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Resumo da Dissertacao apresentada a COPPE/UFRJ como parte dos requisitos

necessarios para a obtencao do grau de Mestre em Ciéncias (M.Sc.)

CLASSIFICACAO DE FALHAS DE INJECAO EM UM MOTOR DIESEL
MARITIMO USANDO SINAIS DE VIBRACAO E REDES NEURAIS ARTIFICIAIS

Renato Bodanese

Setembro/2025
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A crescente demanda por estratégias efetivas de manutengdo preditiva em
sistemas navais impulsiona o desenvolvimento de técnicas avangadas para diagnostico
precoce de falhas. Esta dissertagdo apresenta uma metodologia para classificar
automaticamente falhas de injecdo tipo "single misfire" em motores Diesel maritimos,
utilizando sinais de vibracao e Redes Neurais Artificiais (RNAs).

A metodologia envolve a aquisi¢do e andlise de sinais de vibragdo coletados por
acelerometros instalados no motor Diesel MTU 12V4000C11, avaliados nos dominios do
tempo, frequéncia e tempo-frequéncia. Caracteristicas estatisticas como RMS, curtose,
energia e entropia foram extraidas e utilizadas como entradas nos modelos de aprendizado
supervisionado.

A otimizacdo do sistema de aquisicdo e processamento de dados foi uma
contribuicao central, reduzindo o niumero de sensores sem perda significativa de precisao
diagnostica. A selecdo e o posicionamento ideal dos acelerometros foram baseados na
relevancia das caracteristicas das assinaturas de vibragdes para identificar falhas.

Resultados experimentais indicaram que as RNAs tiveram desempenho superior
a 99% de F1-Score, apresentando alta precisdo mesmo com menos sensores. A
metodologia demonstrou-se eficaz e economicamente vidvel para aplicagao em sistemas

embarcados, beneficiando diretamente a manutencao preditiva na Marinha do Brasil.

vil
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Classification of injection faults in a marine Diesel engine using vibration signals

and artificial neural networks

Renato Bodanese

September/2025
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Department: Ocean Engineering

The growing demand for effective predictive maintenance strategies in naval
systems is driving the development of advanced techniques for early failure diagnosis.
This dissertation presents a methodology for automatically classifying single-misfire
injection failures in marine diesel engines using vibration signals and Artificial Neural
Networks (ANNs).

The methodology involves the acquisition and analysis of vibration signals
collected by accelerometers installed in an MTU 12V4000C11 diesel engine, evaluated
in the time, frequency, and time-frequency domains. Statistical characteristics such as
RMS, kurtosis, energy, and entropy were extracted and used as inputs in supervised
learning models.

Optimization of the data acquisition and processing system was a key
contribution, reducing the number of sensors without significantly losing diagnostic
accuracy. The selection and optimal positioning of the accelerometers were based on the
relevance of vibration signature characteristics for fault identification. Experimental
results indicated that ANNSs achieved F1-scores above 99%, demonstrating high accuracy
even with fewer sensors. The methodology proved effective and economically viable for
application in embedded systems, directly benefiting predictive maintenance in the

Brazilian Navy.
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1. INTRODUCAO

O percurso historico da analise de vibragdes acompanha, de forma bastante
proxima, o avango das ciéncias fisicas e matematicas desde o Renascimento. Nos séculos
XVII e XVIII, nomes como Galileu Galilei, Robert Hooke, Isaac Newton, Leonhard
Euler, Daniel Bernoulli e Jean le Rond d’ Alembert ajudaram a construir os fundamentos
da disciplina. Galileu, por exemplo, ao estudar o movimento pendular, demonstrou que o
periodo de oscilagcao de um péndulo independe da amplitude (para pequenas oscilagdes),
descoberta que deu origem tanto aos reldgios de péndulo quanto a modelos matematicos
de sistemas oscilatorios simples (DRAKE, 1978). Pouco depois, Hooke formulou a lei
que leva seu nome, estabelecendo a relagdo linear entre forga e deformagdo e abrindo
caminho para a modelagem elastica de sistemas vibratorios (TIMOSHENKO, 1983).

As contribuicoes de Newton e Euler, cada um a sua maneira, trouxeram a
formalizagdo matematica da dinamica e da teoria de vigas e barras (THOMSON, 1981).
Ao mesmo tempo, Bernoulli explorava as cordas vibrantes e seus modos naturais,
enquanto d’Alembert elaborava a equagdo de onda, pilares da teoria ondulatéria
(RAYLEIGH, 1877). Essas descobertas criaram a base que, séculos depois, permitiria o
desenvolvimento de métodos modernos de medicdo e de estratégias de prevencao de
falhas estruturais.

No século XIX, a obra de Fourier introduziu a ideia de decompor sinais em séries
de harmoénicos, um conceito que sO ganharia total forca no século XX com a
Transformada Rapida de Fourier (FFT), desenvolvida por Cooley e Tukey em 1965,
revolucionando a analise espectral. Nesse mesmo periodo, Lord Rayleigh consolidava a
analise modal ao formalizar os conceitos de frequéncias naturais € modos normais em sua
obra The Theory of Sound (RAYLEIGH, 1877). Somaram-se a isso a formulacao
matematica do oscilador harmonico e os estudos sobre amortecimento estrutural, viscoso
e aerodinamico (EWINS, 2000), que trouxeram a analise vibratoria para mais perto da
engenharia pratica.

Com o avango dos computadores na segunda metade do século XX, a disciplina
deu um salto ainda maior. Métodos numéricos, como o dos Elementos Finitos (FEM),
permitiram a analise de sistemas com multiplos graus de liberdade, geometrias complexas
e condigdes de contorno arbitrarias (ZIENKIEWICZ; TAYLOR, 2000).

Ja no século XXI, a analise de vibragdes deixou de ser uma area restrita a fisica e

a matematica para se integrar a ciéncia de dados e a inteligéncia artificial. Redes neurais
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convolucionais e recorrentes (CNNs e LSTMs), por exemplo, vém sendo aplicadas
diretamente em sinais brutos, reconhecendo padrdes sem a necessidade de extracao
manual de caracteristicas. Trabalhos recentes mostram a aplicacdo dessas arquiteturas
tanto em mancais de motores elétricos (HUU et al., 2025), como em modelos hibridos
que combinam transformadas espectrais e redes profundas (PRAWIN, 2024). Também
despontam abordagens probabilisticas, como redes Bayesianas e métodos nao
paramétricos, capazes de lidar com incertezas e prever falhas com maior antecedéncia
(GU et al., 2025; TABANDEH; GARDONI, 2021; DIAZDELAO et al., 2013).

Essa evolucao ¢, cada vez mais, multidisciplinar. A andlise de vibragdes hoje
conversa com a ciéncia dos materiais, explorando correlagdes entre microestrutura e
resposta dindmica; com a robotica, por meio do uso de drones e robos escaladores para
coleta de dados em locais de dificil acesso (TIAN et al., 2022); e com a ciéncia de dados,
que oferece algoritmos para extrair significado de sinais altamente complexos.

Olhando para o futuro, a integragdo com tecnologias emergentes, como gémeos
digitais, sistemas ciberfisicos e Internet das Coisas (IoT), deve transformar a analise de
vibragdes em uma das principais ferramentas de monitoramento inteligente. A
possibilidade de simular cendrios operacionais em tempo real, prever a integridade
estrutural de embarcagdes e realizar diagnosticos automaticos com base em sensores
distribuidos indica que estamos diante de um campo que nao apenas acompanha, mas
impulsiona a engenharia do futuro.

Desta forma, o foco do presente estudo ¢ propor um sistema de classificagdao de
falhas de injecdo em motores Diesel maritimos com elevada acuricia e otimizar o
processo de aquisicdo de dados, reduzindo a necessidade de sensores fisicos sem

comprometer a confiabilidade diagnostica.

1.1 Motivacao

A crescente demanda por estratégias de manutencdo baseadas em condigdo nos
sistemas navais tem impulsionado o desenvolvimento de métodos robustos para detec¢ao
e diagnostico precoce de falhas. Neste contexto, esta pesquisa propde uma abordagem
baseada na analise de sinais de vibragao provenientes de maquinas alternativas, com foco
na viabilidade de sua aplicacdo em ambientes operacionais da Marinha do Brasil. A
automagao do processo de diagnostico, por meio de técnicas de processamento de sinais
e aprendizado de maquina, visa reduzir a dependéncia de avaliagdes subjetivas realizadas
por operadores humanos, mitigando erros de interpretagdo e aumentando a confiabilidade
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do monitoramento da integridade estrutural dos sistemas mecanicos embarcados (WANG
etal., 2022; ZHANG et al., 2021). A utilizagdo de sinais de vibragdo como fonte primaria
de informacao diagnostica ¢ amplamente validada na literatura como uma ferramenta
sensivel e ndo invasiva, especialmente eficaz na deteccao de falhas em componentes
moveis, como mancais, valvulas e pistoes (JARDINE et al., 2006; LEI et al., 2018).

Adicionalmente, a pesquisa investiga a possibilidade de otimizacao do sistema de
aquisicdo de dados por meio da redugdo do numero de sensores fisicos, sem
comprometimento da acurdcia diagndstica, com o objetivo de diminuir custos
operacionais e facilitar a implementagdo em plataformas navais. Tal proposta estd
alinhada com tendéncias contemporaneas de monitoramento de condigdo baseado em
sensores inteligentes e técnicas de compressao de informagao (JIA et al., 2020).

Ao integrar tais metodologias em um sistema de manutencao preditiva, espera-se
aumentar significativamente a disponibilidade operacional dos meios, reduzir falhas
inesperadas e promover uma gestdo mais eficiente do ciclo de vida dos ativos,
contribuindo para a consolidagdo de uma doutrina de manutencdo centrada na

confiabilidade dentro do escopo da engenharia naval moderna.

1.2 Objetivos

O objetivo central desta pesquisa ¢ desenvolver e validar uma abordagem baseada
em algoritmos de inteligéncia artificial, com énfase em Redes Neurais Artificiais (RNAs),
para a deteccdo e identificacdo de falhas de injecdo em motores Diesel, especificamente
falhas do tipo “single misfire” (perda de combustao em um unico cilindro). Para isso, sao
utilizados sinais de vibragcao no Dominio do Tempo e da Frequéncia, adquiridos por meio
de acelerometros instalados diretamente no bloco e nos cabecotes do motor Diesel.

A escolha desses tipos de sinais visa explorar seu alto grau de sensibilidade a
anomalias mecanicas e seu potencial como ferramenta ndo invasiva para o diagnostico de
falhas. Em paralelo, a pesquisa busca reduzir a complexidade e o custo do sistema de
aquisicdo por meio da minimizacdo do nimero de sensores utilizados, bem como do
numero de caracteristicas extraidas dos sinais, sem comprometer a acuracia da
classificagao.

A integracdo desses elementos visa propor uma solucao eficiente, de baixo custo
e tecnicamente viavel para aplicacdo em sistemas embarcados de monitoramento de

condi¢cdo, contribuindo para estratégias de manutengdo preditiva em motores de
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combustao interna utilizados em ambientes operacionais criticos, como os da Marinha do

Brasil.

1.3 Contribuicoes da Dissertacao

As contribui¢des desta dissertacdo concentram-se em avangos metodologicos e
praticos no campo do diagndstico de falhas em motores de combustao interna, com énfase
na aplicabilidade em sistemas navais operacionais. Primeiramente, propde-se uma
abordagem inovadora para a identificacdo automatica de falhas de injecao do tipo single
misfire em motores Diesel, utilizando sinais de vibragdo no Dominio do Tempo como
principal fonte de informagao diagnostica. Essa escolha fundamenta-se em seu carater
ndo invasivo, alta sensibilidade a anomalias mecanicas e ampla aceitagdo na literatura
técnica como meio eficaz de monitoramento de integridade estrutural.

Em paralelo, a dissertacdo avanca na direcdo da otimiza¢ao do sistema de
aquisicdo de dados, propondo uma metodologia de minimizagdo tanto do numero de
sensores (acelerometros) quanto das caracteristicas extraidas, mantendo a acuricia
classificatoria. Isso resulta em um sistema mais econdmico e de facil implementacao,
crucial para viabilizar sua ado¢ao em meios navais.

Além disso, ¢ realizada uma anélise sistematica de posicionamento dos sensores
no bloco do motor, buscando maximizar a representatividade dos sinais adquiridos com
o menor numero de dispositivos. A integragdo dessas contribui¢cdes nao apenas fortalece
o uso de inteligéncia artificial no monitoramento de condi¢do, mas também consolida
uma arquitetura de diagnostico automatizado com potencial de aplicagdo em ambientes
reais, contribuindo diretamente para a modernizagao das estratégias de manutencao

preditiva da Marinha do Brasil.

1.4 Organizacao da Dissertaciao

O Capitulo 2 retne a revisao bibliografica, abordando métodos de monitoramento
de condi¢cdo em motores Diesel, técnicas de deteccao de falhas de inje¢ao com sinais de
vibragdao e a aplicagdo de algoritmos de aprendizado de méquina nesse contexto. Sao
analisadas contribui¢des relevantes da literatura que validam o uso de sinais de vibracao
como ferramenta diagnostica ndo invasiva e sua correlagdo com parametros de combustao

e desempenho do motor.
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No Capitulo 3 sdo apresentados os fundamentos teéricos que sustentam a
pesquisa. Discute-se a relagdo entre os dominios do tempo e da frequéncia na analise de
vibragdo, os principios da estatistica aplicados ao processamento de sinais e a influéncia
de outliers nos modelos preditivos. Também sdo explorados conceitos como a maldi¢ao
da dimensionalidade, técnicas de extracdo de caracteristicas, algoritmos de selecdo de
variaveis (Relief-F) e fundamentos de aprendizado supervisionado, incluindo o dilema
bias-variance e os métodos de regularizacao L1 e L2.

O Capitulo 4 descreve a metodologia adotada, estruturada em trés blocos
principais: pré-processamento dos sinais de vibragdao (com filtragem, detrending,
segmentagao ¢ data augmentation), processamento dos dados (tratamento de outliers,
selegdo de caracteristicas e sensores via Relief-F e normalizagao dos dados) e modelagem
com Redes Neurais Artificiais (RNA). Sao detalhados os principais componentes da
arquitetura utilizada, incluindo a funcao de ativacdo radial (RBF), o algoritmo de
treinamento e a otimizacao bayesiana de hiperparametros.

O Capitulo 5 apresenta o estudo de caso, baseado no motor Diesel maritimo MTU
12V4000C11 acoplado a um dinamometro. Descreve-se a instrumentagao com 15
acelerometros instalados nos cabegotes e no bloco, o sistema de aquisicdo de dados com
placas NI 9234 e software LabVIEW™, ¢ a indu¢do controlada de falhas de injecao por
meio do software Detroit Diesel Diagnostic Link (DDDL). Foram simuladas 39 condigdes
experimentais, incluindo operagdo normal e falhas individuais em cada cilindro,
resultando em uma base robusta de dados de vibragdo para treinamento e validagao das
RNAs.

No Capitulo 6 sdo apresentados e discutidos os resultados obtidos em trés
dominios de analise (Tempo, Frequéncia e Tempo-Frequéncia). Os experimentos
mostram que, mesmo com configuragdes enxutas de sensores e caracteristicas, foi
possivel alcancar F1-Scores superiores a 99%, confirmando a robustez da metodologia.
A anélise também evidenciou o impacto da maldi¢gdo da dimensionalidade quando ha
excesso de atributos ou sensores, bem como a relevancia da posi¢cdo dos acelerometros,
com destaque para aqueles instalados sobre os cabecotes dos cilindros.

O Capitulo 7 traz a conclusdo do trabalho, ressaltando a contribuigdo da
dissertacao no desenvolvimento de um sistema inteligente, otimizado e de baixo custo
computacional para diagnostico de falhas de injecdo em motores Diesel maritimos.
Destaca-se a aplicabilidade da solugdo para sistemas embarcados em tempo real e o

desempenho competitivo frente a algoritmos classicos (SVM, K-NN e Random Forest).
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Também s3o indicadas perspectivas para pesquisas futuras, como a expansdao da
metodologia para outros tipos de falhas mecanicas e a integragdo em sistemas autdonomos
de monitoramento.

Por fim, a dissertacido ¢ complementada pelas Referéncias Bibliograficas

(Capitulo 8) que sustentam a teoria da pesquisa.
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2. REVISAO BIBLIOGRAFICA

A seguir sao apresentados trabalhos que serviram como embasamento para o
desenvolvimento deste trabalho, onde sdo descritos detalhes de forma resumida da
elaboragdo e resultados de diversos pesquisadores. Os assuntos tratados serdo: métodos
de diagnodstico de falhas de injecdo, métodos de monitoracdo da condicdo de motor
Diesel, métodos de deteccao de falhas em injetores de motores a Diesel através da analise
de vibragao e o uso de sinais de vibragdo para monitorar o desempenho de um motor a
combustdo interna.

No contexto da literatura técnica e académica, diversos autores destacam que
motores Diesel eletronicos estdo sujeitos a diferentes tipos de falhas, que podem
comprometer tanto o desempenho quanto a confiabilidade do sistema. Essas falhas
podem ser de natureza mecanica, elétrica, eletronica, estrutural ou operacional,
abrangendo desde desgaste de componentes mdveis até defeitos em sensores e atuadores
controlados pela unidade de gerenciamento eletronico. A Tabela 1 sintetiza as principais
falhas reportadas na literatura, apresentando uma visdo organizada e referenciada das

ocorréncias mais comuns em motores Diesel eletronicos.

Tabela 1 - Falhas em motores Diesel eletronicos organizadas por natureza (mecanicas,
elétricas, eletromicas, estruturais/instala¢do e operacionais/combustdo), com
referéncias de base da literatura técnica.

Falhas em motores Diesel eletronicos Referéncia bibliografica

Falhas mecanicas: desgaste de pistdes,
anéis, valvulas e bronzinas; perda de
' Heywood, J. B. (2018). Internal
compressao; falha de lubrificacdo;
Combustion Engine Fundamentals, 2nd Ed.

travamento; falha em turbocompressor; '
McGraw-Hill

trincas em cabegote/bloco; valvulas

queimadas ou mal assentadas

Falhas operacionais/combustao: falhas o ‘
Shirazi, S. A., et al. (2018). Mechanical
de inje¢do  (entupimento/desgaste); ‘ '
Systems and Signal Processing; Zhao, H.

(2009).  Advanced Direct Injection

(13

combustivel contaminado; wet
stacking” (combustdo incompleta em
Combustion Engine Technologies and
baixa carga); detonagdo/pré-ignicao
Development. Woodhea
andmala
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Falhas elétricas: bateria e alternador
Robert Bosch GmbH. (2004). Diesel
defeituosos; mau contato em cabos e
‘ Engine Management: Systems and
conectores; curtos em chicotes expostos
‘ Components. Wiley
a calor e vibracao

Falhas eletronicas: sensores
defeituosos  (pressdo, temperatura,
rotacdo/cames); atuadores falhando

Mollenhauer, K., & Tschoeke, H. (2010).
(EGR, injetores); ECU/ECM com erro

Handbook of Diesel Engines. Springer
de firmware, sobreaquecimento ou

memoria corrompida; problemas de

sincronizagao de sensores

Falhas de instalacao/estruturais:
desalinhamento de eixos e suportes; | Stone, R. (2012). Introduction to Internal
vedacdao deficiente em juntas; fixacdo | Combustion Engines, 4th Ed. Palgrave
inadequada de sensores; ressonancias | Macmillan

estruturais causando vibragao e trincas.

CHARLES et al. (2009) propuseram um método para detectar as vibracdes
torcionais do virabrequim de motores a Diesel, a fim de monitorar e melhorar o
desempenho do motor em tempo real.

Os autores explicam que as vibragdes torcionais do virabrequim estao diretamente
relacionadas as caracteristicas da combustdo do motor, como o tempo de inicio da
combustdo, a taxa de combustao e a estabilidade da combustdo. Assim, a medicao das
vibragdes torcionais pode fornecer informacodes uteis sobre a qualidade da combustao e
o desempenho do motor.

Para medir as vibragdes torcionais do virabrequim, os autores utilizaram sensores
de vibragdo fixados no virabrequim e em outras partes do motor. Eles analisaram as
vibragdes torcionais em diferentes condi¢des de operacao e correlacionaram as vibragdes
com as caracteristicas da combustdo medidas por outros sensores do motor, como
sensores de pressao e temperatura.

Os resultados mostraram que as vibragdes torcionais do virabrequim podem ser
usadas para monitorar e diagnosticar as caracteristicas da combustao em motores a Diesel

em tempo real. Os autores sugerem que a técnica de diagndstico pode ser usada para
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melhorar o desempenho do motor, ajustando os parametros de controle do motor com
base nas informagdes fornecidas pelas vibragdes torcionais do virabrequim.

CHEN et al. (2015) aprimoraram um método de diagnoéstico de falhas de ignigcdo
em motores de combustdo interna, com base em modelos de simulacdo. Os autores
explicam que a deteccdo precoce e precisa de falhas de ignicdo € essencial para o
desempenho e a eficiéncia do motor, além de minimizar danos ao motor e reduzir
emissoes de poluentes. No entanto, as técnicas atuais de diagndstico sdo limitadas pela
complexidade do sistema e pela variabilidade das condi¢des de operagao.

O método proposto pelos autores baseia-se em modelos de simulagdo do motor
que incluem os efeitos da combustdo, fluidodindmica e termoquimica. O modelo ¢
calibrado com dados experimentais para fornecer uma simulacao precisa do motor e sua
operacdo sob diferentes condi¢des de operagao.

O método de diagndstico usa um algoritmo de deteccao de falhas que analisa os
sinais de sensores do motor para detectar desvios dos valores esperados, indicando uma
falha de igni¢do. Os sinais de sensor sdo comparados com as previsdes do modelo de
simulacdo para identificar a causa da falha de igni¢do, como o tempo de igni¢do ou a
quantidade de combustivel injetada.

Os resultados experimentais mostraram que o método proposto tem melhor
desempenho do que as técnicas atuais de diagnostico de falhas de igni¢do em motores de
combustdo interna. Os autores concluem que o uso de modelos de simulagdo pode
melhorar significativamente a precisdo e a eficacia do diagnostico de falhas de ignicao
em motores de combustdo interna, permitindo melhorias no desempenho e na eficiéncia
do motor.

GAWANDE (2012) trata de um método de deteccao de falhas em motores Diesel,
utilizando o torque do motor e a medigdo da massa de ar. O método utiliza o torque do
motor ¢ a massa de ar para identificar possiveis falhas, como problemas de combustao,
desgaste de pistoes e falhas no sistema de inje¢ao de combustivel. Para isso, o0 método
analisa as variagdes dessas grandezas em diferentes condi¢des de operagao do motor, e
utiliza um modelo matematico para identificar as falhas.

O artigo apresenta os resultados da aplicagdo do método em um motor Diesel de
quatro tempos, € os resultados mostraram que o método foi capaz de identificar as falhas
com alta precisdo. Além disso, o método proposto ¢ ndo invasivo e pode ser facilmente
aplicado em motores Diesel, ja que as grandezas utilizadas para a deteccao das falhas sao

faceis de medir.
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JUNG (2015) desenvolveu um algoritmo de deteccao de falhas de ignigao em
motores de combustdo interna, utilizando andlise quantitativa de desempenho de
diagnostico de falhas (FDI). O algoritmo proposto utiliza um modelo matematico do
motor, juntamente com técnicas de analise de sinais, para identificar possiveis falhas de
igni¢ao. O desempenho do algoritmo ¢ avaliado utilizando métricas de desempenho de
diagnostico de falhas, como a taxa de deteccdo de falhas (FDR) e a taxa de falso alarme
(FAR).

Os resultados da validagdo experimental mostram que o algoritmo proposto €
capaz de detectar com sucesso as falhas de ignicdo em diferentes condi¢des de operagao
do motor, com uma taxa de deteccao de falhas superior a 90% e uma taxa de falso alarme
abaixo de 1%.

A principal contribuicdo do artigo ¢ apresentar um algoritmo de deteccdo de
falhas de ignicdo preciso e confiavel, que pode ser util para melhorar a eficiéncia
energética e a confiabilidade de motores de combustdo interna. Além disso, o uso de
métricas quantitativas de desempenho de diagnostico de falhas ajuda a avaliar
objetivamente o desempenho do algoritmo e a compara-lo com outros métodos
existentes.

KLINCHAEAM (2009) descreve um método para monitorar a condi¢cao de um
pequeno motor a gasolina de quatro tempos usando sinais de vibragao. O artigo comega
discutindo a importancia da monitorizagao de condi¢des em motores a combustao interna
e os métodos disponiveis para fazer isso. Em seguida, o autor apresenta uma visao geral
do motor de quatro tempos usado no estudo, juntamente com a configuragao
experimental e as técnicas de medigdo utilizadas.

O método proposto para monitorar a condi¢do do motor ¢ baseado na analise do
espectro de frequéncia dos sinais de vibracdo. As caracteristicas do espectro sdo usadas
para identificar padrdes que indicam a condi¢ao do motor. Os autores usam o algoritmo
de aprendizado de maquina SVM para classificar os padroes do espectro de frequéncia
em trés classes: normal, problema mecanico e problema de combustao.

Os resultados mostram que o método proposto ¢ capaz de identificar com precisdao
a condi¢do do motor, mesmo com niveis baixos de vibragao. O método também ¢ capaz
de detectar problemas em estagios iniciais, o que pode permitir a manutengdo preventiva
antes que ocorram danos mais graves.

MEDEIROS et al. (2018) apresentaram uma técnica para deteccao de falhas em

injetores de motores a Diesel, utilizando a analise de vibragdo e nivel de pressao sonora.

25



O objetivo do estudo ¢ identificar falhas nos injetores de combustivel em estagios iniciais,
antes que essas falhas afetem o desempenho do motor € aumentem as emissdes poluentes.
O artigo apresenta resultados experimentais de testes realizados em um motor a Diesel
com diferentes graus de contaminacao nos injetores.

Os resultados mostram que a técnica proposta ¢ capaz de identificar com precisdao
as falhas nos injetores de combustivel. O estudo ¢ uma contribui¢do importante para o
campo da deteccao de falhas em motores a Diesel, podendo ajudar na prevengao de
problemas de desempenho e emissdes em motores a Diesel.

SHIRAZI (2018) aborda a deteccdo de falhas na injecdo de combustivel em
motores Diesel usando andlise de vibragdo. O artigo propde um método para detectar
falhas em injetores de combustivel, que podem levar a problemas como consumo
excessivo de combustivel, emissdes poluentes e perda de poténcia.

O método proposto usa sensores de vibragdo para medir a resposta do motor em
diferentes frequéncias e extrai caracteristicas de vibracdo relevantes para a detec¢do de
falhas na injecdo de combustivel. Os autores do artigo apresentam resultados
experimentais que demonstram a eficacia do método proposto em detectar falhas em
injetores de combustivel em um motor Diesel.

TAGHIZADEH-ALISARAEI (2018) propuseram um método para detec¢ao de
falhas nos injetores de combustivel em motores a Diesel, usando anélise de vibragao. O
método proposto envolve o uso de um algoritmo de analise de componentes
independentes (ICA) para decompor o sinal de vibragao em componentes independentes,
que sdo analisados em termos de sua energia e distribui¢ao de frequéncia para identificar
quaisquer anomalias nas caracteristicas do sinal.

Os autores do artigo apresentaram resultados experimentais que demonstraram a
eficacia do método proposto na deteccao de falhas nos injetores de combustivel em um
motor a Diesel. Além disso, eles compararam os resultados com outras técnicas de
deteccao de falhas de injetores e mostraram que o método proposto ¢ mais preciso e eficaz
do que as técnicas existentes.

NARAYAN et al. (2019) investigaram a possibilidade de usar sinais de
acelerdmetro para monitorar a combustdo em motores de combustao interna. No artigo,
os autores descrevem como usaram um acelerometro para medir as vibragdes do motor
durante o ciclo de combustao. Eles analisaram as caracteristicas dessas vibragdes, como
amplitude, frequéncia e tempo de duragdo, e as correlacionaram com a qualidade da

combustdo. Para fazer isso, os autores realizaram uma série de testes em um motor de
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quatro tempos e analisaram os sinais do acelerdmetro em diferentes condi¢des de
operacdo do motor.

Os resultados do estudo mostraram que os sinais do acelerometro podem ser
usados para monitorar a qualidade da combustao em motores de combustao interna. Os
autores também compararam os resultados obtidos usando sinais do acelerometro com
os resultados obtidos usando outros métodos de monitoramento de combustdo, como a
medicao da pressao do cilindro, e mostraram que os sinais do acelerometro podem ser
tao precisos quanto outros métodos mais tradicionais.

JOHNSSON et al. (2006) apresentaram um método para reconstruir a pressao do
cilindro em motores de combustado interna a partir de sinais de vibragao e velocidade. Os
autores usaram uma rede de funcao de base radial (RBF) complexa para mapear os sinais
de vibracao e velocidade do motor para a pressao do cilindro. A rede foi treinada usando
dados experimentais coletados de um motor de quatro tempos.

Os resultados mostraram que o método proposto pode ser usado para reconstruir
a pressao do cilindro com alta precisdo. Os autores também compararam seus resultados
com os obtidos usando outros métodos de reconstrugao de pressdao, como o método de
filtragem de Kalman, e mostraram que o método proposto apresentou melhor
desempenho.

BUSINARO et al. (2015) apresentaram uma metodologia baseada em
aceleroOmetros para estimar parametros de combustdo em motores de combustao interna.
Os autores propdoem um modelo matematico que relaciona os sinais de aceleragdo do
motor com a pressao média indicada e a taxa de liberagao de energia no cilindro. O
modelo ¢ validado experimentalmente em um motor de quatro tempos, usando um sensor
de pressao para calibrar os parametros do modelo.

Os resultados mostram que a metodologia proposta ¢ capaz de estimar a pressao
média indicada e a taxa de liberagdo de energia com boa precisdo em uma ampla gama
de condic¢des de operacao do motor. Além disso, a metodologia apresenta vantagens em
relacdo a métodos convencionais, pois nao requer a instalacao de sensores intrusivos no
cilindro.

ZHU et al. (2007) apresentaram uma metodologia para estimar a pressao no
cilindro de um motor Diesel usando sinais de vibragao do cabegote do motor. Os autores
propdem um modelo matematico que relaciona a pressao no cilindro com os sinais de
vibragao do cabecote. A técnica ¢ baseada em um método de analise de séries temporais

chamado método de decomposicao empirica (EMD), que ¢ capaz de separar os diferentes
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componentes dos sinais de vibragao. O modelo ¢ testado em um motor Diesel de quatro
tempos e os resultados mostram que a metodologia ¢ capaz de estimar a pressao no
cilindro com precisao. Além disso, a técnica proposta apresenta vantagens em relagao a
métodos convencionais, pois ndo requer a instalacao de sensores intrusivos no cilindro.

DEJONG (1986) discutiu o uso de sinais de vibragdo para monitorar o
desempenho de um motor de combustao interna. O autor apresenta um método para
analisar os sinais de vibracao gerados pelo motor e identificar possiveis falhas no sistema.
O método envolve a utilizagao de sensores de vibragdo colocados em diferentes pontos
do motor, que registram os sinais de vibragao durante a operacao. Os sinais sdo entao
analisados em termos de sua amplitude, frequéncia e forma de onda para identificar
padrdes que indicam possiveis falhas, como desequilibrio no motor ou problemas com
os sistemas de lubrificacdo ¢ combustivel.

O autor também discute a importancia do monitoramento continuo do motor para
evitar falhas catastroficas que possam levar a danos no motor ou acidentes. Ele sugere
que o uso de sinais de vibragao pode ser uma ferramenta util para a detec¢ao precoce de
falhas, permitindo que sejam tomadas medidas corretivas antes que a falha se torne
critica.

LYON (1988) apresentou um método para detectar e isolar falhas em motores a
Diesel por meio do monitoramento de sinais de vibragdo. O autor propde um sistema de
analise de vibragdo baseado em computador para a identificacdo de padrdes
caracteristicos de falhas em um motor. O método emprega técnicas de analise espectral
e estatistica para detectar anomalias nos sinais de vibragdo do motor, que sdo causados
por falhas em componentes individuais. Esses padrdes sdo entdo comparados com uma
biblioteca de padrdes previamente identificados para isolar a falha. O autor testou o
método em um motor Diesel de quatro cilindros e demonstrou a eficacia da técnica na
deteccao e localizagdo de falhas em componentes individuais do motor, incluindo
injetores de combustivel, bombas de 6leo e valvulas de admissao e escape.

MACIAN et al. (2005) apresenta uma metodologia para detecgdo de falhas de
injecdo em motores Diesel com base na andlise de frequéncia da velocidade instantanea
do turbocompressor. A abordagem proposta utiliza a transformada de Fourier para extrair
informacdes espectrais da vibragdo do turbocompressor e analisa a presenga de
harmonicos relacionados com o niimero de cilindros do motor. Com base na andlise dos
componentes espectrais, a metodologia pode detectar falhas de injegao em cilindros

individuais e até mesmo identificar o tipo de falha.
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4

A técnica proposta ¢ validada em um motor Diesel de quatro cilindros,
demonstrando alta eficacia na detec¢do de falhas de inje¢do. Além disso, o artigo
apresenta uma técnica de correcdo de falhas de injecao por meio da variagao do sinal de
controle da bomba de combustivel, baseada na identificagdo do tipo de falha. Os
resultados experimentais mostram que a abordagem proposta € capaz de corrigir as falhas
de injecao detectadas com precisao.

Vibration Signal Analysis for Condition Monitoring of Diesel Engines" de
Ferdinando Taglialatela-Scafati e Mario Lavorgna descreve uma abordagem para
monitorar o estado de motores Diesel por meio da analise de sinais de vibragdo. O
objetivo do estudo ¢ desenvolver uma metodologia eficiente de monitoramento de
motores Diesel que possa detectar falhas em estagios iniciais, permitindo a manutencao
preventiva e reduzindo custos.

Os autores propdem um método de analise de sinais de vibragdo baseado em trés
etapas: (1) extragdo de caracteristicas dos sinais, (2) selegdo das caracteristicas mais
importantes e (3) classificagao das amostras de sinais de vibragao em classes saudaveis
ou nao saudaveis. A extragdo de caracteristicas ¢ realizada por meio de técnicas de
processamento de sinal, como transformada de Fourier, transformada Wavelet e analise
de componentes principais. A selecdo das caracteristicas mais importantes ¢ feita
utilizando algoritmos de sele¢ao de caracteristicas, e a classificagdo ¢ realizada por meio
de algoritmos de aprendizado de maquina, como a regressao logistica e as redes neurais.

Os resultados do estudo mostram que a abordagem proposta pode ser eficaz para
detectar falhas em motores Diesel com base em sinais de vibragdo. A precisao da
metodologia proposta foi avaliada em um experimento com um motor Diesel em
funcionamento, onde foi possivel detectar falhas de maneira eficiente. O estudo sugere
que a analise de sinais de vibragdo pode ser uma ferramenta util para o monitoramento e
manutencao de motores Diesel.

THARANGA et al. (2020) apresentam um estudo aprofundado sobre o uso de
sinais de vibracdo para diagnostico de falhas em motores Diesel, explorando como
diferentes fendmenos internos, como variagdo de pressao de combustdo, desequilibrios
mecanicos e falhas de componentes moveis, geram assinaturas vibracionais
caracteristicas. O trabalho destaca a relevancia do ponto morto superior (TDC) como
referéncia fundamental para correlacionar eventos de combustao, abertura e fechamento

de valvulas e injecao de combustivel ao longo do ciclo do motor.
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O estudo aborda especificamente trés falhas comuns: folga excessiva de valvulas,
fendmeno de piston slap (impacto do pistdo contra o cilindro) e falhas de injecao de
combustivel. Para cada uma delas, os autores descrevem como essas anomalias afetam a
assinatura de vibracao do motor e apresentam técnicas de analise no Dominio do Tempo
e do angulo do eixo de manivelas para sua identificacdo. Além disso, enfatizam a
importancia de métodos de separagao de fontes e extracdo de caracteristicas para
distinguir sinais de combustdo de ruidos mecanicos, aumentando a precisdo do
diagnostico.

Os resultados discutidos indicam que o monitoramento por vibragdo, quando
devidamente correlacionado a diagramas de sincronismo de valvulas e injecao, permite
detectar e classificar falhas com alta confiabilidade, representando uma alternativa viavel
e menos intrusiva em relagdo a sensores de pressdo diretos. O estudo contribui para o
avango da manutencdo preditiva em motores Diesel, fornecendo diretrizes praticas para
correlacionar assinaturas vibracionais com condi¢des de operagdo e falhas especificas.

MORAES et al. (2024) apresentam uma metodologia inovadora para
classificacdo de falhas em motores Diesel com base na analise de sinais de vibragdo no
Dominio do Tempo, utilizando técnicas de processamento de sinais € CNN. O estudo
parte do desafio de superar limitacdes de métodos tradicionais de diagnostico, que
exigem desligamentos dispendiosos e alto conhecimento técnico para interpretar
medicoes complexas, como termografia e ultrassom.

A proposta utiliza dados simulados de vibracao torcional do virabrequim de um
motor maritimo de seis cilindros, gerados por modelos termodinamicos ¢ de massa
concentrada validados com dados do fabricante. As condi¢des simuladas incluem
operacdo normal e trés falhas representativas: reducdo da pressdao de admissao de ar,
queda de pressao de compressao e falhas na quantidade de combustivel injetado. Esses
sinais sdo processados por transformada de Fourier de curto prazo (STFT) e transformada
wavelet continua (CWT), convertendo-os em espectrogramas e escalogramas que
alimentam uma CNN para a classificacao automatica das falhas.

Os resultados mostraram acuracia de 96,5% para dados processados via STFT e
92,2% para dados via CWT, mantendo desempenho acima de 70% mesmo sob condi¢des
de ruido elevado (até 40%). A pesquisa demonstra o potencial do uso combinado de
transformadas tempo-frequéncia e CNN para diagnosticos robustos e em tempo real,
oferecendo uma alternativa mais acessivel e menos intrusiva para monitoramento

preditivo de motores Diesel em ambientes industriais.
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GUERRA (2023) conduziu um estudo voltado ao diagnostico de falhas de igni¢cao
em motores Diesel maritimos utilizando sinais de vibracao combinados a técnicas de
Aprendizado de Maquinas (AM). A pesquisa, motivada pela necessidade de solugdes
eficazes em manutencao preditiva no setor naval, visou reduzir custos operacionais e
ampliar a disponibilidade das embarcagdes por meio da deteccao precoce de falhas. Para
isso, foram coletados sinais de vibragao por meio de quinze acelerometros piezoelétricos
instalados no bloco do motor, abrangendo condi¢cdes normais de funcionamento e falhas
induzidas pelo corte da inje¢ao de combustivel.

O processamento dos dados incluiu extracao de dezoito caracteristicas estatisticas
no Dominio do Tempo, normalizacdo e remoc¢do de outliers, seguido da aplicagdo de
algoritmos de classificagdo supervisionada, como K-NN, RF ¢ SVM. Os resultados
evidenciaram elevado desempenho dos modelos, alcangando F1-Score proximo a 100%,
demonstrando a eficiéncia da abordagem proposta para identificagao e classificagao das
falhas.

Um diferencial importante do trabalho foi a anélise sobre a redu¢ao do numero
de sensores necessarios para o diagnostico. Com o uso do método Relief-F e analise
combinatoria, verificou-se que apenas dois acelerdmetros seriam suficientes para manter
a acuracia acima de 95%, o que viabiliza a aplicagdo do método em contextos reais, nos
quais a simplicidade da instrumentagdo € o menor custo sao fatores decisivos.

Assim, o estudo de GUERRA (2023) representa uma contribuicao significativa
para a area de monitoramento e diagnéstico de motores maritimos, evidenciando o
potencial das técnicas de aprendizado de maquina em aplicagdes praticas e refor¢ando
sua importancia para o desenvolvimento de estratégias modernas de manutengdo
preditiva no ambiente naval.

AYANKOSO et al. (2024) realizaram uma analise comparativa detalhada sobre
o0 uso de sinais de vibracao e corrente elétrica para o diagndstico de falhas em motores
de indugdo, aplicando técnicas de aprendizado profundo e de aprendizado de maquina. O
estudo teve como foco avaliar se os sinais de corrente, os quais possuem menores custo
e instalacdao nao intrusiva, poderiam substituir de forma eficaz os sinais de vibragdo que
seriam mais onerosos € complexos de instalar. As falhas investigadas incluiram
desalinhamento e defeitos em rolamentos, sendo os experimentos conduzidos em varias
condig¢des de carga e velocidade para garantir a diversidade dos cendrios industriais.

A metodologia envolveu a aplicacdo de redes neurais convolucionais

unidimensionais e bidimensionais diretamente sobre os sinais brutos, além de algoritmos
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de aprendizado de maquina classicos, como RF e Extreme Gradient Boosting (XGBoost).
Estes ultimos foram treinados com caracteristicas extraidas por meio da transformada
rapida de Fourier (FFT) e da decomposi¢ao por wavelet discreta (DWT). Os resultados
mostraram que os sinais de vibragcdo apresentaram desempenho significativamente
superior, atingindo acuracia proxima a 100% na classificagdo das falhas, enquanto os
sinais de corrente, mesmo apos processamento avangado, atingiram acuracia maxima de
87,41%.

Os achados reforcam que, embora os sinais de corrente possam ser considerados
promissores em cendrios que priorizam simplicidade e baixo custo, os sinais de vibragao
continuam sendo mais eficazes para a deteccdo de falhas mecanicas em motores de
inducdo. Este estudo contribui para o avango da literatura ao esclarecer as vantagens e
limitagdes de cada abordagem, fornecendo subsidios para decisdes mais informadas na
implementagao de sistemas de monitoramento preditivo.

NEUPANE et al. (2025) realizaram uma revisao extensa e atualizada sobre
métodos de diagnostico de falhas em maquinas baseados em dados, destacando o impacto
do avanco dos sensores industriais € do crescimento do big data na area de manutengao
preditiva. Os autores analisam como essas tecnologias tém viabilizado diagnosticos mais
rapidos e precisos, favorecendo a detec¢do precoce de falhas e a otimizagdo do
desempenho de sistemas industriais complexos.

O estudo abrange tanto abordagens tradicionais, fundamentadas em modelos
fisicos e especialistas, quanto técnicas avancadas de aprendizado de maquina e
aprendizado profundo, CNNs, redes recorrentes (RNN), autoencoders e novas
metodologias como Transfer Learning, Reinforcement Learning e Federated Learning.
Além disso, os autores apresentam uma taxonomia detalhada das técnicas existentes,
discutindo seus pontos fortes e limitacdes, bem como desafios praticos, como a escassez
e o desequilibrio de dados, sinais ruidosos e a dificuldade de generalizacao dos modelos
em diferentes cenarios operacionais.

Outro aspecto relevante do trabalho ¢ a analise de diversas bases de dados
classificando-as de acordo com o tipo de sinal (vibragdo, corrente, actstico ou térmico)
e sua aplicagdao em diagnostico e prognoéstico. Os autores enfatizam que a integracao de
multiplas fontes de dados e técnicas de pré-processamento pode ampliar a robustez e
confiabilidade dos sistemas de monitoramento.

JABER (2024) propos uma abordagem baseada exclusivamente em sinais no

dominio do tempo para a deteccdo de falhas em mancais. O trabalho explora uma
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limitagdo recorrente na literatura: embora analises nos dominios da frequéncia e tempo-
frequéncia sejam reconhecidamente eficazes, sua alta complexidade computacional
compromete aplicagdes em tempo real. Jaber aborda este desafio propondo a extragdo de
14 caracteristicas estatisticas temporais (como RMS, curtose, assimetria, entre outras) e
a aplicagao de técnicas de selegdo de atributos (Information Gain e Fast Correlation-
Based Filter — FCBF), com o objetivo de identificar os melhores preditores para alimentar
algoritmos de aprendizado de méaquina.

Entre os modelos testados (k-Nearest Neighbors — kNN, Support Vector
Machines — SVM e Naive Bayes), o classificador kNN combinado com FCBF (kNN-
FCBF) apresentou desempenho superior, atingindo 99,1% de AUC e 97% de acuracia. O
estudo evidencia que, mesmo com a simplicidade da anélise no dominio do tempo, ¢
possivel obter diagnosticos robustos e eficientes, desde que as caracteristicas mais
relevantes sejam selecionadas de forma adequada.

MAIONE et al. (2025) propdem uma metodologia inovadora de aprendizado
profundo para a previsdao de séries temporais em motores Diesel maritimos, com o
objetivo de antecipar o comportamento dindmico desses sistemas. O método combina
redes neurais recorrentes (RNN) com mecanismos de atengdo temporal, permitindo a
rede focar seletivamente nos padrdes mais relevantes das sequéncias de entrada ao longo
do tempo.

O modelo foi testado utilizando dados operacionais reais provenientes de sensores
instalados em motores maritimos, abrangendo varidveis como pressdo, temperatura,
rotacdo e vibracao. Um dos destaques do estudo ¢ a capacidade de previsdo multi-
horizonte, ou seja, 0 modelo ndo apenas prevé um unico passo a frente, mas consegue
antecipar diversos instantes futuros, o que ¢ fundamental para o planejamento de agdes
corretivas em sistemas navais. Os resultados indicaram elevada acuracia preditiva e baixa
variancia nos erros, mesmo diante de ruidos nos dados e variagcdes operacionais tipicas

de ambientes maritimos.
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3. FUNDAMENTACAO TEORICA

O presente capitulo tem como principal objetivo estabelecer as bases conceituais
que sustentam o desenvolvimento da dissertacao. Para isso, apresenta os fundamentos da
analise de vibracao nos dominios do tempo e da frequéncia, destacando como essas
abordagens permitem identificar padrdes relacionados a falhas de injegdo em motores
Diesel. Também introduz conceitos estatisticos aplicados ao processamento de sinais,
incluindo distribui¢des probabilisticas, medidas de tendéncia central e variabilidade,
além do impacto de outliers na qualidade dos dados. Outro ponto essencial ¢ a discussao
da maldi¢ao da dimensionalidade e das técnicas de extracao ¢ sele¢do de caracteristicas
(algoritmo Relief-F), fundamentais para reduzir redundancias e melhorar a eficiéncia dos
modelos. Por fim, o capitulo aborda os principios do aprendizado supervisionado, do
equilibrio bias-variance e da regularizagdo, fornecendo a fundamentagao necessaria para

a aplicacao das Redes Neurais Artificiais na classificacdo de falhas.

3.1. Analise das Assinaturas de Vibracao

Nesta secdo serdo apresentados os fundamentos da interpretagdao dos sinais
vibracionais em motores Diesel maritimos. Para isso, descreve a relacdo entre os
dominios do tempo e da frequéncia, destacando como cada um evidencia diferentes
aspectos do comportamento dindmico do sistema. O texto ressalta a importancia da
Transformada Rapida de Fourier (FFT) como ferramenta para converter sinais temporais
em espectros de frequéncia, possibilitando identificar componentes harmonicos e padroes
de falha. Além disso, enfatiza que a andlise combinada dos dominios no tempo e no
dominio da frequéncia oferece diagndsticos mais completos e robustos, essenciais para

detectar com precisao falhas de injecao.

3.1.1. Relagao entre o Dominio do Tempo e o Dominio da Frequéncia na Analise de
Vibracao
A andlise de sinais pode ser realizada em diferentes dominios, sendo os mais
relevantes o Dominio do Tempo e o Dominio da Frequéncia. O Dominio da Frequéncia
¢ onipresente na natureza € na engenharia, embora nem sempre seja referido
explicitamente como tal. Por exemplo, fenomenos como luz, cor € som sdo

manifestagdes diretas de frequéncias especificas, mas na linguagem cotidiana nos
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referimos a eles por seus efeitos perceptiveis, e nao pelo termo técnico "frequéncia"
(TAYLOR, 1994).

A percepcao sonora humana esta limitada ao intervalo de aproximadamente 20
Hz a 2000 Hz, denominado "faixa audivel" (RANDALL, 2011). Sons de baixa
frequéncia, como os emitidos por um cantor baritono, contrastam com sons de alta
frequéncia, exemplificados pelo alcance vocal de um soprano em Operas. Tal distingdo
evidencia a importancia da frequéncia na caracterizagao de fendmenos vibracionais.

A escolha entre realizar a analise no Dominio do Tempo ou no Dominio da
Frequéncia depende das caracteristicas do fendmeno e do objetivo do diagnostico.
Informagdes como a duragdo de eventos sao mais bem descritas no Dominio do Tempo,
enquanto a estrutura interna e periddica de sinais, especialmente em sistemas rotativos,
revela-se mais nitidamente no Dominio da Frequéncia (TAYLOR, 1994).

Na engenharia de manuteng¢do preditiva, por exemplo, falhas mecanicas podem
nao ser visiveis a olho nu, tampouco audiveis, devido a limitagdes fisiologicas ou a
presenca de ruidos mascarantes. Ainda que o operador relate que "ndo vé nada de errado"
ou que "o som parece normal", a falha pode estar presente, porém fora do alcance
sensorial humano, ou superposta a outros sinais (TAYLOR, 1994).

Anadlises como o diagnostico de desbalanceamento podem ser inicialmente
realizadas no Dominio do Tempo. Contudo, sinais provenientes de maquinas rotativas
sdo geralmente complexos, exigindo a transformagado para o Dominio da Frequéncia, a
fim de facilitar a identificacdo de componentes harmodnicos e padrdoes de falha
(RANDALL, 2011). Realizar a andlise exclusivamente no Dominio da Frequéncia,
contudo, pode gerar interpretacdes equivocadas, sendo recomendada a avaliagdo
conjunta de ambos os dominios para uma interpretacao completa e precisa.

A conversao de um sinal do Dominio do Tempo para o Dominio da Frequéncia
¢ realizada por meio da FFT (FOURIER, 1822). Entretanto, a ampla aplicacao desta
técnica sO foi possivel apos o advento da computacao digital, que permitiu a execugao
rapida e precisa de calculos anteriormente impraticaveis.

A Figura 1 representa de forma integrada as duas visdes de um mesmo sinal. O
Dominio do Tempo em que a amplitude do sinal ¢ plotada em fun¢do do tempo,
permitindo observar diretamente seus picos, vales e eventuais transientes ¢ o Dominio
da Frequéncia onde ¢ obtido pela aplicagdo da FFT as oscilagdes temporais, onde cada
pico espectral indica a presenca de um componente periddico em determinada

frequéncia.
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Dominio da

Dominio do
Tempo

> Frequéncia

Figura 1 - Diagrama da Relagdo entre o Dominio do Tempo e o Dominio da
Frequéncia

A compreensdao dessa relacdo ¢ fundamental para o desenvolvimento de
diagnosticos robustos em sistemas mecanicos complexos, como motores Diesel
maritimos, onde a identificagdo precisa de falhas de inje¢cao ou de desequilibrios
estruturais depende diretamente da adequada interpretacao dos sinais vibracionais em

multiplos dominios.

3.1.2. Estatistica Aplicada ao Processamento de Sinais

A modelagem estatistica e os métodos de aprendizado supervisionado requerem
uma compreensao solida dos principios fundamentais da teoria das probabilidades, dado
que tais fundamentos sdo essenciais para a constru¢do e interpretagdo de modelos
preditivos baseados em dados. IVEZIC et al. (2014) oferecem uma abordagem
abrangente e didaticamente estruturada sobre as principais distribui¢des probabilisticas
aplicaveis ao contexto do aprendizado de maquina, com destaque para sua aplicagcao no
tratamento de sinais reais, como os oriundos de vibragdes em motores Diesel maritimos.

A distribui¢ao de probabilidade P(x) representa a frequéncia relativa esperada
de ocorréncia de um evento aleatéorio. Em sistemas embarcados sujeitos a ruido,
instabilidades térmicas e condi¢des operacionais variaveis, como os motores Diesel
maritimos, a modelagem estocastica dos sinais de vibracdo ¢ indispensavel para
representar incertezas e fornecer fundamentos para inferéncias estatisticas e algoritmos

de aprendizado.
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A referida secao distingue entre distribuigdes discretas - como a binomial e a de
Poisson - e continuas, dentre as quais se destacam a distribui¢ao normal e a exponencial.
Essas tltimas sdo particularmente adequadas para modelar variaveis fisicas continuas,
tais como aceleracdes e amplitudes de vibracao.

A distribuicdo normal (Gaussiana) assume papel central no aprendizado
supervisionado ao modelar ruidos e erros de medi¢do, fornecendo base tedrica para
hipéteses de normalidade em diversos algoritmos. Sua funcdo de densidade de

probabilidade (PDF) ¢ dada pela Eq. (3.1):

1 _x-w?
fx(x) = (Gm) e 202 (3.1)
em que u representa a média e o2 a variancia da distribui¢do (IVEZIC et al.,
2014).
A distribui¢ao exponencial, por sua vez, ¢ frequentemente utilizada para modelar
o tempo entre eventos sucessivos, como falhas de componentes, ¢ ¢ definida pela Eq.

(3.2):
fxID) = 2e™,x >0 (3.2)

em que x ¢ a varidvel aleatdria continua que representa o tempo até a ocorréncia de um
evento e A € o parametro da taxa da distribuicdo exponencial, também chamado de taxa
de falhas ou intensidade. Ele indica a frequéncia média com que os eventos ocorrem por

unidade de tempo e quanto maior A mais rapido os eventos tendem a ocorrer

Essas distribui¢des possibilitam a definicdo de modelos probabilisticos a priori e
a posteriori — conceito fundamental em abordagens bayesianas e aplicado no processo
de otimizagao de hiperparametros, como adotado neste trabalho.

Adicionalmente, sdo introduzidas medidas estatisticas derivadas, tais como
média, mediana, variancia, desvio padrdo, curtose etc., largamente utilizadas neste
estudo para extragao de caracteristicas nos Dominios do Tempo e da Frequéncia. Parte-
se da premissa de que distintos estados operacionais do motor, como falhas ou

funcionamento normal, manifestam-se por meio de alteragdes nas propriedades
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estatisticas dos sinais. Assim, a analise de distribui¢des auxilia na redugao de ruido ¢ na
identificacao de padrdes informativos relevantes que alimentam as RNAs.

A probabilidade condicional permite o mapeamento P(y|x), onde x representa o
vetor de caracteristicas extraidas dos sinais de vibragdo e y refere-se a classe associada
a condi¢ao do motor (normal ou com falha de injecdo). Essa estrutura probabilistica
fundamenta a escolha da funcdo de custo por entropia cruzada, bem como o uso de
validacao cruzada como técnica para maximizar a capacidade de generalizacao do

modelo.

3.1.3. Analise de Outliers

A presenga de outliers - observagdes que se desviam significativamente do
padrao esperado dos dados - constitui uma das principais fontes de degradagdo do
desempenho de algoritmos de aprendizado supervisionado, especialmente em sistemas
sensiveis como os modelos baseados em RNAs. De acordo com AGGARWAL (2017),
a identificacdo e o tratamento de outliers sdo essenciais para garantir a qualidade dos
dados e a estabilidade dos modelos preditivos.

A definigdo estatistica classica de outlier baseia-se na probabilidade de
ocorréncia de uma amostra sob uma distribuicdo presumida. Por exemplo, para uma
variavel continua normalmente distribuida, um ponto de dado x pode ser considerado

um outlier se obedecer a seguinte condi¢ao, conforme Eq. (3.3):

[x —pu>A—o (3.3)

em que P ¢ a média, o € o desvio padrao e A ¢ um fator de limiar. Este critério ¢

relacionado diretamente a analise univariada, mas pode ser estendido ao espago

multidimensional por meio da distancia de Mahalanobis, apresentada na Eq. (3.4):

Dy = \/ - WY x- W (3.4)

onde }' representa a matriz de covariancia do conjunto de dados (AGGARWAL,
2017).
Neste contexto, que envolve sinais de vibracdo no Dominio do Tempo e da

Frequéncia, a integridade estatistica dos dados ¢ critica. Os métodos de extragao de
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caracteristicas como curtose, skewness, RMS e outros momentos estatisticos sdo
altamente sensiveis a valores extremos. Assim, a presenga de outliers pode induzir a um
sobreajuste das RNAs, prejudicando a capacidade de generalizagao do modelo.
AGGARWAL (2017) também classifica os métodos de deteccao de outliers em
quatro categorias principais: Métodos Estatisticos Paramétricos (baseados na hipdtese
de distribui¢ao; Métodos Baseados em Distancia (como o DBSCAN e a distancia de
Mahalanobis); Métodos Baseados em Densidade (como o Local Outlier Factor - LOF);
e os Métodos Baseados em Modelos (incluindo redes neurais autoencoders e SVMs).
Neste estudo, a utilizagdo de técnicas estatisticas robustas, como o método de
quartis com limiares ajustaveis (e.g., método Clip no MATLAB), permite a mitigacdo
do efeito de valores extremos antes da alimentacdo dos dados a rede neural. Essa
abordagem também facilita a conformidade dos dados com os pressupostos das técnicas

de normalizacao e validacao cruzada aplicadas no processo de treinamento da RNA.

3.1.4. “Maldicao da Dimensionalidade”

A “maldi¢ao da dimensionalidade” (curse of dimensionality) ¢ um dos desafios
centrais no aprendizado de maquina e na mineragdo de dados, com impacto direto na
modelagem preditiva ¢ na andlise estatistica em espagos de alta dimensionalidade.
Conceituada inicialmente por BELLMAN (1961) no ambito do controle dinamico, essa
expressao descreve a degradacao exponencial do desempenho de métodos numéricos a
medida que aumenta o numero de variaveis de entrada (caracteristicas) (HASTIE et al.,
2009; TAN et al. 2018).

No contexto da aprendizagem supervisionada, tal fenomeno decorre do
crescimento exponencial do volume do espago de busca em fungao da dimensionalidade
p, o0 que acarreta dispersao amostral e reducdo dréstica da densidade efetiva de dados.
Considerando uma unidade cubica [0,1]P, onde p é o nimero de dimensdes, o volume
necessario para cobrir uma fracao significativa do espago aumenta drasticamente com p.
Por exemplo, para cobrir 1% do volume de um espago de entrada em p = 10 dimensdes
com uma hiper esfera centrada, seu raio precisa ser de aproximadamente 0,52, o que
representa mais da metade da faixa total de cada variavel (HASTIE et al., 2009).

Esse efeito ¢ formalmente expresso pela Eq. (3.5):

Nsamples x €P (3. 5)
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em que Nggmpres € 0 nimero de amostras necessario para manter a resolugdo, € € a
resolucao desejada e p € o numero de dimensdes. Além das implicagdes estatisticas, a
maldicao da dimensionalidade compromete algoritmos baseados em distancias, como k-
NN e SVM. Em alta dimensionalidade, a razdo entre a menor ¢ a maior distancia entre

amostras tende a 1, conforme Eq. (3.6):

min || x; — x; |l

im (3.6)
poeomax || x; — x; |l

Esse comportamento reduz a capacidade discriminativa dos classificadores, tornando
inviavel a separacao eficiente de classes com base em métricas de proximidade.

No presente estudo, que envolve sinais de vibragdo com alto numero de
caracteristicas extraidas nos Dominios do Tempo, Frequéncia e Tempo-Frequéncia, a
maldi¢ao da dimensionalidade torna-se um desafio comum.

Portanto, a compreensdo e o tratamento adequado da maldicdo da
dimensionalidade foram essenciais para garantir a robustez e a eficiéncia de sistemas
preditivos baseados em RNAs, particularmente no contexto deste estudo de deteccao de
falhas com multiplas variaveis descritivas.

Para mitigar a maldicdo da dimensionalidade, foram adotadas estratégias

amplamente recomendadas na literatura (GUYON et al., 2003), tais como:

e Selecao de caracteristicas fundamentada em heuristicas estatisticas, visando
reduzir o espaco de busca sem perda de informacao relevante;

e Regularizacio por meio de hiperparametros, como A, para controle da
complexidade do modelo e prevencao de overfitting; e

e Validacao cruzada (cross-validation) para avaliagao robusta da capacidade de

generalizagao.

Assim, a compreensdo € o tratamento sistematico da maldicdo da
dimensionalidade ndo apenas viabilizaram a construcao de um sistema de deteccao de
falhas robusto e eficiente, mas também asseguraram alinhamento com as melhores
praticas do estado da arte, garantindo maior confiabilidade e reprodutibilidade dos

resultados obtidos.
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3.2. Extracao de Caracteristicas

A extragdo de caracteristicas constitui uma etapa fundamental no processo de
diagnostico de falhas em sistemas rotativos, uma vez que transforma sinais brutos em
representacdes informativas e discriminativas para os algoritmos de aprendizado
supervisionado. MARTINS et al. (2021) enfatizam esse processo como central na
eficacia do método proposto, denominado Hierarchical Decision Architecture (HDA), o
qual depende fortemente da qualidade das caracteristicas para realizar a classificacao de
falhas combinadas em maquinas rotativas.

No contexto da andlise de vibracdes, as caracteristicas sdo extraidas a partir do
sinal no Dominio do Tempo e da Frequéncia. Essas métricas traduzem aspectos fisicos
e estatisticos do comportamento dinamico da maquina e permitem a discriminagao entre
diferentes condigoes de falha.

Neste trabalho, adotou-se uma abordagem sistematica para a extragdo de
atributos estatisticos tanto no Dominio do Tempo quanto no Dominio da Frequéncia,
com o intuito de capturar, de forma abrangente, as nuances do comportamento dindmico
do sistema sob diferentes condigdes operacionais.

No Dominio do tempo, as caracteristicas foram extraidas diretamente do sinal
bruto de aceleracao registrado pelos acelerometros. As Caracteristicas Descritivas foram
relacionadas na Tabela 2. Essas métricas foram aplicadas sobre vetores de amostras
segmentados em janelas temporais fixas, o que permite capturar as variagdes
instantaneas no comportamento vibracional do motor.

Complementarmente, no Dominio da Frequéncia, as mesmas estatisticas foram
computadas sobre os espectros de magnitude obtidos pela aplicagdo da FFT. O objetivo
foi evidenciar padroes de frequéncia associados as falhas de injecdo, muitas vezes
mascarados no Dominio do Tempo. A Tabela 3 apresenta as expressdes matematicas
utilizadas na extracao dessas caracteristicas, aplicadas ao vetor espectral.

As formulas utilizadas em ambos os dominios seguem uma abordagem
padronizada, garantindo consisténcia e comparabilidade entre os parametros extraidos.

Dessa maneira, as caracteristicas utilizadas no presente estudo representam uma
base solida para o treinamento, validacao e teste dos modelos de RNA, contribuindo
significativamente para a acurdcia na identificacdo de falhas de inje¢do em motores

Diesel maritimos.
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Tabela 2 - Caracteristicas Estatisticas Extraidas no Dominio do Tempo

Caracteristicas

Definicio

1. Média

2. RMS

3. Desvio Padrao

DPD =+VVAR

4. Pico

PICO = max (abs{x;})

5. Assimetria

1~o ((x; — MEDIA)\
ASM = —Z
LL:\" DPD
i=

6. Curtose

— 12L: (x; — MEAN)\*
L2 - DPD
i=

7. Fator de Crista _ max
Fe RMS
max
8. Fator de Folga —
_Z 1(xl)2
RMS
9. Fator de Forma
Z _1lxil
__max
10. Fator de Impulso
Z 0%l

11. Pico a Pico

PAP = max {x;} — min {x;}

12. Valor Minimo

MIN = min {x;}

13. Soma

L
SOMA = Z x;
i=1

14. Variancia

L
1 ,
VAR = Zz(xi — MEDIA)®

i=1

15. Erro Padrao

zpp = PP
VL

16. Mediana

MEDIANA = mediana(x;)




L
ENERGIA = Z:lxl-l2

17. Energia
i=1
L
18. Entropia ENTROPIA = — Z p(ci)log,p(ci)
i=1
19. Moda MODA = moda(x;)
-1
20. Variagao Absoluta

AV = Z|x1+1 — x|

i=1

21. Variagao Percentual PV = (_V> +100
L
L
22. Valor Absoluto Médio MAV = lz ;]
L =1
L
23. Valor Absoluto da Soma SAV = leil
=1
L
24. Valor Quadratico Médio MSV = lz x?
L =1
L
25. Valor Quadratico da Soma SSY = Z x?
=1
26. Coeficiente de Variacao — ( STD )
cv MEAN 100
27. Erro Padrdo da Média SEM = STD
VL

onde x; representa o valor correspondente a cada amostra i do vetor de amostras, no
Dominio do Tempo; L denota o comprimento do vetor de amostras; ¢ p(c;) indica a

probabilidade de x; ser igual aos valores possiveis da sequéncia ¢c; (GUERRA, 2023).

instancia, de modo que uma caracteristica sera gerada a cada formula aplicada. Dessa

forma, 27 caracteristicas serdo extraidas para cada vetor de amostra, no Dominio do

Ao aplicar a féormula estatistica sobre o vetor de amostras, o resultado gerara uma

Tempo.
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Tabela 3 - Caracteristicas Estatisticas Extraidas no Dominio da Frequéncia

Caracteristicas Definicio
L
, 1
1. Média MEDIA = ZZ Y;
i=1
2. RMS RMS =
3. Desvio Padrao DPD = VAR

4. Pico

PICO = max (abs{Y;})

5. Assimetria

L ., 3
1 Y, — MEDIA
ASM:ZZ <(l ))

6. Curtose

1 L (Y, — MEAN)
CUR = ZZ <—>

7. Fator de Crista FC = max
RMS
8. Fator de Fol _ max
. Fator de Folga =z
Izt ()2
RMS
9. Fator de Forma
Z 1Yl
_max
10. Fator de Impulso
Z _. 1Yl

11. Pico a Pico

PAP = max {¥;} — min {V;}

12. Valor Minimo

MIN = min {Y;}

13. Soma

L

SOMA = Z Y,

i=1

14. Variancia

15. Erro Padrao

16. Mediana

MEDIANA = mediana(Y;)




L
17. Energia ENERGIA = Z:Ilfl-l2
=1
L
18. Entropia ENTROPIA = — Z p(ci)log,p(ci)
=1
19. Moda MODA = moda(Y;)
L-1
20. Variagao Absoluta AV = Z|Y1+1 — Y|
=1
- AV
21. Variagao Percentual PV = (_) %100
L
1 L
22. Valor Absoluto Médio MAV = ZZ'Y”
=1
L
23. Valor Absoluto da Soma SAV = ZIYil
i=1
1 L
24. Valor Quadratico Médio MSV = ZZ Y?
i=1
L
25. Valor Quadratico da Soma SSY = Z Y?
=1
26. Coeficiente de Variacao — ( STD )
cv MEAN 100
27. Erro Padrdo da Média SEM = STD
VL

A transformagdo das caracteristicas de um sinal do Dominio do Tempo para o
Dominio da Frequéncia se deu através da aplicacdo da FFT. Tal a¢do foi possivel a partir
da definicdo de algumas propriedades do sinal, como a taxa de amostragem (f;), o
periodo de amostragem (T'), o comprimento ou tamanho do sinal (L) e o vetor temporal
(t) associado ao sinal coletado.

Apo6s o tratamento dos sinais, aplica-se as formulas estatisticas sobre os vetores
de amostras, o resultado gerara uma instancia, de modo que uma caracteristica sera
gerada a cada formula aplicada. Dessa forma, 27 caracteristicas serdo extraidas para cada
vetor de amostra, mas agora no Dominio da Frequéncia.

Os estudos de MARTINS et al. (2021) ¢ GUERRA (2023) fizeram uso de
caracteristicas estatisticas na modelagem para identificagao de falhas de operagao em

equipamentos mecanicos. A selegdo criteriosa dessas caracteristicas permite reduzir a
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dimensionalidade do espaco de entrada e aumentar a acuracia dos classificadores
utilizados, mitigando o risco de sobreajuste (overfitting) e melhorando a generalizagao
dos modelos.

No estudo de MARTINS et al. (2021) especificamente, a abordagem
metodologica também se beneficia da extracao de caracteristicas no Dominio do Tempo
e da Frequéncia e o embasamento fornecido legitima a escolha de diversas
caracteristicas, as quais sdo sensiveis as variagdes estruturais e representam padroes

indicativos de falhas de operagao em equipamentos mecanicos.

3.3. Relief-F - Selecao de Variaveis e Redu¢ao de Dimensionalidade

A selecao das melhores caracteristicas ¢ uma etapa fundamental em sistemas de
aprendizado supervisionado, especialmente quando se lida com dados de alta
dimensionalidade e redundancia, como os obtidos por meio da andlise de sinais de
vibragao em motores Diesel maritimos. O algoritmo Relief-F destaca-se como uma das
abordagens mais eficazes e amplamente adotadas nas tarefas de classificacao (ROBNIK-
SIKONJA; KONONENKO, 2003).

Conforme discutido por ROBNIK-SIKONJA ¢ KONONENKO (2003), o Relief-
F opera com base em uma filosofia de aprendizado baseado em instancias. Para cada
amostra selecionada aleatoriamente no conjunto de dados, o algoritmo identifica os
vizinhos mais proximos da mesma classe e de diferentes classes, atualizando
iterativamente os pesos atribuidos a cada caracteristica. Essas caracteristicas contribuem
de forma consistente para a separagdo entre classes recebem aumentos em seus pesos,
enquanto aquelas que pouco contribuem para a discriminagdo entre instancias tem os
seus pesos reduzidos. Esse mecanismo o Relief-F sensivel a estrutura local dos dados ¢
altamente eficaz na identificacao de atributos relevantes.

URBANOWICZ et al. (2018) ressaltam que um dos principais diferenciais do
Relief-F ¢ sua robustez frente a dados ruidosos ¢ com forte correlagdo entre variaveis,
cenario comum em aplicagoes reais de diagnostico de falhas. Essa robustez decorre do
fato de o algoritmo levar em conta ndo apenas cada instancia de forma isolada, mas
também suas interacdes com vizinhos proximos. Isso possibilita identificar ndo sé
atributos que, individualmente, t€ém poder de discriminac¢dao, mas também relagdes mais
complexas entre variaveis — conexodes sutis que métodos univariados muitas vezes nao

conseguem capturar.
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Formalmente, dado um conjunto de caracteristicas F = { fi, for fp}, o problema

consiste em identificar um subconjunto 6timo F' € F que maximize a relevancia

preditiva e minimize a redundancia, preservando a representatividade do sistema
(URBANOWICZ et al., 2018).

Seja um conjunto de dados de treinamento definido pela Eq. (3.10):

S = {(xli yl): (xZ' 3’2): ey (xn' yn)}> (3.10)

em que cada instincia x; € RP é um vetor de caracteristicas e y; € {1, ..., C} representa
a classe associada. O algoritmo estima um vetor de pesos W = {wl, Wy, ..., Wp} no qual
cada peso w; expressa a relevancia da j — ésima caracteristica.

A atualizacao dos pesos ¢ realizada iterativamente, comparando instancias aleatorias R
com seu vizinho mais proximo da mesma classe (near-hit, H) € com os seus vizinhos

mais proximos de classes distintas (near-miss, M¢). A regra de atualizagdo ¢ dada pela

Eq. (3.11):

wj = W —%.diff(fj,R,H) +

: (3.11)
—Yeecceyr P()-dif f(fj, R, M©),
onde dif f (fJ I, I z) quantifica a diferenca entre os valores da caracteristicas f; em duas

instancias I, I, normalizada em [0,1] ¢ m é o nimero de iteragdes. Para atributos

numéricos, tem-se a seguir a Eq. (3.12):

|valor(f;, I) — valor(f;, I)|
max(f;) — min (f})

diff(fi, I, 1) = (3.12)

Essa formulagdo assegura que caracteristicas discriminativas apresentem pesos
positivos — uma vez que R e H tendem a ser semelhantes, enquanto R e M¢ tendem a
divergir. Ja atributos irrelevantes, para os quais nao ha diferenca estatisticamente
significativa entre instancias de mesma ou diferentes classes, convergem para pesos

proximos de zero (URBANOWICZ et al., 2018).
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Do ponto de vista estatistico, a expectativa da atualizacdo para a i-ésima

caracteristica pode ser expressa pela Eq.(3.13):
E[6;] = —E [(xf — Hf)z] +E [(xf - Mf)z] (3.13)

De modo que E[§;] > 0 para atributos relevantes e E[§;] ~ 0 para atributos
irrelevantes (KONONENKO, 1994). Essa propriedade garante consisténcia estatistica
ao algoritmo, uma vez que, para m — oo, onde os pesos convergem para valores teoricos
de relevancia (KIRA; RENDELL, 1992).

Adicionalmente, a abordagem Relief-F ¢ compativel com problemas com
multiplas classes e multiplos rotulos, como demonstrado por CAI et al. (2015), sendo
assim particularmente apropriada para o presente estudo, que envolve a classificacao de
condic¢do de falha de injecao. O algoritmo € computacionalmente eficiente, operando em
tempo linear em relagdo ao numero de instancias avaliadas, o que o torna viavel mesmo
para conjuntos de dados extensos e de alta dimensionalidade.

O uso do Relief-F justifica-se pela necessidade de mitigar os efeitos adversos da
maldi¢cdo da dimensionalidade, selecionando um subconjunto informativo de variaveis
capazes de maximizar a capacidade discriminativa do modelo preditivo. Ao reduzir o
espaco de entrada a atributos estatisticamente significativos — extraidos dos dominios
de tempo, frequéncia e tempo-frequéncia —, o algoritmo contribui diretamente para o
aumento da performance das RNAs, melhorando sua capacidade de generalizando e
promovendo maior interpretabilidade dos resultados.

Segundo EVUKOFF (2001), a escolha de atributos relevantes permite redugao
do tempo de treinamento, da economia de recursos computacionais e a remog¢ao de ruido
e dados redundantes, melhorando a interpretacdo do modelo e sua capacidade de
generalizagdo. Isso € especialmente relevante no contexto do uso de RNAs, cujo
desempenho ¢ sensivelmente afetado pela dimensionalidade da entrada e pela
distribui¢ao estatistica dos dados.

Além disso, a literatura ressalta a importancia da analise exploratoria e do uso de
métodos estatisticos para a escolha dos atributos mais relevantes. Técnicas como anélise
de variancia, correlagdo, andlise de componentes principais e filtros baseados em
entropia sao utilizadas com frequéncia nesse processo. Em nosso estudo, as métricas
também foram avaliadas quanto a sua contribuicdo individual para os modelos de
classificagdo, visando maximizar a divisao (separabilidade) entre as classes.
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Assim, a modelagem com RNAs feedforward fornece uma base solida e
cientificamente validada para a identificacao de falhas de inje¢do em motores Diesel,
permitindo a construgdo de classificadores precisos e eficientes mesmo diante da
complexidade dos sinais envolvidos em equipamentos alternativos como ¢ o caso do

motor Diesel maritimo.

3.4. Fundamentos de Aprendizado de Maquina

3.4.1. Aprendizado Supervisionado e Generaliza¢do de Modelos

O aprendizado supervisionado ¢ um dos pilares da modelagem preditiva em
problemas de inferéncia estatistica e mineragao de dados. No contexto deste estudo, este
paradigma ¢ adotado para modelar a relagdo entre sinais de vibracao adquiridos de um
motor Diesel maritimo e as respectivas classes de falhas de injecao simuladas, com base
em dados rotulados. Conforme estabelecido por HASTIE, TIBSHIRANI e FRIEDMAN
(2009), a principal tarefa do aprendizado supervisionado ¢ estimar uma fung¢ao preditiva
f:X =Y, onde X representa o espago de entrada (neste estudo, as caracteristicas
extraidas dos sinais) e Y representa o espago de saida (as classes de falha).

A modelagem supervisionada baseia-se em um conjunto de treinamento
{(x;, v;})_,, onde x; € RP representa um vetor de atributos descritivos e y; a respectiva
resposta categorica. A fungao f é aprendida de forma a minimizar a expectativa do erro

preditivo, representada pela Eq. (3.14):
fr(x) = argmin Eeyy [L(Y, (X)) (3.14)

em que L(Y,f(X)) é uma fun¢do de perda adequada ao problema de classificac¢do
multiplas classes, como a entropia cruzada (utilizada no presente estudo). Essa
formulacao estabelece uma base rigorosa para justificar a ado¢do de modelos como
RNAs, capazes de aprender fungdes complexas e nao lineares.

Para assegurar a generalizagdo do modelo, os dados foram estratificados nos
subconjuntos de treinamento (70%), validacdo (15%) e teste (15%), conforme
recomendado na literatura para controle de sobreajuste (overfitting). A validagao cruzada
foi utilizada para realizar os ajustes dos hiperparametros, mitigando o viés e a variancia

do estimador final (HASTIE et al., 2009).
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O impacto da qualidade dos dados rotulados ¢ amplamente enfatizado na obra,
uma vez que erros sistematicos nesse processo afetam diretamente a curva de
aprendizado e os limites de desempenho. Isso refor¢a a importancia de um protocolo
rigoroso de aquisicdo e rotulagem, como implementado experimentalmente nesta
dissertacao.

Por fim, a estrutura tedérica proposta por HASTIE et al. (2009) fornece um
embasamento matematico s6lido para todas as decisdes metodologicas adotadas na
modelagem supervisionada, desde a definicdo da fun¢do de perda até os mecanismos de

validacao e ajuste do modelo.

3.4.2. O Dilema Bias-Variance no Contexto do Aprendizado Supervisionado

Ao treinar modelos de aprendizado de maquina, busca-se o equilibrio entre a
fidelidade do modelo aos dados de treinamento e sua capacidade de generalizar para
novos dados e nunca vistos. Esse equilibrio ¢ formalizado pelo bias-variance trade-off,
que descreve a decomposi¢ao do erro preditivo em trés componentes: viés (bias),
variancia e ruido irredutivel (ALPAYDIN, 2010; HASTIE et al., 2009).

A decomposi¢ao formal do erro esperado ¢ dado pela na Eq. (3.15):

E[ ~ F()] (3.15)
A decomposi¢ao formal do erro esperado € expressa como na Eq. (3.16):
E [(y - f(x))z] = Bias? (f(x)) +Var (f(x)) + 02 (3.16)

onde o2 representa o ruido irredutivel.

O viés representa a tendéncia do modelo em realizar suposi¢cdes simplificadas
sobre o problema, o que pode levar a ocorréncias de erros sistematicos. Por outro lado,
a variancia reflete a sensibilidade do modelo a pequenas flutuagdes nos dados de
treinamento. Modelos com alto viés tendem a subajustar (underfitting) os dados,
enquanto aqueles com alta variancia tendem a sofrer de sobreajuste (overfitting)
(ALPAYDIN, 2010).

No contexto deste estudo, o qual envolve a identificacao de falhas de injecao em
motores Diesel por meio de RNAs, o risco de sobreajuste € significativo, considerando
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a alta dimensionalidade das caracteristicas extraidas dos sinais de vibragao coletados.
Para mitigar esse risco, foram adotadas praticas rigorosas, como a divisdo dos dados em
conjuntos de treino, validacao e teste. Adicionalmente, foi utilizado a validagdo cruzada
durante o ajuste dos hiperparametros como o numero de neuronios, taxa de aprendizado,
numero de épocas e no uso das técnicas de regularizagdo. Uma adequada calibragao
desses elementos, por meio de abordagens como a otimizagdo bayesiana, permite uma
maximizacdo da capacidade preditiva sem comprometimento da capacidade de

generaliza¢ao do modelo.

3.4.3. Divisao dos Dados em Conjuntos de Treinamento, Validacio e Teste

Uma adequada divisao dos dados em conjuntos de treinamento e teste € um pilar
fundamental para a constru¢ao de modelos preditivos robustos e com alta capacidade de
generalizagdo do modelo. Empiricamente, a utilizacdo de propor¢cdes como 70/30 ou
80/20 tem se mostrado satisfatoria em diversas aplicagdes de aprendizado de maquina
supervisionada, sendo amplamente adotada em problemas de classificagio. GHOLAMY
et al. (2018) forneceram uma explicacao pedagogica e estatistica para essa pratica, a qual
¢ amplamente difundida.

O ponto central da justificativa se baseia na necessidade de evitar o overfitting,
fendmeno no qual um modelo se ajusta excessivamente aos dados de treinamento,
perdendo sua capacidade de generalizacao para dados novos ou dados nunca vistos. Para
mitigar esse risco, os dados observados devem ser divididos em um subconjunto usado
para ajustar os parametros do modelo na fase de treinamento e outro para avaliar seu
desempenho preditivo na fase de teste.

Os autores demonstram que a divisdo otima esta relacionada & minimizagao da
variancia total da estimativa de erro do modelo, levando em consideragao o Teorema
Central do Limite. A variancia total do erro preditivo, quando o conjunto de dados ¢

dividido em proporgdes p € 1 — p, ¢ dada pela Equagao (3.17):

X 1,1 1
o oc— =
total"pyN T (1-p)N ~ p(1—p)N

(3.17)

onde N ¢ o nimero total de amostras e p representa a fracdo alocada ao conjunto de

treinamento. O produto p(1 — p) atinge seu valor maximo quando p = 0, mas nesse
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caso a variancia da estimativa de erro tende a subestimar o erro real devido a incerteza
maior sobre os parametros aprendidos com menos dados (GHOLAMY et al., 2018).

A andlise probabilistica do artigo mostra que, para garantir que a variancia da
previsao no conjunto de teste seja maior que a incerteza associada ao modelo treinado, a
proporc¢ao ideal do conjunto de treinamento deve satisfazer a desigualdade da Equagao

(3.18):

2 1
ﬁ < \/I—Tp (3.18)

A resolugdo desta inequagao conduz a conclusao de que valores de p > 0,8 sdo
mais seguros para garantir estimativas de erro validas e confiaveis. Assim, a escolha de
propor¢des como 80/20 ou 70/30 para treinamento/teste ¢ justificada ndo apenas pela
pratica empirica, mas também por principios estatisticos solidos, que equilibram a
capacidade de ajuste do modelo e a confianga nas métricas de validagao.

No presente trabalho, essa abordagem ¢ estendida com a adi¢ao de um conjunto
de validacdo (15%), usado especificamente para ajustar hiperparametros e evitar o viés
da selecao sobre os dados de teste, em conformidade com as boas praticas recomendadas

na literatura [GHOLAMY et al., 2018).

O grafico apresentado na Figura 2 ilustra o comportamento da fun¢do que

1
p(1-p)’
¢ comumente usada para representar a variancia relativa na divisao entre dados de
treinamento e teste, conforme discutido no artigo de GHOLAMY Et al. (2018). Essa
fungdo atinge seu valor minimo quando p = 0,5, ou seja, quando os conjuntos de
treinamento e teste possuem tamanhos iguais. No entanto, na pratica, valores como 70%
e 80% de dados para treino (representados pelas linhas verticais) sdo preferidos para

garantir que o modelo disponha de dados suficientes para aprender, reduzindo o erro de

generalizagao.
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Figura 2 - Comportamento da Fung¢do 1/(p(1-p))

3.4.4. Regularizacio - L2 (Ridge) e L1 (Lasso)

A regularizagdo ¢ uma técnica fundamental no treinamento de redes neurais, pois
visa mitigar o problema do overfitting — situacdo em que o modelo se ajusta
excessivamente aos dados de treinamento, perdendo capacidade de generalizagdo para
novos dados. De acordo com HAYKIN (2009), a regularizagdo atua adicionando um
termo de penalidade a funcdo de custo, desestimulando solugdes com pesos
excessivamente grandes, que geralmente estdo associados a modelos de alta
complexidade e variancia.

A fungao de custo regularizada Etotal ¢ expressa como na Equagdo (3.19):

Etotat = Eemp + A+ Qo) (3.19)

onde:
® Eqmp € 0 erro empirico (por exemplo, o erro de entropia cruzada);
e Q(m) ¢ o termo de regularizacao; e
e ) ¢ o parametro de regularizagdo que controla o peso do termo de

penalidade.

O autor explica que diferentes formas de regularizagdo, como L2 (Ridge) e L1
(Lasso), influenciam diretamente a estrutura dos pesos da rede. A L2 tende a distribuir

os pesos de forma mais homogénea, reduzindo todos eles proporcionalmente, enquanto
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a L1 promove a esparsidade, ou seja, forga alguns pesos a se tornarem exatamente zero,
o que ¢ util para selegdo automadtica de caracteristicas (HAYKIN, 2009).

As formas mais comuns de regularizacdo sdo conhecidas como L1 (Least
Absolute Shrinkage and Selection Operator — Lasso) e L2 (Ridge Regression). Ambas
inserem termos penalizadores a fungao de custo durante o treinamento, o que desencoraja
a complexidade excessiva dos modelos por meio do controle dos pesos dos parametros.

Na regularizagdo L2, o termo penalizador ¢ proporcional ao quadrado da

magnitude dos coeficientes, conforme Equagao (3.20):

d
L, = Lo+ AZ w? (3.20)
=

onde:
e L[, representa a fun¢do de custo original (por exemplo, entropia
cruzada),
e 1w sdo os pesos da rede neural,

e 1 éoparametro de regularizacao que controla o grau de penalizagao.

Ja na regularizagdo L1, a penalidade ¢ dada pela soma dos valores absolutos dos

pesos, conforme Equacao (3.21):

d
L= Lo+ AZ[wj] 3.21)
=1

A regularizagdo L1 promove esparsidade nos parametros do modelo,
favorecendo a selecdo automatica de caracteristicas ao forgar alguns pesos a zero, o que
a torna adequada para problemas com grande numero de atributos irrelevantes. Em
contraste, a L2 distribui suavemente os pesos, resultando em solugdes mais estaveis e
amplamente adotadas em redes neurais profundas.

No contexto desta dissertagdo, o termo A foi tratado como hiperparametro a ser
otimizado por meio de uma abordagem de otimizagdo bayesiana, utilizando a fun¢do
bayesopt do MATLAB. A selecao cuidadosa de A foi essencial para garantir o equilibrio

entre ajuste e generalizacao da rede neural, sobretudo considerando o alto grau de ndo
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linearidade e dimensionalidade dos dados provenientes dos sinais de vibragao do motor
(ALPAYDIN, 2010). Garantir a generalizacdo do modelo ¢ fundamental e tal capacidade
esta diretamente relacionada a escolha apropriada dos algoritmos de treinamento,
regulariza¢ao e divisdo dos dados em subconjuntos de treino, validagdo e teste. Esta
divisdo permite ajustar hiperparametros de maneira robusta e evitar o overfitting, um
fendmeno na qual o modelo se ajusta aos dados de treino, perdendo a capacidade de

generalizagao (ALPAYDIN, 2010).

3.5. Redes Neurais Artificiais (RNAs)

3.5.1. Estrutura e Fundamentos Matematicos: Teorema da Aproximaciao Universal

A modelagem de fendmenos complexos e altamente ndo lineares, como os sinais
de vibracao gerados por motores Diesel submetidos a falhas de injecao, requer o uso de
métodos preditivos capazes de representar fungdes complexas entre variaveis de entrada
e saida. Segundo HASIE, TIBSHIRANI e FRIEDMAN (2009), a escolha de uma fun¢ao
preditiva apropriada € central para o sucesso em tarefas de aprendizado supervisionado,
sendo que a fungdo preditiva ideal ¢ aquela que minimiza o risco esperado de erro,

representado matematicamente pela Eq. (3.22):
fG) = argmin By, [L(y, f(0)] (3.22)

onde L(y, f (x)) ¢ a fungao de perda, e a expectativa ¢ tomada em relagdo a distribuicdo
conjunta dos dados (x, y).

Neste contexto, as (RNAs) se destacam por sua capacidade de atuar como
aproximadores universais. Essa propriedade ¢ sustentada por teoremas formais que
afirmam que uma rede neural do tipo feedforward com ao menos uma camada oculta e
fungdes de ativacao ndo lineares (como ReLU ou base radial) pode aproximar qualquer
fungdo mensuravel continua com erro arbitrariamente pequeno (HASTIE et al., 2009).
Isso torna as RNAs particularmente adequadas para problemas com padrdes nao lineares
complexos, como a classificacdo de falhas mecanicas com base em sinais de vibragdo
multivariados.

Um marco tedrico fundamental para a justificativa do uso de RNAs em tarefas
de classificag@o nao linear € o Teorema da Aproximacao Universal, proposto por George

Cybenko em seu artigo seminal “Approximation by superpositions of a sigmoidal
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function” (CYBENKO, 1989). Nesse trabalho, o autor demonstra que uma rede neural
feedforward de camada tinica com funcao de ativacao sigmoidal ¢ capaz de aproximar
qualquer fun¢do continua em um conjunto compacto de R™, com uma precisao arbitraria,
desde que possua nimero suficiente de neur6nios na camada oculta.

Formalmente, seja f: R™ — R uma funcdo continua ¢ ¢ uma funcao de ativagao

sigmoidal (ou seja, uma fun¢do continua e ndo linear que satisfaz lim o(x) =0 e

X—00

lim o(x) = 1. Cybenko prova que para todo € > 0, existe uma fun¢do, conforme Eq.
X——00

(3.23):
N

G(x) = Z ajo(y] x + 6;) (3.23)

j=1

onde:
x € R" ¢ o vetor de entrada;
o: R = R ¢ uma fungdo de ativagdo sigmoidal continua, tal que:
-set >+, entio o(t) » 1; ¢
-set —» —oo, entdo o(t) — 0.
y;j € R™ ¢ o vetor de pesos da camada oculta;
8; € R € o vi¢s associado ao neurdnio da camada oculta;

a; € R ..... representa o peso da saida daquele neuronio.

A principal contribuicao de Cybenko reside na demonstracao de que tais redes
sdo densas no espaco C(I™) — o espago das fungdes continuas sobre I"— o que significa
que, para qualquer fungao continua f e qualquer € > 0, existe uma combinagao de forma

acima, conforme Eq. (3.24):
IG(x) — f(x)|<e VxeI™ (3.24)

A chave teorica esta na propriedade de distingdo da funcdo o, definida pela Eq.

(3.25):

o(yTx +0)du(x) =0 VyeR",
f,n (V"x +0)du(x) = 0 Vy 525

PER=>u=0
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ou seja, se a integral de o sobre todos os funcionais afins for nula para uma medida g,
entdo essa medida deve necessariamente ser a nula — condi¢do satisfeita por fungdes
sigmoidais comuns (como logistica e tangente hiperbdlica).

Este teorema fundamenta o uso de RNAs em problemas de classificagdo e
regressao com nao linearidades elevadas, como no presente estudo de identificagao de
falhas de injegao em motores Diesel maritimos, onde os sinais de vibragao apresentam
caracteristicas complexas e multivariadas. A capacidade da RNA de capturar essas
relagdes nao lineares por meio de uma Unica camada oculta com fungdes de ativagao
apropriadas permite sua aplicagdo robusta e eficaz.

Além disso, o artigo destaca que embora o modelo garanta a existéncia de
aproximacoes arbitrarias, ndo se compromete com a eficiéncia computacional da
construgdo — ou seja, a quantidade N de neurdonios pode ser muito grande para fungdes
altamente complexas, levando a chamada maldi¢dao da dimensionalidade. Ainda assim,
a demonstracao de Cybenko (1989) ¢ um dos fundamentos tedricos mais poderosos para

a confianca na arquitetura de redes feedforward na modelagem de sistemas reais.

3.5.2. Estrutura e Funcionamento de Redes Neurais Feedforward

As RNAs do tipo feedforward constituem uma das arquiteturas mais
fundamentais e amplamente empregadas em tarefas de classificacdo, regressao e
reconhecimento de padroes. Segundo AGGARWAL (2018) e HAYKIN (2009), essas
redes sdo compostas por uma sequéncia de camadas de neurdnios organizadas
linearmente, onde os dados fluem unidirecionalmente da camada de entrada para a(s)
camada(s) oculta(s), e, finalmente, para a camada de saida — sem loops ou ciclos,
caracterizando o termo “‘feedforward”.

Cada neuronio na rede realiza uma operagao de soma ponderada das entradas,
seguida da aplicacao de uma fungdo de ativagdo nao linear. Essa fun¢do ¢ crucial para
permitir que a rede modele relagdes complexas e ndo lineares entre as variaveis de
entrada e saida. Esta operagdo pode ser formalizada da seguinte maneira, conforme Eq.

(3.26):

i=1
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onde:
. a; € a ativagdo do neuronio j;
. w;; representa o peso associado a conexdo entre o neur6nio i da camada

anterior e o neurdnio j;

. x; € a entrada correspondente;
. b; € o viés (bias); e
. @ ¢ a funcdo de ativacao.

AGGARWAL (2018) enfatiza que a capacidade de aprendizado de uma RNA
estd diretamente relacionada ao niimero de neurdnios e camadas ocultas. Redes com
apenas uma camada oculta sdo teoricamente capazes de aproximar qualquer fun¢do
continua, conforme demonstrado pelo Teorema da Aproximagdo Universal. No entanto,
a complexidade do problema pode demandar a utilizacdo de multiplas camadas ocultas
e mecanismos de regularizagdo para evitar o sobreajuste (overfitting) e melhorar a
generalizagao.

A atualizagdo dos pesos sinapticos — parametros que determinam a influéncia
de cada entrada sobre o neurdnio — ¢ realizada por meio de algoritmos de aprendizado
supervisionado, como o Gradiente Descendente ou, como neste estudo, o Gradiente
Conjugado Escalonado. Esses algoritmos visam minimizar uma fun¢ao de custo (como
a entropia cruzada) que quantifica o erro entre as predigdes da rede e os rétulos reais.

Além disso, a arquitetura feedforward € particularmente apropriada para tarefas
em que as entradas e saidas nao t€ém dependéncia temporal, o que a diferencia das RNNSs,
mais indicadas para séries temporais. Na presente dissertacdo, a escolha da arquitetura
feedforward se justifica pela natureza estatica dos vetores de caracteristicas extraidos
dos sinais de vibracao, processados em janelas de tempo fixas e independentes.

Assim, a modelagem com RNAs feedforward fornece uma base solida e
cientificamente validada para a identificacao de falhas de inje¢do em motores Diesel,
permitindo a construgdo de classificadores precisos e eficientes mesmo diante da

complexidade dos sinais envolvidos.
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3.5.3. Fungoes de Ativacao e Custo

As fungdes de ativagao desempenham papel central na capacidade de uma Rede
Neural Artificial (RNA) aprender e representar relagdes nao lineares complexas. A
escolha da fungdo de ativacdo influencia diretamente a expressividade da rede, sua
eficiéncia computacional e sua capacidade de generalizagdo. Conforme discutido por
AGGARWAL (2018), fungdes classicas como a sigmoide, a tangente hiperbolica (tanh)
e a ReLU (Rectified Linear Unit) possuem vantagens e limitagdes especificas, e sua
adog¢do deve considerar a natureza do problema e a estrutura da rede.

A fungdo sigmoide, conforme Eq. (3.27):

O'(X) = # (327)

¢ continua e diferenciavel, transformando entradas em um intervalo entre O € 1. Embora
util em problemas probabilisticos e classificagdes binarias, ela sofre com o problema do
gradiente desvanecido em regides saturadas, o que pode comprometer o aprendizado em

redes profundas. A fungao tangente hiperbdlica, conforme Eq. (3.28):

X _ e—x
tanhx = ———
e g (3.28)

resolve parcialmente esse problema ao centralizar a saida em torno de zero, mas ainda ¢
vulneravel a saturacdo para entradas extremas.

Por sua vez, a funcdo ReLU tornou-se popular devido a sua simplicidade
computacional e a mitigacao do gradiente desvanecido. No entanto, apresenta limitagdes
como a “morte do neurénio” quando valores negativos se acumulam, além de ndo ser
ideal para modelagens com dominios altamente ndo lineares ou que requeiram decisdes
com fronteiras suaves.

Neste trabalho, optou-se pela funcao base radial (Radial Basis Function — RBF),

expressa como na Eq.(3.29):

@(x) = exp <—M> (3.29)

202
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onde c¢ representa o centro do neuronio € o € o parametro que controla a largura da base.
A principal vantagem da RBF reside na sua natureza local e na capacidade de modelar
fungdes altamente ndo lineares com elevada precisdo. Conforme destacado por
AGGARWAL (2018), a RBF ¢ particularmente eficaz quando as fronteiras de decisao
sdo complexas, o que a torna ideal para problemas de classificacdo multiclasse, como a
deteccao de falhas de injegao em motores Diesel com base em sinais de vibracao.

Além disso, a funcdo RBF se destaca por possibilitar uma interpretacao
geométrica clara: neurdnios sao ativados com maior intensidade quando a entrada esta
proxima ao centro ¢, permitindo uma discrimina¢ao mais refinada dos padrdes. Essa
caracteristica ¢ fundamental neste estudo, que envolve a distingao entre multiplas classes
associadas a diferentes falhas de inje¢ao simuladas cilindro a cilindro.

Dessa forma, a escolha da RBF neste trabalho ¢ justificada tanto do ponto de vista
tedrico quanto empirico, sendo suportada por estudos consolidados na literatura, como
os de HASSOUN (1995) e AGGARWAL (2018), e validada experimentalmente pelos
elevados desempenhos obtidos nas fases de teste e validagao do modelo.

Para problemas de classificacao, a fun¢ao de custo adotada foi a entropia cruzada,
por oferecer vantagens superiores a fungdo erro quadratico médio em contextos em que
as saidas sao probabilisticas. A fun¢do de custo da entropia cruzada penaliza predi¢des
com alta confianca quando incorretas, promovendo modelos mais cautelosos e
calibrados (HASSOUN, 1995). Segundo AGGARWAL (2018), a entropia cruzada ¢
particularmente eficaz porque penaliza severamente previsdes com alta confianga que
estdo incorretas. Sua formulagdo matematica, para uma instancia com C classes, pode

ser expressa como na Eq. (3.30):

c
L) == ) yilog (5) (3:30)
i=1
onde:
. y; representa a classe real,
. y; é a probabilidade prevista para a classe i pela rede neural.

Essa fungao ¢ derivada do conceito de entropia em teoria da informagao, sendo
apropriada quando a saida do modelo representa uma distribuicdo de probabilidade.
Vantagens destacadas por AGGARWAL (2018) incluem alta sensibilidade a
classificagOes erradas com alta confiabilidade, estabilidade numérica quando combinada
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com o algoritmo softmax, e melhora da convergéncia do modelo em tarefas de
classificagcdao multiclasse.

Em virtude dessas caracteristicas, a fung¢ao de entropia cruzada foi adotada nesta
dissertacao como func¢do de custo principal para o treinamento dos modelos baseados
em redes neurais, alinhando-se as boas praticas relatadas na literatura de aprendizado de

maquina e redes neurais profundas.

3.5.4. Redes Neurais de Funcao de Base Radial (RBF)

As Redes Neurais de Fung¢dao de Base Radial (RBF) representam uma classe
distinta de modelos computacionais inspirados em unidades bioldgicas com respostas
localizadas, ou seja, que sdo sensiveis apenas a determinadas regides do espaco de
entrada. Essa caracteristica confere as RBFs propriedades excepcionais de interpolagdo
e aproximagao de fungdes, tornando-as especialmente tteis em aplicagdes que exigem
classificagdes multiclasse ou aproximagoes de fungdes complexas, como a identificagdo

de falhas de injecao de combustivel em motores Diesel maritimos (HASSOUN, 1995).
- Estrutura e Arquitetura

A arquitetura padrdao de uma RBF ¢ composta por trés camadas:

. A camada de entrada, que transmite o vetor de entrada diretamente para
a camada oculta;

. A camada oculta, formada por unidades com fung¢des de ativagdo
radialmente simétricas — tipicamente fungdes Gaussianas; e

. A camada de saida, usualmente composta por neurdnios lineares que

realizam combinagdes ponderadas das saidas da camada oculta.

Cada unidade da camada oculta avalia a "proximidade" entre o vetor de entrada

X € um centro ¢; associado, produzindo uma resposta significativa apenas se a entrada

estiver proxima ao centro, segundo a métrica Euclidiana, conforme Eq. (3.31):

2
20,

Il x — ¢ II?
zi=exp|———=— (3.31)
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onde o; representa a largura (ou desvio padrio) da fungdo de ativagdo associada ao

neuronio j (HASSOUN, 1995).
- Propriedades Fundamentais:

Uma das principais vantagens das RBFs sobre outras arquiteturas de redes
neurais, como as redes feedforward com unidades sigmoides, reside em sua capacidade
de realizar aproximacodes locais, ou seja, somente um subconjunto de neurdnios ¢ ativado
para uma determinada entrada, conferindo maior eficiéncia computacional no
treinamento e melhor desempenho nas tarefas de classificacao.

HASSOUN (1995) destaca que, virtude a essa natureza localizada, as RBFs sao
capazes de realizar aproximagao universal de fungdes continuas com precisdo arbitraria,
desde que sejam utilizados um numero suficiente de neurdnios e realize a escolha

adequada de centros e larguras (POGGIO; GIROSI, 1989).
- Treinamento e Ajuste de Parametros

O processo de treinamento de uma RBF ¢ geralmente dividido em duas etapas
principais:

a) Determinacao dos centros e larguras das fungdes radiais:

Tradicionalmente realizada via algoritmos de clustering, como o k-means, que
identificam regides densamente povoadas no espaco de entrada e posicionam os centros
de forma a cobrir adequadamente os dados. A escolha das larguras ¢ realizada com base
na distancia média entre os centros ou através de heuristicas que fazem o balanceamento

da capacidade de generalizacdo e a precisao local (MOODY; DARKEN, 1989).
b) Ajuste dos pesos da camada de saida:
Geralmente implementado por métodos lineares, como a pseudoinversa

generalizada, ou via regra delta, visando minimizar o erro quadratico médio (SSE),

conforme Eq. (3.32):
m
1 2
E= Ez Iy, —d; I (3.32)
i=1
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onde y; ¢ a saida da rede para a entrada x; e d; ¢ a saida desejada (HASSOUN, 1995).
Esse treinamento eficiente, em comparacdo com as redes de retropropagacao

tradicionais, resulta em tempos de aprendizado mais enxutos, sendo altamente desejavel

em sistemas de diagndstico em tempo real, como na possibilidade de monitoramento de

falhas em motores Diesel.

- Aplicacao das RBFs na Classificacao e Diagnostico

As RBFs sdo particularmente adequadas para tarefas de classificagdo, dado que
suas fungdes de ativacao localizadas promovem uma segmentacao natural do espago de
entrada em regides associadas a diferentes classes. Isso reduz as taxas de falsos positivos
e melhora a robustez do classificador, como demonstrado em diversas aplicacdes de
diagnostico de falhas mecanicas (WETTSCHERECK; DIETTERICH, 1992).

No contexto especifico deste estudo, as RBFs foram utilizadas para a
classificacdao multiclasse de 13 classes distintas de um motor Diesel maritimo, obtendo

notavel desempenho na detec¢do de falhas de injegao.

- Limita¢des ¢ Consideracoes

Apesar de sua eficacia, as RBFs possuem certas limitagdes, especialmente na sua
reduzida capacidade de extrapolacdo, uma vez que suas camadas ocultas ndo respondem
significativamente a entradas situadas fora da regido onde foram treinadas (HASSOUN,
1995). Adicionalmente, em espagos de entrada de alta dimensionalidade, a necessidade
de um niimero elevado de neurdnios pode resultar em sobreajuste, demandando técnicas
adequadas de regularizagdo, além de um aumento considerdvel no tempo de

processamento.

3.5.5. Algoritmos de Otimiza¢io para Treinamento de Redes Neurais

A etapa de otimizagao em RNAs consiste em ajustar os pesos sinapticos da rede
de modo a minimizar uma fun¢ao de custo, representando o erro entre a predicao do
modelo e os rétulos verdadeiros. Diversos algoritmos de otimizacao tém sido propostos
na literatura, cada qual com caracteristicas distintas quanto a sua eficiéncia, robustez e

complexidade computacional. Dentre os mais tradicionais, destacam-se o Gradiente
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Descendente, o Gradiente Descendente Estocastico, o Gradiente Conjugado e sua
variante escalonada, o Gradiente Conjugado Escalado — adotado na presente pesquisa.

O Gradiente Descendente € o algoritmo base que ajusta os pesos da rede segundo
a direcdo oposta ao gradiente da fungdo de custo, sendo definido pela atualizagcdo

iterativa, conforme Equagao (3.33):

Wepr = Wy =nV](We) (3.33)

onde W representa o vetor de pesos, 1 a taxa de aprendizado e /(W) a funcdo de custo.
Embora simples, o Gradiente Descendente apresenta limitagdes como lenta
convergéncia e sensibilidade a escolha de n (ALPAYDIN, 2010).

O Gradiente Descendente Estocastico melhora a eficiéncia ao atualizar os pesos
com base em amostras individuais ou pequenos lotes (mini-batches), o que acelera o
treinamento em grandes bases de dados. Contudo, esse método ¢ mais ruidoso e pode
sofrer com oscilagdes na direcao do gradiente (AGGARWAL, 2018).

O Gradiente Conjugado foi desenvolvido para acelerar a convergéncia em
problemas quadraticos, evitando as limitagdes do Gradiente Descendente ao considerar
dire¢des de busca conjugadas ao invés do gradiente puro. Em redes neurais, adaptacdes
do Gradiente Conjugado tém mostrado ganhos de eficiéncia, especialmente em modelos
de média escala (HASSOUN, 1995).

Neste contexto, o Gradiente Conjugado Escalado surge como uma alternativa
robusta, combinando os beneficios do Gradiente Conjugado com técnicas de
escalonamento que eliminam a necessidade de linha de busca explicita. Proposto por
MOLLER (1993), o Gradiente Conjugado Escalado ajusta dinamicamente o passo de
atualizagdo com base em aproximagdes de segunda ordem, conferindo maior
estabilidade e rapida convergéncia do modelo.

A andlise comparativa revela que o Gradiente Conjugado Escalado atinge
minimos locais de forma mais eficiente do que métodos convencionais, tornando-se
especialmente indicado em problemas com multiplas varidveis e alta nao linearidade —
como a classificacdo de padrdes vibracionais em motores Diesel. Por essa razao, o
Gradiente Conjugado Escalado foi selecionado como o algoritmo de otimizagdo
principal neste estudo, contribuindo para a estabilidade do treinamento e melhor

desempenho global da RNA.

64



3.6. Meétricas de Avaliacao de Desempenho

Para proceder a avaliagdo do desempenho dos algoritmos de classificacao
aplicados ao diagnostico de falhas, torna-se fundamental estabelecer as métricas que
serdo utilizadas para mensurar sua eficacia. A definicdo criteriosa dessas métricas ¢
essencial, pois permite quantificar a capacidade dos modelos em identificar corretamente
as diferentes classes de falha, bem como avaliar sua robustez, sensibilidade e
confiabilidade. As principais métricas adotadas neste estudo estdo descritas nos subitens

a seguir:

3.6.1. Precisido (Precision)

A precisdao € uma métrica que quantifica a proporcao de classificagdes corretas
dentro das instancias que o modelo previu como positivas. Em outras palavras, ela avalia
a exatiddo das predi¢des positivas realizadas pelo algoritmo, indicando com que
frequéncia as falhas identificadas pelo modelo correspondem, de fato, a falhas reais. A

precisao ¢ definida pela Eq. (3.34):

Precisao = L (3.34)
VP + FP
onde:
. VP (Verdadeiros Positivos) representa a quantidade de instancias
corretamente classificadas como falhas;
. FP (Falsos Positivos) representa a quantidade de instancias

incorretamente classificadas como falhas, quando na verdade sdo condi¢des normais.

Um valor elevado de precisao indica que o modelo comete poucos erros ao
classificar uma condicao como falha, o que € particularmente relevante em sistemas de
diagnostico, onde falsos alarmes podem levar a manutengdes desnecessarias, aumento
de custos operacionais e indisponibilidade do motor Diesel (POWERS, 2011; TAN et
al., 2018; GOODFELLOW et al., 2016).
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3.6.2. Sensibilidade (Recall)

A Sensibilidade, também conhecida como Recall ou taxa de verdadeiros
positivos, ¢ uma métrica essencial na avaliagdo de modelos de classificacao,
especialmente em contextos em que a detecgdo de eventos positivos (como falhas) ¢
critica. Esta métrica indica a propor¢ao de instancias positivas corretamente identificadas
pelo modelo em relagdo ao total de instancias verdadeiramente positivas no conjunto de

dados. Sua formulacao matematica ¢ expressa pela Eq. (3.35):

vp
=— 3.35
Recall VP T FN ( )
Onde:
. FN (Falsos Negativos) sao as instancias que o modelo classificou

incorretamente como normais, apesar de representarem falhas reais.

Um valor elevado de Sensibilidade reflete a capacidade do modelo de minimizar
a ocorréncia de falsos negativos, o que ¢ particularmente importante em aplicagdes como
manutenc¢ao preditiva. Para sistemas de diagnostico de falhas em motores, por exemplo,
uma sensibilidade alta assegura que um baixo nimero de falhas passe despercebidas,
aumentando a confiabilidade do sistema de monitoragao.

Essa métrica ¢ amplamente utilizada na literatura de aprendizado de maquina e ¢
considerada indispensavel na andlise de classificadores binarios e multiclasse

(POWERS, 2011; TAN et al., 2018; GOODFELLOW et al., 2016).

3.6.3. Acuracia (Accuracy)

A acuricia ¢ uma métrica amplamente utilizada na avaliagdo de modelos de
classificagdo, sendo definida como a proporcao de predigdes corretas em relagao ao total
de instancias avaliadas. Ela oferece uma visao geral do desempenho do classificador ao
considerar tanto as predigdes corretas de instancias positivas quanto de instancias

negativas. A acurdcia ¢ definida pela Eq. (3.36):

i — VP + VN .36
CUracla =y p LUN + FP + FN '
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Onde:
. VN (Verdadeiros Negativos) sdo as instancias normais corretamente

classificadas; e

Embora seja uma métrica de facil compreensao e interpretacao, a acuracia pode
se tornar traigoeira em bases de dados desbalanceadas, nas quais uma das classes domina.
Nestes casos, um classificador pode atingir alta acuracia apenas por predizer a classe
majoritaria, negligenciando completamente a detec¢ao da classe minoritaria, o que pode
ser insatisfatorio em sistemas de diagndstico de falhas (GOODFELLOW; BENGIO;
COURVILLE, 2016).

Por isso, ¢ recomendada a utilizagdo da acurdcia em conjunto com outras
métricas, como Precisdo, Sensibilidade e F1-Score, para uma avaliacdo mais robusta do

desempenho da RNA.
3.6.4. F1-Score

O F1-Score ¢ uma métrica que combina, de forma harmonica, as duas principais
medidas de desempenho de um classificador: a precisdo e a sensibilidade. Trata-se de
uma medida especialmente 1util em cenarios nos quais existe um desequilibrio entre as
classes, como nos sistemas de diagnostico de falhas, onde a ocorréncia de falhas ¢
significativamente menor em comparagao com condigdes normais. Matematicamente, o

F1-Score ¢ definido pela Equacao (3.37):

Fl—g 5 Precisao * Recall (3.37)
f— = 3 .
core Precisao + Recall

Essa equacdo expressa a média harmonica entre a precisao e a sensibilidade,
penalizando severamente valores discrepantes entre essas duas métricas. Devido esse
motivo, o F1-Score ¢ particularmente recomendado quando se busca um equilibrio entre
a capacidade do modelo de detectar falhas (sensibilidade) e a de evitar alarmes falsos
(precisao).

Um valor elevado de F1-Score (F1-Score > 95%) indica que o modelo ¢ capaz
de identificar corretamente a maioria das falhas com uma baixa taxa de falsos positivos,
0 que o torna um parametro decisivo na escolha do modelo mais adequado em aplicacdes
de manutencao preditiva baseadas em aprendizado de maquina (POWERS, 2011; TAN
et al., 2018; GOODFELLOW et al., 2016).
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4. METODOLOGIA

Este capitulo descreve detalhadamente o procedimento metodologico adotado
para a identificagdo de falhas de injecdo em um motor Diesel maritimo, com base em
sinais de vibracao e utilizando modelos de RNAs. A metodologia foi estruturada em trés
grandes blocos: (i) pré-processamento dos dados, (ii) selecdo das caracteristicas e

acelerdmetros mais relevantes, e (iii) modelagem com RNA, conforme ilustrado no

fluxograma a seguir (Figura 3).

Pré-processamento de Dados

Processamento de Dados

Rede Neural Artificial

Aumento de Dados por Partigéo de Sinal

Eliminagao das Caracteristicas e
Acelerdmetros Menos Relevantes

|

Pré-processamento do Sinal
l Tratamento das Outliers I l Preparagdo dos Dados para a Rede Neural I
(Filtragem dos Sinais
R a d* Tendénci i J(
Z’;‘: %air?aisa Fi?lrrla:g:)la Selegdo das Caracteristicas Mais Relevantes l Construgédo da Rede Neural |
‘L Utilizando o Método Relief-F l
Diviséio dos Dados em Identificagao dos Acelerémetros ‘ Ajuste dos Hiperparametros da Rede Neural }(7
Conjuntos de Treino e Teste Mais Relevantes J{
l I Treinamento da Rede Neural |

l

Extragdo das Caracteristicas do Sinal

ho da

ede Neural foi satisfatorio?,

I Selegao do Melhor Modelo |

)

| Identificagdo da Falha de Injegdo |

Figura 3 - Fluxograma Geral da Metodologia para Classificagcdo de Falhas de Injecdo
em Motor Diesel utilizando Sinais de Vibrag¢do e Redes Neurais Artificiais

4.1. Pré-processamento de Dados

A primeira etapa consistiu no carregamento dos sinais brutos de vibragao
adquiridos durante os ensaios realizados em bancada de teste instrumentada, tendo como
unidade sob andlise o motor Diesel maritimo MTU 12V4000C11. Os dados foram
obtidos por meio de 15 acelerdmetros uniaxiais do tipo ICP®, estrategicamente
posicionados sobre os cabegotes dos cilindros (pontos 1V a 12V) e proximos as janelas

de inspec¢ao do bloco (pontos 13T, 14T e 15T), conforme mostrado na Figura 4.
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Bancada A

Figura 4 - Pontos de instalagdao dos acelerometros

A aquisicao foi executada com frequéncia de amostragem de 10.240 Hz,
utilizando placas de aquisicdo NI 9234 e o ambiente LabVIEW™ para monitoramento e
registro continuo.

O processamento inicial dos sinais incluiu duas etapas essenciais: filtragem digital
e remocao de tendéncia (detrending). A filtragem foi aplicada com o objetivo de atenuar
componentes de ruido de alta frequéncia e preservar as faixas espectrais de interesse
associadas ao comportamento vibracional do motor. A etapa de detrending visou eliminar
variacoes de baixa frequéncia e deslocamentos do sinal, garantindo que as componentes
dindmicas relevantes para a deteccdo de falhas de injecdo fossem adequadamente
realcadas.

Com os sinais limpos, foi realizada uma técnica fundamental tanto para aumentar
o volume amostral quanto para capturar variagdes estatisticas locais ao longo do tempo.
Esta etapa configura-se como um processo de data augmentation estruturado, em que
multiplos segmentos extraidos de um mesmo sinal contribuem para enriquecer a
diversidade da base de dados sem induzir viés artificial. Como resultado, a generalizagao
dos modelos de aprendizado de maquina foi significativamente favorecida.

Para cada janela segmentada, procedeu-se a extragdo de um conjunto abrangente
de caracteristicas estatisticas, abrangendo os Dominios do Tempo, da Frequéncia (via
FFT) e do Tempo-Frequéncia (utilizando também a FFT). As caracteristicas extraidas,

presentes nas Tabelas 2 e 3, incluem métricas classicas como média, variancia, valor
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RMS, fator de crista, curtose, entropia espectral, entre outras, previamente validadas na
literatura para problemas de detec¢ao de falhas mecanicas.

Em seguida, os dados extraidos foram organizados e etiquetados conforme suas
respectivas classes, abrangendo uma condicao normal de operacdo e 12 condi¢des de
falha. Estas falhas corresponderam a simulagdo de falhas de inje¢do total em cada um
dos 12 cilindros do motor, realizadas sempre de forma individualizada, ou seja, sem
ocorréncia simultinea em mais de um cilindro. Esses dados foram divididos em
subconjuntos de treinamento (70%), validacdo (15%) e teste (15%). Essa divisdo
estratificada assegurou o equilibrio entre as classes e permitiu avaliagdo objetiva do
desempenho dos modelos preditivos. Os conjuntos resultantes foram salvos em estrutura

compativel com os algoritmos de aprendizagem subsequentes.

4.2. Processamento de Dados

ApoOs a etapa de pré-processamento e extragdo de caracteristicas, iniciou-se o
processo de refinamento e organizacao dos dados com o objetivo de otimizar sua entrada
nas RNAs. Esta fase foi essencial para garantir que os dados apresentados aos modelos
de aprendizado mantivessem alta integridade, representatividade estatistica e relevancia
discriminativa.

Durante o processamento dos sinais de vibracao adquiridos dos acelerdmetros, foi
implementada uma etapa dedicada ao tratamento de outliers, com o proposito de mitigar
a influéncia de valores extremos que poderiam comprometer a acuracia e a robustez dos
modelos. A identificacdo dos outliers foi realizada com base no critério estatistico dos
quartis, também conhecido como método do Intervalo Interquartil (IQR), o qual se baseia
na distribuicdo dos dados e detecta valores que se encontram significativamente distantes
da mediana.

Uma vez identificados os valores andmalos, adotou-se a técnica de corre¢do por
clipping, que consiste em ajustar os valores excedentes aos limites inferiores e superiores
aceitaveis, definidos com base no IQR. Essa abordagem foi preferida a simples exclusao
das amostras, pois preserva a integridade da base de dados e evita a redugao do volume
amostral, o que poderia prejudicar a capacidade de generalizacao do modelo.

Essa estratégia assegurou que os sinais mantivessem sua estrutura estatistica e
dinamicidade, sendo protegidos contra distor¢des ocasionadas por ruidos extremos,
falhas instrumentais pontuais ou interferéncias esporadicas durante a aquisi¢ao. Dessa

forma, o conjunto final de dados alimentado as RNAs apresentou maior consisténcia e
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representatividade em relagdo as condig¢des reais de operacao do motor, favorecendo o
desempenho dos modelos preditivos de falhas de injecao.

Na sequéncia, foi conduzida a sele¢ao das caracteristicas mais relevantes por meio
do método Relief-F, uma técnica amplamente reconhecida na literatura por sua eficacia
na identificagdo de atributos discriminativos em problemas de classificacdao. O algoritmo
Relief-F avaliou a importancia relativa de cada uma das caracteristicas extraidas,
considerando sua capacidade de distinguir entre as diferentes classes de falha de injecao.
Esta selecao visou reduzir a dimensionalidade do vetor de caracteristicas, eliminar
redundancias e evitar o fenomeno conhecido como curse of dimensionality, que tende a
comprometer o desempenho de modelos em bases com grande numero de atributos.

Além da reducdao de atributos, também foi realizada a identificacdo dos
acelerdmetros mais relevantes. A partir da analise dos pesos atribuidos as caracteristicas
extraidas de cada sensor, foram priorizados os acelerometros cuja contribui¢do era mais
expressiva para a detec¢do das falhas simuladas. Esta abordagem permitiu reduzir a
complexidade do sistema de instrumentagao sem perda significativa de desempenho.

As caracteristicas e sensores com menor contribuicdo diagnéstica foram
eliminados da base de dados, consolidando um conjunto otimizado de entradas para as
etapas de modelagem preditiva. O resultado desse processamento foi um banco de dados
altamente representativo, com atributos informativos e livres de ruido, pronto para ser

utilizado no treinamento, validagao e teste das RNAs.

4.3. Redes Neurais Artificiais

A etapa final da metodologia consistiu na implementagdo, treinamento e
validacao de modelos baseados em RNAs, com o objetivo de classificar as diferentes
condigdes operacionais do motor Diesel e identificar falhas de inje¢ao de combustivel a
partir dos sinais de vibragdo previamente processados. A escolha dessa abordagem se
justifica por sua reconhecida robustez na modelagem de sistemas dinamicos, complexos
e ndo lineares — caracteristicas inerentes aos fendmenos associados a mecanica de
combustdo e falhas de injecdo em motores alternativos.

Inicialmente, realizou-se a preparacdo dos dados de entrada, o que incluiu a
normalizag¢do das caracteristicas selecionadas e a organizagao dos vetores de entrada e
saida, assegurando compatibilidade com os requisitos topolégicos da rede. Essa etapa foi

essencial para garantir que todas as varidveis apresentassem escalas compativeis e que a

distribuicao das amostras fosse balanceada entre as 13 classes definidas (1 condig¢ao
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normal e 12 condigdes com falhas de injecdo simuladas individualmente para cada
cilindro do motor).

Na Tabela 4 ¢ mostrado os principais componentes adotados na arquitetura da
RNA.

Tabela 4 - Principais componentes da arquitetura da Rede Neural Artificial adotada

Componente Descricao
. Rede Neural Artificial (RNA) do tipo
Arquitetura feedforward.

Uma camada, com nimero variavel de

Camada oculta n
neuronios.

Radial Basis Function (RBF) — elevada
capacidade de modelagem em regides nao
Funcao de ativacao lineares do espago de decisdo, eficaz em
classificacdao multiclasse e de alta

dimensionalidade.

Gradiente Conjugado Escalonado de
Algoritmo de Retropropagacao (trainscg) — eficiente em
treinamento redes de porte intermediario e estavel no
processo iterativo de minimizagao.

Entropia cruzada (crossentropy) —
apropriada para classificagao com saidas
Funcao de desempenho | probabilisticas, penalizando com maior
rigor classificagdes incorretas de alta

confianca.

A etapa de ajuste dos hiperparametros envolveu tanto a calibragao empirica inicial
de parametros como a aplicacdo de um processo sistematico de otimizagdo. Nesse
contexto, foi empregada a otimizagcdo bayesiana, utilizando a funcdo bayesopt do
ambiente MATLAB. Esse método busca encontrar automaticamente a combinag¢ao 6tima
de parametros da RNA, reduzindo a necessidade de ajustes manuais e aumentando a
capacidade de generalizagao do modelo.

O espago de busca dos hiperparametros foi definido por um vetor de variaveis

otimizaveis, conforme relagao abaixo:

. Numero de neuronios na camada oculta;

. Taxa de aprendizado;

. Numero méximo de épocas de treinamento;

. Objetivo de erro minimo (goal) para critério de parada;
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. Gradiente minimo (min_grad) para critério de convergéncia;

. Maximo de falhas de validacao consecutivas (max_fail);
. Parametro sigma da funcdo RBF; e
. Fator de regularizagao lambda para controle de sobre ajuste.

Esse processo de otimizagao automatizada possibilitou a sele¢ao sistematica das
melhores combinacdes de hiperparametros para cada cenario (nimero de caracteristicas
e acelerometros utilizados), resultando em modelos altamente performaticos e
consistentes nos conjuntos de teste, conforme evidenciado no capitulo Resultados e
Discussoes.

Com a rede devidamente configurada, deu-se inicio ao treinamento
supervisionado, no qual o modelo foi exposto aos exemplos rotulados oriundos do
conjunto de dados de treinamento, correspondentes a 70% da base total. Os 30% restantes
foram divididos igualmente entre os conjuntos de validacdo (15%) e teste (15%). A
divisdo estratificada teve como objetivo garantir o equilibrio entre as classes e prevenir
o overfitting, assegurando que o modelo fosse avaliado em dados independentes daqueles
usados no treinamento.

Durante o treinamento, a rede neural ajustava iterativamente seus pesos com base
nos erros cometidos, enquanto o conjunto de validagdo era utilizado para monitorar a
evolugcdo do desempenho e ativar mecanismos de parada antecipada, como o early
stopping, em caso de degradagdo da generalizacao.

Apo0s o treinamento, a performance da RNA foi avaliada com base em métricas
estatisticas aplicadas exclusivamente ao conjunto de teste, incluindo precisao,
sensibilidade, acuracia, especificidade e F1-Score. Caso os resultados nao atingissem os
critérios minimos de desempenho estipulados, novos cenarios de hiperparametros eram
definidos e o processo de treinamento era repetido.

Uma vez identificado um modelo com F1-Score superior a 95%, este era
considerado apto a compor o conjunto final de modelos aprovados para identificacao de
falhas de injecao de combustivel em motores Diesel com base na analise dos sinais de

vibragao.
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5.  ESTUDO DE CASO

Este capitulo tem como objetivo apresentar o estudo de caso aplicado, detalhando
o motor Diesel maritimo analisado (Figura 5), os procedimentos de aquisicao dos sinais
de vibragdo e a metodologia experimental empregada para a simulacao e identificagdo de
falhas de injegao.

et :"‘“'mi

SR | : R \i
Figura 5 - Vista Geral do Motor MTU 12V4000 e do Dinamometro Priiftechnik BFBg 2h

5.1 Caracterizacdo do Conjunto Motor Diesel e Dinamometro

As caracteristicas construtivas e operacionais do motor diesel MTU 12V4000C11
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encontram-se sintetizadas na Tabela 5, abrangendo informacgdes como numero de

cilindros, sistema de injecao, dimensdes geométricas, poténcia nominal e torque maximo.

Complementarmente, a Tabela 6 apresenta as dimensdes globais e o peso aproximado do

motor, enquanto a Tabela 7 descreve a posi¢do do centro de gravidade em condicao seca,

aspecto relevante para analises de instalacdo e balanceamento estrutural. Os dados de

desempenho em diferentes rotagdes de operagado, incluindo poténcia, torque € consumo

especifico, sdo apresentados na Tabela 8, fornecendo subsidios para a avaliacao da

eficiéncia energética do motor. Por fim, a Tabela 9 apresenta as especificagdes técnicas

do dinamdémetro Hofmann BFBg 2h, empregado nos ensaios experimentais, destacando

sua capacidade de torque, poténcia e requisitos de refrigeragao.

Tabela 5 - Especificagoes Técnicas — Motor Diesel MTU 12V4000C1 1

Especificacoes Técnicas - Motor Diesel MTU 12V4000C11

Fabricante / Modelo
Numero de Cilindros / Ciclo
Angulo entre bancadas em V
Sistema de Injecao

Sistema de Combustivel

Controle de Injecao

Resfriamento
Turboalimentacao

Diametro do Cilindro (Bore)
Curso (Stroke)

Deslocamento por Cilindro
Deslocamento Total

Razao de Compressao
Poténcia Nominal

Rotacao Nominal

Torque Maximo

Velocidade do Torque Maximo
Ordem de Ignicao (Firing Order)

MTU / 12V4000C11
12 cilindros em V / 4 tempos
90°
Injecao direta
Common Rail com controle eletrénico DDEC IV

Controle individual por cilindro, com controle
total do tempo de injecao
Por agua
Estagio unico - Um turbocompressor por bancada
165 mm
190 mm
4,1 litros
48,8 litros
14:1
1.193 kW
1.900 RPM
7.595N-m
1.500 rpm
A1-B2-A5-B4-A3-B1-A6-B5-A2-B3-A4-B6
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Tabela 6 - Dimensoes / Peso Aproximado

Dimensoes / Peso

Aproximado
Comprimento 2.537.7 mm
Total
LarguraTotal 1.587,8 mm
Altura Total 1.736,3 mm
Seco (Dry) 6.044 kg
Molhado
(Wet) 6.428 kg

Tabela 7 - Centro de Gravidade (Motor Seco)

Centro de Gravidade

(Motor Seco)
Referéncia Distancia
Do bloco
traseiro ao 899.2 mm
longo do
eixo X
Acimado
virabrequim 238,8 mm
(eixoY)

A direita do
virabrequim 0,0 mm
(eixo Z)

Tabela 8 - Dados de Desempenho do MTU 12V4000C11

Dados de Desempenho do MTU 12V4000C11

Rotacao (rpm) Poténcia (kW) T(?\qun:;a Consumo (g/kWh)
1200 633 5038 211
1350 905 6398 194
1500 1193 7595 190
1650 1193 6905 193
1800 1193 6330 194
1900 1193 5996 -

Tabela 9 - Dados Tecnicos do Dinamometro

Dados Técnicos do DinamOémetro

Modelo BFBg 2h —
Bindrio de rotagdo maximo 22.920 N.m
Poténcia maxima 5.000 kw
Poténcia maxima do dinamometro 24.000 N
in-1
Rotacdo mdxima 3.000 min
(rpm)
Nece55|dadeide agualrgfrlgerante 135.000 Lh
(capacidade maxima)
Temperatura maxima da agua .
. 45 C
refrigerante (entrada)
Temperatura maxima da agua 70 oc

refrigerante (saida)
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Uma das principais inovagdes tecnologicas do motor MTU Série 4000, como o
modelo 12V4000C11 (Figura 6) utilizado neste estudo, ¢ a incorporagao do sistema de
injecdo de combustivel do tipo Common Rail, que representa um marco em termos de
controle preciso, eficiéncia energética e redugao de emissdes em aplicagdes maritimas de
alto desempenho.

Diferentemente dos sistemas convencionais que utilizam injetores comandados
por came ou bombas de inje¢do com é&mbolos individuais para gerar pressao
pontualmente, o sistema Common Rail da Série 4000 opera com uma Unica bomba de
alta pressao, que fornece combustivel continuamente pressurizado para todos os
injetores, independentemente do regime de operagdo. Com isso, elimina-se a
dependéncia mecanica da posi¢ao do virabrequim, permitindo um controle independente

do momento da injec¢ao.

Engine Engine Speed Water Air Boost Atm Accel. Air flow
speed phase temp. temp. press press pos
High pressure pump
Sensors
High pressure

Common rail

Actuators m

EGR

"

Turbo

Return

ECU
Injectors

Figura 6 - Esquema de um Sistema Common Rail. Fonte: BASSHUYSEN; SCHAFER
(2004).

O gerenciamento integral do ciclo de injecao ¢ realizado por meio do sistema
eletronico Detroit Diesel Electronic Control (DDEC 1V), que atua diretamente sobre as
solendides das unidades injetoras. Esse sistema eletronico € responsavel por controlar
com precisdo o inicio da inje¢ao (BOI), a duracao do pulso (PW), a quantidade de
combustivel injetado e a atomizagao do jato, em fun¢do dos parametros operacionais do
motor ¢ das condi¢des ambientais.

Esse controle dindmico ¢ viabilizado por meio de microprocessadores presentes
no modulo DDEC 1V, que recebem sinais de diversos sensores (temperatura, pressao,
rotacao, entre outros), permitindo decisdes em tempo real sobre o ciclo de injecao ideal

para cada cilindro.
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5.1.1. Injecao Eletronica Piloto e Otimiza¢cao da Combustao

Uma importante funcionalidade habilitada pelo DDEC IV ¢ a Injecao Eletronica
Piloto. Nos sistemas de injecao convencionais, o atraso de igni¢ao entre a inje¢do € o
inicio da combustdo tende a provocar acumulo de combustivel ndo queimado na camara,
o que resulta em picos elevados de pressdo (rate of pressure rise), emissao de fumaga
branca, ruido de combustao intenso (knocking) e maiores niveis de consumo especifico.

Com a Inje¢do Eletronica Piloto (Figura 7), o sistema injeta uma pequena
quantidade inicial de combustivel antes da inje¢ao principal, o que proporciona o inicio
da combustio de forma mais suave e controlada. A imagem mostra as curvas de
voltagem, corrente elétrica, estado da valvula de controle e taxa de inje¢ao ao longo do
tempo. O grafico ilustra a ocorréncia de multiplos pulsos de injegdo, evidenciando o
controle dinamico realizado pela ECU. Essa estratégia permite a implementacao de

injecao piloto e principal, otimizando a combustdo e reduzindo emissdes.

Ponto de Injecao)

Corrente

EOE EOI

Tempo
MTU DO BRASIL Ltda.

DaimlerChrysler Off-Highway

Figura 7 - Ciclo de Inje¢cao Multipulso do Sistema Common Rail Controlado por DDEC
1V. Fonte: Rolls-Royce.

5.1.2. Injetores Eletronicos Unitarios

Outro diferencial do sistema ¢ a utilizagdao de Injetores Eletronicos Unitarios, os
quais recebem combustivel ja pressurizado pelos trilhos do Common Rail e nao
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necessitam gerar pressao internamente. Esse conceito elimina a necessidade de ajustes
mecanicos associados ao came e permite que toda a atuacao seja feita eletronicamente.
O DDEC IV ¢ responsavel por comandar a quantidade de combustivel injetado, a
precisao do tempo de abertura e o fechamento do injetor.

Essa arquitetura favorece a padronizagcdo da injecdo entre os cilindros, maior
repetibilidade e confiabilidade, além de viabilizar estratégias de diagndstico eletronico
baseadas em parametros como tempo de resposta, corrente de acionamento € pressao nos

trilhos.

5.2 Detroit Diesel Diagnostic Link (DDDL)

No presente estudo, o software Detroit Diesel Diagnostic Link (DDDL) foi
utilizado como ferramenta técnica essencial para a indugdo experimental de falhas de
injecdo no motor MTU 12V4000C11, viabilizando a coleta de sinais de vibragao
associados a diferentes condi¢des de operacao, incluindo falhas simuladas de forma
precisa e ndo invasiva.

O DDDL, desenvolvido pela Detroit Diesel Corporation (DDC), ¢ um ambiente
diagnostico avancado que permite a comunicagdo direta com a ECU DDEC IV do motor.
Dentre suas multiplas funcionalidades, destaca-se a capacidade de interromper
seletivamente a injecao de combustivel em cada um dos cilindros, de forma totalmente
controlada, rapida e segura (Figura 8). Ressalta-se que, virtude limitacdo do software
DDDL, somente ¢ possivel realizar cortes de inje¢do em um cilindro por vez. O software
também nao permiti atrasar ou adiantar a injecao do combustivel e alterar a quantidade

de combustivel injetado.
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Figura 8 - Interface grafica do software Detroit Diesel Diagnostic Link

Durante os testes experimentais, o0 DDDL foi empregado para realizar cortes
individuais de combustivel nas unidades injetoras eletronicas, simulando falhas reais
de injecdao, sem a necessidade de intervengdes mecanicas ou fisicas no motor. Esse
processo foi fundamental para isolar os efeitos vibracionais de cada cilindro, permitindo
a construcao de um banco de dados com assinaturas distintas para condigdes normais e
falhas de inje¢ao de combustivel; reproduzir, com elevada fidelidade, falhas tipicas como
auséncia de injecao ou interrupcao abrupta da queima e avaliar a sensibilidade dos
acelerometros posicionados em diferentes regides do motor (cilindros e bloco) frente as
variacoes dindmicas induzidas. A Figura 9 mostra a janela do software DDL onde ¢

possivel selecionar o cilindro que sofrerd corte de injecdo de combustivel.
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Figura 9 - Tela da Janela de Corte de Inje¢do de Combustivel, do DDDL, no Cabegote
A3 ou 3V

A inducdo sistematica de falhas com o suporte do DDDL permitiu garantir a
qualidade e a rotulagem precisa dos dados utilizados para o treinamento dos modelos de
RNAs. Essa abordagem assegurou a consisténcia nos cenarios de coleta, com
replicabilidade controlada para cada condigdo testada, o sincronismo entre a falha
induzida e o inicio da aquisi¢ao dos sinais de vibragao, evitando ambiguidade nos dados,
a geragdo de um conjunto de dados confidvel e tecnicamente robusto, com separagao
clara entre as classes de operagao normal e com falha de injecao.

O uso do DDDL foi, portanto, ndo apenas um recurso de apoio diagndstico, mas
um elemento central da metodologia experimental, viabilizando uma andlise
fundamentada dos efeitos das falhas de inje¢do sobre o comportamento vibracional do
motor e servindo como base de referéncia para validagdo dos modelos de classificagao

desenvolvidos nesta dissertagao.

5.3  Sistema de Aquisi¢io de Dados

Para a coleta dos sinais de vibracdo utilizados neste estudo, foi desenvolvido um
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sistema de aquisicao de dados robusto, configurado para atender aos requisitos de alta
resolucdo temporal, multiplos canais simultdneos e confiabilidade em ambientes
industriais severos. O sistema foi responsavel por captar, registrar € armazenar os sinais
provenientes dos acelerometros instalados no motor Diesel MTU 12V4000C11, bem
como de outros sensores auxiliares de monitoramento. Na Figura 10 ¢ possivel visualizar

os pontos de coleta das assinaturas de vibragao.

PPPPPD

DINAMOMETRO

- —|of——r — ——lol® — — —

131 147 15T

BASE/FUNDAGAO

Figura 10 - Vista do Conjunto Motor-Dinamometro

5.3.1. Arquitetura do Sistema de Aquisicao

O sistema foi composto por cinco placas de aquisi¢do do tipo NI 9234,
pertencentes a série C da National Instruments. Cada placa dispde de quatro canais de
entrada analogica para aquisi¢ao de sinais dindmicos com alto desempenho, totalizando
20 canais disponiveis, dos quais 15 foram utilizados simultaneamente para a aquisi¢ao
de sinais de vibragao e referéncia.

Os dados foram adquiridos a uma taxa de amostragem de 10.240 Hz, valor
selecionado com base na faixa de frequéncia de interesse para identificagdo de falhas
mecanicas no regime de operagao do motor analisado, garantindo conformidade com o
critério de Nyquist para as componentes espectrais de até¢ 5.120 Hz.

A infraestrutura experimental contou com a presenga de um Tacometro e de um
Sistema Torque Track (Figura 11), instalado no eixo do Dinamometro, utilizado para o
monitoramento do torque dinamico transmitido pelo eixo de manivelas do motor. Esse
sistema foi configurado para registrar variacoes de torque ao longo do tempo, com
potencial para revelar oscilagdes associadas a irregularidades na combustao e falhas de
injecdo. Esses sensores, permitem a medicdo das deformagdes torcionais diretamente

associadas as cargas mecanicas transmitidas durante a operagao do motor.
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Figura 11 - Instalagao do Tacometro e do Sistema Torque Track

Entretanto, cabe destacar que, embora esses sistemas estivessem plenamente
operacionais durante os ensaios experimentais, os dados por eles obtidos nao foram
utilizados nas andlises realizadas neste estudo. A decisdo visou manter o foco exclusivo
na analise de sinais de vibragdo para diagnostico de falhas por meio de RNAs. Os dados
coletados por esses sensores foram devidamente armazenados e serdo objeto de
investigacoes futuras, voltadas a integracao de multiplas fontes de sinal para diagndsticos

mais abrangentes e robustos.

5.3.2. Transdutores Instalados

O aparato experimental incluiu um total de 15 acelerdmetros uniaxiais, sendo que
12 acelerdmetros foram fixados diretamente sobre os cabecotes dos cilindros, permitindo
analise individualizada por unidade injetora e 3 acelerometros adicionais foram
posicionados estrategicamente proximos as janelas de inspe¢do do bloco (Figura 12),

visando a avaliacdo comparativa entre medi¢des em regides estruturais distintas do

motor.
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Figura 12 - Disposi¢do dos acelerometros nos cabegotes e no bloco do motor MTU
12V4000C11

Essa distribuigdo permitiu capturar padrdes vibracionais tanto localizados quanto
globais, fundamentais para o diagnostico baseado em aprendizado de maquina.

Para a aquisi¢do dos sinais de vibracdo no motor Diesel MTU 12V4000C11,
foram utilizados acelerometros uniaxiais piezelétricos do tipo ICP® (Integrated Circuit
Piezoelectric) fabricados pela PCB Piezotronics, reconhecida mundialmente pela
precisao e confiabilidade de seus sensores em aplicacdes de engenharia mecanica e
monitoramento de maquinas rotativas.

Os acelerometros empregados nas medigdes possuem as seguintes caracteristicas

técnicas:

. Tipo de sensor: Piezoelétrico ICP® uniaxial

. Sensibilidade nominal: ~100 mV/g

. Faixa de frequéncia util: 0,5 Hz a 10.000 Hz

. Amplitude maxima de medicao: at¢ £50 g

. Montagem recomendada: base roscada, magnética ou colada

. Conector: BNC padrao para compatibilidade com sistemas da National
Instruments

5.4  Software de Aquisicao

O software utilizado para controle, aquisi¢do e armazenamento dos dados foi o
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LabVIEW™ (Laboratory Virtual Instrument Engineering Workbench), também da
National Instruments, conforme Figura 13. Esta plataforma viabilizou a criagdo de rotinas
personalizadas para o gerenciamento simultaneo dos canais de entrada, a visualizacao em
tempo real dos sinais coletados e o armazenamento estruturado dos dados em arquivos

compativeis com processamento posterior em MATLAB®.
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Figura 13 - Interface grafica do software LabVIEW™ utilizada para aquisi¢ao de sinais
de vibra¢ao do motor MTU 12V4000C11

Os sinais captados pelos acelerometros foram transmitidos aos modulos NI 9234
através de conexdes blindadas e compativeis com o padrio ICP®, garantindo
condicionamento interno de sinal, protecdo contra ruidos eletromagnéticos e alta
linearidade entre aceleracao e saida em tensao.

A correta integracao dos acelerdmetros com o sistema de aquisi¢cdo por meio do
software LabVIEW™ contribuiu diretamente para a alta resolu¢ao dos dados utilizados

nas andlises nos Dominios do Tempo, Frequéncia e Tempo-Frequéncia, consolidando a
base experimental do presente estudo.

5.5 Procedimento Experimental

O experimento foi realizado em uma bancada de teste instrumentada,
especialmente preparada para o diagnostico de falhas de inje¢ao de combustivel em
motores Diesel. O motor avaliado foi o MTU 12V4000C11, operando sob diferentes

condigdes de carga e com simulagdo de falhas em suas unidades de injetoras, utilizando
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recursos do sistema de controle eletronico DDEC 1V.

Nesta pesquisa foram utilizados ao todo 39 cendrios experimentais, dos quais 36
envolviam condi¢des de falha e 3 correspondiam a condi¢ao normal de operagdo (sem
falha), conforme descrito na Tabela 10. Embora, a primeira vista, pudesse parecer que o
conjunto de dados apresentaria um desbalanceamento entre as classes, em fun¢ao da
existéncia de uma unica condi¢do normal de operagao e de 12 condigdes distintas de falha
de injecdo (uma por cilindro), tal situagdo nao se verifica nesta pesquisa. Isso porque o
balanceamento entre classes foi garantido pelo processo de data augmentation aplicado
aos sinais brutos, o que resultou em um numero equivalente de instancias para cada
classe. Dessa forma, ainda que a condi¢cao normal esteja representada por um Unico
arquivo experimental, o volume de amostras extraidas deste cenario foi proporcional ao
das demais classes de falha, assegurando distribui¢do equilibrada de dados. Assim, a
classe normal permanece tnica, sem necessidade de subdivisdes artificiais, enquanto as
12 classes de falha representam falhas totais de injecdo simuladas individualmente em
cada cilindro, sem ocorréncia simultanea. Este procedimento metodologico eliminou o
risco de enviesamento do modelo, permitindo que a Rede Neural Artificial fosse treinada
com uma base de dados estratificada e estatisticamente balanceada, condi¢ao essencial

para a robustez e a generalizagdo dos resultados obtidos.

Tabela 10 - Cenarios Simulados e Utilizados

Rotacao (RPM) Torque (N-m) Poténcia (kW) Falhas Simuladas (Cilindros)

1500 850 127,5 Sem falha
1500 850 127,5 N°1a12
1500 2040 306 Sem falha
1500 2040 306 N°1a12
1500 3272 490 Sem falha
1500 3272 490 N°1a12

As falhas foram simuladas por meio do corte eletronico de combustivel em apenas
um cilindro por vez, utilizando o sistema DDDL, uma vez que a arquitetura do DDEC
IV ndo permite a realizagdo de falhas simultdneas. Assim, cada cenario de falha
representa a interrup¢ao da injecao de combustivel em um unico cilindro especifico, com
o motor em funcionamento continuo.

A Tabela 10 apresenta um resumo consolidado dos cendrios simulados e
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efetivamente utilizados na composic¢ao do banco de dados experimental empregado neste
estudo. Todos os testes foram realizados com rotagdo constante de 1500 RPM,
distribuidos em trés faixas de carga: 127,5 kW, 306 kW e 490 kW, representando
diferentes regimes operacionais do motor Diesel maritimo MTU 12V4000C11.

Para cada faixa de carga, foram considerados dois tipos de condi¢dao operacional:
condicdo normal (sem falhas) e condi¢des com falhas simuladas de injecao de
combustivel, totalizando 13 classes distintas. As falhas foram induzidas de forma
individual em cada um dos 12 cilindros. Vale destacar que, devido a arquitetura eletronica
do sistema de gerenciamento DDEC IV, nao foi possivel realizar falhas simultaneas,
assegurando que cada classe de falha representasse exclusivamente a auséncia de inje¢ao
em um unico cilindro.

A organizagao dessas combinagdes foi fundamental para garantir a diversidade e
a representatividade das classes, bem como para viabilizar a aplicagdo de técnicas de
aprendizado supervisionado robustas. Além disso, a padronizagdo dos parametros
operacionais de rotagdo e carga em cada cenario contribuiu para a confiabilidade da
analise comparativa entre os Dominios do Tempo, Frequéncia e Tempo-Frequéncia,
objetivo central desta pesquisa.

Para cada cenario, os sinais de vibragao foram adquiridos por meio de um sistema
multicanal com 15 acelerdmetros uniaxiais (12 alocados nos cabegotes € 3 no bloco do
motor, conforme Figura 10. A aquisi¢do foi feita com frequéncia de amostragem de
10.240 Hz, assegurando resolucdo espectral adequada para analise nos Dominios do
Tempo, Frequéncia e Tempo-Frequéncia.

O tempo de coleta de dados por cenario foi de 60 segundos, permitindo a geragao
de amostras estatisticamente representativas para cada classe. Considerando todas as
classes e cargas, foram coletadas 620.000 amostras/cendrios, totalizando
aproximadamente 24 milhdes de amostras.

Embora cenarios adicionais com rotagao de 1800 RPM tenham sido testados em
trés faixas de carga (122 kW, 306 kW e 490 kW), conforme Tabela 11, os mesmos nao

foram utilizados neste estudo e serao utilizados em estudos futuros.

Tabela 11 - Cenarios Simulados e Ndo Utilizados

Cenério Rotacao Torque Poténcia Falhas Simuladas
(RPM) (N-m) (kW) (Cilindros)
No 1 1800 670 122 Sem falha
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N° 2 1800 670 122 CilindroN°5

N° 3 1800 670 122 Cilindro N° 12
N° 4 1800 1700 306 Sem falha
N° 5 1800 1700 306 CilindroN° 1
N° 6 1800 1700 306 CilindroN°9
No 7 1800 2722 490 Sem falha
N° 8 1800 2722 490 CilindroN° 3
N°9 1800 2722 490 CilindroN° 11

5.6 Utilizacao Futura dos Dados Coletados em 1800 RPM

Embora o presente estudo tenha se concentrado exclusivamente em cenarios com
rotacao constante de 1500 RPM, visando garantir homogeneidade e padronizacao das
analises nos trés dominios de estudo (Tempo, Frequéncia e Tempo-Frequéncia), cendrios
adicionais foram conduzidos a 1800 RPM, abrangendo trés faixas de carga (122 kW, 306
kW e 490 kW), e incluindo tanto condi¢des normais quanto falhas simuladas em
diferentes cilindros.

A disponibilizagao desses dados abre uma avenida promissora para estudos

futuros, principalmente nas seguintes diregoes:

. Analise de Robustez e Generalizacao dos Modelos: Ao se testar os modelos
treinados com dados a 1500 RPM em cenarios de 1800 RPM, sera possivel avaliar
sua capacidade de generalizagdo frente a regimes dindmicos distintos,
caracteristica essencial para aplicagdes reais em sistemas embarcados.

. Transferéncia de Aprendizado (7ransfer Learning): Técnicas modernas de
aprendizado podem ser aplicadas utilizando os dados de 1500 RPM como base e
adaptando os modelos para 1800 RPM com menor quantidade de dados rotulados,
explorando a similaridade estrutural entre os regimes.

. Estudos sobre o Impacto da Rotacio na Assinatura Vibracional: A
comparagdo direta entre as assinaturas vibracionais das mesmas falhas em
diferentes rotagdes permitird compreender como a velocidade angular influencia
na propagacao de vibragdes, favorecendo o refinamento de atributos e filtros
adaptativos.

. Deteccdo de Regime Operacional: Incorporando dados de 1800 RPM, sera

possivel desenvolver modelos hibridos que, além de diagnosticar falhas,
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identifiquem automaticamente o regime de rotacdo do motor, o que amplia

significativamente a aplicabilidade dos algoritmos.

Dessa forma, os dados de 1800 RPM representam um ativo experimental de
elevado valor, que poderd ser explorado em trabalhos futuros voltados a validagao
cruzada de modelos, desenvolvimento de algoritmos e analises comparativas entre

regimes dinamicos tipicos da operacao maritima.
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6. RESULTADOS E DISCUSSOES

6.1 Apresentacio Geral dos Dados

Nesta se¢do, apresentam-se os parametros gerais empregados para a modelagem
com RNAs e os principais resultados obtidos a partir dos testes realizados com sinais de
vibragao nos Dominios do Tempo, Frequéncia e Tempo-Frequéncia.

A configuragao geral dos hiperparametros seguiu uma faixa predefinida, ajustada
por meio de experimentagdo e validagao cruzada, conforme detalhado na Tabela 12. O
modelo foi treinado, validado e testado utilizando a parti¢ao dos dados em 70%, 15% e

15%, respectivamente.

Tabela 12 - Intervalos de Hiperpardmetros Utilizados na Modelagem com RNA

Hiperparametros - Intervalo .
Minimo Maximo

Numero de Neurdnios (n) 20 40
Taxa de Aprendizado (Ir) 1x1072 1x107!
Ntmero de Epocas (epochs) 200 1500
Meta (Goal) 1x1077 1x10°°
Minimo Gradiente (min grad) 1x1077 1x10°°
Maximo de Falhas de Validacao (max fail) 10 30
Sigma (sigma) 1x1071° 1x1078
Lambda (lambda) 1x107'2 1x1071°

6.2 Resultados no Dominio do Tempo

6.2.1. Desempenho com Diferentes Quantidades de Caracteristicas e Acelerometros

Com o objetivo de avaliar a eficiéncia dos modelos de RNAs na identifica¢ao de
falhas de injecdo em motores Diesel maritimos, realizou-se uma andlise comparativa
aprofundada utilizando diferentes quantidades de caracteristicas estatisticas extraidas do
sinal de vibragao no Dominio do Tempo (1, 2, 5, 9, 18 e 27) e diferentes configuracdes
de acelerometros (1, 3, 5, 10 e 15). Esta analise buscou identificar o equilibrio ideal entre
desempenho, diagnostico e custo computacional, considerando a redu¢ao de sensores € o
nimero de atributos utilizados na entrada da rede.

Os resultados evidenciam que o desempenho do modelo esta diretamente
relacionado ao nimero e a qualidade das caracteristicas extraidas, bem como a

quantidade e posicionamento dos acelerdometros, conforme Figura 14. De forma geral, o
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modelo apresentou excelente robustez diagndstica mesmo com configuragdes enxutas.

Comparativo de F1-Score - Dominio do Tempo
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Figura 14 - Comparativo de F1-Score - Dominio do Tempo

No cenario com 15 acelerometros, observou-se que o maior valor de F1-Score
(93,61%) foi alcangado com apenas uma caracteristica estatistica. A medida que mais
caracteristicas foram adicionadas (até 27), o desempenho caiu gradualmente, atingindo
um F1-Score de 66,21%. Esse comportamento indica que, apesar do aumento de
informacao, a adicdo de variaveis irrelevantes ou redundantes pode comprometer a
capacidade de generalizagdo do modelo, possivelmente devido ao fendmeno conhecido
como curse of dimensionality (TAN; STEINBACH; KUMAR, 2018).

O cenério intermediario, com 3 melhores acelerometros (selecao dos melhores
realizadas pelo Relief-F), apresentou desempenho altamente competitivo. Com duas
caracteristicas estatisticas, foi obtido um F1-Score de 98,48%, praticamente equiparado
ao modelo com apenas um acelerdmetro. Além disso, esse cenario ofereceu uma redugao
no tempo de processamento, variando entre 127 e 269 segundos, comparado ao intervalo
de 143 a 295 segundos observado com um tnico acelerometro, evidenciando uma melhor
eficiéncia computacional.

Por outro lado, ao utilizar somente o melhor acelerometro, a rede alcangou
valores extremamente elevados de desempenho: o Fl-score maximo foi de 98,74%
utilizando duas caracteristicas, superando inclusive o modelo com 15 acelerémetros. Isso

demonstra a relevancia de um processo criterioso de selecdo de sensores e reforca a
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hipdtese de que um acelerdmetro bem posicionado pode capturar assinaturas vibracionais
representativas o suficiente para um diagnostico preciso, especialmente quando
combinado com um conjunto de caracteristicas estatisticas relevantes.

Ao fixar 27 caracteristicas e variar a quantidade de acelerdmetros de 1 a 15,
verificou-se que o melhor desempenho foi obtido com 1 acelerometro, atingindo um F1-
Score de 96,60%, decaindo gradativamente até atingir 66,21% com 15 acelerdmetros,
conforme Figura 15. Essa tendéncia corrobora a ideia de que o excesso de acelerdometros,
sem um critério adequado de sele¢do, pode adicionar ruido e complexidade ao modelo,

sem necessariamente melhorar sua capacidade de predigao.

F1-Score e Tempo de Processamento - Dominio do Tempo (27 Caracteristicas)
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Figura 15 - F1-Score e Tempo de Processamento (Dominio do Tempo - 27
Caracteristicas)

A Figura 16 apresenta a relagdo entre o desempenho do modelo, medido pelo F1-
Score, e o tempo de processamento para diferentes cendrios de combinacdo de
acelerdmetros e caracteristicas extraidas no Dominio do Tempo. Observa-se que todos
os cenarios analisados mantém valores elevados de F1-Score, variando de
aproximadamente 93% a 99,43%, evidenciando a robustez do modelo na deteccao de
falhas. O melhor desempenho ¢ alcancado no cenario que utiliza o acelerometro

individual mais representativo com duas caracteristicas, atingindo 99,43%.
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Melhores F1-Score e Tempo de Processamento por Cendrio - Dominio do Tempo
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Figura 16 - Melhores F1-Score e Tempo de Processamento por Cendrio no Dominio do
Tempo

Esse resultado sugere que a selegdo criteriosa de um Unico sensor aliado a um
numero reduzido, porém discriminante, de caracteristicas pode ser suficiente para
garantir elevado desempenho na tarefa de classificacdo. Por outro lado, nota-se uma
tendéncia de redugdo no F1-Score quando ha incremento no nimero de acelerometros,
como observado no cenario com 15 sensores, cujo desempenho cai para cerca de 93%.
Esse comportamento indica que o aumento indiscriminado do niumero de sensores nao
resulta em ganhos proporcionais, podendo inclusive introduzir redundancias ou ruidos
que prejudicam a capacidade de generalizacao do modelo.

Em relagdo ao tempo de processamento, ha um comportamento nao linear:
inicialmente elevado no cenario com 1 e 3 acelerometros (aproximadamente 300
segundos), o tempo reduz significativamente para cerca de 140 segundos com 15
acelerometros, aumentando novamente para cerca de 200/250 segundos no cendrio com
27 caracteristicas. Essa variacdo reflete o impacto combinado do numero de
caracteristicas e do processo de sele¢ao de sensores sobre a complexidade computacional
do modelo. Tais resultados reforcam que, para aplicagdes embarcadas em sistemas de
monitoramento de motores maritimos, a estratégia de utilizar um conjunto reduzido e
otimizado de sensores e caracteristicas representa a solugdo mais eficiente, equilibrando
precisao diagnostica e viabilidade computacional.

Essas observacdes reforcam a importdncia de abordagens sistematicas para
selegdo de caracteristicas e acelerometros, especialmente quando se busca maximizar o

desempenho diagndstico com o minimo de recursos fisicos € computacionais.
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6.2.2. Frequéncia e Contribuicao dos Acelerometros Mais Relevantes

A avaliagdo da contribui¢dao dos acelerdmetros para o diagnostico de falhas de
injecdo, no contexto da analise no Dominio do Tempo, revelou padrdes claros quanto a
localizagdo dos sensores mais eficazes. A Tabela 13 apresenta os resultados dos
principais cendrios analisados, destacando o numero de acelerdmetros, a quantidade de
caracteristicas estatisticas, o acelerometro de melhor desempenho em cada configuragao

e os respectivos F1-Score, Acuracia, Precisao, Sensibilidade e Especificidade.

Tabela 13 - Resultados com melhores acelerometros nos cenarios avaliados no
Dominio do Tempo

DOMINIO DO TEMPO
Cenarios Resultados
Ne° N° | Melhor Sg;e Acuracia | Precisao | Sensibilidade | Especificidade
Acel. | Caract| Acel. (%) (%) (%) (%) (%)
1 2 7 99,44 99,43 99,43 99,48 99,95
1 5 15 98,74 99,67 98,73 98,77 99,89
1 9 13 96,34 96,20 96,37 96,38 99,68
1 18 9 97,13 97,15 97,24 97,11 99,76
1 27 2 96,60 96,77 96,69 96,67 99,73
3 1 7 98,48 98,48 98,40 98,62 99,87
3 2 7 95,20 95,26 95,24 95,26 99,61

A andlise desses dados foi aprofundada com o auxilio do croqui do motor Diesel
maritimo (Figura 12), o qual representa a localizacdo fisica dos acelerdmetros nos
cabecotes dos cilindros ¢ no bloco do motor. Esse esquema foi essencial para
compreender a relacao entre desempenho diagnostico e posicao do sensor.

Observou-se que os acelerometros localizados nos cabecotes foram os mais
frequentemente selecionados como os melhores pontos de medi¢ao (Figura 17). O que,
de certa forma, era o resultado mais esperado uma vez que sao os pontos mais proximos
da origem da sinal de falha de injecdo. Em especial, o acelerémetro 7 (cilindro 7, bancada
B) destacou-se com 44,4% das ocorréncias, seguido pelo acelerometro 2 (cilindro 2,
bancada A) com 22,2%. Os acelerometros 9, 13 e 15 completaram a lista dos sensores
mais representativos, todos também posicionados sobre os cilindros. Nenhum dos
acelerometros instalados no bloco ou regides mais afastadas foi selecionado entre os

melhores.
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Figura 17 - Localiza¢do dos Acelerometros Mais Relevantes (Dominio do Tempo)

A distribuicdo da frequéncia de ocorréncia dos melhores acelerdmetros ¢

sintetizada na Figura 18.

Acel. 2 Acel. 15

Acel. 13

Acel. 9

Figura 18 - Frequéncia de sele¢do dos melhores acelerometros (Dominio do Tempo)

Esse padrao de ocorréncia revela que os acelerdmetros montados diretamente
sobre os cabecotes dos cilindros — areas criticas do sistema de inje¢do — sdo mais
sensiveis as alteracdes dinamicas provocadas por falhas de inje¢ao. Essa sensibilidade se
deve a proximidade direta com os eventos mecanicos € combustdo, 0 que permite a
captura de assinaturas de vibragdo com maior sensibilidade.

Do ponto de vista técnico e pratico, esses resultados sustentam duas importantes
conclusdes:

A selecao do ponto de medigdo ¢ mais determinante do que a quantidade de

sensores. E possivel alcangar alto desempenho diagndstico com apenas um acelerometro
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bem posicionado, como demonstrado pelos elevados FI1-Scores (>98%) em
configuragdes com sensor unico.

A concentragcdo dos melhores resultados nos cilindros confirma a superioridade
dessas posicoes para fins diagnosticos. Sensores instalados em regides mais distantes,
como o bloco do motor, nao apresentaram desempenho competitivo neste estudo.

A Tabela 14, que reune as métricas de precisao de treinamento, validacao e teste
nos diferentes cenarios do Dominio do Tempo, possui papel central na interpretagao dos
resultados desta dissertacdo. Ela ndo ¢ apenas um registro numérico, mas evidencia

aspectos fundamentais da metodologia e das conclusdes do estudo.

Tabela 14 - Precisoes de Treinamento, Validacdo e Testes obtidas no Dominio do
Tempo em diferentes configurag¢oes de numero de acelerometros e caracteristicas
estatisticas

DOMINIO DO TEMPO

Cenarios Resultados
Ne° N° | Melhor Precisao Precisao Precisao
Acel. | Caract| Acel. | Treinamento (%) | Validacao (%) | Teste (%)
1 2 7 99,35 98,29 99,43
1 5 15 99,80 98,48 98,67
1 9 13 99,02 97,53 96,21
1 18 9 99,47 97,15 97,15
1 27 2 99,10 96,02 96,77
3 1 7 99,19 96,77 98,48
3 2 7 98,25 95,83 95,26

Primeiro, a Tabela 14 demonstra a consisténcia e robustez do modelo de RNA
desenvolvido. Ao comparar os valores de treinamento, validagado e teste, percebe-se que
nao ha discrepancias relevantes que caracterizem overfitting (quando o modelo memoriza
o conjunto de treinamento, mas falha em generalizar para dados novos) nem underfitting
(quando o modelo nao aprende adequadamente os padrdes). A proximidade entre as trés
métricas indica que o sistema foi bem calibrado, reforgando a eficacia das estratégias
metodologicas adotadas, como a selecdo de caracteristicas via Relief-F e a divisao
estratificada dos conjuntos de dados.

Em segundo lugar, ela evidencia a importancia da otimizacdo do numero de
acelerometros e de caracteristicas estatisticas. Resultados como o do cendrio com 1

acelerdmetro e 2 caracteristicas (Precisdo de Teste = 99,43%) demonstram que € possivel
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alcancar desempenho superior com configuracdes enxutas, ao invés de aumentar
indiscriminadamente sensores e atributos. Este achado confirma a hipdtese de que
qualidade e posicionamento dos sensores sdo mais relevantes que a quantidade, além de
mitigar a chamada maldicdo da dimensionalidade, j& identificada na fundamentacao
tedrica como um desafio para problemas de alta dimensionalidade

A Figura 19 mostra a Matriz de Confusao para o melhor resultado obtido no
Dominio do Tempo (1 acelerdmetro e 2 caracteristicas). Aqui ela mostra quais classes
foram corretamente identificadas (verdadeiros positivos) e quais foram confundidas entre
si (falsos positivos e falsos negativos). Isso ¢ essencial em problemas multiclasse, como
neste estudo de falhas de injecao em motores Diesel, no qual ha 13 classes (1 condicao
normal + 12 falhas de injecao simuladas).

A Matriz de Confusdo de Validacdo evidencia que o modelo apresentou
desempenho global extremamente elevado, com precisdo média em torno de 98,3%, o
que valida sua robustez e capacidade de generalizagdo. Observa-se que a maioria das
classes, como as classes 2, 4, 6, 7,9, 10 e 13, alcangou 100% de acerto, indicando que o
modelo foi capaz de aprender padrdes bem definidos e consistentes para esses cenarios
especificos, reforcando sua eficacia no diagnostico de falhas de injecao.

A predominancia de valores na diagonal e pouquissimos registros fora dela indica

uma alta generalizagao do modelo.
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Validation Confusion Matrix

39 1 0 0 [} 0 0 0 0 0 0 0 1 ]95.1%
7.4% | 0.2% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.2% | 4.9%

0 39 0 0 0 0 0 0 0 0 0 0 0 |100%
0.0% | 7.4% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%

0 0 34 1 0 0 [} 0 0 0 [} 0 0 |97.1%
0.0% | 0.0% | 6.5% | 0.2% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 2.9%

0 0 0 4 0 0 0 0 0 0 [} [} 0 |100%
0.0% | 0.0% | 0.0% | 7.8% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%

0 0 0 1 45 0 0 0 0 0 0 0 0 |97.8%
0.0% | 0.0% | 0.0% | 0.2% | 8.5% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 2.2%

0 0 0 0 [} 35 0 0 0 0 0 0 0 |100%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 6.6% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%

0 0 0 0 [} 0 48 0 0 0 0 0 0 |100%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 9.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%

0 [} 0 0 [} 0 1 38 1 0 [} [} 0 |95.0%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.2% | 7.2% | 0.2% | 0.0% | 0.0% | 0.0% | 0.0% | 5.0%

Output Class
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0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 7.2% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%

0 [} 0 0 0 0 0 0 0 39 0 0 0 |100%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 7.4% | 0.0% | 0.0% | 0.0% | 0.0%

0 [} 0 0 0 0 0 0 0 1 38 0 0 |97.4%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.2% | 7.2% | 0.0% | 0.0% | 2.6%

0 0 0 0 0 0 0 0 0 0 [} 44 2 |95.7%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 8.3% | 0.4% | 4.3%
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Figura 19 - Matriz de Confusdo do melhor resultado obtido no Dominio do Tempo

A Figura 20 representa a funcao de custo por entropia cruzada durante o processo
de treinamento da RNA onde mede a distancia entre as distribui¢cdes de probabilidade
previstas pela rede (saidas do modelo) e as distribuigdes reais (rotulos corretos,
codificados em one-hot). Em termos praticos, ela penaliza classificagdes incorretas com
alta confianga e recompensa previsdes corretas.

Pela Figura 20, observa-se que:

. As trés curvas (treinamento em azul, validagdo em verde e teste em
vermelho) seguem trajetorias bastante proximas, o que demonstra que a RNA
manteve consisténcia entre aprender e generalizar;

. Houve uma queda acentuada da entropia cruzada nas primeiras épocas
(até ~220), seguida de uma redugdo mais suave até estabilizar-se por volta da
¢poca 600. Esse comportamento ¢ esperado, ja que o modelo aprende

rapidamente no inicio e depois realiza ajustes finos nos pesos;
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. O melhor desempenho de validagdo ocorreu na época 590, com valor de
entropia cruzada = 0,0030559, o que ¢ um resultado consideravelmente baixo,
indicando uma relagcdo muito alta entre as previsoes e os rétulos reais; e

. A sobreposi¢do das curvas confirma que ndao houve overfitting
significativo, pois o desempenho de validagdo e teste acompanhou o de

treinamento até a convergéncia.

Best Validation Performance is 0.0030559 at epoch 590
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Figura 20 - Fun¢do de custo por entropia cruzada durante o processo de treinamento
da RNA no Dominio do Tempo

Face ao exposto, o grafico que representa a funcao de custo por entropia cruzada
durante o processo de treinamento da RNA comprova que o modelo atingiu 6tima
capacidade de classifica¢dao, com baixo erro e elevada generalizagao, validando a eficacia
da configuracao de hiperparametros e da estratégia de selecao de caracteristicas adotada,
uma vez que o desempenho consistente no treino, validacao e teste evita o risco de
resultados artificiais.

A Figura 21 (gréfico Gradiente vs Epocas) permite acompanhar a intensidade das
atualizagdes dos pesos ao longo do processo de treinamento da RNA. O gradiente reflete
diretamente a magnitude desses ajustes em que valores elevados indicam alteragdes
bruscas nos parametros, enquanto valores mais baixos correspondem a ajustes mais sutis

e refinados. Dessa forma, a analise do gradiente ¢ essencial para verificar se o algoritmo
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de otimizacao estd de fato convergindo para um minimo da fun¢do de custo. Quando se
observa uma queda progressiva seguida de estabilizagdo, tem-se um forte indicativo de
que a RNA esta se ajustando corretamente e se aproximando de uma configuracao de

pesos estavel e otimizada.

Gradient = 0.00028064, at epoch 620
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Figura 21 - Gradiente x Epocas no Dominio do Tempo

Observa-se que o gradiente tem inicio em torno de 10~! e decresce gradualmente
até a ordem de 107* na ultima época de treinamento (época 620). Esse comportamento
confirma que o processo de aprendizagem ocorreu de forma estavel, com ajustes cada
vez menores nos pesos da rede a medida que o modelo se aproximava do ponto 6timo de
convergéncia. O valor final do gradiente, aproximadamente 2,8 x 10™*, ¢ considerado
baixo, o que indica que os pesos da RNA atingiram uma configuracao proxima ao minimo
local da fung¢do de custo, evidenciando a consolidagao do processo de otimizagao.

Os resultados apresentados indicam que o treinamento da RNA ocorreu de
maneira eficiente e convergente, com o gradiente reduzido progressivamente. Isso
garante que o modelo ndo apenas se ajustou bem aos dados de treinamento, mas também
manteve capacidade de generalizacdo, evitando overfitting.

A Figura 22 mostra o Histograma de Erros, para o melhor resultado obtido no
Dominio do Tempo. Ele mostra a distribui¢do das diferengas entre os valores reais
(targets) e os valores previstos (outputs) pela RNA. Esse tipo de representagao ¢ bastante
util porque permite avaliar a qualidade do ajuste do modelo de forma mais detalhada do
que métricas globais, mostrando nao apenas o valor médio do erro, mas também sua

dispersdo e simetria.
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Figura 22 - Histograma de Erros no Dominio do Tempo

No histograma apresentado na Figura 22, observa-se que a grande maioria dos
erros estd altamente concentrada em torno de zero, com barras azuis (treinamento),
verdes (validagdao) e vermelhas (teste) sobrepostas, formando um pico estreito. Isso
indica que a RNA apresentou excelente desempenho de predi¢ao, com erros residuais
muito baixos em todos os conjuntos.

As barras em torno do zero sugerem que nao ha viés sistematico relevante, ja que
os erros se distribuem de forma simétrica em torno do valor ideal. Além disso, o fato de
os trés conjuntos (treinamento, validagao e teste) apresentarem distribuigdes semelhantes
comprova que o modelo manteve consisténcia e capacidade de generalizagdo, sem
evidéncias significativas de sobreajuste.

Esses resultados confirmam a eficacia das estratégias de selecao de caracteristicas
e acelerometros adotadas no Dominio do Tempo, demonstrando que o modelo foi capaz
de reproduzir com precisdo o comportamento dindmico do motor, mesmo em cendrios

complexos de diagndstico de falhas de injegao.
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6.2.3. Ranqueamento das 27 Caracteristicas Estatisticas no Dominio do Tempo

A selecao de caracteristicas desempenha um papel decisivo na construgdo de
modelos preditivos robustos, sobretudo em sistemas complexos como motores Diesel
maritimos, nos quais os sinais de vibragdo sdo ricos em informagdes, mas também em
redundancias. A andlise realizada por meio do algoritmo Relief-F revelou
comportamentos distintos quanto a relevancia das métricas estatisticas a depender do
dominio de investigagdo, permitindo compreender ndo apenas quais atributos se
destacam, mas também como a variancia da sua importancia se manifesta em cada caso.

No dominio do tempo (Figura 23), observou-se uma clara dispersdao entre as
caracteristicas avaliadas. Algumas métricas, como Fator de Impulso e Fator de Crista,
surgem como fortemente discriminativas, enquanto outras, como Média e Soma,
apresentam pesos negativos, sugerindo baixa ou at¢é mesmo efeito adverso na
classificacdo. Esse cendrio evidencia que os atributos temporais ndo sdo uniformemente
relevantes: ha um contraste acentuado entre aqueles capazes de capturar assinaturas sutis
do processo de combustao e outros que apenas acrescentam ruido ao modelo. Em outras
palavras, a variancia entre as relevancias € elevada, o que reforca a necessidade de uma

etapa criteriosa de selecao para evitar sobrecarga dimensional e perda de desempenho.
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Figura 23 - Ranqueamento das 27 Caracteristicas no Dominio do Tempo

6.3  Resultados no Dominio da Frequéncia

6.3.1. Analise Comparativa de Desempenho com Diferentes Quantidades
Caracteristicas e Acelerometros

A anélise dos resultados no Dominio da Frequéncia buscou avaliar a capacidade

das RNAs em identificar falhas de injecdo em motores Diesel maritimos a partir de sinais
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de vibragao, considerando diferentes configuragdes de entrada: variagdo no nimero de
caracteristicas estatisticas extraidas (1, 2, 5,9, 18 e 27) e na quantidade de acelerdmetros
utilizados (1, 3, 5, 10 e 15).

Assim como observado no Dominio do Tempo, os resultados mostram que o
desempenho dos modelos ¢ altamente sensivel tanto a sele¢ao de caracteristicas quanto a
escolha dos sensores empregados, reforcando a importancia do pré-processamento
criterioso ¢ da otimizagdo dos hiperparametros de modelagem, conforme pode ser

visualizado na Figura 24.

F1-Score por N2 de Caracteristicas - Dominio da Frequéncia
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Figura 24 - F1-Score por N° de Caracteristicas - Dominio da Frequéncia

No cendrio com os 15 acelerometros ativos, observou-se que o melhor
desempenho foi alcangado utilizando 2 caracteristicas estatisticas, com um F1-Score de
92,87%. Entretanto, houve uma queda progressiva de desempenho com o aumento do
numero de caracteristicas: ao utilizar 27 caracteristicas, o F1-Score reduziu drasticamente
para 60,38%. Essa degradagdo evidencia novamente o impacto da maldi¢do da
dimensionalidade (TAN; STEINBACH; KUMAR, 2018), em que a adi¢do
indiscriminada de varidveis irrelevantes ou ruidosas compromete a capacidade
discriminativa do modelo.

Além disso, o tempo de processamento apresentou uma variagdo moderada, entre
145 segundos (com 1 caracteristica) e 274 segundos (com 18 caracteristicas), sendo mais

influenciado pelo aumento do nimero de caracteristicas do que pelo numero de
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acelerometros.

Ao reduzir a quantidade de sensores para os 3 melhores acelerometros, os
resultados demonstraram uma melhoria substancial em todas as métricas. O melhor
desempenho foi obtido com 2 caracteristicas, atingindo um F1-Score de 98,30%,
evidenciando o beneficio da selecdo estratégica de acelerometros. Além disso, o tempo
de processamento foi mantido em niveis bastante competitivos, variando de 154 a 257
segundos.

A comparagdo entre as combinagdes mostra que, mesmo Ccom poucos
acelerdmetros e caracteristicas selecionadas, ¢ possivel atingir desempenho de
classificacdo superior, indicando que a qualidade das informagdes capturadas ¢ mais
relevante que a quantidade bruta de dados.

Na configuracao utilizando apenas o melhor acelerometro, foram obtidos os
melhores resultados absolutos no Dominio da Frequéncia: um F1-Score de 99,43% ao se
utilizar 2 caracteristicas estatisticas.

Entretanto, o tempo de processamento em alguns casos foi elevado, atingindo 696
segundos para o cendrio de 2 caracteristicas, devido a configuragdo da rede neural
empregada para esse cendrio especifico (numero de neurdnios, taxa de aprendizado e
numero de épocas) além da necessidade de realizar FFT.

Ao fixar 27 caracteristicas e variar o nimero de acelerometros de 1 a 15 (Figura
25), verificou-se uma tendéncia clara de queda no desempenho com o aumento da
quantidade de sensores: o F1-Score caiu de 98,10% (1 acelerdmetro) para 60,38% (15
acelerometros). Esse comportamento reforca o entendimento de que o excesso de
acelerometros ndo necessariamente traduz-se em ganho de desempenho e pode, de fato,

adicionar ruido ao sistema, impactando negativamente os resultados.

104



F1-Score e Tempo de Processamento - Dominio da Frequéncia (27 Caracteristicas)
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Figura 25 - F1-Score x Tempo de Processamento (Dominio da Frequéncia - 27
Caracteristicas)

Na Figura 26, a qual compara os melhores resultados consolidados no Dominio
da Frequéncia destaca que utilizar apenas 1 acelerometro e 2 caracteristicas
proporcionou o melhor F1-Score de 99,43%.

A configuracdo com 3 melhores acelerometros e 2 caracteristicas também se
mostrou altamente eficaz, com F1-Score de 98,30%, apresentando um compromisso
interessante entre desempenho e um tempo de processamento reduzido de apenas 229
segundos, tempo de processamento trés vezes menor do que o obtido no cendrio com um
acelerOmetro e 2 caracteristicas.

A configuracao com todos os 15 acelerometros resultou em desempenho inferior

a meta minima de 95% de F1-Score.
F1-Score e Tempo de Processamento por Cendrio
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Figura 26 - F1-Score e Tempo de Processamento por Cenario no Dominio da
Frequéncia
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Os resultados no Dominio da Frequéncia reforcam a eficidcia da metodologia
proposta de diagndstico de falhas de injecao via RNA, mesmo em cendrios restritos em
termos de niimero de acelerometros e caracteristicas. De maneira geral, observou-se que
poucas caracteristicas estatisticas selecionadas estrategicamente sdo suficientes para
representar suficientemente bem o comportamento do sistema, a escolha criteriosa dos
acelerometros ¢ fundamental para maximizar o desempenho do diagnoéstico e o excesso
de variaveis e acelerdmetros sem critérios robustos de selecdo, compromete a eficiéncia
e a eficacia dos modelos, aumentando o custo computacional e reduzindo a capacidade

de generalizacdo da RNA.

6.3.2. Frequéncia e Contribuicao dos Acelerometros Mais Relevantes

A identificacdo dos acelerometros mais relevantes no Dominio da Frequéncia
revelou um padrao técnico significativo, alinhado com o comportamento mecanico do
sistema de inje¢dao de combustivel do motor Diesel. A Tabela 15 apresenta os cenarios
com melhores resultados, discriminando o numero de acelerdmetros utilizados, a
quantidade de caracteristicas extraidas, o acelerdmetro que apresentou o melhor
desempenho e os respectivos F1-Score, Acuracia, Precisdo, Sensibilidade e

Especificidade.

Tabela 15 - Resultados com melhores acelerometros nos cenarios avaliados no
Dominio da Frequéncia

DOMINIO DA FREQUENCIA
Cenarios Resultados
N° Ne° Melhor | F1-Score | Acuracia | Precisao | Sensibilidade | Especificidade
Acel.| Caract | Acel. (%) (%) (%) (%) (%)
1 2 2 99,43 99,43 99,50 99,39 99,95
1 5 2 98,74 98,67 98,80 98,73 99,89
1 9 1 98,43 98,48 98,39 98,52 99,87
1 18 2 95,55 95,45 95,65 95,56 99,62
1 27 4 98,10 98,10 98,17 98,05 99,84
3 4 97,72 97,72 97,73 97,80 99,81
3 2 98,30 98,29 98,39 98,25 99,86
3 2 97,61 97,53 97,68 97,64 99,79

A andlise espacial desses sensores, conforme representado no croqui do motor

Diesel (Figura 27), mostra que os acelerometros 1, 2 e 4 estdo localizados sobre os
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cabecotes dos cilindros 1, 2 e 4, todos pertencentes a bancada A. Esta informacao ¢ de
extrema relevancia, pois destaca que os sensores de maior contribuigdo diagnostica nao
estao posicionados no bloco do motor ou em regides periféricas, mas sim diretamente
sobre os cilindros, onde os efeitos vibracionais das falhas de inje¢do se manifestam com

maior intensidade e especificidade.

Bancada A

Figura 27 - Localiza¢do dos acelerometros no motor Diesel (bancada A em destaque)

O gréfico apresentado na Figura 28 resume a frequéncia de ocorréncia dos
acelerometros que obtiveram o melhor desempenho nos diferentes cendrios modelados.
O acelerometro 2 se destaca de forma marcante, sendo o mais eficaz em 66,7% dos casos
que alcancaram F1-Score acima de 95%. Em seguida, o acelerometro 4 foi selecionado
em 22,2% dos cenarios, ¢ o acelerometro 1, em 11,1%.

Frequéncia do Melhor Acelerometro (Dominio da Frequéncia)
Acel. 1

Acel. 2

Figura 28 - Frequéncia de sele¢do dos melhores acelerometros no Dominio da
Frequéncia
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A predominancia do acelerometro 2, posicionado sobre o cilindro 2, ¢
tecnicamente justificavel pela sua proximidade direta com a zona de combustao e atuacao
do sistema de injecdo, o que permite captar com maior nitidez os efeitos vibracionais
gerados por anomalias como falhas de atomizacao, atraso de ignigdo ou variagdes de
pressao no bico injetor.

Esses resultados confirmam que os melhores desempenhos de classificagdo, com
F1-Scores superiores a 95%, foram obtidos a partir de sinais capturados por sensores
localizados diretamente sobre os cilindros. Nenhum dos sensores situados no bloco do
motor apresentou desempenho competitivo nos cenarios analisados.

Em termos praticos, essa evidéncia empirica refor¢a que a instrumentagdo
otimizada pode ser concentrada em poucos pontos de medigdo estrategicamente
posicionados sobre os cilindros. Essa abordagem reduz significativamente o nimero de
sensores € a complexidade do sistema de aquisi¢do, sem sacrificar a acurdcia diagnostica,
0 que ¢ extremamente vantajoso para aplicagdes embarcadas e sistemas de manutengao
preditiva em ambientes navais.

Assim como no Dominio do Tempo, no Dominio da Frequéncia a concentragao
dos melhores resultados nos cilindros/cabecotes confirma a superioridade dessas
posigoes para fins diagnodsticos. Os acelerometros instalados nos cilindros da bancada A
— especialmente o acelerometro 2 — sdo os mais eficazes para identificagao de falhas
de injecao em motores Diesel, combinando precisao diagnostica elevada e viabilidade
pratica de implementacao.

Analisando os valores de precisoes de Treinamento, Validacao e Teste mostrados
na Tabela 16 ¢ verificado que o valor de Precisdo de Teste variou entre 95,45% € 99,43%,
o que confirma a consisténcia dos resultados e a aplicabilidade pratica da metodologia.
Além disso, observa-se que cenarios com configuragdes enxutas, como 1 acelerdmetro e
2 caracteristicas, ja foram capazes de atingir desempenho proximo ao maximo registrado
(99,43%), reforcando que a qualidade da informagdo captada pelo sensor e a sele¢dao

criteriosa de atributos sdo mais determinantes do que a quantidade bruta de dados.
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Tabela 16 - Precisoes de Treinamento, Validacdo e Testes obtidas no Dominio da
Frequéncia em diferentes configuragoes de numero de Acelerometros e Caracteristicas

Estatisticas
DOMINIO DA FREQUENCIA
Cenarios Resultados

NO NO Melhor P'reciséo Pr(?ciséNO Precisao

Acel. Caract Acel. Treinamento | Validacao | Teste

(%) (%) (%)

1 2 2 99,59 98,86 99,43

1 5 2 99,76 98,48 98,67

1 9 1 99,43 99,05 98,48

1 18 2 97,96 96,77 95,45

1 27 4 99,55 97,72 98,10

3 1 4 99,67 97,72 97,72

3 2 2 99,72 98,29 98,29

3 5 2 99,22 96,02 97,53

Outro aspecto evidenciado € a presenca de pequenas variagdes entre as precisoes
de treinamento, validag¢do e teste, sempre em patamares proximos, o que indica boa
generalizagdo e auséncia de overfitting. Esse comportamento comprova que a RNA
conseguiu aprender padrdes relevantes de vibragdo sem memorizar o conjunto de
treinamento, o que a torna adequada para cendrios reais de operacao.

Também merece destaque a influéncia do niumero de caracteristicas: enquanto
cenarios com poucas varidveis mantém indices proximos a 99%, a inclusdo de conjuntos
maiores (como 18 caracteristicas) leva a uma reducao de desempenho (95,45% no teste),
evidenciando os efeitos da maldigdo da dimensionalidade, j& discutida em diferentes
partes da dissertagdo. Assim, a tabela refor¢a a importancia de técnicas de selecao como
o Relief-F, que auxiliam na identificagdo dos atributos mais relevantes e evitam
redundancias prejudiciais.

A Matriz de Confusao de Validacao obtida no Dominio da Frequéncia (Figura
29) demonstra o elevado desempenho da RNA na classificagdo das 13 classes. De forma
geral, observa-se que os valores estao concentrados na diagonal principal, evidenciando
que a maioria absoluta das amostras foi corretamente classificada. As taxas de acerto por
classe variaram entre 97,5% e 100%, resultando em uma acurécia global proxima de
98,9%, o que confirma a robustez e a confiabilidade do modelo desenvolvido.

Algumas classes, como 1, 2, 6, 7, 8, 9 e 10, apresentaram desempenho perfeito,

com 100% de acerto e nenhuma instancia incorretamente classificada. Ja outras classes,
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como 3, 4, 5, 11, 12 e 13, mostraram pequenas taxas de erro, em torno de 2,2 a 2,6%,
geralmente decorrentes de confusdes com classes vizinhas. Esse comportamento ¢
tecnicamente esperado, pois acelerdmetros instalados em cilindros proximos captam
assinaturas vibracionais semelhantes, o que pode levar a sobreposi¢des sutis entre
padrdes de falha.

Apesar dessas pequenas imprecisoes, o desempenho obtido ¢ altamente
satisfatorio, com erros limitados e estruturados em pares de classes adjacentes, sem
comprometer a capacidade diagnostica do modelo. A matriz, portanto, confirma que o
Dominio da Frequéncia ¢ uma abordagem eficaz para a identificacao de falhas de injecao
em motores Diesel, apresentando resultados homogéneos entre as classes e demonstrando
tanto a sensibilidade da metodologia quanto a importancia de uma selegao criteriosa de
caracteristicas ¢ do posicionamento adequado dos acelerOmetros para minimizar

possiveis sobreposi¢cdes de assinaturas.

Validation Confusion Matrix
1.5 0 0 0 o o 0 0 0 o o o 0 |100%
8.9% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
2 0 a7 0 0 o o 0 0 0 o 0 o 0 |100%
0.0% | 7.0% | 0.0% | 0.0% | 0.0% | 0.0% 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% 0.0% | 0.0%
3l O 0 38 1 o o 0 0 0 0 0 o 0 |97
0.0% | 0.0% | 7.2% | 0.2% | 0.0% | 0.0% | 0.0% 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 2 6%
4 0 0 0 7 1 o 0 0 0 0 o o 0 |Jo74
0.0% | 0.0% | 0.0% | 7.0% | 0.2% | 0.0%  0.0% 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  0.0% | 2 6%
5 1 0 0 0 » o 0 0 0 0 o o o v
0.2% | 0.0% | 0.0% | 0.0% | 7.4% | 0.0% | 0.0% 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
6 0 0 0 0 o k] 0 0 0 0 0 0 0 |100%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 7.2%  0.0% 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
3 710 0 0 o o o 4“1 o o o o o 0 |100%
o 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 7.8% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
8 ] 0 0 0 o o ] 0 0 o o o 0 |1o0%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 5.7% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
9 0 0 0 0 o o 0 0 E 0 o o 0 |100%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% 0.0% 0.0% | 7.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0
10 0 0 0 0 o o 0 0 0 50 o o 0 |10
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  0.0% | 0.0% | 0.0% | 9.5% | 0.0% | 0.0%  0.0% | 0.0%
9l ® 0 0 0 o o 0 0 0 1 43 o 0 977
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  0.0% | 0.0% | 0.0% | 0.2% | 8.2% | 0.0%  0.0% | 2 3%
12 0 0 0 0 o o 0 0 0 o 0 45 1 Jo7.8%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 8.5% | 0.2% | 2 2%
13 0 0 0 0 o o 0 0 0 o 0 1 » Jors
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.2%  7.4% | 2.5%
97.9% | 100% | 100% |97.4% |97 .5% | 100% | 100% | 100% | 100% [S8.0%| 100% |97 8%
2.1% | 0.0% | 0.0% 25% | 0.0% J0.0% |0.0% | 0.0% | 2.0% | 0.0% | 2.2% | 2
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Figura 29 - Matriz de Confusdo do melhor resultado obtido no Dominio da Frequéncia
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O grafico de Entropia Cruzada no Dominio da Frequéncia (Figura 30) ilustra o
comportamento da fun¢do de custo durante o treinamento, validacao e teste da RNA ao
longo de 512 épocas. A entropia cruzada mede a discrepancia entre as probabilidades
previstas pela rede e as classes reais codificadas em omne-hot, sendo, portanto, um
indicador direto da qualidade da classificacao.

Observa-se que, nas primeiras 25 épocas, ha uma queda acentuada da fungao de
custo, reflexo do rapido aprendizado inicial da rede. A partir desse ponto, a redugdo torna-
se mais gradual até estabilizar-se proximo da época 467, onde foi registrada a melhor
performance de validacdao, com valor de entropia cruzada de aproximadamente 0,0031.
Esse resultado ¢ extremamente baixo, indicando que as previsdes do modelo estdo

fortemente alinhadas as classes reais.

Best Validation Performance is 0.0031471 at epoch 487
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Figura 30 - Fun¢do de custo por entropia cruzada durante o processo de treinamento
da RNA no Dominio da Frequéncia

Outro aspecto relevante ¢ a proximidade entre as curvas de treinamento (azul),
validacao (verde) e teste (vermelho). A auséncia de grandes divergéncias entre elas
confirma que o modelo alcangou boa capacidade de generalizagdo, evitando tanto o
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underfitting quanto o overfitting. Em outras palavras, a RNA aprendeu os padrdes
relevantes do conjunto de dados sem memorizar os exemplos de treinamento, mantendo
desempenho consistente também nos dados nao vistos.

A convergéncia estavel das curvas, somada ao baixo valor final da entropia
cruzada, comprova a eficacia da configuragdo de hiperparametros e da estratégia de
seleg¢do de caracteristicas adotadas. Esse comportamento valida a robustez do modelo no
Dominio da Frequéncia e refor¢a sua aplicabilidade em cenarios reais de diagnostico de
falhas de inje¢do, nos quais a confiabilidade e a consisténcia sdo fatores essenciais.

A Figura 31 representa o grafico Gradiente vs Epocas apresenta a evolugio da
magnitude do gradiente durante o processo de treinamento da RNA ao longo de 512
épocas. O gradiente representa a intensidade das atualizagdes realizadas nos pesos da
rede em cada iteracao, estando diretamente ligado a eficiéncia do algoritmo de otimizagao

em encontrar o minimo da fung¢ao de custo.

Gradient = 0.0011935, at epoch 512
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Figura 31 - Gradiente x Epocas no Dominio da Frequéncia

Observa-se que, nas primeiras épocas, o gradiente apresenta valores mais
elevados, na ordem de 1072, o que indica ajustes mais intensos nos parametros da RNA,
caracteristicos da fase inicial de aprendizado, quando o modelo ainda est4 distante da
solucao 6tima. Com o avango do treinamento, ocorre uma reducao gradual da magnitude
do gradiente, que se estabiliza na faixa de 1073, mostrando que as atualizagdes nos pesos
se tornam progressivamente menores, em razao da aproximacgdo do ponto 6timo de
convergéncia.

Ao final do processo, na época 512, o gradiente atinge o valor de
aproximadamente 0,00119, considerado baixo e adequado para indicar convergéncia

estavel. Esse comportamento demonstra que a RNA ndo apenas reduziu a fungdo de
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custo, mas também atingiu um ponto de equilibrio, evitando oscilagdes que poderiam
sugerir instabilidade ou dificuldade de convergéncia.

O Histograma de Erros apresentado para o Dominio da Frequéncia (Figura 32)
mostra a distribui¢ao das diferengas entre os valores-alvo (fargets) e as saidas produzidas
pela RNA durante o treinamento, validacao e teste. Esse tipo de grafico ¢ especialmente
util para avaliar a qualidade do ajuste do modelo, permitindo identificar a concentragao,
a dispersao e possiveis vieses nos erros.

Na Figura 32, observa-se que a grande maioria das instancias — representadas
pelas barras em azul (treinamento), verde (validagdao) e vermelho (teste) — esta
concentrada em torno de zero, com pequenas variacdes residuais. Essa concentragao
indica que a RNA foi capaz de aprender os padrdes do sinal de vibragdao com elevado
grau de precisdo, minimizando discrepancias entre as previsoes e os valores reais. A linha
laranja, que representa o erro zero ideal, coincide com o centro da distribuigao,

reforgando que os erros médios estdo praticamente nulos.
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Figura 32 - Histograma de Erros no Dominio da Frequéncia

Outro aspecto relevante ¢ a semelhanga entre as distribuigdes dos conjuntos de

treinamento, validacao e teste. Essa consisténcia demonstra que o modelo nao sofreu de
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overfitting, pois apresentou comportamento homogéneo mesmo em dados nao utilizados
no aprendizado direto. Além disso, ndo ha evidéncias de vieses sistematicos: os erros nao
se deslocam significativamente para valores positivos ou negativos, o que mostra que a
rede ndo tende a superestimar nem a subestimar os resultados.

Por fim, a forma estreita e concentrada da distribuicdo refor¢ca a robustez da
modelagem no Dominio da Frequéncia, confirmando que a RNA alcangou previsdes
altamente confidveis e generalizaveis. Esses resultados validam as estratégias de sele¢ao
de caracteristicas e acelerometros adotada, evidenciando que o modelo conseguiu
representar com fidelidade o comportamento dindmico do motor, mesmo em cenarios

complexos de diagndstico de falhas de injegao.

6.3.3. Ranqueamento das 27 Caracteristicas Estatisticas no Dominio da Frequéncia

No dominio da frequéncia (Figura 33), o comportamento ¢ mais homogéneo. A
maior parte das métricas estatisticas apresenta pesos positivos e relativamente proximos,
com pequena amplitude de variacdo. Esse padrao sugere que, ao serem projetados no
espectro, os sinais de vibracao distribuem melhor a informagdo entre os diferentes
atributos, resultando em menor contraste de relevancia. Assim, a variancia é reduzida, e
praticamente todas as varidveis oferecem contribui¢do util, ainda que em diferentes
magnitudes. Esse equilibrio faz do dominio da frequéncia um campo promissor para a
construgdo de modelos estaveis, reduzindo o risco de sobreajuste associado a variaveis

irrelevantes.
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Figura 33 - Ranqueamento das 27 Caracteristicas no Dominio da Frequéncia

6.4  Resultados no Dominio Tempo-Frequéncia

6.4.1. Desempenho com Diferentes Quantidades de Caracteristicas e Acelerometros

O estudo realizado no Dominio Tempo-Frequéncia visou aprofundar a avaliagdo
da capacidade dos modelos de RNAs de diagnosticar falhas de inje¢do de combustivel
em motores Diesel maritimos a partir dos sinais de vibragdo. Para tanto, foram analisados
diferentes cendrios, variando-se tanto o numero de caracteristicas extraidas (1, 2, 5, 9,
18, 27 e 54) quanto o nimero de acelerometros utilizados (1, 3, 5, 10 e 15).

Esta analise exploratoria demonstrou o impacto significativo da selecao criteriosa
de atributos e sensores sobre o desempenho do sistema de diagnostico, reatfirmando
tendéncias observadas nos Dominios do Tempo e da Frequéncia e revelando
caracteristicas especificas do comportamento no Dominio Tempo-Frequéncia, conforme

pode ser verificado na Figura 34.
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Figura 34 - F1-Score por Numero de Caracteristicas no Dominio Tempo-Frequéncia

Quando utilizados 15 acelerometros, observou-se que o melhor desempenho foi
alcancado com apenas 1 caracteristica estatistica, obtendo-se um F1-Score de 92,95%. A
medida que o numero de caracteristicas aumentava, houve uma clara tendéncia de
degradacdo de desempenho: com 54 caracteristicas, o F1-Score reduziu para 61,62%.

Essa queda ¢ um forte indicativo do fendmeno da maldi¢ao da dimensionalidade
(TAN; STEINBACH; KUMAR, 2018), em que a adicdo excessiva de caracteristicas
irrelevantes ou redundantes gera sobrecarga no modelo, reduzindo sua capacidade de
generalizagao.

O tempo de processamento, por outro lado, variou de forma moderada, entre 162
segundos (2 caracteristicas) e 286 segundos (54 caracteristicas), sendo proporcional ao
aumento da dimensionalidade dos dados.

Com a utilizagdo dos 3 melhores acelerometros, os resultados foram
significativamente superiores. O melhor desempenho foi alcangado com apenas 1
caracteristica, resultando em um F1-Score de 98,08%.

Além disso, o tempo de processamento foi otimizado, situando-se entre 135 e 511
segundos. Destaca-se que, mesmo com o acréscimo de caracteristicas, o impacto negativo
sobre o desempenho foi muito mais suave do que no cendrio com 15 acelerdmetros,
demonstrando a importancia estratégica da sele¢do de acelerometros para reduzir a
complexidade sem comprometer a qualidade do diagndstico.

No cendrio com apenas um acelerometro, foram observados os melhores
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resultados absolutos no Dominio Tempo-Frequéncia. Utilizando 2 caracteristicas
estatisticas, o modelo atingiu um F1-Score de 99,27%, Acuracia de 99,24%, Precisao de
99,32% e um Recall de 99,23%.

Tais métricas evidenciam uma extraordindria capacidade de diagnodstico, mesmo
com configuracdo minima de acelerometros e caracteristicas, o que ¢ extremamente
relevante para aplicacdoes de manutengao preditiva em ambientes operacionais restritos.

O tempo de processamento nesse cenario variou entre 152 segundos (27
caracteristicas) e 318 segundos (2 caracteristicas), considerado plenamente aceitavel
diante dos elevados indices de performance obtidos.

Ao fixar o nimero de caracteristicas em 54 e variar o numero de acelerometros
(Figura 35), observou-se novamente que a performance diminui com o aumento da
quantidade de sensores: o F1-Score caiu de 93,99% (1 acelerdmetro) para 61,62% (15

acelerometros).
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Figura 35 - F1-Score e Tempo de Processamento no Dominio Tempo-Frequéncia (54
Caracteristicas)

Este resultado confirma a tendéncia previamente detectada nos Dominios de
Tempo e da Frequéncia, onde a combinacao de excesso de varidveis e muitos sensores
sem selecao adequada prejudica a capacidade discriminativa dos modelos de RNA,
indicando a necessidade imperativa de métodos eficientes de sele¢do de caracteristicas e
otimizacao da disposi¢do dos acelerometros.

A andlise final dos cenarios no Dominio Tempo-Frequéncia (Figura 36)
evidenciou que a utilizagdo de 1 acelerdmetro e 2 caracteristicas resultou nos melhores
desempenhos globais de F1-Score de 99,27%.

No cenario com os 3 melhores acelerometros, também com 1 e 2 caracteristicas,
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proporcionaram resultados consistentes e elevados, com F1-Scores superiores a 96%.
As configuragdes com 15 acelerometros apresentaram desempenho mais baixo

(F1-Score maximo de 92,95%), mesmo realizando a selecao das caracteristicas.

F1-Score e Tempo de Processamento por Cendario - Comparativo Final

100

98|

96

F1-Score (%)

94+ P
92
90 o - o
O
o D Cn )
&& E® S Fe
P RS 8 AN
O, 0 QR QR e
NS ) L &
S & N <2 %2 7)(4 O
R & E %
G v v oK (o2
e @9\/(, »"’\,(4 PY
2 O
N\ e$<\° N N
~

Cenérios

Figura 36 - F1-Score e Tempo de Processamento por Cendrio no Dominio Tempo-
Frequéncia

Esses achados refor¢am a conclusao de que a qualidade das informagdes ¢ muito
mais relevante que a quantidade de dados brutos no contexto de diagndstico baseado em
vibragao.

Dessa maneira, os resultados obtidos no Dominio Tempo-Frequéncia reatirmam
que uma selecao criteriosa do niimero de caracteristicas e acelerometros pode maximizar
o desempenho do diagndstico. Caracteristicas bem selecionadas capturam de forma
eficiente os fenomenos fisicos relacionados as falhas de injecao.

RNAs sdo ferramentas poderosas para o reconhecimento de padrdes em sinais

complexos, especialmente quando alimentadas com dados adequadamente tratados.

6.4.2. Frequéncia e Contribuicao dos Acelerometros Mais Relevantes

No Dominio Tempo-Frequéncia, a anélise dos acelerometros mais relevantes para
o diagnostico de falhas de injecao em motores Diesel evidenciou, de forma consistente,
a superioridade dos sensores localizados sobre os cilindros, quando comparados aos
instalados no bloco do motor.

A Tabela 17 apresenta os melhores resultados obtidos em diferentes cenarios de
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modelagem, detalhando o numero de acelerdmetros utilizados, o numero de
caracteristicas extraidas, o acelerdmetro com melhor desempenho em cada caso e os

respectivos F1-Score, Acuracia, Precisdo, Sensibilidade e Especificidade.

Tabela 17 - Resultados com melhores acelerometros nos cenarios avaliados no
Dominio Tempo-Frequéncia

DOMINIO TEMPO-FREQUENCIA

Cenarios Resultados

Ne° N° | Melhor | F1-Score | Acuracia | Precisao | Sensibilidade | Especificidade
Acel. | Caract| Acel. (%) (%) (%) (%) (%)

1 2 8 99,27 99,24 99,32 99,23 99,94

1 5 15 97,27 97,34 97,33 97,26 99,78

1 9 2 95,27 95,45 95,48 95,21 99,62

1 18 3 95,36 95,45 5,32 95,45 99,62

1 27 3 96,37 96,39 96,54 96,31 99,70

3 1 8 98,08 98,10 98,17 98.04 99,84

3 8 96,84 96,77 96,84 96,90 99,73

Para compreender a relevancia espacial dos sensores, a Figura 37 ilustra a
disposicao fisica dos acelerdmetros sobre o motor Diesel maritimo. Os acelerometros 2,
3, 8 e 15 foram os que apresentaram melhor desempenho nos testes. Importante notar que
os acelerometros 2, 3 e 8 estdo posicionados diretamente sobre os cabegotes dos cilindros,

ao passo que o acelerometro 15 esta situado no bloco do motor.
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Figura 37 - Localiza¢do dos Acelerometros com melhores desempenhos
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A distribuicao da frequéncia de sele¢ao dos melhores acelerdmetros € sintetizada
na Figura 38. O acelerdmetro 8, montado sobre o cilindro 8, obteve o melhor desempenho
em 42,9% dos cenarios com F1-Score acima de 95%. Em seguida, o acelerometro 3
(cilindro 3) foi o mais eficaz em 28,6% dos casos. J4 os acelerdmetros 2 e 15 foram

selecionados em apenas 14,3% dos cenarios cada.

Frequéncia do Melhor Acelerometro (Dominio Tempo/Frequéncia)
Acel. 2 Acel. 15

Acel. 3

Acel. 8

Figura 38 - Frequéncia de sele¢do dos melhores acelerometros no Dominio Tempo-
Frequéncia

Esses dados confirmam a tendéncia observada nos demais dominios analisados,
onde os sensores localizados nos cilindros capturam com maior fidelidade os eventos
vibracionais relacionados as falhas de inje¢dao, como variagdes na pressao de injecao,
desequilibrios de combustdo e anomalias no acionamento da valvula injetora. Essa
superioridade ¢ resultado da proximidade direta com as fontes primarias de excitagdo
mecanica, o que assegura a integridade dos sinais e amplia sua capacidade discriminativa
nos modelos de RNA.

Adicionalmente, mesmo nos cenarios com multiplos sensores € maior nimero de
caracteristicas, os acelerometros dos cilindros se mantiveram como os mais eficazes. Isso
reforga a tese de que a selegdo espacial correta do ponto de medigao ¢ mais determinante
que a quantidade de sensores, contribuindo diretamente para a viabilidade pratica de
sistemas de monitoramento embarcado com baixa complexidade.

A Tabela 18 destaca a consisténcia entre as métricas de treinamento, validagao e
teste. Par os cendrios apresentados, as diferengas entre elas sao pequenas, o que confirma

a boa capacidade de generalizacdo do modelo e a auséncia de sobreajuste (overfitting).
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Mesmo em cenarios com maior numero de caracteristicas (18 ou 27), onde ha ligeira
reducdo nas taxas de precisdo, os valores se mantém acima de 95%, demonstrando que a
rede neural conseguiu aprender padrdes discriminativos robustos, ainda que o excesso de
variaveis tenha introduzido algum nivel de redundancia, associado ao fendmeno da
maldi¢ao da dimensionalidade.

A tabela também evidencia que, quando utilizados trés acelerdmetros, os
resultados permanecem altamente satisfatorios, atingindo até 98,10% de precisdo em
teste, o que reforca o equilibrio entre desempenho e custo computacional alcangado pela

estratégia de selegao dos melhores sensores.

Tabela 18 - Precisoes de Treinamento, Validagdo e Testes obtidas no Dominio Tempo-
Frequéncia em diferentes configuragoes de numero de Acelerometros e Caracteristicas

Estatisticas
DOMINIO TEMPO-FREQUENCIA
Cenarios Resultados
N° N° | Melhor Precisao Precisao Precisao
Acel. | Caract| Acel. | Treinamento (%) | Validacao (%) | Teste (%)
1 2 8 99,72 98,86 99,24
1 5 15 99,72 98,48 97,34
1 9 2 99,06 96,02 95,45
1 18 3 99,72 97,15 95,45
1 27 3 99,59 96,02 96,40
3 1 8 99,67 98,10 98,10
3 8 99,51 97,53 96,77

A Matriz de Confusdo de Validagdo no Dominio Tempo-Frequéncia (Figura 39)
mostra que os resultados obtidos sdo altamente satisfatorios, com taxas de precisdo por
classe majoritariamente superiores a 95% e acertos perfeitos em diversas categorias. O
desempenho médio manteve-se elevado, em 98,9%, o que confirma a robustez do modelo
também no Dominio Tempo-Frequéncia.

Algumas classes, como 1, 2, 3,5, 6,7, 8,9 e 10, atingiram 100% de acerto, sem
qualquer registro de falsos positivos ou falsos negativos, demonstrando que a rede foi
capaz de aprender padrdoes muito bem definidos e consistentes nesses cendrios. Os erros
apresentados sdo residuais e estruturados, ocorrendo predominantemente entre classes
vizinhas, como 12 < 13. Tal padrao ¢ tecnicamente esperado, uma vez que sensores
posicionados em cilindros adjacentes captam assinaturas de vibragao semelhantes, o que
pode gerar sobreposicdes sutis entre os padroes de falha.
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Figura 39 - Matriz de Confusdo do melhor resultado obtido no Dominio

O gréfico de Entropia Cruzada referente ao Dominio do Tempo-Frequéncia
(Figura 40) mostra a evolugdo da fun¢do de custo ao longo de 501 épocas para os
conjuntos de treinamento, validacao e teste. A entropia cruzada mede a discrepancia entre
as probabilidades previstas pela RNA e os rétulos reais das classes, sendo um dos
principais indicadores de desempenho do modelo.

No inicio do treinamento, observa-se uma queda acentuada dos valores de
entropia cruzada, reflexo do répido ajuste da rede na fase inicial de aprendizado. Apos
aproximadamente 50 épocas, as curvas passam a decrescer de forma mais suave até se
estabilizarem em patamares baixos, o que indica que o modelo se aproximou de sua
configuragdo 6tima. O melhor desempenho de validagao foi obtido na época 476, com

valor de entropia cruzada de aproximadamente 0,0037, evidenciando alta precisao na

Frequéncia
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classificagao.

Best Validation Performance is 0.0037211 at epoch 476
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Figura 40 - Fun¢do de custo por entropia cruzada durante o processo de treinamento
da RNA no Dominio Tempo-Frequéncia

Outro ponto relevante ¢ a proximidade entre as curvas de treinamento (azul),
validacao (verde) e teste (vermelho). Essa sobreposi¢ao indica que o modelo nao sofreu
com overfitting, ja que o erro nao divergiu entre os conjuntos € ndo apresenta sinais de
underfitting, pois as trés curvas convergem para valores bastante reduzidos. Isso
confirma a boa capacidade de generalizagao da rede.

O grafico “Gradiente vs Epocas” (Figura 41), referente ao Dominio Tempo-
Frequéncia, mostra a evolucdo da magnitude do gradiente durante o processo de
treinamento da RNA ao longo de 501 épocas. O gradiente representa a intensidade das
atualizagOes realizadas nos pesos da rede em cada iteragdao, sendo um parametro-chave
para avaliar a eficiéncia do processo de otimizagao.

Nas primeiras épocas, o gradiente apresenta valores mais elevados, na ordem de
1072, indicando ajustes intensos nos pesos da rede, caracteristicos da fase inicial de
aprendizado, quando o modelo ainda esta distante do ponto 6timo. A medida que o
treinamento avanga, ha uma reducao gradual e consistente da magnitude do gradiente,

que se estabiliza na faixa de 1073, Esse comportamento mostra que os ajustes se tornam
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progressivamente mais sutis, refletindo a aproximacao da rede a um minimo local da

fun¢ao de custo.

Gradient = 0.0010693, at epoch 501
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Figura 41 - Gradiente x Epocas no Dominio Tempo-Frequéncia

Ao final do treinamento, na ¢época 501, o gradiente atinge o valor de
aproximadamente 0,00107, considerado baixo e indicativo de convergéncia estavel.
Além disso, a trajetoria descendente, mesmo com pequenas oscilagdes naturais ao longo

do processo, confirma que a rede neural manteve um comportamento consistente e

controlado durante a otimizagao.
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Figura 42 - Histograma de Erros no Dominio Tempo-Frequéncia

O Histograma de Erros referente ao Dominio Tempo-Frequéncia (Figura 42)
mostra a distribuicdo das diferencas entre os valores reais (targets) e as saidas previstas
pela RNA nos conjuntos de treinamento, validagao e teste. Esse grafico ¢ uma ferramenta
importante porque permite avaliar nao apenas a magnitude média dos erros, mas também
sua dispersao e consisténcia entre os diferentes conjuntos de dados.

Observa-se que a imensa maioria das instancias, representadas pelas barras em
azul (treinamento), verde (validagao) e vermelho (teste), estd concentrada muito proxima
de zero, exatamente em torno da linha laranja que indica o erro nulo ideal. Essa forte
concentracdo revela que a RNA foi capaz de reproduzir as saidas com altissima
fidelidade, reduzindo os erros residuais a valores praticamente despreziveis.

Outro aspecto relevante ¢ a semelhanga entre as distribuigdes dos trés conjuntos.
A presencga equilibrada de erros proximos de zero em treinamento, validacdo e teste
demonstra que o modelo nao sofreu com overfitting, uma vez que manteve desempenho
consistente também em dados ndo utilizados no processo de aprendizado. Além disso,
nao se verificam deslocamentos sistematicos dos erros para valores positivos ou

negativos, o que indica auséncia de vieses de superestimagao ou subestimagao das saidas.
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Conclui-se, portanto, que no Dominio Tempo-Frequéncia — assim como nos

Dominios do Tempo e da Frequéncia — a adocao de acelerometros posicionados nos

cilindros ¢ uma estratégia técnica eficaz para o diagnostico preciso de falhas de inje¢ao

em motores Diesel maritimos, representando uma solucdo de alto desempenho e elevada

aplicabilidade industrial.

6.4.3. Ranqueamento das 54 Caracteristicas Estatisticas no Dominio da Tempo-

Frequéncia

Quando se avanga para o dominio tempo-frequéncia (Figura 43), a anélise volta

a revelar um quadro de heterogeneidade. O aumento no nimero de caracteristicas —

decorrente da combinagdo das representagdes no dominio do tempo e da frequéncia —

intensifica a dispersdao de relevancias. Caracteristicas como Valor Minimo, Pico e

Curtose destacam-se como fortemente positivas, ao passo que outras, como Fator de

Crista ¢ Moda, apresentam pesos negativos expressivos. Esse resultado reflete um

paradoxo: o enriquecimento da base de caracteristicas amplia o potencial de

discriminacao do modelo, mas, ao mesmo tempo, gera um conjunto mais heterogéneo,

no qual muitos elementos tornam-se redundantes ou prejudiciais. A variancia, nesse caso,

cresce de forma significativa, reforcando a importancia da sele¢do criteriosa para que

apenas os atributos mais informativos sejam mantidos.
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Figura 43 - Ranqueamento das 54 Caracteristicas no Dominio da Tempo-Frequéncia

6.5. Comparacao Entre os Dominios

Os resultados obtidos com a aplicagdo das RNAs demonstram um desempenho
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bastante satisfatorio na tarefa de diagnéstico de falhas de injecdo em motores Diesel
maritimos, utilizando sinais de vibragdo. Independentemente do dominio de analise
empregado — Tempo, Frequéncia ou Tempo-Frequéncia — os modelos foram capazes
de identificar padrdes representativos das diferentes condigdes operacionais com
elevados indices de desempenho, em especial quando configurados com as melhores
combinagdes de caracteristicas estatisticas e parametros de treinamento.

Os melhores resultados obtidos nos trés dominios de analise evidenciam a elevada
capacidade discriminativa dos modelos propostos, conforme apresentado na Figura 44.
No Dominio do Tempo, destacou-se o F1-Score de 99,44%, utilizando apenas duas
caracteristicas estatisticas. Ja no Dominio da Frequéncia, o melhor desempenho foi
registrado com um F1-Score de 99,43%, ao se empregar duas caracteristicas
estatisticas. No Dominio Tempo-Frequéncia, o melhor desempenho foi obtido com um
F1-Score de 99,27%, também com duas caracteristicas estatisticas.

Melhores F1-Scores por Dominio de Andlise
100.0f 99.44% 99.43% 99.27%

97.5F
95.0
92.5F

90.0

F1-Score (%)

87.5F

85.0F

82.5F

80.0

Tempo Frequéncia Tempo-Frequéncia

Dominio de Analise

Figura 44 - Melhores F1-Scores por Dominio de Analise

A Tabela 19 foi utilizada para construir os graficos Radar Plot para comparar
simultaneamente o desempenho dos trés dominios de anélise em multiplas métricas de
classificacdo e eficiéncia computacional. Essa visualizagdo possibilita uma interpretagao
intuitiva do equilibrio entre acuracia, sensibilidade, precisao, especificidade, F1-Score e

tempo de processamento normalizado, facilitando a identificagdo de pontos fortes e
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limitagdes de cada abordagem, e subsidiando a escolha do método mais adequado aos
objetivos propostos.

Tabela 19 - Métricas de Desempenho por Dominio

- .. Dominio do
Métrica Dominio do DomA|n|o da Tempo-Frequéncia
Tempo (%) Frequéncia (%) (%)
Precisao 99,43 99,50 99,32
Sensibilidade 99,48 99,39 99,23
Acuracia 99,43 99,43 99,24
Especificidade 99,95 99,95 99,94
F1-Score 99,44 99,43 99,27
Tempo de
Processamento 86,11 65,86 84,95
Normalizado
Tempo 294 s 696 s 318s

Para a analise comparativa do desempenho entre os trés dominios de
processamento — Dominio do Tempo, Dominio da Frequéncia e Dominio Tempo-
Frequéncia — foi utilizado um grafico do tipo Radar Plot (Figura 45). Essa representacao
grafica permite a visualizagdo simultanea de multiplas métricas de avaliag¢ao, englobando
Precisao, Sensibilidade, Acuracia, Especificidade, F1-Score e Tempo de Processamento

Normalizado.

Acurécia

Especificj {bilidade

0.600.650.700.750.800.850.90 0.95[1.00

F1-Sc \/ﬁ cisdo

- —— Dominio do Tempo
Tempo Proc. Normalizado —— Dominio da Frequéncia

= Dominio Tempo-Frequéncia

Figura 45 - Grdfico Radar Plot comparando os 3 Dominios Estudados

A escolha desse tipo de grafico justifica-se pelo seu potencial em oferecer uma
visdo integrada e intuitiva do desempenho de cada abordagem, possibilitando a

identificacdao de padrdes, pontos fortes e eventuais deficiéncias de forma mais clara do
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que seria possivel por meio de tabelas numéricas isoladas. Além disso, o Radar Plot
facilita a interpretacdo dos resultados no contexto multidimensional, permitindo
evidenciar possiveis trade-offs entre desempenho e custo computacional.

A andlise visual do grafico evidencia que o Dominio do Tempo (azul) apresenta
a maior area total, indicando um equilibrio consistente entre alto F1-Score e rapidez de
processamento. O Dominio da Frequéncia (laranja) destaca-se por apresentar o maior
valor de Precisdo, porém, apresenta desempenho inferior no eixo de velocidade de
processamento. J& o Dominio Tempo-Frequéncia (verde) mostra-se competitivo em
termos de velocidade, mas com métricas de classificacdo ligeiramente inferiores as das
demais abordagens. Dessa forma, a visualizagao proporcionada pelo Radar Plot contribui
para embasar, de maneira objetiva ¢ fundamentada, a escolha do método no Dominio
Tempo como o mais eficaz e adequado aos objetivos da pesquisa, considerando nao

apenas métricas isoladas, mas o desempenho global de cada dominio.

6.5.1. Custo Computacional no Pré-processamento dos Sinais de Vibracao

Durante a etapa de pré-processamento dos sinais de vibragdo, observou-se uma
diferenca significativa no custo computacional entre os dominios de analise empregados.
Em particular, o Dominio do Tempo apresentou tempo de processamento
substancialmente inferior quando comparado aos Dominios da Frequéncia e Tempo-
Frequéncia. Essa diferenca ¢ atribuida a auséncia da necessidade de aplicar a FFT no
Dominio do Tempo.

A analise no Dominio do Tempo utiliza diretamente os sinais de vibragao brutos,
extraindo caracteristicas estatisticas basicas — como média, desvio padrao, fator de
crista, entre outras — sem a necessidade de transformagao dos dados para outro dominio.
Isso implica que o processamento ocorre de forma linear e direta sobre os dados
temporais.

Por outro lado, nos Dominios da Frequéncia e Tempo-Frequéncia, a aplicacao da
FFT torna-se etapa obrigatoria. A FFT € um algoritmo que converte o sinal do Dominio
do Tempo para o Dominio da Frequéncia, permitindo analisar a distribui¢do espectral da
energia do sinal. Embora a FFT seja computacionalmente eficiente, sua aplicagdo a cada
segmento de dados gera um aumento significativo do custo de processamento,
principalmente em bases de dados volumosas e em aplicacdes que exigem analise
continua ou em tempo real.

Além disso, no Dominio Tempo-Frequéncia, a necessidade de calcular multiplas
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transformadas em janelas temporais sobrepostas ou sucessivas acentua ainda mais o custo
computacional, uma vez que cada janela demanda uma nova execucao da FFT.

Portanto, a superioridade em termos de tempo de processamento observada no
Dominio do Tempo ¢ uma consequéncia direta da simplicidade do pré-processamento
necessario. Essa caracteristica faz com que o Dominio do Tempo seja particularmente
vantajoso para aplicagdes embarcadas e sistemas de monitoramento em tempo real, onde
tempo de resposta rapido e baixo consumo computacional sdo fatores criticos.

Esta diferenca operacional entre os dominios justifica, em parte, o excelente
equilibrio observado no Dominio do Tempo entre a alta acurdcia diagnostica e a
eficiéncia computacional, sendo um dos fatores que contribuiram para a escolha desta

abordagem como a mais adequada no contexto do presente estudo.

6.5.2. Consideracoes Sobre Custo Computacional da RNA

O Dominio do Tempo ofereceu o menor tempo de processamento (143 segundos)
aliado ao melhor desempenho diagndstico.

O Dominio da Frequéncia, embora competitivo em desempenho, exigiu quase o
dobro do tempo (257 segundos).

O Dominio Tempo-Frequéncia teve um tempo intermediario (152 segundos),
mas com desempenho ligeiramente inferior aos demais dominios.

Esses dados mostram que menores tempos de processamento, sem perda de
desempenho, sdo criticos para aplicagdes maritimas praticas, onde a resposta rapida ¢
fundamental. A otimizagdo do nimero de caracteristicas ¢ acelerdmetros mostrou ser

decisiva para atingir um alto desempenho no diagndstico de falhas.

6.5.3. Desempenho da RNA com Base nas Melhores Caracteristicas

Independentemente do dominio escolhido, os melhores desempenhos foram
obtidos quando o cenarios tinham apenas 1 ou 2 caracteristicas estatisticas. No Dominio
do Tempo, uma unica caracteristica proporcionou resultados extraordinarios com F1-
Score de a 99,44%. Nos Dominios da Frequéncia e Tempo-Frequéncia, duas
caracteristicas adequadamente escolhidas bastaram para obter desempenhos também
superiores a 99%.

Esses resultados evidenciam que sele¢des adequadas das melhores caracteristicas
capturam informacdes suficientes para o diagnodstico de falha de injegao de combustivel.

Tal fato ressalta que modelos simples sdo mais rapidos e robustos, enquanto o uso
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excessivo de atributos compromete o desempenho devido a maldicdo da
dimensionalidade.
A escolha das melhores caracteristicas €, portanto, uma etapa critica para

maximizar o desempenho e minimizar os custos computacionais.

6.5.4. Frequéncia e Contribuicao dos Acelerometros Mais Relevantes

A andlise da incidéncia dos acelerometros mais relevantes mostrou que os
acelerometros localizados nos cabec¢otes foram frequentemente selecionados nos
cenarios de melhor desempenho.

Em todos os dominios, o uso de 1 ou 3 melhores acelerdmetros foi suficiente para
atingir F1-Score superiores a 98%, comprovando que a posicdo estratégica dos
acelerdometro ¢ mais importante do que a quantidade;

E possivel reduzir drasticamente o nimero de acelerdmetros sem prejuizo no
desempenho, o que ¢ vital para sistemas de monitoramento embarcados onde espago e

custo sdo limitados.

6.6. Comparacio Entre Este Estudo e a Dissertacao de Guerra (2023)
6.6.1. Desempenho Diagnostico Utilizando os Trés Melhores Acelerometros

Com o objetivo de contextualizar os resultados obtidos neste trabalho, realizou-se uma
comparacdo direta com os dados apresentados por GUERRA (2023), cujo trabalho abordou o
diagnostico de falhas de inje¢do em motores Diesel utilizando algoritmos de aprendizado de
maquina, especificamente K-NN, SVM e RF. A comparagdo foi realizada com base no
desempenho diagnostico obtido a partir dos trés melhores acelerdmetros no Dominio do Tempo,
para diferentes quantidades de caracteristicas estatisticas extraidas dos sinais de vibragdo.

A Tabela 20 sintetiza os principais resultados comparativos, considerando os valores de

F1-score obtidos para 5, 9 e 18 caracteristicas estatisticas.

Tabela 20 - Comparagdo de desempenho entre GUERRA (2023) e o presente estudo utilizando
3 acelerometros no Dominio do Tempo

Cara(';lt:rjl’(saticas Algoritmo (Guerra) F1-(So /:)o '® | Algoritmo (Bodanese ) F1_(So /:)0 re
5 K-NN 88,4 RNA 93,89
5 SVM 91,74 RNA 93,89
9 K-NN 96,15 RNA 94,55
9 SVM 95,34 RNA 94,55
18 K-NN 93,39 RNA 93,54
18 SVM 97,36 RNA 93,54
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Observa-se que os modelos baseados em RNAs utilizados neste estudo
apresentaram desempenho robusto e estavel em todos os cenarios, com F1-Scores
consistentemente superiores a 93%. Ainda que Guerra (2023) tenha alcangado seu melhor
resultado com o algoritmo SVM (F1-score de 97,36% com 18 caracteristicas), a RNA
demonstrou um desempenho ainda melhor com menos caracteristicas (F1-Score de
98,48% com 1 caracteristica), fator decisivo para aplicacdes em tempo real e com
restrigdes computacionais. Este resultado evidencia a capacidade da RNA em extrair
padrdes relevantes mesmo em condi¢des de baixa dimensionalidade, especto altamente
desejavel em sistemas de monitoramento embarcados.

Além disso, destaca-se que o algoritmo Random Forest, testado por Guerra,
apresentou desempenho significativamente inferior em dois cenarios (FI1-Score de
apenas 46,98% com 9 e 18 caracteristicas), enquanto a RNA mostrou-se estdvel e

confidvel, sem quedas abruptas de performance.

6.6.2. Consideracoes Finais da Comparacao

Em sintese, os resultados obtidos neste estudo demonstram que as RNAs
apresentam desempenho competitivo ou superior frente aos algoritmos tradicionais de
aprendizado supervisionado; a estabilidade do modelo com variacdo do numero de
caracteristicas foi maior na abordagem com RNA; a eficiéncia com menor nimero de
entradas (acelerdmetros e caracteristicas descritivas) posiciona a RNA como alternativa
preferencial para aplicagdes embarcadas e a simplicidade na configuracao e a robustez
frente a ruidos ou variagdes tornam as RNAs uma solugdo tecnicamente viavel e
operacionalmente eficiente.

Por fim, a metodologia proposta contribui com o avango técnico para o

diagnostico inteligente de falhas de inje¢ao em motores Diesel maritimos.
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7. CONCLUSOES

Este trabalho apresentou o desenvolvimento e avaliagdo de um sistema inteligente
para o diagnostico de falhas de injecdo em motores Diesel maritimos, baseado na analise de
sinais de vibragdo e no uso de RNAs. A investigacdo concentrou-se na aplicacao de técnicas
de extragdo e selecdo de caracteristicas nos Dominios do Tempo, Frequéncia e Tempo-
Frequéncia, associadas a diferentes configuragdes de acelerdmetros, com o objetivo de
identificar cenarios otimizados que maximizassem o desempenho diagndstico com o menor
custo computacional.

Os resultados experimentais comprovaram que a abordagem com RNAs, alimentadas
por um conjunto reduzido e estrategicamente selecionado de caracteristicas estatisticas e
acelerometros, ¢ altamente eficaz na identificagdo precisa de falhas de inje¢ao. Em particular,
foi possivel alcangar Fl-scores superiores a 99% nos trés dominios analisados, sendo o
Dominio do Tempo o mais eficaz e eficiente em termos de custo computacional. A auséncia
da necessidade de transformagdes espectrais (como a FFT) nesse dominio contribuiu
significativamente para a redu¢do do tempo de processamento, tornando-o particularmente
adequado para aplicagdes embarcadas e em tempo real.

Adicionalmente, observou-se que o desempenho da RNA se manteve elevado mesmo
em cenarios de baixa dimensionalidade, com 1 ou 2 caracteristicas e apenas um acelerémetro.
Essa constatagdo reforca a viabilidade de se implementar solugcdes compactas e de alta
precisdo em ambientes com restricdes fisicas e operacionais, como navios e plataformas
offshore. A consisténcia dos resultados também confirmou a influéncia direta da posi¢ao dos
acelerometros sobre os cabegotes dos cilindros, em detrimento daqueles instalados no bloco
do motor.

Em termos comparativos, a metodologia proposta demonstrou desempenho
competitivo ou superior em relagdo a algoritmos classicos como SVM, K-NN e Random
Forest, conforme analise comparativa com o trabalho de Guerra (2023). A RNA se destacou
ndo apenas pelo desempenho, mas pela robustez frente a variagdes nas entradas e pela
simplicidade de configuragao.

Dessa forma, a dissertagdo contribui tecnicamente ao propor uma solucao otimizada,
precisa e de baixo custo computacional para diagndstico de falhas em sistemas criticos. Além
disso, os resultados obtidos abrem caminho para futuras pesquisas com foco na implantagao
em tempo real, desenvolvimento de sistemas embarcados autdbnomos e expansao para outros

tipos de falhas mecanicas além da injecao de combustivel.
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8. SUGESTOES PARA TRABALHOS FUTUROS

Durante a etapa de pesquisa de campo descrita no Estudo de Caso, foram obtidos
diversos registros e parametros adicionais que, embora nao tenham sido incorporados a
analise principal desta dissertagdo, apresentam grande potencial para estudos
complementares. Entre eles, destacam-se as variagdes de vibragdo em regimes
transitorios, os dados de funcionamento em diferentes niveis de carga e rotagdo, bem
como registros provenientes de diferentes pontos de medi¢ao no motor e na estrutura da
embarcagdo. Adicionalmente, foram coletados dados por meio de strain gages instalados
no sistema, com o objetivo de registrar deformacdes associadas ao comportamento
torsional do eixo. Esses dados, ainda ndo explorados nesta pesquisa, representam uma
oportunidade relevante para investigagdes voltadas ao estudo das vibragdes torcionais do
motor.

O aproveitamento dessas informagdes em trabalhos futuros pode ampliar
significativamente a compreensdao sobre o comportamento dindmico do sistema,
especialmente em condigdes ndo estaciondrias. Isso possibilitaria o desenvolvimento de
modelos preditivos mais robustos e sensiveis a alteragdes sutis no desempenho, bem
como a avaliagdo da relacdo entre vibragdes torcionais e falhas de injecdo,
complementando as andlises ja realizadas com base nos sinais de acelerometros. A
aplicacdo de técnicas de analise no dominio tempo-frequéncia, associadas a métodos
avangados de machine learning e deep learning, poderia revelar padrdoes complexos ainda
nao identificados nos sinais coletados, aumentando a capacidade diagnostica e

permitindo deteccao mais precisa, inclusive em regimes transitorios.
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