500)4N] = (volumex(CsQa + Ss@b) +

39 flauta [i*(N—500):i*(N
—500)4N])

10 flauta = flauta /(max(abs(flauta)))

Cédigo 13: Geragao do espectro obtido para um sinal composto por niimeros
aleatérios.
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Figura 27: Madscara (filtro) a ser aplicada em um sinal contendo ruido para
conformar seu espectro ao da flauta que estudamos na secao 9.1.

10 Reconhecimento de altura (pitch) automa-
tico

Aqui, vamos misturar a ideia de méascara e filtragem com o ideia que empregamos
nos problemas das segoes 4 e 5. Vamos fazer uma mascara para cada nota e
vamos filtrar o trecho do dudio com cada méascara. Se a nota coincidir com a
respectiva mascara, devemos ter muita energia no resultado da filtragem. Se a
nota for diferente da maéscara, ocorrerdo poucos casos de coincidéncia entre as
componentes do dudio e a mascara, tendo como consequéncia a filtragem de boa
parte de suas componentes e resultando em pouca energia ao fim da operagao.
Assim, vamos atribuir a nota observada aquela que tiver associada a méscara
que deixa passar maior energia apés a filtragem.

O cédigo 14 faz a deteccao armazenando as mascaras para as notas na matriz
matrizHarmonicos, sendo um linha para cada méscara. Escolhemos arbitraria-
mente a cobertura da frequéncia fundamental e mais 5 harmoénicos na méscara.
Também arbitrariamente, a primeira nota é o Cs, o que facilita a identificacdo
da nota e da oitava, j4 que o dé natural é a primeira nota de toda oitava. O
resto da divisdo dos indices das notas na matrizHarmonicos coincide com o
indices dos nomes das notas no vetor notas, o que é empregado para nomear
as notas no string sequencia.

Montamos a méscara considerando uma janela unitaria por harménico indo
da média geométrica entre os harmonicos adjacentes. Veja por exemplo a mas-
cara do C3 e do E3 na figura 28. O primeiro harmoénico do C3 estd centrado em
130,8Hz e o E3 em 164.8 Hz. As posi¢oes em que as frequéncias dos harmoni-
cos de uma mascara estdo costumam diferir significativamente com as de outra
maéascara. H& algumas excegdes, como se observa no 52 harmoénico do C que é
aproximadamente coincidente com o 4° harmoénico do E. Com o nivel da precisdo
que empregamos, eles ficam exatamente coincidentes.

260



0.8

0.6

0.44

0.24

valor do filtro

]
—]

0.0

1000 1200

®
=g
S

0 200 400 600

frequéncia [Hz]

Figura 28: Madscaras para identificacio do C3 (azul) e do E3 (vermelho trace-
jado).

1 from numpy import =

2 import matplotlib.pyplot as plt

3 import soundfile

4+ musica, fs = soundfile.read("celloG.wav")

5 qtdeNotas = 37 ; silencio = 0.0005 ; N = 7500
6 sequencia = "" ; Deltaf = fs/N

7 cBaixo = 2%x(—1/24) ; cAlto = 2xx(1/24)

s k = arange(0,int (N/2)+1)

o fC5 = 440%(2x%(3/12)) ; fC2 = fC5/(2%2%2)

10 notas = array (["C","C#","D","D#" ,"E" ,"F",

11 "F#" "G "GH LAY AR "B )

12 matrizHarmonicos = zeros ((qtdeNotas, len(k)))
13 for i1 in range(qtdeNotas):

14 for h in range(6):

15 fi = (h4+1)*(2*xx(1/12))*fC2

16 inicio = int(rint ( fixcBaixo/Deltaf ))
17 fim = int(rint( fixcAlto/Deltaf ))+1
18 matrizHarmonicos [i, inicio:fim] = 1

19 w0 = 2xpi/N

20 i = reshape(arange(int(N/2)+1),(int(N/2)+1,1))
21 j = reshape(arange(N) ,(1,N))

22 matrizl] = 1@j

23 Ca = (2/N)*cos(wOxmatrizlJ)

22 Sa = (2/N)*sin (wOxmatrizlJ)

25 Cal0,:] = 0.5%Cal0,:]

26 if N%2==0:

27 Calint (N/2) ,:] = 0.5xCa[int (N/2) ,:]

2s  energia = empty(qtdeNotas)

20 inicio =0 ; fim =N ; i =0

30 notaAnterior = "s'

s1  while fim <= len(musica):

32 X = musica[inicio:fim]

33 ¢ = (Ca@x)**2 + (Sa@x)*x2

34 for j in range(qtdeNotas):

35 energia[j] = sum(matrizHarmonicos[j,:]*c)

36 if max(energia) > silencio:

a7 notaAtual = notas[argmax(energia)%12]

38 notaAtual = notaAtual + str(argmax(energia)//12 4+ 2)
39 else:

40 notaAtual = "s"

a1 if notaAtual != notaAnterior and notaAtual != "s":
42 sequencia = sequencia 261“ " + notaAtual

43 i = i+41 ; inicio = Nxi ; fim = Nx(i+1)

44 notaAnterior = notaAtual

'S
n

5 print(sequencia)

Cédigo 14: Identificacdo automatica de altura.



Tabela 2: Resultados da execugdo do codigo 14.

Arpejo esperado Notas detectadas
Tuba Mirum
Ags F3 Dy A4s F3 Dy Ags F3 Dy A3 F3 Fy Dy Dy

Preludio da Suite N21

Gy D3 A3 Bs G2 D3 A3 Bs

Go E3 B3 Cy Eo Go E3 G3 B3 Cy

Ga Ft3 B3 Cy Fis Go C3 Ft3 G Bs C4 Fiy
GQ Gg A3 B3 GZ GB B3

O cb6digo 14 observara qual é a méascara de maior energia a medida que
percorre os trechos do sinal de entrada. Ao fim da iteracdo, ele incluird a nota
correspondente na variavel sequencia caso a nota observada seja distinta da
que ele observou no ultimo trecho, considerando que nao houve interrupc¢ao na
execuc¢ao da nota enquanto nao houver um trecho de siléncio ou de outra nota
separando dois trechos em que a mesma nota foi identificada. Caso o nivel de
energia seja muito baixo, ele considerard um trecho de siléncio e nao realizard
nenhum registro.

Testamos o algoritmo com uma gravacao dos trechos iniciais de Tuba Mirum
do Réquiem de Mozart e do Prelidio da Suite N2 1 de Bach, por se tratarem de
trechos monofénicos. Como resultado, tivemos a seguinte saida para a varidvel
sequencia para o primeiro trecho (Tuba Mirum)

A#3 F3 D4 A#3 F3 F4 F3 F4 F3 D3 D4 D3.

Na tabela 2 comparamos o arpejo esperado com o arpejo detectado. Neste
trecho, mais curto, listamos as notas na ordem em que aparecem e observamos
alta fidelidade, com excecdo de algumas falsas detec¢Ges das notas corretas na
oitava acima.

Fizemos o mesmo processo para o segundo trecho (Prelidio da Suite N21) e
obtivemos o seguinte registro para a variavel sequencia

G2 D3 B3 A3 B3 D3 B3 D3 G2 D3 G2 B3 B3 D3 B3 D3
G2 E2 E3 C4 B3 E3 G3 G2 E3 B3 E2 E3 E3
G2 F#3 B3 C4 F#3 C3 F#3 G2 F#3 B3 F#3 F#4 F#2
G2 G3 G2 G3 G2 B3 G2.

Também na tabela 2, fizemos a comparagao entre os arpejos, considerando as
notas que o compoem, e nao a ordem. Neste caso, a velocidade da execugao
parece ter sido determinante como dificultante na deteccao de cada nota. Ape-
sar disto, o algoritmo detectou corretamente todas as notas, errando algumas
oitavas, e deixou de detectar apenas o Az no ultimo arpejo.
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em mq[n].

11 Transmissao simultanea empregando AM

11.1 Escolha do sinal

Escolhemos um sinais de voz com pouco mais de 1s e separamos 50 000 amostras
deste dudio com frequéncia de amostragem padrao de 44 100 Hz para tomarmos
como m[n|. Empregamos o Audacity para aplicar um filtro passa baixas para
remover frequéncias acima de 5kHz. Calculamos espectros sucessivos deste
audio e observamos a quantidade de energia acima da frequéncia de 5kHz com
relagdo a energia total e registramos estes valores no grafico 29. O maior valor
que essa relacao assume é de 0,00739 o que significa que no pior caso, ha menos de
0,8% de energia acima de 5kHz, mostrando a eficicia do processo de filtragem!?.

Portanto, é seguro afirmar que temos fi,3x1 = 5 kHz.

11.2 Superamostragem

No cédigo 15, preparamos os dudios e as matrizes. Vamos precisar realizar anali-
ses com quantidades distintas de conjuntos de amostras, conforme explicaremos
a seguir, para realizar o processo designado superamostragem. Por esta razao,
apoés a criagao das varidveis que carregam as amostras de dudio completas, cria-
mos um conjunto de matrizes para realizar a analise do espectro com N; = 1000
amostras e um conjunto de matrizes para realizar andlise e outro para realizar
a sintese com N = M N7 = 4 - 1000 = 4000 amostras.

10Sem a filtragem, este valor passa de 75% em um trecho em que é pronunciado um fonema
fricativo rico em componentes de alta frequéncia.
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from numpy import =x
import matplotlib.pyplot as plt
import soundfile , sounddevice, sys
audiol , fsl = soundfile.read("audiol.wav")
audio2, fs2 = soundfile.read("audio2.wav")
audiol = audiol[0:50000] ; audio2 = audio2[0:50000]
if fsl = fs2:
print ("Taxas de amostragem diferentes.") ;sys.exit()
#Matrizes de andlise sobre NI amostras
NI = 1000 ; w0l = 2spi/N1
i = reshape(arange(int(N1/2)+1),(int(N1/2)+1,1))
j = reshape (arange(N1) ,(1,N1))
Sal = i@j ; Cal = (2/N1)xcos(w01*Sal) ; Sal = (2/N1)*sin (wO0lx

Sal)
Cal[0,:] = 0.5%xCal[0,:]
if N1%2==0:
Cal[int (N1/2) ,:] = 0.5%xCal[int(N1/2) ,:]

f1 = arange(0,int (N1/2)+1)*fs1 /N1
#Matrizes de sintese sobre N amostras
M=4 ; N=NI«M ; fs = fsl«M ; Deltaf = fs/N ; w0 = 2xpi/N
f = arange (0,int (N/2)+1)*Deltaf
i = reshape(arange(N) ,(N,1))
j = reshape(arange(int(N/2)+1),(1,int(N/2)+1))
Ss = i@j ; Cs = cos(w0xSs) ; Ss = sin (w0x*Ss)
#Matrizes de andlise sobre N amostras
i = reshape(arange(int(N/2)+1),(int(N/2)+1,1))
j = reshape (arange(N) ,(1,N))
Sa = i@j ; Ca = (2/N)xcos(w0xSa) ; Sa = (2/N)=*sin (w0*Sa)
Cal0,:] = 0.5xCa0,:]
if N%2==0:
Calint (N/2) ,:] = 0.5xCa[int (N/2) ,:]

Cédigo 15: Preparacao das variaveis e das matrizes para realizacdo da sintese e
da analise.

Com a frequéncia de amostragem de 44 100 Hz, podemos observar apenas
22050 Hz, o que “comporta” apenas 4 vezes a frequéncia maxima. Por esta
razao, no codigo 16, realizamos o processo chamado superamostragem com um
fator de 4, levando o estudo para a frequéncia de amostragem de 176 400 Hz e
a maxima frequéncia observavel para 88 200 Hz. Veremos mais adiante que este
limite é suficiente para o estudo do AM.
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ml = zeros (len(audiol)*M)

intervalo = 25
volumel = concatenate ((ones(N-Mxintervalo), linspace (1,0 Mk
intervalo)))
volume = concatenate ((linspace (0,1 Msxintervalo),
ones (N—2#Mxintervalo) ,linspace (1,0 ,Mx
intervalo)))
volumeUltimo = concatenate ((linspace (0,1 Mxintervalo) b ones(NM
xintervalo)))
inicio = 0 ; fim = N1 ; i = 0 ; terminar = False ; ultimo =
False
while not terminar:
if ultimo = True:
a = Cal@concatenate ((audiol [inicio:], zeros(1000—len (
audiol [inicio:]))))
b = Sal@concatenate ((audiol [inicio:], zeros(1000—1len(
audiol [inicio :]))))
else:
a = Cal@audiol [inicio:fim] ; b = Sal@audiol[inicio :fim

]
a = concatenate ((a,zeros(int(N/2)+1 — len(a))))
b = concatenate ((b,zeros (int (N/2)+1 — len(b))))

if i = 0:
ml[iniciosM: fim+M] = ml[inicio*M: fim«M] + volumel x(
Cs@a + Ss@b)
elif ultimo == True:
ml[inicioxM:] = ml[iniciosM:] + (volumeUltimo*(Cs@Qa +
Ss@b)) [0:len(ml[inicio*M:]) ]
else:
ml[iniciosM: fim+M] = ml[inicio*M: fim«M] + volume (CsQa
+ Ss@b)
i =i+l
inicio = i*(Nl—intervalo)
fim = i*(Nl—intervalo )+N1
if ultimo == True:
terminar = True
if fim >= len(audiol):
ultimo = True

Cédigo 16: Superamostragem de mq[n].

O processo escolhido para superamostragem é simples e consiste em acres-
centar frequéncias que “nao existem” ou seja, que podem ser interpretadas como
se existissem mas fossem nulas, ao fim do espectro e em seguida retomar o sinal
no tempo. Neste caso, acrescentamos trés vezes a quantidade de componentes
além dos valores que ja tinhamos. A quantidade de componentes de frequéncias
ficou 4 vezes maior, correspondendo a

fs novo — 4fs anterior - (29)

A figura 30 mostra o espectro original de um trecho do dudio e como ele fica
apés acrescentarmos componentes nulos até a frequéncia de 4 f; anterior-
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Figura 30: Comparacao entre os espectros original (superior) e superamostrado
(inferior).
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Figura 31: Amostras do sinal original nas marcacées em X vermelho sobre o
grafico stem do sinal superamostrado.

Se retornarmos para o dominio do tempo por uma operacao de sintese sobre
0 novo espectro, vamos obter 4 vezes a quantidade de amostras que tinhamos
antes da superamostragem. Ora, se a frequéncia de amostragem quadruplicou,
isso significa que o periodo de amostragem caiu para um quarto do que era. Ou
seja, 4 das novas amostras ocupam o tempo decorrido para apenas uma amostra
antes do processo de superamostragem. O resultado da superamostragem é
mostrado na figura 31 que apresenta em detalhe a criacdo das novas amostras. O
grafico do tipo stem (ramos) foi feito com o sinal superamostrado. As amostras
originais foram sobrepostas ao grafico empregando a marcacao do tipo X em
vermelho em suas posi¢coes. Observe que uma de cada quatro amostras do
sinal original coincide com o sinal superamostrado conforme esperado, o que
equivale a considerar que acrescentamos trés amostras entre duas amostras do
sinal original.

Esta é a razdo desta expressdo superamostragem. Simplesmente ao aumentar
a quantidade de componentes de frequéncia, é como se causdassemos um aumento
na taxa de amostragem e a criagao de novas amostras entre as antigasn.

Como o audio original contém muitas amostras, precisamos realizar a supe-
ramotragem em trechos de tamanho muito menor que o dudio completo. Como
a SFTD ¢é baseada em forgar a periodicidade do trecho limitado, a tendéncia do

1E uma forma de interpolagéo realizada no dominio da frequéncia.
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sinal seria, apds a tultima amostra, voltar para uma amostra igual a primeira
amostra do mesmo trecho. No nosso caso, porém, o fim de um trecho esta con-
catenado com o inicio do proximo trecho, cuja primeira amostra tendera a nao
ter nenhuma relagdo com a primeira amostra do trecho anterior. A “criacio”
de novas amostras proporcionada pela superamostragem faz com que surjam al-
gumas amostras que se direcionam para o valor da primeira amostra do trecho.
Se a partir dai emendéassemos a primeira amostra do préximo trecho, ocorreria
uma sucessao de valores com descontinuidades (a tendéncia de continuidade do
trecho anterior era para o primeiro valor do préprio trecho e ndo para a primeira
amostra do préximo trecho) que soam no dudio como estalos.

Por esta razdo, empregamos mais uma vez a técnica de fazer sobrepor o fim
de um trecho com o inicio do outro e enquanto, o volume do trecho anterior cai,
o volume do préximo trecho aumenta, como fizemos no problema da geracao de
audio a partir de nimero aleatdrios na segao 9.4.

11.3 Realizacao da modulacao em amplitude

Para gerar o sinal modulado em AM empregamos o cddigo 17. Nele, escolhemos
para a frequéncia da portadora f.; =~ 25000 Hz. Nao utilizamos este valor exato
pois preferimos utilizar uma frequéncia fosse multiplo inteiro da precisdo Af
da medida de frequéncia da SFTD. Isto fard com que o espectro fique “bem
comportado”!2.

t = arange (0,len(ml))/fs

fcl = int (25000/ Deltaf)*Deltaf
pl = cos(2xpixfclx*t)

sl = mlx*pl

Cédigo 17: Geragdo do sinal s1[n] da modulagdo AM.

Variamos a frequéncia f.; pelos valores de 20kHz até 50 kHz em passos de
10kHz e apresentamos os espectros de um trecho dos sinais na figura 32, em que
o primeiro gréfico é o espectro do trecho em mq[n] e os graficos seguintes sdo
graficos de s1[n] do trecho correspondente para os valores de f.; que listamos.

Algumas caracteristicas importantes podem ser extraidas dos gréficos:

e 0s espectros parecem figuras simétricas em torno de um eixo na vertical;
e

e 0 eixo de simetria parece centrado em f.1.

Para melhor observar outras caracteristicas, ampliamos os graficos da figura
32 na figura 33 nas regides em torno dos seus eixos de simetria. No primeiro
grafico, do espectro de my[n], acrescentamos em vermelho em valores negativos
de frequéncia o préprio espectro espelhado. Com este artificio, vemos:

o os valores do espectro de mq[n] aparecem no espectro de s;[n] a partir da
frequéncia f.1;

12Utilize uma frequéncia para a portadora que ndo seja multiplo inteiro de Af e observe o
efeito sobre o espectro.
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Figura 32: Espectro de um trecho de my[n] (superior) e do trecho correspondente
de s1[n] para f.; variando de aproximadamente 20 kHz até 50 kHz em passos de

10kHz (segundo ao tltimo grafico de cima para baixo).

« os valores do espectro de mj[n]| aparecem no espectro de s1[n] espelhados

antes da frequéncia f.1; e

o as intensidades dos componentes de mj[n| parecem estar no espectro de
s1[n] com metade da intensidade.

Como o espectro de mj[n] vai até fisx1 e ele aparece no espectro de s1[n]
a partir de f.;, isto significa que o espectro total de s1[n] terd componente de
frequéncia maximo em f.1 + fisxi-

11.4 Justificativa para o espectro do sinal AM

Ora, obtivemos o sinal s1[n] por meio do produto entre um sinal original mq[n]
e um sinal senoidal de frequéncia f.; que chamamos de portadora. Vamos agora
esquecer brevemente o o indice 1 (ou 2) pois numeramos os sinais apenas para
caracterizar o efeito da transmissdo simultdnea e vamos considerar o caso geral.
Se descrevermos m|n| por meio de sua série de Fourier de tempo discreto, ele

sera,

mln] = ag + Z en, cos(win + ¢)

e a portadora

p[n] = cos(27 f.Tsn) = cos(wen),

o sinal s[n] serd

LN/2]

k=1
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Figura 33: Ampliacdo dos graficos das figuras 32 nas proximidades do eixo de
simetria. No grafico superior do espectro de mi[n], o grafico vermelho posto
nas “frequéncias negativas” é o proprio espectro positivo espelhado.

LN/2]
= cos(wen) [ap + Z ¢k cos(wgn + dk)
k=1
[V/2]
= ag cos(wen) + cos(w.n) Z ¢ cos(wgn + dr,)
k=1
LN/2]
= ag cos(wen) + Z ¢ cos(wen) cos(win + Pr,)
k=1
LN/2]
Cl
= ag cos(wen) + Z E{COS[(wC + wi)n + @] + cos[(we — wi)n — Pi)}
k=1
[N/2] cn
= ag cos(wen) + kz_l 5 cos[(we + wg)n + @]

componentes simétricos a direita de f.

componentes simétricos a esquerda de f.

Vemos que nas frequéncias f.; + fr, ou seja, distantes fi da frequéncia f.q
e & sua direita, aparecem componentes de intensidade ¢ /2. Ora, em mq[n|, a
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Figura 34: Espectro do sinal s[n] dado pela superposigio dos espectros de s1[n]
e san).

componente ¢ aparece fi a direita da origem. Isto significa que veremos no
espectro de s1[n] uma cépia do espectro de mq[n| deslocado para f.; e com
metade da amplitude.

Ocorre o mesmo a esquerda de f.; nas frequéncias f.; — fx, razdo pela qual
surge a imagem simétrica dos dois lados de f.1 no espectro de s1[n]. A tnica
assimetria é que a frequéncia central que fica com o componente a na frequéncia
fe1, sem o multiplicador de um meio.

Em geral, isto mostra que a multiplicagdo por uma portadora de frequéncia
fe, é capaz de deslocar o espectro de m[n] que se encontrava na origem para
o entorno de f.. Enquanto m[n] ocupa frequéncias de 0 até fi.4x, s[n] ocupa
frequéncias de f. — fimax até fo + fmax-

11.5 Modulando um segundo sinal

J& no codigo 15, haviamos reservado um segundo audio na varidvel audio2.
Aplicamos c6digos similares aos cddigos 16 e 17 para gerar as varidveis ma[n],
p2[n] e s3[n]. Também filtramos o segundo dudio em fisx1 = 5kHz. Por esta
razdo, o sinal sz[n] ocupara no espectro uma regiao entre feo— fmax2 € fe2+ fmaxe-
Para que esta regido nio se sobreponha a regiao ocupada no espectro por si[n],
escolhemos f.o ~ 35kHz.

Criamos, por fim, a varidvel s[n] = s1[n] + s2[n]. Se s1[n] e sa[n] sdo sinais
oriundos de ondas eletromagnéticas transmitidas por estagdes de radio, s[n] pode
ser o efeito da superposicdo das ondas no espago. O espectro de um trecho de
s[n] é mostrado na figura 34. Nela, vemos o espectro de s1[n] que ji estudamos
nas figuras 32 e 33, desta vez centrado em 25kHz. O que vemos centrado em
fe2 ~ 35kHz é o espectro de s3[n] no mesmo trecho. Veja que ele também é
simétrico com relagao a frequéncia de sua portadora e que eles ocupam “espagos”
distintos no espectro devido a nossas escolhas para f.; e f.o e pelos valores de
fmé)gl € fméxQ-

E importante destacar que no dominio do tempo — em s[n] — estes sinais
estdo unidos de tal forma que é impossivel observar a distingdo entre eles. J&
no dominio da frequéncia é facil ver onde cada sinal comeca e termina, prin-
cipalmente pois tomamos o cuidado de nao deixar os espectros se sobreporem.
O sinal s; estd entre fo1 — fiax1 € fe1 + fmax1, ou seja, entre 20kHz e 30 kHz
enquanto feo — fmax2 € fe2 + fmaxe, ou seja, entre 30 kHz e 40 kHz.
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12 Separacgao de sinais AM

J& vimos nas sec¢oes 8, 9 e 10 como podemos trabalhar filtros no dominio da
frequéncia. Ora, se podemos ver claramente no espectro de s[n] na figura 34 que,
na frequéncia, s1[n] e s2[n] se encontram separados, podemos utilizar ambas as
méscaras propostas na filtragem 8 para separar si[n] de s2[n] no dominio da
frequéncia empregando uma mascara

1 1
h[k] = kE—FKinicio E—kfm
1+e L 14+e

(32)

que vale 1 apenas quando kinicio < k < kam quando k < kinicio € k& > Kfm, O
valor de h[k] tende rapidamente & 0. Isto gera um filtro que chamamos de passa-
banda. O ndmero inteiro k estd associado a frequéncia f, e devemos fazer os
valores de Kinicio € kfm coincidirem aproximadamente com as regioes dos espec-
tros correspondentes as frequéncias fe1 — fmax1 € fe1 + fmax1, respectivamente,
para separar s1|n] e aos valores andlogos para separar sa[n).

O cbdigo 18 cria estas mascaras. Elaboramos os graficos das mascaras e
os apresentamos na figura 35. A méscara azul é aproximadamente unitaria na
regido entre 20kHz e 30kHz ji que s1[n| estd centrado em 25kHz e se estende
fmax1 = bkHz para a esquerda e para a direita no espectro. Fora desta regido ela
cai rapidamente para aproximadamente nula. Ela é, portanto, capaz de isolar
o espectro de s1[n]. A mdscara vermelha da figura 35, por sua vez, tal como a
azul isola s1[n], é capaz de isolar sa[n].

k = arange(int(N/2) + 1)

L=25

kInicio = int((fcl — 5000)/Deltaf)

kFim = int ((fcl + 5000)/Deltaf)

mascaral = (1/(1 + exp( (k—kFim)/L )))=*(1/(1 4+ exp( —(k—
kInicio)/L )))

kInicio = int((fc2 — 5000)/Deltaf)

kFim = int ((fc2 + 5000)/Deltaf)

mascara2 = (1/(1 + exp( (k—%kFim)/L )))*(1/(1 + exp( —(k—
kInicio)/L )))

Cédigo 18: Criacdo das mdscaras que separam os espectros si[n] e sa[n] na
frequéncia.

A aplicagdo destas mascaras sobre os sinais correspondentes gera os dois
espectros dos gréficos nas figuras 34. O superior é o espectro de s1[n] obtido
empregando a méscara azul da figura 35 sobre o espectro de s[n]. O inferior é
o espectro de sa[n] obtida da mesma forma mas com a méscara vermelha. Ou
seja, o sinal superior é o espectro do sinal recebido pela estagdo 1, r1[n], e o
inferior o sinal recebido pela estagdo 2, r[2].

13 Demodulacao AM

Empregamos o cédigo 19 para, a partir do espectro de s[n], obter os componentes
de frequéncia a,1 e b, de r[n] através da filtragem. Com os componentes de
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Figura 36: Espectros obtidos pela aplicagdo das méscaras da figura 35 sobre o
espectro de s[n] mostrado na figura 34.
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Figura 37: Espectros de r1[n] (em vermelho tracejado) e m/ [n] (superior) e ra[n]
(em vermelho tracejado) e m4[n] (inferior).

frequéncia, recuperamos r1[n] no dominio do tempo e realizamos o produto com
p1[n] novamente obtendo m/ [n].

arl (Ca@s[inicio:fim])*mascaral

brl = (Sa@s[inicio:fim])*mascaral

crl = sqrt(arl**2 + brlxx2)

rl = Cs@arl + Ss@brl

mllinha = rl * cos(2+pixfclxt[inicio:fim])

cllinha = sqrt( (Ca@mllinha)=*2 + (Sa@mllinha) %2 )

Cédigo 19: Geragdo do sinal m/[n] da demodulagdo AM.

Cédigo andlogo ao cddigo 19 também é aplicado para gerar ra[n] e mh[n].
Com os sinais m/[n] e r[n] (com ambos os indices), montamos o gréifico de seus
espectros na figura 37. Notamos que enquando os graficos de r[n] se encontram
centrados em f., o grafico de m’[n]| apresenta dois agrupamentos. O primeiro
parece uma versio de r[n] com amplitude reduzida pela metade e centrada em
2f.. A outra estd centrada na origem do eixo de frequéncias.

Para melhor visualizagdo do agrupamento na origem do eixo de frequéncia,
elaboramos o gréafico da figura 38 que amplia a regido préxima a origem. Nela,
fica claro que, nesta regido, m’[n] é muito similar a m[n], com exce¢do de uma
reducao pela metade na amplitude. Isto significa que podemos recuperar o es-
pectro de m[n] filtrando o agrupamento nas proximidades de 2 f. e multiplicando
o restante por 2. Apds estas operacoes, realizadas no dominio da frequéncia,
podemos voltar para o dominio do tempo pelas operacoes de sintese e recuperar
m[n].

O cbdigo 20 recupera os sinais mq[n] e ma[n] a partir do sinal s[n] que simula
os sinais modulados e superpostos. Apos a execugao deste trecho, nao é possivel
distinguir m1 e m2 dos sinais recuperados m1Rec e m2Rec quando ouvimos suas
reprodugoes utilizando a fungdo sounddevice.play. Um segundo indicativo
da qualidade da recuperacéo do sinal é a energia contida na diferenca entre os
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Figura 38: Detalhe dos espectros de mj[n] (em vermelho tracejado) m}[n] e

(superior) e mg[n] (em vermelho tracejado) m4[n] e (inferior) préximo & origem.

sinais com relacao ao sinal original, que podemos calcular executando
sum((ml-m1Rec) **2) /sum(m1**2).

Este pardmetro resulta em menos de 0,003% para ambos os dudios, ou seja,
quase nao ha diferencas entre os dudios recuperados e os originais.
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1 mlRec = zeros(ml.shape) ; m2Rec = zeros(m2.shape)
2 kCorte = int(6000/Deltaf)
3 mascara = 1/(1 + exp( (k—kCorte)/L ))
4 1 =0 ; terminar = False ; ultimo = False
5 inicio = 0 ; fim = N
¢ while not terminar:
7 if ultimo == True:
8 x = concatenate ((s[inicio:],zeros(N-len(s[inicio:]))))
9 pl = cos(2xpixfcl*concatenate ((t[inicio:], t[—1]*ones(
N-len(t[inicio:])))))
10 p2 = cos(2«pixfc2xconcatenate ((t[inicio:], t[—1]xones(
N-len (t[inicio:])))))
11 else:
12 x = s[inicio:fim|
13 pl = cos(2#pixfclxt[inicio:fim])
14 p2 = cos(2+pi*fc2xt[inicio:fim])
15 arl = (Ca@x)s*mascaral ; brl = (Sa@x)+xmascaral
16 ar2 = (Ca@x)xmascara2 ; br2 = (Sa@x)=xmascara2
17 rl = Cs@arl + Ss@brl ; r2 = Cs@ar2 + Ss@br2
18 mllinha = r1l % pl ; m2linha = r2 * p2
19 alRec = (Ca@mllinha)*mascara ; blRec = (Sa@m1llinha)x
mascara
20 a2Rec = (Ca@m?2linha)+*mascara ; b2Rec = (Sa@m2linha)*
mascara
21 trechol = Cs@alRec + Ss@blRec ; trecho2 = Cs@a2Rec +
Ss@b2Rec
22 if i = 0:
23 mlRec[inicio:fim] = volumel*trechol
24 m2Rec[inicio:fim] = volumelstrecho?2
25 elif ultimo == True:
26 mlRec[inicio :] = mlRec[inicio:] + (volumeUltimo=x
trechol) [0:len(mlRec|inicio:]) ]
27 m2Rec[inicio:] = m2Rec[inicio:] 4+ (volumeUltimo=
trecho2) [0:len(m2Rec|inicio :]) ]
28 else:
29 mlRec[inicio:fim] = mlRec[inicio:fim] + volumextrechol
30 m2Rec[inicio:fim] = m2Rec[inicio:fim] + volumextrecho?2
31 i =i+l
32 inicio = ix(N—intervalo M)
33 fim = i*(N—intervalo«M) + N
34 if ultimo == True:
35 terminar = True
36 if fim >= len(ml):
37 ultimo = True

3s mlRec = mlRec * 2
30 m2Rec = m2Rec * 2

Cédigo 20: Recuperagdo dos sinais mq[n] e ma[n] a partir dos sinais modulados
e superpostos em s[n].
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13.1 Justificativa para a recuperagao do sinal na demodu-
lacaio AM

Vimos na se¢do 11.4 que o sinal m[n] quando modulado em AM com a portadora
senoidal p[n], resulta em s[n] que pode ser escrito como

[N/2]
c
s[n] = ag cos(wen) + ; ?k cos[(we + wg)n + P
LNv/2] r
+ kz_:l rl cos[(we — wg)n — o).

Com esta expressao, m’[n] serd dado por

[N/2]
= cos(wen) § ag cos(wen) + Z %k cos[(we + wg)n + @]
k=1
LV/2] r
+ Z 35 cos[(we — wg)n — P
k=1
N2
= ag cos?(wen) + Z 5" cos(wen) cos[(we + wg)n + o)
k=1
LN/2] ¢
+ ; Ek cos(wen) cos[(we — wi)n — P
1 1
= ag [2 + 3 cos(2wcn)]
LNv/2] r
+ Z Z{cos[(2wC + wg)n + o] + cos(wgn + ¢r)}
k=1
LN/2] r
+ kz_:l Z{COS[(QU)C — w)n — ¢ + cos(—wrn — dr)}
ao LN/2] cr LV/2] r
=5 + Z 1 cos(wgn + dr) + Z 1 cos(—wkn — Py,)
k=1 k=1
a0 LV/2] r
+ 5 cos(2w.n) + ; 1 cos[(2w. + wg)n + ¢
LN/2] cr
+ > 1 cos[(2we —wi)n — i)
k=1
Lv/2]
=3 ao + Z ¢k cos(wgn + o)
k=1
mn]
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LN/2]
a 1
+ ?O cos(2wen) + i ]; ¢k cos[ (2w, + wi)n + Py

componentes de m[n] centrados em 2f,
N/2]

Z ¢ cos[(2we — wy)n — d)

k=1

1L

o

componentes espelhados de m[n] centrados em 2f,

Vemos, entdo, que os componentes de m[n] voltam para a origem do eixo das
frequéncias multiplicado por 1/2 e que ainda ha duas cépias de m[n] centradas
em 2f., uma com frequéncias wy, positivo, formando um espectro direito, e uma
com wy, negativo, formando o espectro invertido, ambos multiplicados por 1/4.
O componente constante ag aparece multiplicado por 1/2 exatamente no eixo de
simetria em 2f.. Estas caracteristicas que obtivemos analiticamente explicam o
que observamos nos graficos da figura 37.

14 Amortecedor massa-mola com atrito viscoso

14.1 Resposta em frequéncia por simulagées no dominio
do tempo

O movimento do bloco depende apenas da atuacdo das forgas horizontais. Sao
trés as forgas horizontais, a forga externa F'(t), a forca eldstica —kx, em o sinal
significa que a forga atua no sentido oposto de sua posicao, e a forca de atrito
viscoso de intensidade —fv, em que o sinal significa que ela atua no sentido
oposto ao da velocidade. A soma destas forcas totaliza a forca resultante, ja
que a resultante na vertical é nula. Assim,

F — kx — Bv = ma, (33)
que, empregando as relagoes das equacoes 23 e 24, resulta na relagdo

(BTs + 2m)z[n — 1] — ma[n — 2] + T2 F[n]

x[n] = (34)
para a posi¢ao da massa ao longo do tempo.
Vamos tomar a expressao tedrica fornecida como referéncia para determinar
que frequéncias estudaremos. Vemos que
Xm 1 1

H = — = ~
(w) Fm \/m2w4 + (BQ — 2mk)o.)2 + k2 mw2 (35)

quando a frequéncia w cresce, ja que m2w?* cresce muito mais rapidamente do

que (8% — 2mk)w? e o termo k? é fixo. Ou seja, sabemos que, pela teoria, a
resposta em frequéncia vai tender a 0 a medida que w cresce. Vamos estudar,
apenas até H(w) = 0,01, ou seja, até

1 1
Vm2wt + (B2 — 2mk)w? + k2 ~ 100

(36)
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que implica determinar o valor de omega que resolve a equacao biquadrada
m2w? + (6% — 2mk)w? + k* — 10000 = 0. (37)

No codigo 22, calculamos este valor para w considerando que ele é a maior
raiz e empregando a fun¢do numpy.roots para calculd-lo. Neste script, determi-
namos os parametros do problema, escolhemos N = 2000 para a quantidade de
amostras da andlise no dominio da frequéncia que faremos na se¢do 14.2. Isto
implica nos valores para k de 0 até |N/2| para os harménicos da SFTD nas
frequéncias angulares wy. Estes valores sugerem que empreguemos os valores de
wg como as amostras para o eixo w da analise em frequéncia.

Por esta razdo, no trecho de cdédigo que se segue, realizamos dois lagos
aninhados. No lago mais externo, escolhemos um valor para wy e no interno
percorremos vérios valores de n para determinar x[n] pela equagdo 34 para
F(t) = F,,sen(wgt). A principio tentamos resolver com 15 periodos de F(t),
mas caso x[n] ainda ndo tenha se acomodado para a oscilagio estdvel final,
acrescentamos mais um periodo a simulagdo. Utilizamos como critério para a
acomodagao, se no periodo anterior, a amplitude dos valores de x[n] ndo difere
da amplitude de seus valores no tltimo periodo em mais do que 0,01%.

Por fim, tomamos como amplitude da oscilagdo de x a metade da diferenca
entre os valores de maximo e minimo nos ultimos dois periodos e meio da simu-
lagdo, o que é uma estimativa da amplitude. Ao fim do percurso por todos os
valores de wy, ao registrar as amplitudes a cada valor de wy e empregando um
valor conhecido de Fi,, podemos calcular a razao X,,/F,, em termos de w, que
exibimos no gréfico da figura 39.
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from numpy import =x
import matplotlib.pyplot as plt
m=1; kEl =1 ; beta =1 ; Fm =1
omegaMax = max(real (roots (
[m*%2, 0, (beta*x*x2—2+mxkEl), 0,kEl**x2—10000])))
fs = omegaMax*2 /(2% pi)
N = 2000 ; ppT = 1000
k = arange (0,int (N/2)+1) ; omega = kx2xpixfs/N
HsimT = empty (omega.shape) ; HsimT[0] = Fm/kEl
for i in range(l,len(omega)):
omegak = omega[i] ; T = 2xpi/omegak
Tssim = T/ppT
cl = (betaxTssim + 2xm) /(kEl*(Tssim#*%2) + beta*Tssim + m)
c2 = (—m) /(kEl*(Tssim*%2) + betaxTssim + m)
cf = (Tssim*%2)/(kElx(Tssimxx2) 4+ betaxTssim + m)
x = empty (ppT*15) ; F = empty(ppT*15)
F[0] =0 ; F[1] = Fm * sin (omegak*Tssim)
x[0] =0 ; x[1] =0

acomodado = False ; n = 2
while n != len(x):
F[n] = Fm * sin (omegak+nTssim)
x[n] = clxx[n—1] + c2*x[n—2] + cf*F[n]
if (nY%ppT = 0) and (n > 3xppT):
acomodado = ((max(x[n—2*ppT:n—ppT]) — min(x[n—2x

ppT:n—ppT])) >
0.9999* (max(x [n—ppT:n]) — min(x[n—ppT:n])) and (
max(x [n—2xppT:n—ppT]) — min(x[n—2+ppT:n—ppT]))

<
1.0001 % (max(x [n—ppT:n]) — min(x[n—ppT:n])))
if (not acomodado) and (n = len(x) — 1):

x = append (x, empty (ppT))
F = append (F, empty(ppT))
n = n+l
HsimT[i] = (max(x[len(x)—int (2.5%ppT):]) — min(x[len(x)—
int (2.5%xppT) :]))*0.5/Fm
plt . plot (omega ,HsimT)
plt .show ()

Cédigo 21: Simulagdo da oscilacdo do sistema massa-mola com atrito viscoso
para muitos valores da frequéncia do estimulo.

14.2 Analise da resposta ao impulso na frequéncia
Repetimos a simulagao da equacao 34 mas agora com a fungao

1, n=2

Fn] = { s (38)
0, caso contrario

em que hd um tnico impulso em F[2]. Para qualquer outro valor de n, F[n] = 0.
Usamos um periodo de amostragem na simulagio 20 vezes menor do que o pe-
riodo de amostragem final que desejamos apenas para ter uma melhor precisao
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Figura 39: Resposta em frequéncia para o sistema massa-mola com atrito viscoso
obtido pela simulacao no tempo do cédigo 22.

na simulagdo no tempo. Retomamos para o periodo desejado por meio da di-
zimagdo antes de obter o espectro. O espectro de z[n] obtido pelo estimulo
impulsivo de F' é mostrado na figura 40. Vemos que a forma do espectro de z[n]
é muito similar & resposta em frequéncia do sistema'?® exceto por uma propor-
¢80, ja que os valores da resposta em frequéncia estao na ordem da unidade e
os valores da resposta ao impulso estdo na ordem de 1075,

13 Aqui, este fato pode ficar como mera coincidéncia ou pode-se mostrar que um impulso
contém todas as frequéncias, razdao pela qual a resposta de um estimulo impulsivo em um
sistema linear tem a configuragdo da resposta em frequéncia.
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Figura 40: Espectro de z[n] para um estimulo impulsivo F[n].

x = zeros (20xN)
F = zeros (20xN)
F[2] =1
Tssim = 1/(20x*fs)
cl = (beta*xTssim + 2xm) /(kEl*(Tssim*%2) 4+ betaxTssim + m)
¢2 = (—m) /(kEl*(Tssim*%2) + beta*xTssim + m)
cf = (Tssim#*x%2) /(kEl*(Tssim*%2) + betaxTssim + m)
for n in range(2,20xN):
x[n] = clsx[n—1] + c¢2*x[n—2] + cf*F[n]
x = x[0:len(x):20]
w0 = 2xpi/N

i = reshape(arange (int(N/2)+1),(int (N/2)+1,1))
j = reshape(arange(N) ,(1,N))
matrizl] = iQj
Ca = (2/N)*cos(wOxmatrizlJ)
Sa = (2/N)x*sin (wOxmatrizlJ)
Cal0,:] = 0.5%xCa[0,:]
if N%2==0:
Calint (N/2) ,:] = 0.5xCa[int (N/2) ,:]
H = sqrt( (Ca@x)*%2 + (Sa@x)xx2)
#print (maz(Hteo)/maz(H) )
#H = mazx(Hteo ) *H/maz (H)
#plt.plot (omega, Hteo,"'r——")
plt.plot (omega, H)
plt .show ()

Cédigo 22: Recuperagdo dos sinais mq[n] e ma[n] a partir dos sinais modulados

e superpostos em s[n].

14.3 Comparacao com resposta em frequéncia tedrica

A figura 39 ja mostra em tracejado vermelho a resposta em frequéncia tedrica.
Ela é tao préxima de nossa simulagdo que quase nao € possivel vé-la.
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Figura 41: Comparagdo da resposta em frequéncia com a escala corrigida obtida
pela resposta ao impulso e a expressao tedrica.

Ja a comparacao da resposta em frequéncia obtida pelo espectro da resposta

ao impulso com o valor tedérico é mostrada na figura 41. Nela, corrigimos a
escala pelo valor do méximo teérico. Por esta razdo, os graficos sdo coincidentes
neste ponto, embora estejam efetivamento muito préximos por todo o grafico.
Além do ganho para ajustar a escala, apenas desprezamos o primeiro e o ultimo
valor que apresentavam descontinuidades.
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