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A crescente demanda por estratégias efetivas de manutenção preditiva em 

sistemas navais impulsiona o desenvolvimento de técnicas avançadas para diagnóstico 

precoce de falhas. Esta dissertação apresenta uma metodologia para classificar 

automaticamente falhas de injeção tipo "single misfire" em motores Diesel marítimos, 

utilizando sinais de vibração e Redes Neurais Artificiais (RNAs). 

A metodologia envolve a aquisição e análise de sinais de vibração coletados por 

acelerômetros instalados no motor Diesel MTU 12V4000C11, avaliados nos domínios do 

tempo, frequência e tempo-frequência. Características estatísticas como RMS, curtose, 

energia e entropia foram extraídas e utilizadas como entradas nos modelos de aprendizado 

supervisionado. 

A otimização do sistema de aquisição e processamento de dados foi uma 

contribuição central, reduzindo o número de sensores sem perda significativa de precisão 

diagnóstica. A seleção e o posicionamento ideal dos acelerômetros foram baseados na 

relevância das características das assinaturas de vibrações para identificar falhas. 

Resultados experimentais indicaram que as RNAs tiveram desempenho superior 

a 99% de F1-Score, apresentando alta precisão mesmo com menos sensores. A 

metodologia demonstrou-se eficaz e economicamente viável para aplicação em sistemas 

embarcados, beneficiando diretamente a manutenção preditiva na Marinha do Brasil. 
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The growing demand for effective predictive maintenance strategies in naval 

systems is driving the development of advanced techniques for early failure diagnosis. 

This dissertation presents a methodology for automatically classifying single-misfire 

injection failures in marine diesel engines using vibration signals and Artificial Neural 

Networks (ANNs). 

The methodology involves the acquisition and analysis of vibration signals 

collected by accelerometers installed in an MTU 12V4000C11 diesel engine, evaluated 

in the time, frequency, and time-frequency domains. Statistical characteristics such as 

RMS, kurtosis, energy, and entropy were extracted and used as inputs in supervised 

learning models. 

Optimization of the data acquisition and processing system was a key 

contribution, reducing the number of sensors without significantly losing diagnostic 

accuracy. The selection and optimal positioning of the accelerometers were based on the 

relevance of vibration signature characteristics for fault identification. Experimental 

results indicated that ANNs achieved F1-scores above 99%, demonstrating high accuracy 

even with fewer sensors. The methodology proved effective and economically viable for 

application in embedded systems, directly benefiting predictive maintenance in the 

Brazilian Navy. 
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1. INTRODUÇÃO 
 

O percurso histórico da análise de vibrações acompanha, de forma bastante 

próxima, o avanço das ciências físicas e matemáticas desde o Renascimento. Nos séculos 

XVII e XVIII, nomes como Galileu Galilei, Robert Hooke, Isaac Newton, Leonhard 

Euler, Daniel Bernoulli e Jean le Rond d’Alembert ajudaram a construir os fundamentos 

da disciplina. Galileu, por exemplo, ao estudar o movimento pendular, demonstrou que o 

período de oscilação de um pêndulo independe da amplitude (para pequenas oscilações), 

descoberta que deu origem tanto aos relógios de pêndulo quanto a modelos matemáticos 

de sistemas oscilatórios simples (DRAKE, 1978). Pouco depois, Hooke formulou a lei 

que leva seu nome, estabelecendo a relação linear entre força e deformação e abrindo 

caminho para a modelagem elástica de sistemas vibratórios (TIMOSHENKO, 1983). 

As contribuições de Newton e Euler, cada um à sua maneira, trouxeram a 

formalização matemática da dinâmica e da teoria de vigas e barras (THOMSON, 1981). 

Ao mesmo tempo, Bernoulli explorava as cordas vibrantes e seus modos naturais, 

enquanto d’Alembert elaborava a equação de onda, pilares da teoria ondulatória 

(RAYLEIGH, 1877). Essas descobertas criaram a base que, séculos depois, permitiria o 

desenvolvimento de métodos modernos de medição e de estratégias de prevenção de 

falhas estruturais. 

No século XIX, a obra de Fourier introduziu a ideia de decompor sinais em séries 

de harmônicos, um conceito que só ganharia total força no século XX com a 

Transformada Rápida de Fourier (FFT), desenvolvida por Cooley e Tukey em 1965, 

revolucionando a análise espectral. Nesse mesmo período, Lord Rayleigh consolidava a 

análise modal ao formalizar os conceitos de frequências naturais e modos normais em sua 

obra The Theory of Sound (RAYLEIGH, 1877). Somaram-se a isso a formulação 

matemática do oscilador harmônico e os estudos sobre amortecimento estrutural, viscoso 

e aerodinâmico (EWINS, 2000), que trouxeram a análise vibratória para mais perto da 

engenharia prática. 

Com o avanço dos computadores na segunda metade do século XX, a disciplina 

deu um salto ainda maior. Métodos numéricos, como o dos Elementos Finitos (FEM), 

permitiram a análise de sistemas com múltiplos graus de liberdade, geometrias complexas 

e condições de contorno arbitrárias (ZIENKIEWICZ; TAYLOR, 2000). 

Já no século XXI, a análise de vibrações deixou de ser uma área restrita à física e 

à matemática para se integrar à ciência de dados e à inteligência artificial. Redes neurais 
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convolucionais e recorrentes (CNNs e LSTMs), por exemplo, vêm sendo aplicadas 

diretamente em sinais brutos, reconhecendo padrões sem a necessidade de extração 

manual de características. Trabalhos recentes mostram a aplicação dessas arquiteturas 

tanto em mancais de motores elétricos (HUU et al., 2025), como em modelos híbridos 

que combinam transformadas espectrais e redes profundas (PRAWIN, 2024). Também 

despontam abordagens probabilísticas, como redes Bayesianas e métodos não 

paramétricos, capazes de lidar com incertezas e prever falhas com maior antecedência 

(GU et al., 2025; TABANDEH; GARDONI, 2021; DIAZDELAO et al., 2013). 

Essa evolução é, cada vez mais, multidisciplinar. A análise de vibrações hoje 

conversa com a ciência dos materiais, explorando correlações entre microestrutura e 

resposta dinâmica; com a robótica, por meio do uso de drones e robôs escaladores para 

coleta de dados em locais de difícil acesso (TIAN et al., 2022); e com a ciência de dados, 

que oferece algoritmos para extrair significado de sinais altamente complexos. 

Olhando para o futuro, a integração com tecnologias emergentes, como gêmeos 

digitais, sistemas ciberfísicos e Internet das Coisas (IoT), deve transformar a análise de 

vibrações em uma das principais ferramentas de monitoramento inteligente. A 

possibilidade de simular cenários operacionais em tempo real, prever a integridade 

estrutural de embarcações e realizar diagnósticos automáticos com base em sensores 

distribuídos indica que estamos diante de um campo que não apenas acompanha, mas 

impulsiona a engenharia do futuro. 

Desta forma, o foco do presente estudo é propor um sistema de classificação de 

falhas de injeção em motores Diesel marítimos com elevada acurácia e otimizar o 

processo de aquisição de dados, reduzindo a necessidade de sensores físicos sem 

comprometer a confiabilidade diagnóstica. 

 
1.1 Motivação 

 
A crescente demanda por estratégias de manutenção baseadas em condição nos 

sistemas navais tem impulsionado o desenvolvimento de métodos robustos para detecção 

e diagnóstico precoce de falhas. Neste contexto, esta pesquisa propõe uma abordagem 

baseada na análise de sinais de vibração provenientes de máquinas alternativas, com foco 

na viabilidade de sua aplicação em ambientes operacionais da Marinha do Brasil. A 

automação do processo de diagnóstico, por meio de técnicas de processamento de sinais 

e aprendizado de máquina, visa reduzir a dependência de avaliações subjetivas realizadas 

por operadores humanos, mitigando erros de interpretação e aumentando a confiabilidade 
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do monitoramento da integridade estrutural dos sistemas mecânicos embarcados (WANG 

et al., 2022; ZHANG et al., 2021). A utilização de sinais de vibração como fonte primária 

de informação diagnóstica é amplamente validada na literatura como uma ferramenta 

sensível e não invasiva, especialmente eficaz na detecção de falhas em componentes 

móveis, como mancais, válvulas e pistões (JARDINE et al., 2006; LEI et al., 2018). 

Adicionalmente, a pesquisa investiga a possibilidade de otimização do sistema de 

aquisição de dados por meio da redução do número de sensores físicos, sem 

comprometimento da acurácia diagnóstica, com o objetivo de diminuir custos 

operacionais e facilitar a implementação em plataformas navais. Tal proposta está 

alinhada com tendências contemporâneas de monitoramento de condição baseado em 

sensores inteligentes e técnicas de compressão de informação (JIA et al., 2020).  

Ao integrar tais metodologias em um sistema de manutenção preditiva, espera-se 

aumentar significativamente a disponibilidade operacional dos meios, reduzir falhas 

inesperadas e promover uma gestão mais eficiente do ciclo de vida dos ativos, 

contribuindo para a consolidação de uma doutrina de manutenção centrada na 

confiabilidade dentro do escopo da engenharia naval moderna. 

 
 

1.2 Objetivos 
 

O objetivo central desta pesquisa é desenvolver e validar uma abordagem baseada 

em algoritmos de inteligência artificial, com ênfase em Redes Neurais Artificiais (RNAs), 

para a detecção e identificação de falhas de injeção em motores Diesel, especificamente 

falhas do tipo “single misfire” (perda de combustão em um único cilindro). Para isso, são 

utilizados sinais de vibração no Domínio do Tempo e da Frequência, adquiridos por meio 

de acelerômetros instalados diretamente no bloco e nos cabeçotes do motor Diesel.  

A escolha desses tipos de sinais visa explorar seu alto grau de sensibilidade a 

anomalias mecânicas e seu potencial como ferramenta não invasiva para o diagnóstico de 

falhas. Em paralelo, a pesquisa busca reduzir a complexidade e o custo do sistema de 

aquisição por meio da minimização do número de sensores utilizados, bem como do 

número de características extraídas dos sinais, sem comprometer a acurácia da 

classificação.  

A integração desses elementos visa propor uma solução eficiente, de baixo custo 

e tecnicamente viável para aplicação em sistemas embarcados de monitoramento de 

condição, contribuindo para estratégias de manutenção preditiva em motores de 
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combustão interna utilizados em ambientes operacionais críticos, como os da Marinha do 

Brasil. 

 
 

1.3 Contribuições da Dissertação 
 

As contribuições desta dissertação concentram-se em avanços metodológicos e 

práticos no campo do diagnóstico de falhas em motores de combustão interna, com ênfase 

na aplicabilidade em sistemas navais operacionais. Primeiramente, propõe-se uma 

abordagem inovadora para a identificação automática de falhas de injeção do tipo single 

misfire em motores Diesel, utilizando sinais de vibração no Domínio do Tempo como 

principal fonte de informação diagnóstica. Essa escolha fundamenta-se em seu caráter 

não invasivo, alta sensibilidade a anomalias mecânicas e ampla aceitação na literatura 

técnica como meio eficaz de monitoramento de integridade estrutural.  

Em paralelo, a dissertação avança na direção da otimização do sistema de 

aquisição de dados, propondo uma metodologia de minimização tanto do número de 

sensores (acelerômetros) quanto das características extraídas, mantendo a acurácia 

classificatória. Isso resulta em um sistema mais econômico e de fácil implementação, 

crucial para viabilizar sua adoção em meios navais.  

Além disso, é realizada uma análise sistemática de posicionamento dos sensores 

no bloco do motor, buscando maximizar a representatividade dos sinais adquiridos com 

o menor número de dispositivos. A integração dessas contribuições não apenas fortalece 

o uso de inteligência artificial no monitoramento de condição, mas também consolida 

uma arquitetura de diagnóstico automatizado com potencial de aplicação em ambientes 

reais, contribuindo diretamente para a modernização das estratégias de manutenção 

preditiva da Marinha do Brasil. 

 

1.4 Organização da Dissertação 
 
O Capítulo 2 reúne a revisão bibliográfica, abordando métodos de monitoramento 

de condição em motores Diesel, técnicas de detecção de falhas de injeção com sinais de 

vibração e a aplicação de algoritmos de aprendizado de máquina nesse contexto. São 

analisadas contribuições relevantes da literatura que validam o uso de sinais de vibração 

como ferramenta diagnóstica não invasiva e sua correlação com parâmetros de combustão 

e desempenho do motor. 
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No Capítulo 3 são apresentados os fundamentos teóricos que sustentam a 

pesquisa. Discute-se a relação entre os domínios do tempo e da frequência na análise de 

vibração, os princípios da estatística aplicados ao processamento de sinais e a influência 

de outliers nos modelos preditivos. Também são explorados conceitos como a maldição 

da dimensionalidade, técnicas de extração de características, algoritmos de seleção de 

variáveis (Relief-F) e fundamentos de aprendizado supervisionado, incluindo o dilema 

bias-variance e os métodos de regularização L1 e L2. 

O Capítulo 4 descreve a metodologia adotada, estruturada em três blocos 

principais: pré-processamento dos sinais de vibração (com filtragem, detrending, 

segmentação e data augmentation), processamento dos dados (tratamento de outliers, 

seleção de características e sensores via Relief-F e normalização dos dados) e modelagem 

com Redes Neurais Artificiais (RNA). São detalhados os principais componentes da 

arquitetura utilizada, incluindo a função de ativação radial (RBF), o algoritmo de 

treinamento e a otimização bayesiana de hiperparâmetros. 

O Capítulo 5 apresenta o estudo de caso, baseado no motor Diesel marítimo MTU 

12V4000C11 acoplado a um dinamômetro. Descreve-se a instrumentação com 15 

acelerômetros instalados nos cabeçotes e no bloco, o sistema de aquisição de dados com 

placas NI 9234 e software LabVIEW™, e a indução controlada de falhas de injeção por 

meio do software Detroit Diesel Diagnostic Link (DDDL). Foram simuladas 39 condições 

experimentais, incluindo operação normal e falhas individuais em cada cilindro, 

resultando em uma base robusta de dados de vibração para treinamento e validação das 

RNAs. 

No Capítulo 6 são apresentados e discutidos os resultados obtidos em três 

domínios de análise (Tempo, Frequência e Tempo-Frequência). Os experimentos 

mostram que, mesmo com configurações enxutas de sensores e características, foi 

possível alcançar F1-Scores superiores a 99%, confirmando a robustez da metodologia. 

A análise também evidenciou o impacto da maldição da dimensionalidade quando há 

excesso de atributos ou sensores, bem como a relevância da posição dos acelerômetros, 

com destaque para aqueles instalados sobre os cabeçotes dos cilindros. 

O Capítulo 7 traz a conclusão do trabalho, ressaltando a contribuição da 

dissertação no desenvolvimento de um sistema inteligente, otimizado e de baixo custo 

computacional para diagnóstico de falhas de injeção em motores Diesel marítimos. 

Destaca-se a aplicabilidade da solução para sistemas embarcados em tempo real e o 

desempenho competitivo frente a algoritmos clássicos (SVM, K-NN e Random Forest). 
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Também são indicadas perspectivas para pesquisas futuras, como a expansão da 

metodologia para outros tipos de falhas mecânicas e a integração em sistemas autônomos 

de monitoramento. 

Por fim, a dissertação é complementada pelas Referências Bibliográficas 

(Capítulo 8) que sustentam a teoria da pesquisa. 
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2. REVISÃO BIBLIOGRÁFICA 
 

A seguir são apresentados trabalhos que serviram como embasamento para o 

desenvolvimento deste trabalho, onde são descritos detalhes de forma resumida da 

elaboração e resultados de diversos pesquisadores. Os assuntos tratados serão: métodos 

de diagnóstico de falhas de injeção, métodos de monitoração da condição de motor 

Diesel, métodos de detecção de falhas em injetores de motores a Diesel através da análise 

de vibração e o uso de sinais de vibração para monitorar o desempenho de um motor a 

combustão interna. 

No contexto da literatura técnica e acadêmica, diversos autores destacam que 

motores Diesel eletrônicos estão sujeitos a diferentes tipos de falhas, que podem 

comprometer tanto o desempenho quanto a confiabilidade do sistema. Essas falhas 

podem ser de natureza mecânica, elétrica, eletrônica, estrutural ou operacional, 

abrangendo desde desgaste de componentes móveis até defeitos em sensores e atuadores 

controlados pela unidade de gerenciamento eletrônico. A Tabela 1 sintetiza as principais 

falhas reportadas na literatura, apresentando uma visão organizada e referenciada das 

ocorrências mais comuns em motores Diesel eletrônicos. 

 

Tabela 1 - Falhas em motores Diesel eletrônicos organizadas por natureza (mecânicas, 
elétricas, eletrônicas, estruturais/instalação e operacionais/combustão), com 

referências de base da literatura técnica. 

Falhas em motores Diesel eletrônicos Referência bibliográfica 

Falhas mecânicas: desgaste de pistões, 

anéis, válvulas e bronzinas; perda de 

compressão; falha de lubrificação; 

travamento; falha em turbocompressor; 

trincas em cabeçote/bloco; válvulas 

queimadas ou mal assentadas 

Heywood, J. B. (2018). Internal 

Combustion Engine Fundamentals, 2nd Ed. 

McGraw-Hill 

Falhas operacionais/combustão: falhas 

de injeção (entupimento/desgaste); 

combustível contaminado; “wet 

stacking” (combustão incompleta em 

baixa carga); detonação/pré-ignição 

anômala 

Shirazi, S. A., et al. (2018). Mechanical 

Systems and Signal Processing; Zhao, H. 

(2009). Advanced Direct Injection 

Combustion Engine Technologies and 

Development. Woodhea 
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Falhas elétricas: bateria e alternador 

defeituosos; mau contato em cabos e 

conectores; curtos em chicotes expostos 

a calor e vibração 

Robert Bosch GmbH. (2004). Diesel 

Engine Management: Systems and 

Components. Wiley 

Falhas eletrônicas: sensores 

defeituosos (pressão, temperatura, 

rotação/cames); atuadores falhando 

(EGR, injetores); ECU/ECM com erro 

de firmware, sobreaquecimento ou 

memória corrompida; problemas de 

sincronização de sensores 

Mollenhauer, K., & Tschoeke, H. (2010). 

Handbook of Diesel Engines. Springer 

Falhas de instalação/estruturais: 

desalinhamento de eixos e suportes; 

vedação deficiente em juntas; fixação 

inadequada de sensores; ressonâncias 

estruturais causando vibração e trincas. 

Stone, R. (2012). Introduction to Internal 

Combustion Engines, 4th Ed. Palgrave 

Macmillan 

 

CHARLES et al. (2009) propuseram um método para detectar as vibrações 

torcionais do virabrequim de motores a Diesel, a fim de monitorar e melhorar o 

desempenho do motor em tempo real. 

Os autores explicam que as vibrações torcionais do virabrequim estão diretamente 

relacionadas às características da combustão do motor, como o tempo de início da 

combustão, a taxa de combustão e a estabilidade da combustão. Assim, a medição das 

vibrações torcionais pode fornecer informações úteis sobre a qualidade da combustão e 

o desempenho do motor. 

Para medir as vibrações torcionais do virabrequim, os autores utilizaram sensores 

de vibração fixados no virabrequim e em outras partes do motor. Eles analisaram as 

vibrações torcionais em diferentes condições de operação e correlacionaram as vibrações 

com as características da combustão medidas por outros sensores do motor, como 

sensores de pressão e temperatura. 

Os resultados mostraram que as vibrações torcionais do virabrequim podem ser 

usadas para monitorar e diagnosticar as características da combustão em motores a Diesel 

em tempo real. Os autores sugerem que a técnica de diagnóstico pode ser usada para 



24  

melhorar o desempenho do motor, ajustando os parâmetros de controle do motor com 

base nas informações fornecidas pelas vibrações torcionais do virabrequim. 

CHEN et al. (2015) aprimoraram um método de diagnóstico de falhas de ignição 

em motores de combustão interna, com base em modelos de simulação. Os autores 

explicam que a detecção precoce e precisa de falhas de ignição é essencial para o 

desempenho e a eficiência do motor, além de minimizar danos ao motor e reduzir 

emissões de poluentes. No entanto, as técnicas atuais de diagnóstico são limitadas pela 

complexidade do sistema e pela variabilidade das condições de operação. 

O método proposto pelos autores baseia-se em modelos de simulação do motor 

que incluem os efeitos da combustão, fluidodinâmica e termoquímica. O modelo é 

calibrado com dados experimentais para fornecer uma simulação precisa do motor e sua 

operação sob diferentes condições de operação. 

O método de diagnóstico usa um algoritmo de detecção de falhas que analisa os 

sinais de sensores do motor para detectar desvios dos valores esperados, indicando uma 

falha de ignição. Os sinais de sensor são comparados com as previsões do modelo de 

simulação para identificar a causa da falha de ignição, como o tempo de ignição ou a 

quantidade de combustível injetada. 

Os resultados experimentais mostraram que o método proposto tem melhor 

desempenho do que as técnicas atuais de diagnóstico de falhas de ignição em motores de 

combustão interna. Os autores concluem que o uso de modelos de simulação pode 

melhorar significativamente a precisão e a eficácia do diagnóstico de falhas de ignição 

em motores de combustão interna, permitindo melhorias no desempenho e na eficiência 

do motor. 

GAWANDE (2012) trata de um método de detecção de falhas em motores Diesel, 

utilizando o torque do motor e a medição da massa de ar. O método utiliza o torque do 

motor e a massa de ar para identificar possíveis falhas, como problemas de combustão, 

desgaste de pistões e falhas no sistema de injeção de combustível. Para isso, o método 

analisa as variações dessas grandezas em diferentes condições de operação do motor, e 

utiliza um modelo matemático para identificar as falhas. 

O artigo apresenta os resultados da aplicação do método em um motor Diesel de 

quatro tempos, e os resultados mostraram que o método foi capaz de identificar as falhas 

com alta precisão. Além disso, o método proposto é não invasivo e pode ser facilmente 

aplicado em motores Diesel, já que as grandezas utilizadas para a detecção das falhas são 

fáceis de medir. 
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JUNG (2015) desenvolveu um algoritmo de detecção de falhas de ignição em 

motores de combustão interna, utilizando análise quantitativa de desempenho de 

diagnóstico de falhas (FDI). O algoritmo proposto utiliza um modelo matemático do 

motor, juntamente com técnicas de análise de sinais, para identificar possíveis falhas de 

ignição. O desempenho do algoritmo é avaliado utilizando métricas de desempenho de 

diagnóstico de falhas, como a taxa de detecção de falhas (FDR) e a taxa de falso alarme 

(FAR). 

Os resultados da validação experimental mostram que o algoritmo proposto é 

capaz de detectar com sucesso as falhas de ignição em diferentes condições de operação 

do motor, com uma taxa de detecção de falhas superior a 90% e uma taxa de falso alarme 

abaixo de 1%. 

A principal contribuição do artigo é apresentar um algoritmo de detecção de 

falhas de ignição preciso e confiável, que pode ser útil para melhorar a eficiência 

energética e a confiabilidade de motores de combustão interna. Além disso, o uso de 

métricas quantitativas de desempenho de diagnóstico de falhas ajuda a avaliar 

objetivamente o desempenho do algoritmo e a compará-lo com outros métodos 

existentes. 

KLINCHAEAM (2009) descreve um método para monitorar a condição de um 

pequeno motor a gasolina de quatro tempos usando sinais de vibração. O artigo começa 

discutindo a importância da monitorização de condições em motores a combustão interna 

e os métodos disponíveis para fazer isso. Em seguida, o autor apresenta uma visão geral 

do motor de quatro tempos usado no estudo, juntamente com a configuração 

experimental e as técnicas de medição utilizadas. 

O método proposto para monitorar a condição do motor é baseado na análise do 

espectro de frequência dos sinais de vibração. As características do espectro são usadas 

para identificar padrões que indicam a condição do motor. Os autores usam o algoritmo 

de aprendizado de máquina SVM para classificar os padrões do espectro de frequência 

em três classes: normal, problema mecânico e problema de combustão. 

Os resultados mostram que o método proposto é capaz de identificar com precisão 

a condição do motor, mesmo com níveis baixos de vibração. O método também é capaz 

de detectar problemas em estágios iniciais, o que pode permitir a manutenção preventiva 

antes que ocorram danos mais graves. 

MEDEIROS et al. (2018) apresentaram uma técnica para detecção de falhas em 

injetores de motores a Diesel, utilizando a análise de vibração e nível de pressão sonora. 
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O objetivo do estudo é identificar falhas nos injetores de combustível em estágios iniciais, 

antes que essas falhas afetem o desempenho do motor e aumentem as emissões poluentes. 

O artigo apresenta resultados experimentais de testes realizados em um motor a Diesel 

com diferentes graus de contaminação nos injetores.  

Os resultados mostram que a técnica proposta é capaz de identificar com precisão 

as falhas nos injetores de combustível. O estudo é uma contribuição importante para o 

campo da detecção de falhas em motores a Diesel, podendo ajudar na prevenção de 

problemas de desempenho e emissões em motores a Diesel. 

SHIRAZI (2018) aborda a detecção de falhas na injeção de combustível em 

motores Diesel usando análise de vibração. O artigo propõe um método para detectar 

falhas em injetores de combustível, que podem levar a problemas como consumo 

excessivo de combustível, emissões poluentes e perda de potência. 

O método proposto usa sensores de vibração para medir a resposta do motor em 

diferentes frequências e extrai características de vibração relevantes para a detecção de 

falhas na injeção de combustível. Os autores do artigo apresentam resultados 

experimentais que demonstram a eficácia do método proposto em detectar falhas em 

injetores de combustível em um motor Diesel. 

TAGHIZADEH-ALISARAEI (2018) propuseram um método para detecção de 

falhas nos injetores de combustível em motores a Diesel, usando análise de vibração. O 

método proposto envolve o uso de um algoritmo de análise de componentes 

independentes (ICA) para decompor o sinal de vibração em componentes independentes, 

que são analisados em termos de sua energia e distribuição de frequência para identificar 

quaisquer anomalias nas características do sinal. 

Os autores do artigo apresentaram resultados experimentais que demonstraram a 

eficácia do método proposto na detecção de falhas nos injetores de combustível em um 

motor a Diesel. Além disso, eles compararam os resultados com outras técnicas de 

detecção de falhas de injetores e mostraram que o método proposto é mais preciso e eficaz 

do que as técnicas existentes. 

NARAYAN et al. (2019) investigaram a possibilidade de usar sinais de 

acelerômetro para monitorar a combustão em motores de combustão interna. No artigo, 

os autores descrevem como usaram um acelerômetro para medir as vibrações do motor 

durante o ciclo de combustão. Eles analisaram as características dessas vibrações, como 

amplitude, frequência e tempo de duração, e as correlacionaram com a qualidade da 

combustão. Para fazer isso, os autores realizaram uma série de testes em um motor de 
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quatro tempos e analisaram os sinais do acelerômetro em diferentes condições de 

operação do motor.  

Os resultados do estudo mostraram que os sinais do acelerômetro podem ser 

usados para monitorar a qualidade da combustão em motores de combustão interna. Os 

autores também compararam os resultados obtidos usando sinais do acelerômetro com 

os resultados obtidos usando outros métodos de monitoramento de combustão, como a 

medição da pressão do cilindro, e mostraram que os sinais do acelerômetro podem ser 

tão precisos quanto outros métodos mais tradicionais. 

JOHNSSON et al. (2006) apresentaram  um método para reconstruir a pressão do 

cilindro em motores de combustão interna a partir de sinais de vibração e velocidade. Os 

autores usaram uma rede de função de base radial (RBF) complexa para mapear os sinais 

de vibração e velocidade do motor para a pressão do cilindro. A rede foi treinada usando 

dados experimentais coletados de um motor de quatro tempos.  

Os resultados mostraram que o método proposto pode ser usado para reconstruir 

a pressão do cilindro com alta precisão. Os autores também compararam seus resultados 

com os obtidos usando outros métodos de reconstrução de pressão, como o método de 

filtragem de Kalman, e mostraram que o método proposto apresentou melhor 

desempenho. 

BUSINARO et al. (2015) apresentaram uma metodologia baseada em 

acelerômetros para estimar parâmetros de combustão em motores de combustão interna. 

Os autores propõem um modelo matemático que relaciona os sinais de aceleração do 

motor com a pressão média indicada e a taxa de liberação de energia no cilindro. O 

modelo é validado experimentalmente em um motor de quatro tempos, usando um sensor 

de pressão para calibrar os parâmetros do modelo.  

Os resultados mostram que a metodologia proposta é capaz de estimar a pressão 

média indicada e a taxa de liberação de energia com boa precisão em uma ampla gama 

de condições de operação do motor. Além disso, a metodologia apresenta vantagens em 

relação a métodos convencionais, pois não requer a instalação de sensores intrusivos no 

cilindro. 

ZHU et al. (2007) apresentaram uma metodologia para estimar a pressão no 

cilindro de um motor Diesel usando sinais de vibração do cabeçote do motor. Os autores 

propõem um modelo matemático que relaciona a pressão no cilindro com os sinais de 

vibração do cabeçote. A técnica é baseada em um método de análise de séries temporais 

chamado método de decomposição empírica (EMD), que é capaz de separar os diferentes 
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componentes dos sinais de vibração. O modelo é testado em um motor Diesel de quatro 

tempos e os resultados mostram que a metodologia é capaz de estimar a pressão no 

cilindro com precisão. Além disso, a técnica proposta apresenta vantagens em relação a 

métodos convencionais, pois não requer a instalação de sensores intrusivos no cilindro. 

DEJONG (1986) discutiu o uso de sinais de vibração para monitorar o 

desempenho de um motor de combustão interna. O autor apresenta um método para 

analisar os sinais de vibração gerados pelo motor e identificar possíveis falhas no sistema. 

O método envolve a utilização de sensores de vibração colocados em diferentes pontos 

do motor, que registram os sinais de vibração durante a operação. Os sinais são então 

analisados em termos de sua amplitude, frequência e forma de onda para identificar 

padrões que indicam possíveis falhas, como desequilíbrio no motor ou problemas com 

os sistemas de lubrificação e combustível.  

O autor também discute a importância do monitoramento contínuo do motor para 

evitar falhas catastróficas que possam levar a danos no motor ou acidentes. Ele sugere 

que o uso de sinais de vibração pode ser uma ferramenta útil para a detecção precoce de 

falhas, permitindo que sejam tomadas medidas corretivas antes que a falha se torne 

crítica. 

LYON (1988) apresentou um método para detectar e isolar falhas em motores a 

Diesel por meio do monitoramento de sinais de vibração. O autor propõe um sistema de 

análise de vibração baseado em computador para a identificação de padrões 

característicos de falhas em um motor. O método emprega técnicas de análise espectral 

e estatística para detectar anomalias nos sinais de vibração do motor, que são causados 

por falhas em componentes individuais. Esses padrões são então comparados com uma 

biblioteca de padrões previamente identificados para isolar a falha. O autor testou o 

método em um motor Diesel de quatro cilindros e demonstrou a eficácia da técnica na 

detecção e localização de falhas em componentes individuais do motor, incluindo 

injetores de combustível, bombas de óleo e válvulas de admissão e escape. 

MACIÁN et al. (2005) apresenta uma metodologia para detecção de falhas de 

injeção em motores Diesel com base na análise de frequência da velocidade instantânea 

do turbocompressor. A abordagem proposta utiliza a transformada de Fourier para extrair 

informações espectrais da vibração do turbocompressor e analisa a presença de 

harmônicos relacionados com o número de cilindros do motor. Com base na análise dos 

componentes espectrais, a metodologia pode detectar falhas de injeção em cilindros 

individuais e até mesmo identificar o tipo de falha.  
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A técnica proposta é validada em um motor Diesel de quatro cilindros, 

demonstrando alta eficácia na detecção de falhas de injeção. Além disso, o artigo 

apresenta uma técnica de correção de falhas de injeção por meio da variação do sinal de 

controle da bomba de combustível, baseada na identificação do tipo de falha. Os 

resultados experimentais mostram que a abordagem proposta é capaz de corrigir as falhas 

de injeção detectadas com precisão. 

Vibration Signal Analysis for Condition Monitoring of Diesel Engines" de 

Ferdinando Taglialatela-Scafati e Mario Lavorgna descreve uma abordagem para 

monitorar o estado de motores Diesel por meio da análise de sinais de vibração. O 

objetivo do estudo é desenvolver uma metodologia eficiente de monitoramento de 

motores Diesel que possa detectar falhas em estágios iniciais, permitindo a manutenção 

preventiva e reduzindo custos.  

Os autores propõem um método de análise de sinais de vibração baseado em três 

etapas: (1) extração de características dos sinais, (2) seleção das características mais 

importantes e (3) classificação das amostras de sinais de vibração em classes saudáveis 

ou não saudáveis. A extração de características é realizada por meio de técnicas de 

processamento de sinal, como transformada de Fourier, transformada Wavelet e análise 

de componentes principais. A seleção das características mais importantes é feita 

utilizando algoritmos de seleção de características, e a classificação é realizada por meio 

de algoritmos de aprendizado de máquina, como a regressão logística e as redes neurais.  

Os resultados do estudo mostram que a abordagem proposta pode ser eficaz para 

detectar falhas em motores Diesel com base em sinais de vibração. A precisão da 

metodologia proposta foi avaliada em um experimento com um motor Diesel em 

funcionamento, onde foi possível detectar falhas de maneira eficiente. O estudo sugere 

que a análise de sinais de vibração pode ser uma ferramenta útil para o monitoramento e 

manutenção de motores Diesel. 

THARANGA et al. (2020) apresentam um estudo aprofundado sobre o uso de 

sinais de vibração para diagnóstico de falhas em motores Diesel, explorando como 

diferentes fenômenos internos, como variação de pressão de combustão, desequilíbrios 

mecânicos e falhas de componentes móveis, geram assinaturas vibracionais 

características. O trabalho destaca a relevância do ponto morto superior (TDC) como 

referência fundamental para correlacionar eventos de combustão, abertura e fechamento 

de válvulas e injeção de combustível ao longo do ciclo do motor. 
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O estudo aborda especificamente três falhas comuns: folga excessiva de válvulas, 

fenômeno de piston slap (impacto do pistão contra o cilindro) e falhas de injeção de 

combustível. Para cada uma delas, os autores descrevem como essas anomalias afetam a 

assinatura de vibração do motor e apresentam técnicas de análise no Domínio do Tempo 

e do ângulo do eixo de manivelas para sua identificação. Além disso, enfatizam a 

importância de métodos de separação de fontes e extração de características para 

distinguir sinais de combustão de ruídos mecânicos, aumentando a precisão do 

diagnóstico. 

Os resultados discutidos indicam que o monitoramento por vibração, quando 

devidamente correlacionado a diagramas de sincronismo de válvulas e injeção, permite 

detectar e classificar falhas com alta confiabilidade, representando uma alternativa viável 

e menos intrusiva em relação a sensores de pressão diretos. O estudo contribui para o 

avanço da manutenção preditiva em motores Diesel, fornecendo diretrizes práticas para 

correlacionar assinaturas vibracionais com condições de operação e falhas específicas. 

MORAES et al. (2024) apresentam uma metodologia inovadora para 

classificação de falhas em motores Diesel com base na análise de sinais de vibração no 

Domínio do Tempo, utilizando técnicas de processamento de sinais e CNN. O estudo 

parte do desafio de superar limitações de métodos tradicionais de diagnóstico, que 

exigem desligamentos dispendiosos e alto conhecimento técnico para interpretar 

medições complexas, como termografia e ultrassom. 

A proposta utiliza dados simulados de vibração torcional do virabrequim de um 

motor marítimo de seis cilindros, gerados por modelos termodinâmicos e de massa 

concentrada validados com dados do fabricante. As condições simuladas incluem 

operação normal e três falhas representativas: redução da pressão de admissão de ar, 

queda de pressão de compressão e falhas na quantidade de combustível injetado. Esses 

sinais são processados por transformada de Fourier de curto prazo (STFT) e transformada 

wavelet contínua (CWT), convertendo-os em espectrogramas e escalogramas que 

alimentam uma CNN para a classificação automática das falhas. 

Os resultados mostraram acurácia de 96,5% para dados processados via STFT e 

92,2% para dados via CWT, mantendo desempenho acima de 70% mesmo sob condições 

de ruído elevado (até 40%). A pesquisa demonstra o potencial do uso combinado de 

transformadas tempo-frequência e CNN para diagnósticos robustos e em tempo real, 

oferecendo uma alternativa mais acessível e menos intrusiva para monitoramento 

preditivo de motores Diesel em ambientes industriais. 
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GUERRA (2023) conduziu um estudo voltado ao diagnóstico de falhas de ignição 

em motores Diesel marítimos utilizando sinais de vibração combinados a técnicas de 

Aprendizado de Máquinas (AM). A pesquisa, motivada pela necessidade de soluções 

eficazes em manutenção preditiva no setor naval, visou reduzir custos operacionais e 

ampliar a disponibilidade das embarcações por meio da detecção precoce de falhas. Para 

isso, foram coletados sinais de vibração por meio de quinze acelerômetros piezoelétricos 

instalados no bloco do motor, abrangendo condições normais de funcionamento e falhas 

induzidas pelo corte da injeção de combustível. 

O processamento dos dados incluiu extração de dezoito características estatísticas 

no Domínio do Tempo, normalização e remoção de outliers, seguido da aplicação de 

algoritmos de classificação supervisionada, como K-NN, RF e SVM. Os resultados 

evidenciaram elevado desempenho dos modelos, alcançando F1-Score próximo a 100%, 

demonstrando a eficiência da abordagem proposta para identificação e classificação das 

falhas. 

Um diferencial importante do trabalho foi a análise sobre a redução do número 

de sensores necessários para o diagnóstico. Com o uso do método Relief-F e análise 

combinatória, verificou-se que apenas dois acelerômetros seriam suficientes para manter 

a acurácia acima de 95%, o que viabiliza a aplicação do método em contextos reais, nos 

quais a simplicidade da instrumentação e o menor custo são fatores decisivos. 

Assim, o estudo de GUERRA (2023) representa uma contribuição significativa 

para a área de monitoramento e diagnóstico de motores marítimos, evidenciando o 

potencial das técnicas de aprendizado de máquina em aplicações práticas e reforçando 

sua importância para o desenvolvimento de estratégias modernas de manutenção 

preditiva no ambiente naval. 

AYANKOSO et al. (2024) realizaram uma análise comparativa detalhada sobre 

o uso de sinais de vibração e corrente elétrica para o diagnóstico de falhas em motores 

de indução, aplicando técnicas de aprendizado profundo e de aprendizado de máquina. O 

estudo teve como foco avaliar se os sinais de corrente, os quais possuem menores custo 

e instalação não intrusiva, poderiam substituir de forma eficaz os sinais de vibração que 

seriam mais onerosos e complexos de instalar. As falhas investigadas incluíram 

desalinhamento e defeitos em rolamentos, sendo os experimentos conduzidos em várias 

condições de carga e velocidade para garantir a diversidade dos cenários industriais. 

A metodologia envolveu a aplicação de redes neurais convolucionais 

unidimensionais e bidimensionais diretamente sobre os sinais brutos, além de algoritmos 
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de aprendizado de máquina clássicos, como RF e Extreme Gradient Boosting (XGBoost). 

Estes últimos foram treinados com características extraídas por meio da transformada 

rápida de Fourier (FFT) e da decomposição por wavelet discreta (DWT). Os resultados 

mostraram que os sinais de vibração apresentaram desempenho significativamente 

superior, atingindo acurácia próxima a 100% na classificação das falhas, enquanto os 

sinais de corrente, mesmo após processamento avançado, atingiram acurácia máxima de 

87,41%. 

Os achados reforçam que, embora os sinais de corrente possam ser considerados 

promissores em cenários que priorizam simplicidade e baixo custo, os sinais de vibração 

continuam sendo mais eficazes para a detecção de falhas mecânicas em motores de 

indução. Este estudo contribui para o avanço da literatura ao esclarecer as vantagens e 

limitações de cada abordagem, fornecendo subsídios para decisões mais informadas na 

implementação de sistemas de monitoramento preditivo. 

NEUPANE et al. (2025) realizaram uma revisão extensa e atualizada sobre 

métodos de diagnóstico de falhas em máquinas baseados em dados, destacando o impacto 

do avanço dos sensores industriais e do crescimento do big data na área de manutenção 

preditiva. Os autores analisam como essas tecnologias têm viabilizado diagnósticos mais 

rápidos e precisos, favorecendo a detecção precoce de falhas e a otimização do 

desempenho de sistemas industriais complexos. 

O estudo abrange tanto abordagens tradicionais, fundamentadas em modelos 

físicos e especialistas, quanto técnicas avançadas de aprendizado de máquina e 

aprendizado profundo, CNNs, redes recorrentes (RNN), autoencoders e novas 

metodologias como Transfer Learning, Reinforcement Learning e Federated Learning. 

Além disso, os autores apresentam uma taxonomia detalhada das técnicas existentes, 

discutindo seus pontos fortes e limitações, bem como desafios práticos, como a escassez 

e o desequilíbrio de dados, sinais ruidosos e a dificuldade de generalização dos modelos 

em diferentes cenários operacionais. 

Outro aspecto relevante do trabalho é a análise de diversas bases de dados 

classificando-as de acordo com o tipo de sinal (vibração, corrente, acústico ou térmico) 

e sua aplicação em diagnóstico e prognóstico. Os autores enfatizam que a integração de 

múltiplas fontes de dados e técnicas de pré-processamento pode ampliar a robustez e 

confiabilidade dos sistemas de monitoramento. 

JABER (2024) propôs uma abordagem baseada exclusivamente em sinais no 

domínio do tempo para a detecção de falhas em mancais. O trabalho explora uma 
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limitação recorrente na literatura: embora análises nos domínios da frequência e tempo-

frequência sejam reconhecidamente eficazes, sua alta complexidade computacional 

compromete aplicações em tempo real. Jaber aborda este desafio propondo a extração de 

14 características estatísticas temporais (como RMS, curtose, assimetria, entre outras) e 

a aplicação de técnicas de seleção de atributos (Information Gain e Fast Correlation-

Based Filter – FCBF), com o objetivo de identificar os melhores preditores para alimentar 

algoritmos de aprendizado de máquina. 

Entre os modelos testados (k-Nearest Neighbors – kNN, Support Vector 

Machines – SVM e Naïve Bayes), o classificador kNN combinado com FCBF (kNN-

FCBF) apresentou desempenho superior, atingindo 99,1% de AUC e 97% de acurácia. O 

estudo evidencia que, mesmo com a simplicidade da análise no domínio do tempo, é 

possível obter diagnósticos robustos e eficientes, desde que as características mais 

relevantes sejam selecionadas de forma adequada. 

MAIONE et al. (2025) propõem uma metodologia inovadora de aprendizado 

profundo para à previsão de séries temporais em motores Diesel marítimos, com o 

objetivo de antecipar o comportamento dinâmico desses sistemas. O método combina 

redes neurais recorrentes (RNN) com mecanismos de atenção temporal, permitindo à 

rede focar seletivamente nos padrões mais relevantes das sequências de entrada ao longo 

do tempo. 

O modelo foi testado utilizando dados operacionais reais provenientes de sensores 

instalados em motores marítimos, abrangendo variáveis como pressão, temperatura, 

rotação e vibração. Um dos destaques do estudo é a capacidade de previsão multi-

horizonte, ou seja, o modelo não apenas prevê um único passo à frente, mas consegue 

antecipar diversos instantes futuros, o que é fundamental para o planejamento de ações 

corretivas em sistemas navais. Os resultados indicaram elevada acurácia preditiva e baixa 

variância nos erros, mesmo diante de ruídos nos dados e variações operacionais típicas 

de ambientes marítimos. 
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3. FUNDAMENTAÇÃO TEÓRICA 
 

O presente capítulo tem como principal objetivo estabelecer as bases conceituais 

que sustentam o desenvolvimento da dissertação. Para isso, apresenta os fundamentos da 

análise de vibração nos domínios do tempo e da frequência, destacando como essas 

abordagens permitem identificar padrões relacionados a falhas de injeção em motores 

Diesel. Também introduz conceitos estatísticos aplicados ao processamento de sinais, 

incluindo distribuições probabilísticas, medidas de tendência central e variabilidade, 

além do impacto de outliers na qualidade dos dados. Outro ponto essencial é a discussão 

da maldição da dimensionalidade e das técnicas de extração e seleção de características 

(algoritmo Relief-F), fundamentais para reduzir redundâncias e melhorar a eficiência dos 

modelos. Por fim, o capítulo aborda os princípios do aprendizado supervisionado, do 

equilíbrio bias-variance e da regularização, fornecendo a fundamentação necessária para 

a aplicação das Redes Neurais Artificiais na classificação de falhas. 

 

3.1. Análise das Assinaturas de Vibração 
 

Nesta seção serão apresentados os fundamentos da interpretação dos sinais 

vibracionais em motores Diesel marítimos. Para isso, descreve a relação entre os 

domínios do tempo e da frequência, destacando como cada um evidencia diferentes 

aspectos do comportamento dinâmico do sistema. O texto ressalta a importância da 

Transformada Rápida de Fourier (FFT) como ferramenta para converter sinais temporais 

em espectros de frequência, possibilitando identificar componentes harmônicos e padrões 

de falha. Além disso, enfatiza que a análise combinada dos domínios no tempo e no 

domínio da frequência oferece diagnósticos mais completos e robustos, essenciais para 

detectar com precisão falhas de injeção. 

 

3.1.1. Relação entre o Domínio do Tempo e o Domínio da Frequência na Análise de 
Vibração  
 
A análise de sinais pode ser realizada em diferentes domínios, sendo os mais 

relevantes o Domínio do Tempo e o Domínio da Frequência. O Domínio da Frequência 

é onipresente na natureza e na engenharia, embora nem sempre seja referido 

explicitamente como tal. Por exemplo, fenômenos como luz, cor e som são 

manifestações diretas de frequências específicas, mas na linguagem cotidiana nos 
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referimos a eles por seus efeitos perceptíveis, e não pelo termo técnico "frequência" 

(TAYLOR, 1994).  

A percepção sonora humana está limitada ao intervalo de aproximadamente 20 

Hz a 2000 Hz, denominado "faixa audível" (RANDALL, 2011). Sons de baixa 

frequência, como os emitidos por um cantor barítono, contrastam com sons de alta 

frequência, exemplificados pelo alcance vocal de um soprano em óperas. Tal distinção 

evidencia a importância da frequência na caracterização de fenômenos vibracionais.  

A escolha entre realizar a análise no Domínio do Tempo ou no Domínio da 

Frequência depende das características do fenômeno e do objetivo do diagnóstico. 

Informações como a duração de eventos são mais bem descritas no Domínio do Tempo, 

enquanto a estrutura interna e periódica de sinais, especialmente em sistemas rotativos, 

revela-se mais nitidamente no Domínio da Frequência (TAYLOR, 1994).  

Na engenharia de manutenção preditiva, por exemplo, falhas mecânicas podem 

não ser visíveis a olho nu, tampouco audíveis, devido a limitações fisiológicas ou à 

presença de ruídos mascarantes. Ainda que o operador relate que "não vê nada de errado" 

ou que "o som parece normal", a falha pode estar presente, porém fora do alcance 

sensorial humano, ou superposta a outros sinais (TAYLOR, 1994).  

Análises como o diagnóstico de desbalanceamento podem ser inicialmente 

realizadas no Domínio do Tempo. Contudo, sinais provenientes de máquinas rotativas 

são geralmente complexos, exigindo a transformação para o Domínio da Frequência, a 

fim de facilitar a identificação de componentes harmônicos e padrões de falha 

(RANDALL, 2011). Realizar a análise exclusivamente no Domínio da Frequência, 

contudo, pode gerar interpretações equivocadas, sendo recomendada a avaliação 

conjunta de ambos os domínios para uma interpretação completa e precisa.  

A conversão de um sinal do Domínio do Tempo para o Domínio da Frequência 

é realizada por meio da FFT (FOURIER, 1822). Entretanto, a ampla aplicação desta 

técnica só foi possível após o advento da computação digital, que permitiu a execução 

rápida e precisa de cálculos anteriormente impraticáveis.  

A Figura 1 representa de forma integrada as duas visões de um mesmo sinal. O 

Domínio do Tempo em que a amplitude do sinal é plotada em função do tempo, 

permitindo observar diretamente seus picos, vales e eventuais transientes e o Domínio 

da Frequência onde é obtido pela aplicação da FFT às oscilações temporais, onde cada 

pico espectral indica a presença de um componente periódico em determinada 

frequência. 
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Figura 1 - Diagrama da Relação entre o Domínio do Tempo e o Domínio da 

Frequência 

 

A compreensão dessa relação é fundamental para o desenvolvimento de 

diagnósticos robustos em sistemas mecânicos complexos, como motores Diesel 

marítimos, onde a identificação precisa de falhas de injeção ou de desequilíbrios 

estruturais depende diretamente da adequada interpretação dos sinais vibracionais em 

múltiplos domínios. 

 

3.1.2. Estatística Aplicada ao Processamento de Sinais  
 
A modelagem estatística e os métodos de aprendizado supervisionado requerem 

uma compreensão sólida dos princípios fundamentais da teoria das probabilidades, dado 

que tais fundamentos são essenciais para a construção e interpretação de modelos 

preditivos baseados em dados. IVEZIC et al. (2014) oferecem uma abordagem 

abrangente e didaticamente estruturada sobre as principais distribuições probabilísticas 

aplicáveis ao contexto do aprendizado de máquina, com destaque para sua aplicação no 

tratamento de sinais reais, como os oriundos de vibrações em motores Diesel marítimos.  

A distribuição de probabilidade 𝑃(𝑥) representa a frequência relativa esperada 

de ocorrência de um evento aleatório. Em sistemas embarcados sujeitos a ruído, 

instabilidades térmicas e condições operacionais variáveis, como os motores Diesel 

marítimos, a modelagem estocástica dos sinais de vibração é indispensável para 

representar incertezas e fornecer fundamentos para inferências estatísticas e algoritmos 

de aprendizado.  
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A referida seção distingue entre distribuições discretas - como a binomial e a de 

Poisson - e contínuas, dentre as quais se destacam a distribuição normal e a exponencial. 

Essas últimas são particularmente adequadas para modelar variáveis físicas contínuas, 

tais como acelerações e amplitudes de vibração.  

A distribuição normal (Gaussiana) assume papel central no aprendizado 

supervisionado ao modelar ruídos e erros de medição, fornecendo base teórica para 

hipóteses de normalidade em diversos algoritmos. Sua função de densidade de 

probabilidade (PDF) é dada pela Eq. (3.1):  

 

 𝑓!(𝑥) = 	(
1

σ√2π
. · 	𝑒"

("	$	%)'

'	·	)'  (3. 1) 

 

em que 𝜇 representa a média e 𝜎# a variância da distribuição (IVEZIC et al., 

2014).  

A distribuição exponencial, por sua vez, é frequentemente utilizada para modelar 

o tempo entre eventos sucessivos, como falhas de componentes, e é definida pela Eq. 

(3.2):  

 

 𝑓(𝑥|λ) = 	λ𝑒"$% , 𝑥	 ≥ 	0 (3. 2) 

 

em que 𝑥 é a variável aleatória contínua que representa o tempo até a ocorrência de um 

evento e λ é o parâmetro da taxa da distribuição exponencial, também chamado de taxa 

de falhas ou intensidade. Ele indica a frequência média com que os eventos ocorrem por 

unidade de tempo e quanto maior λ mais rápido os eventos tendem a ocorrer 

 

Essas distribuições possibilitam a definição de modelos probabilísticos a priori e 

a posteriori — conceito fundamental em abordagens bayesianas e aplicado no processo 

de otimização de hiperparâmetros, como adotado neste trabalho.  

Adicionalmente, são introduzidas medidas estatísticas derivadas, tais como 

média, mediana, variância, desvio padrão, curtose etc., largamente utilizadas neste 

estudo para extração de características nos Domínios do Tempo e da Frequência. Parte-

se da premissa de que distintos estados operacionais do motor, como falhas ou 

funcionamento normal, manifestam-se por meio de alterações nas propriedades 
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estatísticas dos sinais. Assim, a análise de distribuições auxilia na redução de ruído e na 

identificação de padrões informativos relevantes que alimentam as RNAs.  

A probabilidade condicional permite o mapeamento 𝑃(𝑦|𝑥), onde 𝑥 representa o 

vetor de características extraídas dos sinais de vibração e 𝑦 refere-se à classe associada 

à condição do motor (normal ou com falha de injeção). Essa estrutura probabilística 

fundamenta a escolha da função de custo por entropia cruzada, bem como o uso de 

validação cruzada como técnica para maximizar a capacidade de generalização do 

modelo.  

 

3.1.3. Análise de Outliers 
 
A presença de outliers - observações que se desviam significativamente do 

padrão esperado dos dados - constitui uma das principais fontes de degradação do 

desempenho de algoritmos de aprendizado supervisionado, especialmente em sistemas 

sensíveis como os modelos baseados em RNAs. De acordo com AGGARWAL (2017), 

a identificação e o tratamento de outliers são essenciais para garantir a qualidade dos 

dados e a estabilidade dos modelos preditivos.  

A definição estatística clássica de outlier baseia-se na probabilidade de 

ocorrência de uma amostra sob uma distribuição presumida. Por exemplo, para uma 

variável contínua normalmente distribuída, um ponto de dado 𝑥 pode ser considerado 

um outlier se obedecer a seguinte condição, conforme Eq. (3.3): 

 

	 |𝑥	 − 	µ| > λ − 	σ	 (3.3)	

	

em que µ é a média, σ é o desvio padrão e λ é um fator de limiar. Este critério é 

relacionado diretamente à análise univariada, mas pode ser estendido ao espaço 

multidimensional por meio da distância de Mahalanobis, apresentada na Eq. (3.4): 

 

	 𝐷&(%) = ?(𝑥	– 	µ))å			"+(𝑥	– 	µ) (3.4)	

 

onde å  representa a matriz de covariância do conjunto de dados (AGGARWAL, 

2017). 

Neste contexto, que envolve sinais de vibração no Domínio do Tempo e da 

Frequência, a integridade estatística dos dados é crítica. Os métodos de extração de 
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características como curtose, skewness, RMS e outros momentos estatísticos são 

altamente sensíveis a valores extremos. Assim, a presença de outliers pode induzir a um 

sobreajuste das RNAs, prejudicando a capacidade de generalização do modelo. 

AGGARWAL (2017) também classifica os métodos de detecção de outliers em 

quatro categorias principais: Métodos Estatísticos Paramétricos (baseados na hipótese 

de distribuição; Métodos Baseados em Distância (como o DBSCAN e a distância de 

Mahalanobis); Métodos Baseados em Densidade (como o Local Outlier Factor - LOF); 

e os Métodos Baseados em Modelos (incluindo redes neurais autoencoders e SVMs). 

Neste estudo, a utilização de técnicas estatísticas robustas, como o método de 

quartis com limiares ajustáveis (e.g., método Clip no MATLAB), permite a mitigação 

do efeito de valores extremos antes da alimentação dos dados à rede neural. Essa 

abordagem também facilita a conformidade dos dados com os pressupostos das técnicas 

de normalização e validação cruzada aplicadas no processo de treinamento da RNA. 

 

3.1.4. “Maldição da Dimensionalidade” 
 
A “maldição da dimensionalidade” (curse of dimensionality) é um dos desafios 

centrais no aprendizado de máquina e na mineração de dados, com impacto direto na 

modelagem preditiva e na análise estatística em espaços de alta dimensionalidade. 

Conceituada inicialmente por BELLMAN (1961) no âmbito do controle dinâmico, essa 

expressão descreve a degradação exponencial do desempenho de métodos numéricos à 

medida que aumenta o número de variáveis de entrada (características) (HASTIE et al., 

2009; TAN et al. 2018). 

No contexto da aprendizagem supervisionada, tal fenômeno decorre do 

crescimento exponencial do volume do espaço de busca em função da dimensionalidade 

𝑝, o que acarreta dispersão amostral e redução drástica da densidade efetiva de dados. 

Considerando uma unidade cúbica 	[0,1],, onde 𝑝 é o número de dimensões, o volume 

necessário para cobrir uma fração significativa do espaço aumenta drasticamente com 𝑝. 

Por exemplo, para cobrir 1% do volume de um espaço de entrada em 𝑝 = 10 dimensões 

com uma hiper esfera centrada, seu raio precisa ser de aproximadamente 0,52, o que 

representa mais da metade da faixa total de cada variável (HASTIE et al., 2009). 

Esse efeito é formalmente expresso pela Eq. (3.5): 

 

	 𝑁-./,01- ∝ 	 ϵ"2 (3. 5)	
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em que 𝑁-./,01- é o número de amostras necessário para manter a resolução, ϵ é a 

resolução desejada e 𝑝 é o número de dimensões. Além das implicações estatísticas, a 

maldição da dimensionalidade compromete algoritmos baseados em distâncias, como k-

NN e SVM. Em alta dimensionalidade, a razão entre a menor e a maior distância entre 

amostras tende a 1, conforme Eq. (3.6): 

 

	 lim
,→4

𝑚𝑖𝑛 ∥ 𝑥5 − 𝑥6 ∥
𝑚𝑎𝑥 ∥ 𝑥5 − 𝑥6 ∥

→ 1 (3.6)	

 

Esse comportamento reduz a capacidade discriminativa dos classificadores, tornando 

inviável a separação eficiente de classes com base em métricas de proximidade. 

No presente estudo, que envolve sinais de vibração com alto número de 

características extraídas nos Domínios do Tempo, Frequência e Tempo-Frequência, a 

maldição da dimensionalidade torna-se um desafio comum.  

Portanto, a compreensão e o tratamento adequado da maldição da 

dimensionalidade foram essenciais para garantir a robustez e a eficiência de sistemas 

preditivos baseados em RNAs, particularmente no contexto deste estudo de detecção de 

falhas com múltiplas variáveis descritivas. 

Para mitigar a maldição da dimensionalidade, foram adotadas estratégias 

amplamente recomendadas na literatura (GUYON et al., 2003), tais como: 

 

• Seleção de características fundamentada em heurísticas estatísticas, visando 

reduzir o espaço de busca sem perda de informação relevante; 

• Regularização por meio de hiperparâmetros, como 𝜆, para controle da 

complexidade do modelo e prevenção de overfitting; e 

• Validação cruzada (cross-validation) para avaliação robusta da capacidade de 

generalização. 

 

Assim, a compreensão e o tratamento sistemático da maldição da 

dimensionalidade não apenas viabilizaram a construção de um sistema de detecção de 

falhas robusto e eficiente, mas também asseguraram alinhamento com as melhores 

práticas do estado da arte, garantindo maior confiabilidade e reprodutibilidade dos 

resultados obtidos. 
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3.2. Extração de Características 
 

A extração de características constitui uma etapa fundamental no processo de 

diagnóstico de falhas em sistemas rotativos, uma vez que transforma sinais brutos em 

representações informativas e discriminativas para os algoritmos de aprendizado 

supervisionado. MARTINS et al. (2021) enfatizam esse processo como central na 

eficácia do método proposto, denominado Hierarchical Decision Architecture (HDA), o 

qual depende fortemente da qualidade das características para realizar a classificação de 

falhas combinadas em máquinas rotativas. 

No contexto da análise de vibrações, as características são extraídas a partir do 

sinal no Domínio do Tempo e da Frequência. Essas métricas traduzem aspectos físicos 

e estatísticos do comportamento dinâmico da máquina e permitem a discriminação entre 

diferentes condições de falha. 

Neste trabalho, adotou-se uma abordagem sistemática para a extração de 

atributos estatísticos tanto no Domínio do Tempo quanto no Domínio da Frequência, 

com o intuito de capturar, de forma abrangente, as nuances do comportamento dinâmico 

do sistema sob diferentes condições operacionais. 

No Domínio do tempo, as características foram extraídas diretamente do sinal 

bruto de aceleração registrado pelos acelerômetros. As Características Descritivas foram 

relacionadas na Tabela 2. Essas métricas foram aplicadas sobre vetores de amostras 

segmentados em janelas temporais fixas, o que permite capturar as variações 

instantâneas no comportamento vibracional do motor. 

Complementarmente, no Domínio da Frequência, as mesmas estatísticas foram 

computadas sobre os espectros de magnitude obtidos pela aplicação da FFT. O objetivo 

foi evidenciar padrões de frequência associados às falhas de injeção, muitas vezes 

mascarados no Domínio do Tempo. A Tabela 3 apresenta as expressões matemáticas 

utilizadas na extração dessas características, aplicadas ao vetor espectral. 

As fórmulas utilizadas em ambos os domínios seguem uma abordagem 

padronizada, garantindo consistência e comparabilidade entre os parâmetros extraídos. 

Dessa maneira, as características utilizadas no presente estudo representam uma 

base sólida para o treinamento, validação e teste dos modelos de RNA, contribuindo 

significativamente para a acurácia na identificação de falhas de injeção em motores 

Diesel marítimos. 

 



42  

Tabela 2 - Características Estatísticas Extraídas no Domínio do Tempo 

Características Definição 

1. Média 𝑀É𝐷𝐼𝐴 =
1
𝐿Y𝑥5

7

58+

 

2. RMS 𝑅𝑀𝑆 = \
1
𝐿 ]Y

(𝑥5)#
7

58+

^ 

3. Desvio Padrão 𝐷𝑃𝐷 = √𝑉𝐴𝑅 

4. Pico PICO = max	(𝑎𝑏𝑠{𝑥5}) 

5. Assimetria 𝐴𝑆𝑀 =
1
𝐿Yj

k𝑥5 −𝑀É𝐷𝐼𝐴l
𝐷𝑃𝐷 m

97

58+

 

6. Curtose 𝐶𝑈𝑅 =
1
𝐿Yj

(𝑥5 −𝑀𝐸𝐴𝑁)
𝐷𝑃𝐷 m

:7

58+

− 3 

7. Fator de Crista 𝐹𝐶 =
𝑚𝑎𝑥
𝑅𝑀𝑆 

8. Fator de Folga 𝐶𝐹 =
𝑚𝑎𝑥

+
7
∑ (𝑥5)#7
58+

 

9. Fator de Forma 𝐹𝐹 =
𝑅𝑀𝑆

+
7
∑ |𝑥5|7
58+

 

10. Fator de Impulso 𝐹𝐼 =
𝑚𝑎𝑥

+
7
∑ |𝑥5|7
58+

 

11. Pico a Pico PAP = max	{𝑥5} − min	{𝑥5} 

12. Valor Mínimo MIN = min	{𝑥5} 

13. Soma 𝑆𝑂𝑀𝐴 =Y𝑥5

7

58+

 

14. Variância 𝑉𝐴𝑅 =
1
𝐿Yk𝑥5 −𝑀É𝐷𝐼𝐴l

#
7

58+

 

15. Erro Padrão 𝐸𝑃𝐷 =
𝐷𝑃𝐷
√𝐿

 

16. Mediana 𝑀𝐸𝐷𝐼𝐴𝑁𝐴 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑎(𝑥5) 
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17. Energia 𝐸𝑁𝐸𝑅𝐺𝐼𝐴 =Y|𝑥5|#
7

58+

 

18. Entropia 𝐸𝑁𝑇𝑅𝑂𝑃𝐼𝐴 = −Y𝑝(𝑐5)𝑙𝑜𝑔#𝑝(𝑐5)
7

58+

 

19. Moda 𝑀𝑂𝐷𝐴 = 𝑚𝑜𝑑𝑎(𝑥5) 

20. Variação Absoluta 𝐴𝑉 =Y|𝑥+;+ − 𝑥5|
7"+

58+

 

21. Variação Percentual 𝑃𝑉 = (
𝐴𝑉
𝐿 . ∗ 100 

22. Valor Absoluto Médio 𝑀𝐴𝑉 =
1
𝐿Y

|𝑥5|
7

58+

 

23. Valor Absoluto da Soma 𝑆𝐴𝑉 =Y|𝑥5|
7

58+

 

24. Valor Quadrático Médio 𝑀𝑆𝑉 =
1
𝐿Y𝑥5#

7

58+

 

25. Valor Quadrático da Soma 𝑆𝑆𝑉 =Y𝑥5#
7

58+

 

26. Coeficiente de Variação 𝐶𝑉 = (
𝑆𝑇𝐷
𝑀𝐸𝐴𝑁. ∗ 100 

27. Erro Padrão da Média 𝑆𝐸𝑀 =
𝑆𝑇𝐷
√𝐿

 

 

onde 𝑥5 representa o valor correspondente a cada amostra 𝑖 do vetor de amostras, no 

Domínio do Tempo; 𝐿 denota o comprimento do vetor de amostras; e 𝑝(𝑐5) indica a 

probabilidade de 𝑥5 ser igual aos valores possíveis da sequência 𝑐5 (GUERRA, 2023). 

Ao aplicar a fórmula estatística sobre o vetor de amostras, o resultado gerará uma 

instância, de modo que uma característica será́ gerada a cada fórmula aplicada. Dessa 

forma, 27 características serão extraídas para cada vetor de amostra, no Domínio do 

Tempo. 
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Tabela 3 - Características Estatísticas Extraídas no Domínio da Frequência 

Características Definição 

1. Média 𝑀É𝐷𝐼𝐴 =
1
𝐿Y𝑌5

7

58+

 

2. RMS 𝑅𝑀𝑆 = \
1
𝐿 ]Y

(𝑌5)#
7

58+

^ 

3. Desvio Padrão 𝐷𝑃𝐷 = √𝑉𝐴𝑅 

4. Pico PICO = max	(𝑎𝑏𝑠{𝑌5}) 

5. Assimetria 𝐴𝑆𝑀 =
1
𝐿Yj

k𝑌5 −𝑀É𝐷𝐼𝐴l
𝐷𝑃𝐷 m

97

58+

 

6. Curtose 𝐶𝑈𝑅 =
1
𝐿Yj

(𝑌5 −𝑀𝐸𝐴𝑁)
𝐷𝑃𝐷 m

:7

58+

− 3 

7. Fator de Crista 𝐹𝐶 =
𝑚𝑎𝑥
𝑅𝑀𝑆 

8. Fator de Folga 𝐶𝐹 =
𝑚𝑎𝑥

+
7
∑ (𝑌5)#7
58+

 

9. Fator de Forma 𝐹𝐹 =
𝑅𝑀𝑆

+
<
∑ |𝑌5|7
58+

 

10. Fator de Impulso 𝐹𝐼 =
𝑚𝑎𝑥

+
7
∑ |𝑌5|7
58+

 

11. Pico a Pico PAP = max	{𝑌5} − min	{𝑌5} 

12. Valor Mínimo MIN = min	{𝑌5} 

13. Soma 𝑆𝑂𝑀𝐴 =Y𝑌5

7

58+

 

14. Variância 𝑉𝐴𝑅 =
1
𝐿Yk𝑌5 −𝑀É𝐷𝐼𝐴l

#
7

58+

 

15. Erro Padrão 𝐸𝑃𝐷 =
𝐷𝑃𝐷
√𝐿

 

16. Mediana 𝑀𝐸𝐷𝐼𝐴𝑁𝐴 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑎(𝑌5) 
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17. Energia 𝐸𝑁𝐸𝑅𝐺𝐼𝐴 =Y|𝑌5|#
7

58+

 

18. Entropia 𝐸𝑁𝑇𝑅𝑂𝑃𝐼𝐴 = −Y𝑝(𝑐5)𝑙𝑜𝑔#𝑝(𝑐5)
7

58+

 

19. Moda 𝑀𝑂𝐷𝐴 = 𝑚𝑜𝑑𝑎(𝑌5) 

20. Variação Absoluta 𝐴𝑉 =Y|𝑌+;+ − 𝑌5|
7"+

58+

 

21. Variação Percentual 𝑃𝑉 = (
𝐴𝑉
𝐿 . ∗ 100 

22. Valor Absoluto Médio 𝑀𝐴𝑉 =
1
𝐿Y

|𝑌5|
7

58+

 

23. Valor Absoluto da Soma 𝑆𝐴𝑉 =Y|𝑌5|
7

58+

 

24. Valor Quadrático Médio 𝑀𝑆𝑉 =
1
𝐿Y𝑌5#

7

58+

 

25. Valor Quadrático da Soma 𝑆𝑆𝑉 =Y𝑌5#
7

58+

 

26. Coeficiente de Variação 𝐶𝑉 = (
𝑆𝑇𝐷
𝑀𝐸𝐴𝑁. ∗ 100 

27. Erro Padrão da Média 𝑆𝐸𝑀 =
𝑆𝑇𝐷
√𝐿

 

 

A transformação das características de um sinal do Domínio do Tempo para o 

Domínio da Frequência se deu através da aplicação da FFT. Tal ação foi possível a partir 

da definição de algumas propriedades do sinal, como a taxa de amostragem (𝑓-), o 

período de amostragem (𝑇), o comprimento ou tamanho do sinal (𝐿) e o vetor temporal 

(𝑡) associado ao sinal coletado. 

Após o tratamento dos sinais, aplica-se as fórmulas estatísticas sobre os vetores 

de amostras, o resultado gerará uma instância, de modo que uma característica será́ 

gerada a cada fórmula aplicada. Dessa forma, 27 características serão extraídas para cada 

vetor de amostra, mas agora no Domínio da Frequência. 

Os estudos de MARTINS et al. (2021) e GUERRA (2023) fizeram uso de 

características estatísticas na modelagem para identificação de falhas de operação em 

equipamentos mecânicos.  A seleção criteriosa dessas características permite reduzir a 
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dimensionalidade do espaço de entrada e aumentar a acurácia dos classificadores 

utilizados, mitigando o risco de sobreajuste (overfitting) e melhorando a generalização 

dos modelos.  

No estudo de MARTINS et al. (2021) especificamente, a abordagem 

metodológica também se beneficia da extração de características no Domínio do Tempo 

e da Frequência e o embasamento fornecido legitima a escolha de diversas 

características, as quais são sensíveis as variações estruturais e representam padrões 

indicativos de falhas de operação em equipamentos mecânicos.  

 
3.3. Relief-F - Seleção de Variáveis e Redução de Dimensionalidade 
 

A seleção das melhores características é uma etapa fundamental em sistemas de 

aprendizado supervisionado, especialmente quando se lida com dados de alta 

dimensionalidade e redundância, como os obtidos por meio da análise de sinais de 

vibração em motores Diesel marítimos. O algoritmo Relief-F destaca-se como uma das 

abordagens mais eficazes e amplamente adotadas nas tarefas de classificação (ROBNIK-

ŠIKONJA; KONONENKO, 2003).  

Conforme discutido por ROBNIK-ŠIKONJA e KONONENKO (2003), o Relief-

F opera com base em uma filosofia de aprendizado baseado em instâncias. Para cada 

amostra selecionada aleatoriamente no conjunto de dados, o algoritmo identifica os 

vizinhos mais próximos da mesma classe e de diferentes classes, atualizando 

iterativamente os pesos atribuídos a cada característica. Essas características contribuem 

de forma consistente para a separação entre classes recebem aumentos em seus pesos, 

enquanto aquelas que pouco contribuem para a discriminação entre instâncias tem os 

seus pesos reduzidos. Esse mecanismo o Relief-F sensível à estrutura local dos dados é 

altamente eficaz na identificação de atributos relevantes.  

URBANOWICZ et al. (2018) ressaltam que um dos principais diferenciais do 

Relief-F é sua robustez frente a dados ruidosos e com forte correlação entre variáveis, 

cenário comum em aplicações reais de diagnóstico de falhas. Essa robustez decorre do 

fato de o algoritmo levar em conta não apenas cada instância de forma isolada, mas 

também suas interações com vizinhos próximos. Isso possibilita identificar não só 

atributos que, individualmente, têm poder de discriminação, mas também relações mais 

complexas entre variáveis — conexões sutis que métodos univariados muitas vezes não 

conseguem capturar. 
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Formalmente, dado um conjunto de características 𝐹 = �𝑓+, 𝑓#, … 𝑓,�, o problema 

consiste em identificar um subconjunto ótimo 𝐹= ⊆ 𝐹 que maximize a relevância 

preditiva e minimize a redundância, preservando a representatividade do sistema 

(URBANOWICZ et al., 2018).  

Seja um conjunto de dados de treinamento definido pela Eq. (3.10): 

 

	 𝑆 = {(𝑥+, 𝑦+), (𝑥#, 𝑦#), … , (𝑥>, 𝑦>)}, (3.10)	

 

em que cada instância 𝑥5 ∈ ℝ, é um vetor de características e 𝑦5 ∈ {1,… , 𝐶} representa 

a classe associada. O algoritmo estima um vetor de pesos 𝑊 = �𝑤+, 𝑤#, … , 𝑤,� no qual 

cada peso 𝑤6 expressa a relevância da 𝑗 − é𝑠𝑖𝑚𝑎 característica. 

 A atualização dos pesos é realizada iterativamente, comparando instâncias aleatórias 𝑅 

com seu vizinho mais próximo da mesma classe (near-hit, 𝐻) e com os seus vizinhos 

mais próximos de classes distintas (near-miss, 𝑀?). A regra de atualização é dada pela 

Eq. (3.11): 

 

	
𝑤6 ≔ 𝑤6 −

+
/
. 𝑑𝑖𝑓𝑓k𝑓6 , 𝑅, 𝐻l +

+
/
∑ 𝑃(𝑐). 𝑑𝑖𝑓𝑓k𝑓6 , 𝑅,𝑀(?)l@∈?,@CDE , 

(3.11)	

 

onde 𝑑𝑖𝑓𝑓k𝑓6 , 𝐼+, 𝐼#l quantifica a diferença entre os valores da características 𝑓6 em duas 

instâncias 𝐼+, 𝐼#	normalizada em [0,1] e 𝑚 é o número de iterações. Para atributos 

numéricos, tem-se a seguir a Eq. (3.12): 

 

	𝑑𝑖𝑓𝑓%𝑓! , 𝐼", 𝐼#( =
*𝑣𝑎𝑙𝑜𝑟%𝑓! , 𝐼"( − 𝑣𝑎𝑙𝑜𝑟(𝑓! , 𝐼#)*

max%𝑓!( − min	(𝑓!)
 (3.12)	

 

 

Essa formulação assegura que características discriminativas apresentem pesos 

positivos — uma vez que 𝑅	𝑒	𝐻 tendem a ser semelhantes, enquanto 𝑅	𝑒	𝑀?  tendem a 

divergir. Já atributos irrelevantes, para os quais não há diferença estatisticamente 

significativa entre instâncias de mesma ou diferentes classes, convergem para pesos 

próximos de zero (URBANOWICZ et al., 2018). 
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Do ponto de vista estatístico, a expectativa da atualização para a i-ésima 

característica pode ser expressa pela Eq.(3.13): 

 

	𝔼[𝛿5] = −𝔼 �k𝑥6 − 𝐻6l#� + 𝔼 �k𝑥6 −𝑀6l#� (3.13)	

 

De modo que 𝔼[𝛿5] > 0 para atributos relevantes e 𝔼[𝛿5] ≈ 0 para atributos 

irrelevantes (KONONENKO, 1994). Essa propriedade garante consistência estatística 

ao algoritmo, uma vez que, para 𝑚 → ∞, onde os pesos convergem para valores teóricos 

de relevância (KIRA; RENDELL, 1992). 

Adicionalmente, a abordagem Relief-F é compatível com problemas com 

múltiplas classes e múltiplos rótulos, como demonstrado por CAI et al. (2015), sendo 

assim particularmente apropriada para o presente estudo, que envolve a classificação de 

condição de falha de injeção. O algoritmo é computacionalmente eficiente, operando em 

tempo linear em relação ao número de instâncias avaliadas, o que o torna viável mesmo 

para conjuntos de dados extensos e de alta dimensionalidade.  

O uso do Relief-F justifica-se pela necessidade de mitigar os efeitos adversos da 

maldição da dimensionalidade, selecionando um subconjunto informativo de variáveis 

capazes de maximizar a capacidade discriminativa do modelo preditivo. Ao reduzir o 

espaço de entrada a atributos estatisticamente significativos — extraídos dos domínios  

de tempo, frequência e tempo-frequência —, o algoritmo contribui diretamente para o 

aumento da performance das RNAs, melhorando sua capacidade de generalizando e 

promovendo maior interpretabilidade dos resultados.  

Segundo EVUKOFF (2001), a escolha de atributos relevantes permite redução 

do tempo de treinamento, da economia de recursos computacionais e a remoção de ruido 

e dados redundantes, melhorando a interpretação do modelo e sua capacidade de 

generalização. Isso é especialmente relevante no contexto do uso de RNAs, cujo 

desempenho é sensivelmente afetado pela dimensionalidade da entrada e pela 

distribuição estatística dos dados.  

Além disso, a literatura ressalta a importância da análise exploratória e do uso de 

métodos estatísticos para a escolha dos atributos mais relevantes. Técnicas como análise 

de variância, correlação, análise de componentes principais e filtros baseados em 

entropia são utilizadas com frequência nesse processo. Em nosso estudo, as métricas 

também foram avaliadas quanto à sua contribuição individual para os modelos de 

classificação, visando maximizar a divisão (separabilidade) entre as classes.  
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Assim, a modelagem com RNAs feedforward fornece uma base sólida e 

cientificamente validada para a identificação de falhas de injeção em motores Diesel, 

permitindo a construção de classificadores precisos e eficientes mesmo diante da 

complexidade dos sinais envolvidos em equipamentos alternativos como é o caso do 

motor Diesel marítimo. 

 

3.4. Fundamentos de Aprendizado de Máquina 
 
3.4.1. Aprendizado Supervisionado e Generalização de Modelos  

 

O aprendizado supervisionado é um dos pilares da modelagem preditiva em 

problemas de inferência estatística e mineração de dados. No contexto deste estudo, este 

paradigma é adotado para modelar a relação entre sinais de vibração adquiridos de um 

motor Diesel marítimo e as respectivas classes de falhas de injeção simuladas, com base 

em dados rotulados. Conforme estabelecido por HASTIE, TIBSHIRANI e FRIEDMAN 

(2009), a principal tarefa do aprendizado supervisionado é estimar uma função preditiva 

𝑓: 𝑋 → 𝑌, onde 𝑋 representa o espaço de entrada (neste estudo, as características 

extraídas dos sinais) e 𝑌 representa o espaço de saída (as classes de falha). 

A modelagem supervisionada baseia-se em um conjunto de treinamento 

{(𝑥5 , 𝑦5}58+< , onde 𝑥5 ∈ ℝ, representa um vetor de atributos descritivos e 𝑦5 a respectiva 

resposta categórica. A função 𝑓 é aprendida de forma a minimizar a expectativa do erro 

preditivo, representada pela Eq. (3.14): 

 

	 𝑓∗(𝑥) = 𝑎𝑟𝑔min
G
𝔼(!,H) [𝐿(𝑌, 𝑓(𝑋))] (3.14)	

 

em que 𝐿(𝑌, 𝑓(𝑋)) é uma função de perda adequada ao problema de classificação 

múltiplas classes, como a entropia cruzada (utilizada no presente estudo). Essa 

formulação estabelece uma base rigorosa para justificar a adoção de modelos como 

RNAs, capazes de aprender funções complexas e não lineares. 

Para assegurar a generalização do modelo, os dados foram estratificados nos 

subconjuntos de treinamento (70%), validação (15%) e teste (15%), conforme 

recomendado na literatura para controle de sobreajuste (overfitting). A validação cruzada 

foi utilizada para realizar os ajustes dos hiperparâmetros, mitigando o viés e a variância 

do estimador final (HASTIE et al., 2009). 
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O impacto da qualidade dos dados rotulados é amplamente enfatizado na obra, 

uma vez que erros sistemáticos nesse processo afetam diretamente a curva de 

aprendizado e os limites de desempenho. Isso reforça a importância de um protocolo 

rigoroso de aquisição e rotulagem, como implementado experimentalmente nesta 

dissertação. 

Por fim, a estrutura teórica proposta por HASTIE et al. (2009) fornece um 

embasamento matemático sólido para todas as decisões metodológicas adotadas na 

modelagem supervisionada, desde a definição da função de perda até os mecanismos de 

validação e ajuste do modelo. 

 

3.4.2. O Dilema Bias-Variance no Contexto do Aprendizado Supervisionado  
 

Ao treinar modelos de aprendizado de máquina, busca-se o equilíbrio entre a 

fidelidade do modelo aos dados de treinamento e sua capacidade de generalizar para 

novos dados e nunca vistos. Esse equilíbrio é formalizado pelo bias-variance trade-off, 

que descreve a decomposição do erro preditivo em três componentes: viés (bias), 

variância e ruído irredutível (ALPAYDIN, 2010; HASTIE et al., 2009).  

A decomposição formal do erro esperado é dado pela na Eq. (3.15):  

 

	 𝐸 �k𝑦	 − 	𝑓(𝑥)l#� (3.15)	

 

A decomposição formal do erro esperado é expressa como na Eq. (3.16): 

 

	𝐸 "#𝑦	 − 	𝑓(𝑥)+*, = 𝐵𝑖𝑎𝑠* 2𝑓3(𝑥)4 + 𝑉𝑎𝑟 2𝑓3(𝑥)4 + 𝜎* (3.16)	

 

onde 𝜎# representa o ruído irredutível. 

O viés representa a tendência do modelo em realizar suposições simplificadas 

sobre o problema, o que pode levar a ocorrências de erros sistemáticos. Por outro lado, 

a variância reflete a sensibilidade do modelo a pequenas flutuações nos dados de 

treinamento. Modelos com alto viés tendem a subajustar (underfitting) os dados, 

enquanto aqueles com alta variância tendem a sofrer de sobreajuste (overfitting) 

(ALPAYDIN, 2010). 

No contexto deste estudo, o qual envolve a identificação de falhas de injeção em 

motores Diesel por meio de RNAs, o risco de sobreajuste é significativo, considerando 
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a alta dimensionalidade das características extraídas dos sinais de vibração coletados. 

Para mitigar esse risco, foram adotadas práticas rigorosas, como a divisão dos dados em 

conjuntos de treino, validação e teste. Adicionalmente, foi utilizado a validação cruzada 

durante o ajuste dos hiperparâmetros como o número de neurônios, taxa de aprendizado, 

número de épocas e no uso das técnicas de regularização. Uma adequada calibração 

desses elementos, por meio de abordagens como a otimização bayesiana, permite uma 

maximização da capacidade preditiva sem comprometimento da capacidade de 

generalização do modelo. 

 

3.4.3. Divisão dos Dados em Conjuntos de Treinamento, Validação e Teste  
 

Uma adequada divisão dos dados em conjuntos de treinamento e teste é um pilar 

fundamental para a construção de modelos preditivos robustos e com alta capacidade de 

generalização do modelo. Empiricamente, a utilização de proporções como 70/30 ou 

80/20 tem se mostrado satisfatória em diversas aplicações de aprendizado de máquina 

supervisionada, sendo amplamente adotada em problemas de classificação. GHOLAMY 

et al. (2018) forneceram uma explicação pedagógica e estatística para essa prática, a qual 

é amplamente difundida. 

O ponto central da justificativa se baseia na necessidade de evitar o overfitting, 

fenômeno no qual um modelo se ajusta excessivamente aos dados de treinamento, 

perdendo sua capacidade de generalização para dados novos ou dados nunca vistos. Para 

mitigar esse risco, os dados observados devem ser divididos em um subconjunto usado 

para ajustar os parâmetros do modelo na fase de treinamento e outro para avaliar seu 

desempenho preditivo na fase de teste. 

Os autores demonstram que a divisão ótima está relacionada à minimização da 

variância total da estimativa de erro do modelo, levando em consideração o Teorema 

Central do Limite. A variância total do erro preditivo, quando o conjunto de dados é 

dividido em proporções 𝑝 e 1 − 𝑝, é dada pela Equação (3.17):  

 

	 𝜎IJI.0# µ
1
𝑝𝑁 +

1
(1 − 𝑝)𝑁 =

1
𝑝(1 − 𝑝)𝑁 (3.17)	

 

onde 𝑁 é o número total de amostras e p representa a fração alocada ao conjunto de 

treinamento. O produto 𝑝(1 − 𝑝) atinge seu valor máximo quando 𝑝 = 0, mas nesse 
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caso a variância da estimativa de erro tende a subestimar o erro real devido à incerteza 

maior sobre os parâmetros aprendidos com menos dados (GHOLAMY et al., 2018). 

A análise probabilística do artigo mostra que, para garantir que a variância da 

previsão no conjunto de teste seja maior que a incerteza associada ao modelo treinado, a 

proporção ideal do conjunto de treinamento deve satisfazer a desigualdade da Equação 

(3.18): 

 

	
2
�𝑝

≤
1

�1 − 𝑝
 (3.18)	

 

A resolução desta inequação conduz à conclusão de que valores de p ≥ 0,8 são 

mais seguros para garantir estimativas de erro válidas e confiáveis. Assim, a escolha de 

proporções como 80/20 ou 70/30 para treinamento/teste é justificada não apenas pela 

prática empírica, mas também por princípios estatísticos sólidos, que equilibram a 

capacidade de ajuste do modelo e a confiança nas métricas de validação. 

No presente trabalho, essa abordagem é estendida com a adição de um conjunto 

de validação (15%), usado especificamente para ajustar hiperparâmetros e evitar o viés 

da seleção sobre os dados de teste, em conformidade com as boas práticas recomendadas 

na literatura [GHOLAMY et al., 2018). 

O gráfico apresentado na Figura 2 ilustra o comportamento da função +
,(+",)

, que 

é comumente usada para representar a variância relativa na divisão entre dados de 

treinamento e teste, conforme discutido no artigo de GHOLAMY Et al. (2018). Essa 

função atinge seu valor mínimo quando 𝑝 = 0,5, ou seja, quando os conjuntos de 

treinamento e teste possuem tamanhos iguais. No entanto, na prática, valores como 70% 

e 80% de dados para treino (representados pelas linhas verticais) são preferidos para 

garantir que o modelo disponha de dados suficientes para aprender, reduzindo o erro de 

generalização. 
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Figura 2 - Comportamento da Função 1/(p(1-p)) 

 
3.4.4. Regularização - L2 (Ridge) e L1 (Lasso) 

 
A regularização é uma técnica fundamental no treinamento de redes neurais, pois 

visa mitigar o problema do overfitting — situação em que o modelo se ajusta 

excessivamente aos dados de treinamento, perdendo capacidade de generalização para 

novos dados. De acordo com HAYKIN (2009), a regularização atua adicionando um 

termo de penalidade à função de custo, desestimulando soluções com pesos 

excessivamente grandes, que geralmente estão associados a modelos de alta 

complexidade e variância. 

A função de custo regularizada Etotal é expressa como na Equação (3.19):  

 

 𝐸IJI.0 = 𝐸1/, + λ ⋅ Ω(w) (3.19) 

 

onde: 

• 𝐸1/, é o erro empírico (por exemplo, o erro de entropia cruzada); 

• Ω(w) é o termo de regularização; e 

• λ é o parâmetro de regularização que controla o peso do termo de 

penalidade. 

 

O autor explica que diferentes formas de regularização, como L2 (Ridge) e L1 

(Lasso), influenciam diretamente a estrutura dos pesos da rede. A L2 tende a distribuir 

os pesos de forma mais homogênea, reduzindo todos eles proporcionalmente, enquanto 
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a L1 promove a esparsidade, ou seja, força alguns pesos a se tornarem exatamente zero, 

o que é útil para seleção automática de características (HAYKIN, 2009). 

As formas mais comuns de regularização são conhecidas como L1 (Least 

Absolute Shrinkage and Selection Operator – Lasso) e L2 (Ridge Regression). Ambas 

inserem termos penalizadores à função de custo durante o treinamento, o que desencoraja 

a complexidade excessiva dos modelos por meio do controle dos pesos dos parâmetros. 

Na regularização L2, o termo penalizador é proporcional ao quadrado da 

magnitude dos coeficientes, conforme Equação (3.20): 

 

 ℒ7# = ℒK + 𝜆Y𝓌6
#

L

68+

 (3. 20) 

 

onde: 

• ℒK	 representa	 a	 função	 de	 custo	 original	 (por	 exemplo,	 entropia	

cruzada),	

• 𝓌	são	os	pesos	da	rede	neural,	

• 𝜆	é	o	parâmetro	de	regularização	que	controla	o	grau	de	penalização.	

 

Já na regularização L1, a penalidade é dada pela soma dos valores absolutos dos 

pesos, conforme Equação (3.21): 

: 

 ℒ7+ = ℒK + 𝜆Y±𝓌6²
L

68+

 (3.21) 

 

A regularização L1 promove esparsidade nos parâmetros do modelo, 

favorecendo a seleção automática de características ao forçar alguns pesos a zero, o que 

a torna adequada para problemas com grande número de atributos irrelevantes. Em 

contraste, a L2 distribui suavemente os pesos, resultando em soluções mais estáveis e 

amplamente adotadas em redes neurais profundas. 

No contexto desta dissertação, o termo 𝜆 foi tratado como hiperparâmetro a ser 

otimizado por meio de uma abordagem de otimização bayesiana, utilizando a função 

bayesopt do MATLAB. A seleção cuidadosa de 𝜆 foi essencial para garantir o equilíbrio 

entre ajuste e generalização da rede neural, sobretudo considerando o alto grau de não 
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linearidade e dimensionalidade dos dados provenientes dos sinais de vibração do motor 

(ALPAYDIN, 2010). Garantir a generalização do modelo é fundamental e tal capacidade 

está diretamente relacionada à escolha apropriada dos algoritmos de treinamento, 

regularização e divisão dos dados em subconjuntos de treino, validação e teste. Esta 

divisão permite ajustar hiperparâmetros de maneira robusta e evitar o overfitting, um 

fenômeno na qual o modelo se ajusta aos dados de treino, perdendo a capacidade de 

generalização (ALPAYDIN, 2010). 

 
3.5. Redes Neurais Artificiais (RNAs) 
 
3.5.1. Estrutura e Fundamentos Matemáticos: Teorema da Aproximação Universal  
 

A modelagem de fenômenos complexos e altamente não lineares, como os sinais 

de vibração gerados por motores Diesel submetidos a falhas de injeção, requer o uso de 

métodos preditivos capazes de representar funções complexas entre variáveis de entrada 

e saída. Segundo HASIE, TIBSHIRANI e FRIEDMAN (2009), a escolha de uma função 

preditiva apropriada é central para o sucesso em tarefas de aprendizado supervisionado, 

sendo que a função preditiva ideal é aquela que minimiza o risco esperado de erro, 

representado matematicamente pela Eq. (3.22): 

 

 𝑓(𝑥) = argmin
G
𝔼(%,D) ³𝐿k𝑦, 𝑓(𝑥)l´ (3.22) 

 

onde 𝐿k𝑦, 𝑓(𝑥)l é a função de perda, e a expectativa é tomada em relação à distribuição 

conjunta dos dados (𝑥, 𝑦). 

Neste contexto, as (RNAs) se destacam por sua capacidade de atuar como 

aproximadores universais. Essa propriedade é sustentada por teoremas formais que 

afirmam que uma rede neural do tipo feedforward com ao menos uma camada oculta e 

funções de ativação não lineares (como ReLU ou base radial) pode aproximar qualquer 

função mensurável contínua com erro arbitrariamente pequeno (HASTIE et al., 2009). 

Isso torna as RNAs particularmente adequadas para problemas com padrões não lineares 

complexos, como a classificação de falhas mecânicas com base em sinais de vibração 

multivariados. 

Um marco teórico fundamental para a justificativa do uso de RNAs em tarefas 

de classificação não linear é o Teorema da Aproximação Universal, proposto por George 

Cybenko em seu artigo seminal “Approximation by superpositions of a sigmoidal 
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function” (CYBENKO, 1989). Nesse trabalho, o autor demonstra que uma rede neural 

feedforward de camada única com função de ativação sigmoidal é capaz de aproximar 

qualquer função contínua em um conjunto compacto de ℝ>, com uma precisão arbitrária, 

desde que possua número suficiente de neurônios na camada oculta. 

Formalmente, seja 𝑓:	ℝ> ⟶ℝ uma função contínua e 𝜎 uma função de ativação 

sigmoidal (ou seja, uma função contínua e não linear que satisfaz lim
%→4

𝜎(𝑥) = 0 e 

lim
%→"4

𝜎(𝑥) = 1. Cybenko prova que para todo 𝜖 > 0, existe uma função, conforme Eq. 

(3.23): 

 𝐺(𝑥) =Y𝛼6𝜎(𝑦6)𝑥 + 𝜃6)
<

68+

 (3. 23) 

 

onde: 

𝑥	 ∈ ℝ> é o vetor de entrada; 

𝜎:	ℝ → ℝ é uma função de ativação sigmoidal contínua, tal que: 

- se 𝑡 → +∞, então 𝜎(𝑡) → 1; e 

- se 𝑡 → −∞, então 𝜎(𝑡) → 0. 

𝑦6 ∈ ℝ> é o vetor de pesos da camada oculta; 

 𝜃6 ∈ ℝ é o viés associado ao neurônio da camada oculta; 

 𝛼6 ∈ ℝ ..... representa o peso da saída daquele neurônio. 

 

A principal contribuição de Cybenko reside na demonstração de que tais redes 

são densas no espaço 𝐶(𝐼>) – o espaço das funções contínuas sobre 𝐼>– o que significa 

que, para qualquer função contínua 𝑓 e qualquer 𝜀 > 0, existe uma combinação de forma 

acima, conforme Eq. (3.24): 

 

 |𝐺(𝑥) − 𝑓(𝑥)| < 𝜀				∀𝑥 ∈ 𝐼> (3. 24) 

 

A chave teórica está na propriedade de distinção da função 𝜎, definida pela Eq. 

(3.25): 

 

 
¼ 𝜎(𝑦)𝑥 + 𝜃)𝑑𝜇(𝑥) = 0			∀𝑦𝜖ℝ>,
⬚

N+

𝜃 ∈ ℝ ⇒ 𝜇 = 0 

(3. 25) 
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ou seja, se a integral de 𝜎 sobre todos os funcionais afins for nula para uma medida 𝜇, 

então essa medida deve necessariamente ser a nula — condição satisfeita por funções 

sigmoidais comuns (como logística e tangente hiperbólica). 

Este teorema fundamenta o uso de RNAs em problemas de classificação e 

regressão com não linearidades elevadas, como no presente estudo de identificação de 

falhas de injeção em motores Diesel marítimos, onde os sinais de vibração apresentam 

características complexas e multivariadas. A capacidade da RNA de capturar essas 

relações não lineares por meio de uma única camada oculta com funções de ativação 

apropriadas permite sua aplicação robusta e eficaz. 

Além disso, o artigo destaca que embora o modelo garanta a existência de 

aproximações arbitrárias, não se compromete com a eficiência computacional da 

construção — ou seja, a quantidade N de neurônios pode ser muito grande para funções 

altamente complexas, levando à chamada maldição da dimensionalidade. Ainda assim, 

a demonstração de Cybenko (1989) é um dos fundamentos teóricos mais poderosos para 

a confiança na arquitetura de redes feedforward na modelagem de sistemas reais. 

 

3.5.2. Estrutura e Funcionamento de Redes Neurais Feedforward  
 

As RNAs do tipo feedforward constituem uma das arquiteturas mais 

fundamentais e amplamente empregadas em tarefas de classificação, regressão e 

reconhecimento de padrões. Segundo AGGARWAL (2018) e HAYKIN (2009), essas 

redes são compostas por uma sequência de camadas de neurônios organizadas 

linearmente, onde os dados fluem unidirecionalmente da camada de entrada para a(s) 

camada(s) oculta(s), e, finalmente, para a camada de saída — sem loops ou ciclos, 

caracterizando o termo “feedforward”. 

Cada neurônio na rede realiza uma operação de soma ponderada das entradas, 

seguida da aplicação de uma função de ativação não linear. Essa função é crucial para 

permitir que a rede modele relações complexas e não lineares entre as variáveis de 

entrada e saída. Esta operação pode ser formalizada da seguinte maneira, conforme Eq. 

(3.26): 

 

	 𝑎6 = ∅¿Y𝑤65𝑥5 + 𝑏6

>

58+

À (3.26)	
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onde: 

• 𝑎6 é a ativação do neurônio 𝑗; 

• 𝑤65 representa o peso associado à conexão entre o neurônio 𝑖 da camada 

anterior e o neurônio 𝑗; 

• 𝑥5 é a entrada correspondente; 

• 𝑏6 é o viés (bias); e 

• ∅ é a função de ativação. 

	

AGGARWAL (2018) enfatiza que a capacidade de aprendizado de uma RNA 

está diretamente relacionada ao número de neurônios e camadas ocultas. Redes com 

apenas uma camada oculta são teoricamente capazes de aproximar qualquer função 

contínua, conforme demonstrado pelo Teorema da Aproximação Universal. No entanto, 

a complexidade do problema pode demandar a utilização de múltiplas camadas ocultas 

e mecanismos de regularização para evitar o sobreajuste (overfitting) e melhorar a 

generalização. 

A atualização dos pesos sinápticos — parâmetros que determinam a influência 

de cada entrada sobre o neurônio — é realizada por meio de algoritmos de aprendizado 

supervisionado, como o Gradiente Descendente ou, como neste estudo, o Gradiente 

Conjugado Escalonado. Esses algoritmos visam minimizar uma função de custo (como 

a entropia cruzada) que quantifica o erro entre as predições da rede e os rótulos reais. 

Além disso, a arquitetura feedforward é particularmente apropriada para tarefas 

em que as entradas e saídas não têm dependência temporal, o que a diferencia das RNNs, 

mais indicadas para séries temporais. Na presente dissertação, a escolha da arquitetura 

feedforward se justifica pela natureza estática dos vetores de características extraídos 

dos sinais de vibração, processados em janelas de tempo fixas e independentes. 

Assim, a modelagem com RNAs feedforward fornece uma base sólida e 

cientificamente validada para a identificação de falhas de injeção em motores Diesel, 

permitindo a construção de classificadores precisos e eficientes mesmo diante da 

complexidade dos sinais envolvidos. 
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3.5.3. Funções de Ativação e Custo  
 

As funções de ativação desempenham papel central na capacidade de uma Rede 

Neural Artificial (RNA) aprender e representar relações não lineares complexas. A 

escolha da função de ativação influencia diretamente a expressividade da rede, sua 

eficiência computacional e sua capacidade de generalização. Conforme discutido por 

AGGARWAL (2018), funções clássicas como a sigmoide, a tangente hiperbólica (tanh) 

e a ReLU (Rectified Linear Unit) possuem vantagens e limitações específicas, e sua 

adoção deve considerar a natureza do problema e a estrutura da rede. 

A função sigmoide, conforme Eq. (3.27): 

 

	 𝜎(𝑥) =
1

1 + 𝑒"% (3.27)	

 

é contínua e diferenciável, transformando entradas em um intervalo entre 0 e 1. Embora 

útil em problemas probabilísticos e classificações binárias, ela sofre com o problema do 

gradiente desvanecido em regiões saturadas, o que pode comprometer o aprendizado em 

redes profundas. A função tangente hiperbólica, conforme Eq. (3.28): 

 

	
tanh 𝑥 =

𝑒% − 𝑒"%

𝑒% + 𝑒"%  

 
(3.28)	

resolve parcialmente esse problema ao centralizar a saída em torno de zero, mas ainda é 

vulnerável à saturação para entradas extremas. 

Por sua vez, a função ReLU tornou-se popular devido à sua simplicidade 

computacional e à mitigação do gradiente desvanecido. No entanto, apresenta limitações 

como a “morte do neurônio” quando valores negativos se acumulam, além de não ser 

ideal para modelagens com domínios altamente não lineares ou que requeiram decisões 

com fronteiras suaves. 

Neste trabalho, optou-se pela função base radial (Radial Basis Function – RBF), 

expressa como na Eq.(3.29): 

 

	 ∅(𝑥) = expj−
∥ 𝑥 − 𝑐 ∥#

2𝜎# m (3.29)	
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onde 𝑐 representa o centro do neurônio e 𝜎 é o parâmetro que controla a largura da base. 

A principal vantagem da RBF reside na sua natureza local e na capacidade de modelar 

funções altamente não lineares com elevada precisão. Conforme destacado por 

AGGARWAL (2018), a RBF é particularmente eficaz quando as fronteiras de decisão 

são complexas, o que a torna ideal para problemas de classificação multiclasse, como a 

detecção de falhas de injeção em motores Diesel com base em sinais de vibração. 

Além disso, a função RBF se destaca por possibilitar uma interpretação 

geométrica clara: neurônios são ativados com maior intensidade quando a entrada está 

próxima ao centro 𝑐, permitindo uma discriminação mais refinada dos padrões. Essa 

característica é fundamental neste estudo, que envolve a distinção entre múltiplas classes 

associadas a diferentes falhas de injeção simuladas cilindro a cilindro. 

Dessa forma, a escolha da RBF neste trabalho é justificada tanto do ponto de vista 

teórico quanto empírico, sendo suportada por estudos consolidados na literatura, como 

os de HASSOUN (1995) e AGGARWAL (2018), e validada experimentalmente pelos 

elevados desempenhos obtidos nas fases de teste e validação do modelo. 

Para problemas de classificação, a função de custo adotada foi a entropia cruzada, 

por oferecer vantagens superiores à função erro quadrático médio em contextos em que 

as saídas são probabilísticas. A função de custo da entropia cruzada penaliza predições 

com alta confiança quando incorretas, promovendo modelos mais cautelosos e 

calibrados (HASSOUN, 1995). Segundo AGGARWAL (2018), a entropia cruzada é 

particularmente eficaz porque penaliza severamente previsões com alta confiança que 

estão incorretas. Sua formulação matemática, para uma instância com C classes, pode 

ser expressa como na Eq. (3.30):  

 

	 𝐿(𝑦, 𝑦Â) = −Y𝑦5log	(𝑦OÃ
?

58+

) (3.30)	

 

onde: 

• 𝑦5 representa a classe real; 

• 𝑦Â5 é a probabilidade prevista para a classe i pela rede neural. 

Essa função é derivada do conceito de entropia em teoria da informação, sendo 

apropriada quando a saída do modelo representa uma distribuição de probabilidade. 

Vantagens destacadas por AGGARWAL (2018) incluem alta sensibilidade a 

classificações erradas com alta confiabilidade, estabilidade numérica quando combinada 
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com o algoritmo softmax, e melhora da convergência do modelo em tarefas de 

classificação multiclasse.  

Em virtude dessas características, a função de entropia cruzada foi adotada nesta 

dissertação como função de custo principal para o treinamento dos modelos baseados 

em redes neurais, alinhando-se às boas práticas relatadas na literatura de aprendizado de 

máquina e redes neurais profundas.  

 

3.5.4. Redes Neurais de Função de Base Radial (RBF) 
 
As Redes Neurais de Função de Base Radial (RBF) representam uma classe 

distinta de modelos computacionais inspirados em unidades biológicas com respostas 

localizadas, ou seja, que são sensíveis apenas a determinadas regiões do espaço de 

entrada. Essa característica confere às RBFs propriedades excepcionais de interpolação 

e aproximação de funções, tornando-as especialmente úteis em aplicações que exigem 

classificações multiclasse ou aproximações de funções complexas, como a identificação 

de falhas de injeção de combustível em motores Diesel marítimos (HASSOUN, 1995). 

 

- Estrutura e Arquitetura 

 

A arquitetura padrão de uma RBF é composta por três camadas: 

• A camada de entrada, que transmite o vetor de entrada diretamente para 

a camada oculta; 

• A camada oculta, formada por unidades com funções de ativação 

radialmente simétricas — tipicamente funções Gaussianas; e 

• A camada de saída, usualmente composta por neurônios lineares que 

realizam combinações ponderadas das saídas da camada oculta. 

 

Cada unidade da camada oculta avalia a "proximidade" entre o vetor de entrada 

𝑥 e um centro 𝑐6 associado, produzindo uma resposta significativa apenas se a entrada 

estiver próxima ao centro, segundo a métrica Euclidiana, conforme Eq. (3.31): 

 

 𝑧6 = expj−
∥ 𝑥 − 𝑐6 ∥#

2𝜎6#
m (3. 31) 
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onde 𝜎6 representa a largura (ou desvio padrão) da função de ativação associada ao 

neurônio 𝑗 (HASSOUN, 1995). 

 

- Propriedades Fundamentais: 

 

Uma das principais vantagens das RBFs sobre outras arquiteturas de redes 

neurais, como as redes feedforward com unidades sigmoides, reside em sua capacidade 

de realizar aproximações locais, ou seja, somente um subconjunto de neurônios é ativado 

para uma determinada entrada, conferindo maior eficiência computacional no 

treinamento e melhor desempenho nas tarefas de classificação. 

HASSOUN (1995) destaca que, virtude a essa natureza localizada, as RBFs são 

capazes de realizar aproximação universal de funções contínuas com precisão arbitrária, 

desde que sejam utilizados um número suficiente de neurônios e realize a escolha 

adequada de centros e larguras (POGGIO; GIROSI, 1989). 

 

- Treinamento e Ajuste de Parâmetros 

 

O processo de treinamento de uma RBF é geralmente dividido em duas etapas 

principais: 

a) Determinação dos centros e larguras das funções radiais:  

Tradicionalmente realizada via algoritmos de clustering, como o k-means, que 

identificam regiões densamente povoadas no espaço de entrada e posicionam os centros 

de forma a cobrir adequadamente os dados. A escolha das larguras é realizada com base 

na distância média entre os centros ou através de heurísticas que fazem o balanceamento 

da capacidade de generalização e a precisão local (MOODY; DARKEN, 1989). 

 

b) Ajuste dos pesos da camada de saída:  

Geralmente implementado por métodos lineares, como a pseudoinversa 

generalizada, ou via regra delta, visando minimizar o erro quadrático médio (SSE), 

conforme Eq. (3.32): 

 

	 𝐸 =
1
2Y ∥ 𝑦5 − 𝑑5 ∥#

/

58+

 (3.32)	
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onde 𝑦5 é a saída da rede para a entrada 𝑥5 e 𝑑5 é a saída desejada (HASSOUN, 1995). 

Esse treinamento eficiente, em comparação com as redes de retropropagação 

tradicionais, resulta em tempos de aprendizado mais enxutos, sendo altamente desejável 

em sistemas de diagnóstico em tempo real, como na possibilidade de monitoramento de 

falhas em motores Diesel. 

 

- Aplicação das RBFs na Classificação e Diagnóstico 

 
As RBFs são particularmente adequadas para tarefas de classificação, dado que 

suas funções de ativação localizadas promovem uma segmentação natural do espaço de 

entrada em regiões associadas a diferentes classes. Isso reduz as taxas de falsos positivos 

e melhora a robustez do classificador, como demonstrado em diversas aplicações de 

diagnóstico de falhas mecânicas (WETTSCHERECK; DIETTERICH, 1992). 

No contexto específico deste estudo, as RBFs foram utilizadas para a 

classificação multiclasse de 13 classes distintas de um motor Diesel marítimo, obtendo 

notável desempenho na detecção de falhas de injeção. 

 

- Limitações e Considerações 

 
Apesar de sua eficácia, as RBFs possuem certas limitações, especialmente na sua 

reduzida capacidade de extrapolação, uma vez que suas camadas ocultas não respondem 

significativamente a entradas situadas fora da região onde foram treinadas (HASSOUN, 

1995). Adicionalmente, em espaços de entrada de alta dimensionalidade, a necessidade 

de um número elevado de neurônios pode resultar em sobreajuste, demandando técnicas 

adequadas de regularização, além de um aumento considerável no tempo de 

processamento. 

 
3.5.5. Algoritmos de Otimização para Treinamento de Redes Neurais  
 

A etapa de otimização em RNAs consiste em ajustar os pesos sinápticos da rede 

de modo a minimizar uma função de custo, representando o erro entre a predição do 

modelo e os rótulos verdadeiros. Diversos algoritmos de otimização têm sido propostos 

na literatura, cada qual com características distintas quanto à sua eficiência, robustez e 

complexidade computacional. Dentre os mais tradicionais, destacam-se o Gradiente 
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Descendente, o Gradiente Descendente Estocástico, o Gradiente Conjugado e sua 

variante escalonada, o Gradiente Conjugado Escalado — adotado na presente pesquisa. 

O Gradiente Descendente é o algoritmo base que ajusta os pesos da rede segundo 

a direção oposta ao gradiente da função de custo, sendo definido pela atualização 

iterativa, conforme Equação (3.33): 

 

	 𝑊I;+ = 𝑊I − 𝜂∇𝐽(𝑊I) (3.33)	

 

onde 𝑊 representa o vetor de pesos, 𝜂 a taxa de aprendizado e 𝐽(𝑊) a função de custo. 

Embora simples, o Gradiente Descendente apresenta limitações como lenta 

convergência e sensibilidade à escolha de η (ALPAYDIN, 2010). 

O Gradiente Descendente Estocástico melhora a eficiência ao atualizar os pesos 

com base em amostras individuais ou pequenos lotes (mini-batches), o que acelera o 

treinamento em grandes bases de dados. Contudo, esse método é mais ruidoso e pode 

sofrer com oscilações na direção do gradiente (AGGARWAL, 2018). 

O Gradiente Conjugado foi desenvolvido para acelerar a convergência em 

problemas quadráticos, evitando as limitações do Gradiente Descendente ao considerar 

direções de busca conjugadas ao invés do gradiente puro. Em redes neurais, adaptações 

do Gradiente Conjugado têm mostrado ganhos de eficiência, especialmente em modelos 

de média escala (HASSOUN, 1995). 

Neste contexto, o Gradiente Conjugado Escalado surge como uma alternativa 

robusta, combinando os benefícios do Gradiente Conjugado com técnicas de 

escalonamento que eliminam a necessidade de linha de busca explícita. Proposto por 

MØLLER (1993), o Gradiente Conjugado Escalado ajusta dinamicamente o passo de 

atualização com base em aproximações de segunda ordem, conferindo maior 

estabilidade e rápida convergência do modelo. 

A análise comparativa revela que o Gradiente Conjugado Escalado atinge 

mínimos locais de forma mais eficiente do que métodos convencionais, tornando-se 

especialmente indicado em problemas com múltiplas variáveis e alta não linearidade — 

como a classificação de padrões vibracionais em motores Diesel. Por essa razão, o 

Gradiente Conjugado Escalado foi selecionado como o algoritmo de otimização 

principal neste estudo, contribuindo para a estabilidade do treinamento e melhor 

desempenho global da RNA. 
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3.6. Métricas de Avaliação de Desempenho  
 

Para proceder à avaliação do desempenho dos algoritmos de classificação 

aplicados ao diagnóstico de falhas, torna-se fundamental estabelecer as métricas que 

serão utilizadas para mensurar sua eficácia. A definição criteriosa dessas métricas é 

essencial, pois permite quantificar a capacidade dos modelos em identificar corretamente 

as diferentes classes de falha, bem como avaliar sua robustez, sensibilidade e 

confiabilidade. As principais métricas adotadas neste estudo estão descritas nos subitens 

a seguir: 

 

3.6.1. Precisão (Precision) 
 
A precisão é uma métrica que quantifica a proporção de classificações corretas 

dentro das instâncias que o modelo previu como positivas. Em outras palavras, ela avalia 

a exatidão das predições positivas realizadas pelo algoritmo, indicando com que 

frequência as falhas identificadas pelo modelo correspondem, de fato, a falhas reais. A 

precisão é definida pela Eq. (3.34): 

 

	 𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 =
𝑉𝑃

𝑉𝑃 + 𝐹𝑃 (3.34)	

 

onde: 

• VP (Verdadeiros Positivos) representa a quantidade de instâncias 

corretamente classificadas como falhas; 

• FP (Falsos Positivos) representa a quantidade de instâncias 

incorretamente classificadas como falhas, quando na verdade são condições normais. 

 

Um valor elevado de precisão indica que o modelo comete poucos erros ao 

classificar uma condição como falha, o que é particularmente relevante em sistemas de 

diagnóstico, onde falsos alarmes podem levar a manutenções desnecessárias, aumento 

de custos operacionais e indisponibilidade do motor Diesel (POWERS, 2011; TAN et 

al., 2018; GOODFELLOW et al., 2016).  
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3.6.2. Sensibilidade (Recall) 
 
A Sensibilidade, também conhecida como Recall ou taxa de verdadeiros 

positivos, é uma métrica essencial na avaliação de modelos de classificação, 

especialmente em contextos em que a detecção de eventos positivos (como falhas) é 

crítica. Esta métrica indica a proporção de instâncias positivas corretamente identificadas 

pelo modelo em relação ao total de instâncias verdadeiramente positivas no conjunto de 

dados. Sua formulação matemática é expressa pela Eq. (3.35): 

 

	 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑉𝑃

𝑉𝑃 + 𝐹𝑁 (3. 35)	

 

Onde: 

• FN (Falsos Negativos) são as instâncias que o modelo classificou 

incorretamente como normais, apesar de representarem falhas reais. 

 

Um valor elevado de Sensibilidade reflete a capacidade do modelo de minimizar 

a ocorrência de falsos negativos, o que é particularmente importante em aplicações como 

manutenção preditiva. Para sistemas de diagnóstico de falhas em motores, por exemplo, 

uma sensibilidade alta assegura que um baixo número de falhas passe despercebidas, 

aumentando a confiabilidade do sistema de monitoração. 

Essa métrica é amplamente utilizada na literatura de aprendizado de máquina e é 

considerada indispensável na análise de classificadores binários e multiclasse 

(POWERS, 2011; TAN et al., 2018; GOODFELLOW et al., 2016).  

 

3.6.3. Acurácia (Accuracy) 
 
A acurácia é uma métrica amplamente utilizada na avaliação de modelos de 

classificação, sendo definida como a proporção de predições corretas em relação ao total 

de instâncias avaliadas. Ela oferece uma visão geral do desempenho do classificador ao 

considerar tanto as predições corretas de instâncias positivas quanto de instâncias 

negativas. A acurácia é definida pela Eq. (3.36): 

 

	 𝐴𝑐𝑢𝑟á𝑐𝑖𝑎 =
𝑉𝑃 + 𝑉𝑁

𝑉𝑃 + 𝑉𝑁 + 𝐹𝑃 + 𝐹𝑁 (3. 36)	
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Onde: 

• VN (Verdadeiros Negativos) são as instâncias normais corretamente 

classificadas; e 

 

Embora seja uma métrica de fácil compreensão e interpretação, a acurácia pode 

se tornar traiçoeira em bases de dados desbalanceadas, nas quais uma das classes domina. 

Nestes casos, um classificador pode atingir alta acurácia apenas por predizer a classe 

majoritária, negligenciando completamente a detecção da classe minoritária, o que pode 

ser insatisfatório em sistemas de diagnóstico de falhas (GOODFELLOW; BENGIO; 

COURVILLE, 2016). 

Por isso, é recomendada a utilização da acurácia em conjunto com outras 

métricas, como Precisão, Sensibilidade e F1-Score, para uma avaliação mais robusta do 

desempenho da RNA. 

3.6.4. F1-Score 
 
O F1-Score é uma métrica que combina, de forma harmônica, as duas principais 

medidas de desempenho de um classificador: a precisão e a sensibilidade. Trata-se de 

uma medida especialmente útil em cenários nos quais existe um desequilíbrio entre as 

classes, como nos sistemas de diagnóstico de falhas, onde a ocorrência de falhas é 

significativamente menor em comparação com condições normais. Matematicamente, o 

F1-Score é definido pela Equação (3.37): 

 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(3. 37) 

 

Essa equação expressa a média harmônica entre a precisão e a sensibilidade, 

penalizando severamente valores discrepantes entre essas duas métricas. Devido esse 

motivo, o F1-Score é particularmente recomendado quando se busca um equilíbrio entre 

a capacidade do modelo de detectar falhas (sensibilidade) e a de evitar alarmes falsos 

(precisão). 

Um valor elevado de F1-Score (F1-Score ³ 95%) indica que o modelo é capaz 

de identificar corretamente a maioria das falhas com uma baixa taxa de falsos positivos, 

o que o torna um parâmetro decisivo na escolha do modelo mais adequado em aplicações 

de manutenção preditiva baseadas em aprendizado de máquina (POWERS, 2011; TAN 

et al., 2018; GOODFELLOW et al., 2016).  
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4. METODOLOGIA 
 
Este capítulo descreve detalhadamente o procedimento metodológico adotado 

para a identificação de falhas de injeção em um motor Diesel marítimo, com base em 

sinais de vibração e utilizando modelos de RNAs. A metodologia foi estruturada em três 

grandes blocos: (i) pré-processamento dos dados, (ii) seleção das características e 

acelerômetros mais relevantes, e (iii) modelagem com RNA, conforme ilustrado no 

fluxograma a seguir (Figura 3). 

 

 
Figura 3 - Fluxograma Geral da Metodologia para Classificação de Falhas de Injeção 

em Motor Diesel utilizando Sinais de Vibração e Redes Neurais Artificiais 

 

4.1. Pré-processamento de Dados 
 
A primeira etapa consistiu no carregamento dos sinais brutos de vibração 

adquiridos durante os ensaios realizados em bancada de teste instrumentada, tendo como 

unidade sob análise o motor Diesel marítimo MTU 12V4000C11. Os dados foram 

obtidos por meio de 15 acelerômetros uniaxiais do tipo ICP®, estrategicamente 

posicionados sobre os cabeçotes dos cilindros (pontos 1V a 12V) e próximos às janelas 

de inspeção do bloco (pontos 13T, 14T e 15T), conforme mostrado na Figura 4. 
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Figura 4 - Pontos de instalação dos acelerômetros 

 

 A aquisição foi executada com frequência de amostragem de 10.240 Hz, 

utilizando placas de aquisição NI 9234 e o ambiente LabVIEW™ para monitoramento e 

registro contínuo. 

O processamento inicial dos sinais incluiu duas etapas essenciais: filtragem digital 

e remoção de tendência (detrending). A filtragem foi aplicada com o objetivo de atenuar 

componentes de ruído de alta frequência e preservar as faixas espectrais de interesse 

associadas ao comportamento vibracional do motor. A etapa de detrending visou eliminar 

variações de baixa frequência e deslocamentos do sinal, garantindo que as componentes 

dinâmicas relevantes para a detecção de falhas de injeção fossem adequadamente 

realçadas. 

Com os sinais limpos, foi realizada uma técnica fundamental tanto para aumentar 

o volume amostral quanto para capturar variações estatísticas locais ao longo do tempo. 

Esta etapa configura-se como um processo de data augmentation estruturado, em que 

múltiplos segmentos extraídos de um mesmo sinal contribuem para enriquecer a 

diversidade da base de dados sem induzir viés artificial. Como resultado, a generalização 

dos modelos de aprendizado de máquina foi significativamente favorecida. 

Para cada janela segmentada, procedeu-se à extração de um conjunto abrangente 

de características estatísticas, abrangendo os Domínios do Tempo, da Frequência (via 

FFT) e do Tempo-Frequência (utilizando também a FFT). As características extraídas, 

presentes nas Tabelas 2 e 3, incluem métricas clássicas como média, variância, valor 
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RMS, fator de crista, curtose, entropia espectral, entre outras, previamente validadas na 

literatura para problemas de detecção de falhas mecânicas. 

Em seguida, os dados extraídos foram organizados e etiquetados conforme suas 

respectivas classes, abrangendo uma condição normal de operação e 12 condições de 

falha. Estas falhas corresponderam à simulação de falhas de injeção total em cada um 

dos 12 cilindros do motor, realizadas sempre de forma individualizada, ou seja, sem 

ocorrência simultânea em mais de um cilindro. Esses dados foram divididos em 

subconjuntos de treinamento (70%), validação (15%) e teste (15%). Essa divisão 

estratificada assegurou o equilíbrio entre as classes e permitiu avaliação objetiva do 

desempenho dos modelos preditivos. Os conjuntos resultantes foram salvos em estrutura 

compatível com os algoritmos de aprendizagem subsequentes. 

 

4.2. Processamento de Dados 
 
Após a etapa de pré-processamento e extração de características, iniciou-se o 

processo de refinamento e organização dos dados com o objetivo de otimizar sua entrada 

nas RNAs. Esta fase foi essencial para garantir que os dados apresentados aos modelos 

de aprendizado mantivessem alta integridade, representatividade estatística e relevância 

discriminativa. 

Durante o processamento dos sinais de vibração adquiridos dos acelerômetros, foi 

implementada uma etapa dedicada ao tratamento de outliers, com o propósito de mitigar 

a influência de valores extremos que poderiam comprometer a acurácia e a robustez dos 

modelos. A identificação dos outliers foi realizada com base no critério estatístico dos 

quartis, também conhecido como método do Intervalo Interquartil (IQR), o qual se baseia 

na distribuição dos dados e detecta valores que se encontram significativamente distantes 

da mediana. 

Uma vez identificados os valores anômalos, adotou-se a técnica de correção por 

clipping, que consiste em ajustar os valores excedentes aos limites inferiores e superiores 

aceitáveis, definidos com base no IQR. Essa abordagem foi preferida à simples exclusão 

das amostras, pois preserva a integridade da base de dados e evita a redução do volume 

amostral, o que poderia prejudicar a capacidade de generalização do modelo. 

Essa estratégia assegurou que os sinais mantivessem sua estrutura estatística e 

dinamicidade, sendo protegidos contra distorções ocasionadas por ruídos extremos, 

falhas instrumentais pontuais ou interferências esporádicas durante a aquisição. Dessa 

forma, o conjunto final de dados alimentado as RNAs apresentou maior consistência e 
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representatividade em relação às condições reais de operação do motor, favorecendo o 

desempenho dos modelos preditivos de falhas de injeção. 

Na sequência, foi conduzida a seleção das características mais relevantes por meio 

do método Relief-F, uma técnica amplamente reconhecida na literatura por sua eficácia 

na identificação de atributos discriminativos em problemas de classificação. O algoritmo 

Relief-F avaliou a importância relativa de cada uma das características extraídas, 

considerando sua capacidade de distinguir entre as diferentes classes de falha de injeção. 

Esta seleção visou reduzir a dimensionalidade do vetor de características, eliminar 

redundâncias e evitar o fenômeno conhecido como curse of dimensionality, que tende a 

comprometer o desempenho de modelos em bases com grande número de atributos. 

Além da redução de atributos, também foi realizada a identificação dos 

acelerômetros mais relevantes. A partir da análise dos pesos atribuídos às características 

extraídas de cada sensor, foram priorizados os acelerômetros cuja contribuição era mais 

expressiva para a detecção das falhas simuladas. Esta abordagem permitiu reduzir a 

complexidade do sistema de instrumentação sem perda significativa de desempenho. 

As características e sensores com menor contribuição diagnóstica foram 

eliminados da base de dados, consolidando um conjunto otimizado de entradas para as 

etapas de modelagem preditiva. O resultado desse processamento foi um banco de dados 

altamente representativo, com atributos informativos e livres de ruído, pronto para ser 

utilizado no treinamento, validação e teste das RNAs. 

 

4.3. Redes Neurais Artificiais 
 
A etapa final da metodologia consistiu na implementação, treinamento e 

validação de modelos baseados em RNAs, com o objetivo de classificar as diferentes 

condições operacionais do motor Diesel e identificar falhas de injeção de combustível a 

partir dos sinais de vibração previamente processados. A escolha dessa abordagem se 

justifica por sua reconhecida robustez na modelagem de sistemas dinâmicos, complexos 

e não lineares — características inerentes aos fenômenos associados à mecânica de 

combustão e falhas de injeção em motores alternativos. 

Inicialmente, realizou-se a preparação dos dados de entrada, o que incluiu a 

normalização das características selecionadas e a organização dos vetores de entrada e 

saída, assegurando compatibilidade com os requisitos topológicos da rede. Essa etapa foi 

essencial para garantir que todas as variáveis apresentassem escalas compatíveis e que a 

distribuição das amostras fosse balanceada entre as 13 classes definidas (1 condição 
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normal e 12 condições com falhas de injeção simuladas individualmente para cada 

cilindro do motor). 

Na Tabela 4 é mostrado os principais componentes adotados na arquitetura da 

RNA. 

Tabela 4 - Principais componentes da arquitetura da Rede Neural Artificial adotada 

Componente Descrição 

Arquitetura Rede Neural Artificial (RNA) do tipo 
feedforward. 

Camada oculta Uma camada, com número variável de 
neurônios. 

Função de ativação 

Radial Basis Function (RBF) – elevada 
capacidade de modelagem em regiões não 
lineares do espaço de decisão, eficaz em 

classificação multiclasse e de alta 
dimensionalidade. 

Algoritmo de 
treinamento 

Gradiente Conjugado Escalonado de 
Retropropagação (trainscg) – eficiente em 
redes de porte intermediário e estável no 

processo iterativo de minimização. 

Função de desempenho 

Entropia cruzada (crossentropy) – 
apropriada para classificação com saídas 
probabilísticas, penalizando com maior 
rigor classificações incorretas de alta 

confiança. 

 

A etapa de ajuste dos hiperparâmetros envolveu tanto a calibração empírica inicial 

de parâmetros como a aplicação de um processo sistemático de otimização. Nesse 

contexto, foi empregada a otimização bayesiana, utilizando a função bayesopt do 

ambiente MATLAB. Esse método busca encontrar automaticamente a combinação ótima 

de parâmetros da RNA, reduzindo a necessidade de ajustes manuais e aumentando a 

capacidade de generalização do modelo. 

O espaço de busca dos hiperparâmetros foi definido por um vetor de variáveis 

otimizáveis, conforme relação abaixo: 

• Número de neurônios na camada oculta; 

• Taxa de aprendizado; 

• Número máximo de épocas de treinamento; 

• Objetivo de erro mínimo (goal) para critério de parada; 



73  

• Gradiente mínimo (min_grad) para critério de convergência; 

• Máximo de falhas de validação consecutivas (max_fail); 

• Parâmetro sigma da função RBF; e 

• Fator de regularização lambda para controle de sobre ajuste. 

 

Esse processo de otimização automatizada possibilitou a seleção sistemática das 

melhores combinações de hiperparâmetros para cada cenário (número de características 

e acelerômetros utilizados), resultando em modelos altamente performáticos e 

consistentes nos conjuntos de teste, conforme evidenciado no capítulo Resultados e 

Discussões. 

Com a rede devidamente configurada, deu-se início ao treinamento 

supervisionado, no qual o modelo foi exposto aos exemplos rotulados oriundos do 

conjunto de dados de treinamento, correspondentes a 70% da base total. Os 30% restantes 

foram divididos igualmente entre os conjuntos de validação (15%) e teste (15%). A 

divisão estratificada teve como objetivo garantir o equilíbrio entre as classes e prevenir 

o overfitting, assegurando que o modelo fosse avaliado em dados independentes daqueles 

usados no treinamento. 

Durante o treinamento, a rede neural ajustava iterativamente seus pesos com base 

nos erros cometidos, enquanto o conjunto de validação era utilizado para monitorar a 

evolução do desempenho e ativar mecanismos de parada antecipada, como o early 

stopping, em caso de degradação da generalização. 

Após o treinamento, a performance da RNA foi avaliada com base em métricas 

estatísticas aplicadas exclusivamente ao conjunto de teste, incluindo precisão, 

sensibilidade, acurácia, especificidade e F1-Score. Caso os resultados não atingissem os 

critérios mínimos de desempenho estipulados, novos cenários de hiperparâmetros eram 

definidos e o processo de treinamento era repetido. 

Uma vez identificado um modelo com F1-Score superior a 95%, este era 

considerado apto a compor o conjunto final de modelos aprovados para identificação de 

falhas de injeção de combustível em motores Diesel com base na análise dos sinais de 

vibração. 
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5. ESTUDO DE CASO 
 

Este capítulo tem como objetivo apresentar o estudo de caso aplicado, detalhando 

o motor Diesel marítimo analisado (Figura 5), os procedimentos de aquisição dos sinais 

de vibração e a metodologia experimental empregada para a simulação e identificação de 

falhas de injeção. 

 
Figura 5 - Vista Geral do Motor MTU 12V4000 e do Dinamômetro Prüftechnik BFBg 2h 

 
5.1 Caracterização do Conjunto Motor Diesel e Dinamômetro  

 

As características construtivas e operacionais do motor diesel MTU 12V4000C11 
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encontram-se sintetizadas na Tabela 5, abrangendo informações como número de 

cilindros, sistema de injeção, dimensões geométricas, potência nominal e torque máximo. 

Complementarmente, a Tabela 6 apresenta as dimensões globais e o peso aproximado do 

motor, enquanto a Tabela 7 descreve a posição do centro de gravidade em condição seca, 

aspecto relevante para análises de instalação e balanceamento estrutural. Os dados de 

desempenho em diferentes rotações de operação, incluindo potência, torque e consumo 

específico, são apresentados na Tabela 8, fornecendo subsídios para a avaliação da 

eficiência energética do motor. Por fim, a Tabela 9 apresenta as especificações técnicas 

do dinamômetro Hofmann BFBg 2h, empregado nos ensaios experimentais, destacando 

sua capacidade de torque, potência e requisitos de refrigeração. 

 

Tabela 5 - Especificações Técnicas – Motor Diesel MTU 12V4000C11 

Especificações Técnicas – Motor Diesel MTU 12V4000C11 
  

Fabricante / Modelo MTU / 12V4000C11 
Número de Cilindros / Ciclo 12 cilindros em V / 4 tempos 
Ângulo entre bancadas em V 90° 
Sistema de Injeção Injeção direta 
Sistema de Combustível Common Rail com controle eletrônico DDEC IV 

Controle de Injeção Controle individual por cilindro, com controle 
total do tempo de injeção 

Resfriamento Por água 
Turboalimentação Estágio único - Um turbocompressor por bancada 
Diâmetro do Cilindro (Bore) 165 mm 
Curso (Stroke) 190 mm 
Deslocamento por Cilindro 4,1 litros 
Deslocamento Total 48,8 litros 
Razão de Compressão 14:1 
Potência Nominal 1.193 kW 
Rotação Nominal 1.900 RPM 
Torque Máximo 7.595 N·m 
Velocidade do Torque Máximo 1.500 rpm 
Ordem de Ignição (Firing Order) A1–B2–A5–B4–A3–B1–A6–B5–A2–B3–A4–B6 
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Tabela 6 - Dimensões / Peso Aproximado 

Dimensões / Peso 
Aproximado 

  
Comprimento 
Total 2.537,7 mm 

Largura Total 1.587,8 mm 
Altura Total 1.736,3 mm 
Seco (Dry) 6.044 kg 
Molhado 
(Wet) 6.428 kg 

 

Tabela 7 - Centro de Gravidade (Motor Seco) 

Centro de Gravidade 
(Motor Seco)   

Referência Distância 
Do bloco 
traseiro ao 
longo do 
eixo X 

899,2 mm 

Acima do 
virabrequim 
(eixo Y) 

238,8 mm 

À direita do 
virabrequim 
(eixo Z) 

0,0 mm 
 

 

Tabela 8 - Dados de Desempenho do MTU 12V4000C11 

Dados de Desempenho do MTU 12V4000C11 
    

Rotação (rpm) Potência (kW) Torque 
(N·m) Consumo (g/kWh) 

1200 633 5038 211 
1350 905 6398 194 
1500 1193 7595 190 
1650 1193 6905 193 
1800 1193 6330 194 
1900 1193 5996 - 

 

Tabela 9 - Dados Técnicos do Dinamômetro 

Dados Técnicos do Dinamômetro 
   

Modelo BFBg 2h — 
Binário de rotação máximo 22.920 N.m 

Potência máxima 5.000 kW 
Potência máxima do dinamômetro 24.000 N 

Rotação máxima 3.000 min⁻¹ 
(rpm) 

Necessidade de água refrigerante 
(capacidade máxima) 135.000 L/h 

Temperatura máxima da água 
refrigerante (entrada) 45 °C 

Temperatura máxima da água 
refrigerante (saída) 70 °C 
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Uma das principais inovações tecnológicas do motor MTU Série 4000, como o 

modelo 12V4000C11 (Figura 6) utilizado neste estudo, é a incorporação do sistema de 

injeção de combustível do tipo Common Rail, que representa um marco em termos de 

controle preciso, eficiência energética e redução de emissões em aplicações marítimas de 

alto desempenho. 

Diferentemente dos sistemas convencionais que utilizam injetores comandados 

por came ou bombas de injeção com êmbolos individuais para gerar pressão 

pontualmente, o sistema Common Rail da Série 4000 opera com uma única bomba de 

alta pressão, que fornece combustível continuamente pressurizado para todos os 

injetores, independentemente do regime de operação. Com isso, elimina-se a 

dependência mecânica da posição do virabrequim, permitindo um controle independente 

do momento da injeção. 

 
Figura 6 - Esquema de um  Sistema Common Rail. Fonte: BASSHUYSEN; SCHÄFER 

(2004). 

 
O gerenciamento integral do ciclo de injeção é realizado por meio do sistema 

eletrônico Detroit Diesel Electronic Control (DDEC IV), que atua diretamente sobre as 

solenóides das unidades injetoras. Esse sistema eletrônico é responsável por controlar 

com precisão o início da injeção (BOI), a duração do pulso (PW), a quantidade de 

combustível injetado e a atomização do jato, em função dos parâmetros operacionais do 

motor e das condições ambientais. 

Esse controle dinâmico é viabilizado por meio de microprocessadores presentes 

no módulo DDEC IV, que recebem sinais de diversos sensores (temperatura, pressão, 

rotação, entre outros), permitindo decisões em tempo real sobre o ciclo de injeção ideal 

para cada cilindro. 
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5.1.1. Injeção Eletrônica Piloto e Otimização da Combustão 
 

Uma importante funcionalidade habilitada pelo DDEC IV é a Injeção Eletrônica 

Piloto. Nos sistemas de injeção convencionais, o atraso de ignição entre a injeção e o 

início da combustão tende a provocar acúmulo de combustível não queimado na câmara, 

o que resulta em picos elevados de pressão (rate of pressure rise), emissão de fumaça 

branca, ruído de combustão intenso (knocking) e maiores níveis de consumo específico. 

Com a Injeção Eletrônica Piloto (Figura 7), o sistema injeta uma pequena 

quantidade inicial de combustível antes da injeção principal, o que proporciona o início 

da combustão de forma mais suave e controlada. A imagem mostra as curvas de 

voltagem, corrente elétrica, estado da válvula de controle e taxa de injeção ao longo do 

tempo. O gráfico ilustra a ocorrência de múltiplos pulsos de injeção, evidenciando o 

controle dinâmico realizado pela ECU. Essa estratégia permite a implementação de 

injeção piloto e principal, otimizando a combustão e reduzindo emissões. 

 

 
Figura 7 - Ciclo de Injeção Multipulso do Sistema Common Rail Controlado por DDEC 

IV. Fonte: Rolls-Royce. 

 

5.1.2. Injetores Eletrônicos Unitários 
 

Outro diferencial do sistema é a utilização de Injetores Eletrônicos Unitários, os 

quais recebem combustível já pressurizado pelos trilhos do Common Rail e não 
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necessitam gerar pressão internamente. Esse conceito elimina a necessidade de ajustes 

mecânicos associados ao came e permite que toda a atuação seja feita eletronicamente. 

O DDEC IV é responsável por comandar a quantidade de combustível injetado, a 

precisão do tempo de abertura e o fechamento do injetor. 

Essa arquitetura favorece a padronização da injeção entre os cilindros, maior 

repetibilidade e confiabilidade, além de viabilizar estratégias de diagnóstico eletrônico 

baseadas em parâmetros como tempo de resposta, corrente de acionamento e pressão nos 

trilhos. 

 

5.2 Detroit Diesel Diagnostic Link (DDDL) 
 
No presente estudo, o software Detroit Diesel Diagnostic Link (DDDL) foi 

utilizado como ferramenta técnica essencial para a indução experimental de falhas de 

injeção no motor MTU 12V4000C11, viabilizando a coleta de sinais de vibração 

associados a diferentes condições de operação, incluindo falhas simuladas de forma 

precisa e não invasiva. 

O DDDL, desenvolvido pela Detroit Diesel Corporation (DDC), é um ambiente 

diagnóstico avançado que permite a comunicação direta com a ECU DDEC IV do motor. 

Dentre suas múltiplas funcionalidades, destaca-se a capacidade de interromper 

seletivamente a injeção de combustível em cada um dos cilindros, de forma totalmente 

controlada, rápida e segura (Figura 8). Ressalta-se que, virtude limitação do software 

DDDL, somente é possível realizar cortes de injeção em um cilindro por vez. O software 

também não permiti atrasar ou adiantar a injeção do combustível e alterar a quantidade 

de combustível injetado. 
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Figura 8 - Interface gráfica do software Detroit Diesel Diagnostic Link 

 

Durante os testes experimentais, o DDDL foi empregado para realizar cortes 

individuais de combustível nas unidades injetoras eletrônicas, simulando falhas reais 

de injeção, sem a necessidade de intervenções mecânicas ou físicas no motor. Esse 

processo foi fundamental para isolar os efeitos vibracionais de cada cilindro, permitindo 

a construção de um banco de dados com assinaturas distintas para condições normais e 

falhas de injeção de combustível; reproduzir, com elevada fidelidade, falhas típicas como 

ausência de injeção ou interrupção abrupta da queima e avaliar a sensibilidade dos 

acelerômetros posicionados em diferentes regiões do motor (cilindros e bloco) frente às 

variações dinâmicas induzidas. A Figura 9 mostra a janela do software DDL onde é 

possível selecionar o cilindro que sofrerá corte de injeção de combustível. 
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Figura 9 - Tela da Janela de Corte de Injeção de Combustível, do DDDL, no Cabeçote 

A3 ou 3V 

A indução sistemática de falhas com o suporte do DDDL permitiu garantir a 

qualidade e a rotulagem precisa dos dados utilizados para o treinamento dos modelos de 

RNAs. Essa abordagem assegurou a consistência nos cenários de coleta, com 

replicabilidade controlada para cada condição testada, o sincronismo entre a falha 

induzida e o início da aquisição dos sinais de vibração, evitando ambiguidade nos dados, 

a geração de um conjunto de dados confiável e tecnicamente robusto, com separação 

clara entre as classes de operação normal e com falha de injeção. 

O uso do DDDL foi, portanto, não apenas um recurso de apoio diagnóstico, mas 

um elemento central da metodologia experimental, viabilizando uma análise 

fundamentada dos efeitos das falhas de injeção sobre o comportamento vibracional do 

motor e servindo como base de referência para validação dos modelos de classificação 

desenvolvidos nesta dissertação. 

 

5.3 Sistema de Aquisição de Dados 
 
Para a coleta dos sinais de vibração utilizados neste estudo, foi desenvolvido um 
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sistema de aquisição de dados robusto, configurado para atender aos requisitos de alta 

resolução temporal, múltiplos canais simultâneos e confiabilidade em ambientes 

industriais severos. O sistema foi responsável por captar, registrar e armazenar os sinais 

provenientes dos acelerômetros instalados no motor Diesel MTU 12V4000C11, bem 

como de outros sensores auxiliares de monitoramento. Na Figura 10 é possível visualizar 

os pontos de coleta das assinaturas de vibração.  

 

 
Figura 10 - Vista do Conjunto Motor-Dinamômetro 

 

5.3.1. Arquitetura do Sistema de Aquisição 
 
O sistema foi composto por cinco placas de aquisição do tipo NI 9234, 

pertencentes à série C da National Instruments. Cada placa dispõe de quatro canais de 

entrada analógica para aquisição de sinais dinâmicos com alto desempenho, totalizando 

20 canais disponíveis, dos quais 15 foram utilizados simultaneamente para a aquisição 

de sinais de vibração e referência. 

Os dados foram adquiridos a uma taxa de amostragem de 10.240 Hz, valor 

selecionado com base na faixa de frequência de interesse para identificação de falhas 

mecânicas no regime de operação do motor analisado, garantindo conformidade com o 

critério de Nyquist para as componentes espectrais de até 5.120 Hz. 

A infraestrutura experimental contou com a presença de um Tacômetro e de um 

Sistema Torque Track (Figura 11), instalado no eixo do Dinamômetro, utilizado para o 

monitoramento do torque dinâmico transmitido pelo eixo de manivelas do motor. Esse 

sistema foi configurado para registrar variações de torque ao longo do tempo, com 

potencial para revelar oscilações associadas a irregularidades na combustão e falhas de 

injeção. Esses sensores, permitem a medição das deformações torcionais diretamente 

associadas às cargas mecânicas transmitidas durante a operação do motor. 
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Figura 11 - Instalação do Tacômetro e do Sistema Torque Track 

 
Entretanto, cabe destacar que, embora esses sistemas estivessem plenamente 

operacionais durante os ensaios experimentais, os dados por eles obtidos não foram 

utilizados nas análises realizadas neste estudo. A decisão visou manter o foco exclusivo 

na análise de sinais de vibração para diagnóstico de falhas por meio de RNAs. Os dados 

coletados por esses sensores foram devidamente armazenados e serão objeto de 

investigações futuras, voltadas à integração de múltiplas fontes de sinal para diagnósticos 

mais abrangentes e robustos. 

 

5.3.2. Transdutores Instalados 
 
O aparato experimental incluiu um total de 15 acelerômetros uniaxiais, sendo que 

12 acelerômetros foram fixados diretamente sobre os cabeçotes dos cilindros, permitindo 

análise individualizada por unidade injetora e 3 acelerômetros adicionais foram 

posicionados estrategicamente próximos às janelas de inspeção do bloco (Figura 12), 

visando à avaliação comparativa entre medições em regiões estruturais distintas do 

motor. 
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Figura 12 - Disposição dos acelerômetros nos cabeçotes e no bloco do motor MTU 

12V4000C11 

Essa distribuição permitiu capturar padrões vibracionais tanto localizados quanto 

globais, fundamentais para o diagnóstico baseado em aprendizado de máquina. 

Para a aquisição dos sinais de vibração no motor Diesel MTU 12V4000C11, 

foram utilizados acelerômetros uniaxiais piezelétricos do tipo ICP® (Integrated Circuit 

Piezoelectric) fabricados pela PCB Piezotronics, reconhecida mundialmente pela 

precisão e confiabilidade de seus sensores em aplicações de engenharia mecânica e 

monitoramento de máquinas rotativas. 

Os acelerômetros empregados nas medições possuem as seguintes características 

técnicas: 

• Tipo de sensor: Piezoelétrico ICP® uniaxial 

• Sensibilidade nominal: ~100 mV/g  

• Faixa de frequência útil: 0,5 Hz a 10.000 Hz 

• Amplitude máxima de medição: até ±50 g 

• Montagem recomendada: base roscada, magnética ou colada 

• Conector: BNC padrão para compatibilidade com sistemas da National 

Instruments 

 

5.4 Software de Aquisição 
 
O software utilizado para controle, aquisição e armazenamento dos dados foi o 
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LabVIEW™ (Laboratory Virtual Instrument Engineering Workbench), também da 

National Instruments, conforme Figura 13. Esta plataforma viabilizou a criação de rotinas 

personalizadas para o gerenciamento simultâneo dos canais de entrada, a visualização em 

tempo real dos sinais coletados e o armazenamento estruturado dos dados em arquivos 

compatíveis com processamento posterior em MATLAB®. 

 

 
Figura 13 - Interface gráfica do software LabVIEW™ utilizada para aquisição de sinais 

de vibração do motor MTU 12V4000C11 

 
Os sinais captados pelos acelerômetros foram transmitidos aos módulos NI 9234 

através de conexões blindadas e compatíveis com o padrão ICP®, garantindo 

condicionamento interno de sinal, proteção contra ruídos eletromagnéticos e alta 

linearidade entre aceleração e saída em tensão. 

A correta integração dos acelerômetros com o sistema de aquisição por meio do 

software LabVIEW™ contribuiu diretamente para a alta resolução dos dados utilizados 

nas análises nos Domínios do Tempo, Frequência e Tempo-Frequência, consolidando a 

base experimental do presente estudo. 

 

5.5 Procedimento Experimental 
 

O experimento foi realizado em uma bancada de teste instrumentada, 

especialmente preparada para o diagnóstico de falhas de injeção de combustível em 

motores Diesel. O motor avaliado foi o MTU 12V4000C11, operando sob diferentes 

condições de carga e com simulação de falhas em suas unidades de injetoras, utilizando 
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recursos do sistema de controle eletrônico DDEC IV. 

Nesta pesquisa foram utilizados ao todo 39 cenários experimentais, dos quais 36 

envolviam condições de falha e 3 correspondiam à condição normal de operação (sem 

falha), conforme descrito na Tabela 10. Embora, à primeira vista, pudesse parecer que o 

conjunto de dados apresentaria um desbalanceamento entre as classes, em função da 

existência de uma única condição normal de operação e de 12 condições distintas de falha 

de injeção (uma por cilindro), tal situação não se verifica nesta pesquisa. Isso porque o 

balanceamento entre classes foi garantido pelo processo de data augmentation aplicado 

aos sinais brutos, o que resultou em um número equivalente de instâncias para cada 

classe. Dessa forma, ainda que a condição normal esteja representada por um único 

arquivo experimental, o volume de amostras extraídas deste cenário foi proporcional ao 

das demais classes de falha, assegurando distribuição equilibrada de dados. Assim, a 

classe normal permanece única, sem necessidade de subdivisões artificiais, enquanto as 

12 classes de falha representam falhas totais de injeção simuladas individualmente em 

cada cilindro, sem ocorrência simultânea. Este procedimento metodológico eliminou o 

risco de enviesamento do modelo, permitindo que a Rede Neural Artificial fosse treinada 

com uma base de dados estratificada e estatisticamente balanceada, condição essencial 

para a robustez e a generalização dos resultados obtidos. 

 

Tabela 10 - Cenários Simulados e Utilizados 

Rotação (RPM) Torque (N·m) Potência (kW) Falhas Simuladas (Cilindros) 
    

1500 850 127,5 Sem falha 

1500 850 127,5 Nº 1 a 12 

1500 2040 306 Sem falha 

1500 2040 306 Nº 1 a 12 

1500 3272 490 Sem falha 

1500 3272 490 Nº 1 a 12 
 

As falhas foram simuladas por meio do corte eletrônico de combustível em apenas 

um cilindro por vez, utilizando o sistema DDDL, uma vez que a arquitetura do DDEC 

IV não permite a realização de falhas simultâneas. Assim, cada cenário de falha 

representa a interrupção da injeção de combustível em um único cilindro específico, com 

o motor em funcionamento contínuo. 

A Tabela 10 apresenta um resumo consolidado dos cenários simulados e 
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efetivamente utilizados na composição do banco de dados experimental empregado neste 

estudo. Todos os testes foram realizados com rotação constante de 1500 RPM, 

distribuídos em três faixas de carga: 127,5 kW, 306 kW e 490 kW, representando 

diferentes regimes operacionais do motor Diesel marítimo MTU 12V4000C11. 

Para cada faixa de carga, foram considerados dois tipos de condição operacional: 

condição normal (sem falhas) e condições com falhas simuladas de injeção de 

combustível, totalizando 13 classes distintas. As falhas foram induzidas de forma 

individual em cada um dos 12 cilindros. Vale destacar que, devido à arquitetura eletrônica 

do sistema de gerenciamento DDEC IV, não foi possível realizar falhas simultâneas, 

assegurando que cada classe de falha representasse exclusivamente a ausência de injeção 

em um único cilindro. 

A organização dessas combinações foi fundamental para garantir a diversidade e 

a representatividade das classes, bem como para viabilizar a aplicação de técnicas de 

aprendizado supervisionado robustas. Além disso, a padronização dos parâmetros 

operacionais de rotação e carga em cada cenário contribuiu para a confiabilidade da 

análise comparativa entre os Domínios do Tempo, Frequência e Tempo-Frequência, 

objetivo central desta pesquisa. 

Para cada cenário, os sinais de vibração foram adquiridos por meio de um sistema 

multicanal com 15 acelerômetros uniaxiais (12 alocados nos cabeçotes e 3 no bloco do 

motor, conforme Figura 10. A aquisição foi feita com frequência de amostragem de 

10.240 Hz, assegurando resolução espectral adequada para análise nos Domínios do 

Tempo, Frequência e Tempo-Frequência. 

O tempo de coleta de dados por cenário foi de 60 segundos, permitindo a geração 

de amostras estatisticamente representativas para cada classe. Considerando todas as 

classes e cargas, foram coletadas 620.000 amostras/cenários, totalizando 

aproximadamente 24 milhões de amostras.  

Embora cenários adicionais com rotação de 1800 RPM tenham sido testados em 

três faixas de carga (122 kW, 306 kW e 490 kW), conforme Tabela 11, os mesmos não 

foram utilizados neste estudo e serão utilizados em estudos futuros. 

 

Tabela 11 - Cenários Simulados e Não Utilizados 

Cenário Rotação 
(RPM) 

Torque 
(N·m) 

Potência 
(kW) 

Falhas Simuladas 
(Cilindros)      

Nº 1 1800 670 122 Sem falha 
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Nº 2 1800 670 122 Cilindro Nº 5 

Nº 3 1800 670 122 Cilindro Nº 12 

Nº 4 1800 1700 306 Sem falha 

Nº 5 1800 1700 306 Cilindro Nº 1 

Nº 6 1800 1700 306 Cilindro Nº 9 

Nº 7 1800 2722 490 Sem falha 

Nº 8 1800 2722 490 Cilindro Nº 3 

Nº 9 1800 2722 490 Cilindro Nº 11 
 

5.6 Utilização Futura dos Dados Coletados em 1800 RPM 
 
Embora o presente estudo tenha se concentrado exclusivamente em cenários com 

rotação constante de 1500 RPM, visando garantir homogeneidade e padronização das 

análises nos três domínios de estudo (Tempo, Frequência e Tempo-Frequência), cenários 

adicionais foram conduzidos a 1800 RPM, abrangendo três faixas de carga (122 kW, 306 

kW e 490 kW), e incluindo tanto condições normais quanto falhas simuladas em 

diferentes cilindros. 

A disponibilização desses dados abre uma avenida promissora para estudos 

futuros, principalmente nas seguintes direções: 

 

• Análise de Robustez e Generalização dos Modelos: Ao se testar os modelos 

treinados com dados a 1500 RPM em cenários de 1800 RPM, será possível avaliar 

sua capacidade de generalização frente a regimes dinâmicos distintos, 

característica essencial para aplicações reais em sistemas embarcados. 

• Transferência de Aprendizado (Transfer Learning): Técnicas modernas de 

aprendizado podem ser aplicadas utilizando os dados de 1500 RPM como base e 

adaptando os modelos para 1800 RPM com menor quantidade de dados rotulados, 

explorando a similaridade estrutural entre os regimes. 

• Estudos sobre o Impacto da Rotação na Assinatura Vibracional: A 

comparação direta entre as assinaturas vibracionais das mesmas falhas em 

diferentes rotações permitirá compreender como a velocidade angular influencia 

na propagação de vibrações, favorecendo o refinamento de atributos e filtros 

adaptativos. 

• Detecção de Regime Operacional: Incorporando dados de 1800 RPM, será 

possível desenvolver modelos híbridos que, além de diagnosticar falhas, 
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identifiquem automaticamente o regime de rotação do motor, o que amplia 

significativamente a aplicabilidade dos algoritmos. 

 

Dessa forma, os dados de 1800 RPM representam um ativo experimental de 

elevado valor, que poderá ser explorado em trabalhos futuros voltados à validação 

cruzada de modelos, desenvolvimento de algoritmos e análises comparativas entre 

regimes dinâmicos típicos da operação marítima. 
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6. RESULTADOS E DISCUSSÕES 
 
6.1 Apresentação Geral dos Dados 

 
Nesta seção, apresentam-se os parâmetros gerais empregados para a modelagem 

com RNAs e os principais resultados obtidos a partir dos testes realizados com sinais de 

vibração nos Domínios do Tempo, Frequência e Tempo-Frequência. 

A configuração geral dos hiperparâmetros seguiu uma faixa predefinida, ajustada 

por meio de experimentação e validação cruzada, conforme detalhado na Tabela 12. O 

modelo foi treinado, validado e testado utilizando a partição dos dados em 70%, 15% e 

15%, respectivamente. 

 

Tabela 12 - Intervalos de Hiperparâmetros Utilizados na Modelagem com RNA 

Hiperparâmetros Intervalo 
Mínimo Máximo 

Número de Neurônios (n) 20 40 
Taxa de Aprendizado (lr) 1×10⁻³ 1×10⁻¹ 
Número de Épocas (epochs) 200 1500 
Meta (Goal) 1×10⁻⁷ 1×10⁻⁵ 
Mínimo Gradiente (min_grad) 1×10⁻⁷ 1×10⁻⁵ 
Máximo de Falhas de Validação (max_fail) 10 30 
Sigma (sigma) 1×10⁻¹⁰ 1×10⁻⁸ 
Lambda (lambda) 1×10⁻¹² 1×10⁻¹⁰ 

 

6.2 Resultados no Domínio do Tempo 
 
6.2.1. Desempenho com Diferentes Quantidades de Características e Acelerômetros 
 

Com o objetivo de avaliar a eficiência dos modelos de RNAs na identificação de 

falhas de injeção em motores Diesel marítimos, realizou-se uma análise comparativa 

aprofundada utilizando diferentes quantidades de características estatísticas extraídas do 

sinal de vibração no Domínio do Tempo (1, 2, 5, 9, 18 e 27) e diferentes configurações 

de acelerômetros (1, 3, 5, 10 e 15). Esta análise buscou identificar o equilíbrio ideal entre 

desempenho, diagnóstico e custo computacional, considerando a redução de sensores e o 

número de atributos utilizados na entrada da rede. 

Os resultados evidenciam que o desempenho do modelo está diretamente 

relacionado ao número e à qualidade das características extraídas, bem como à 

quantidade e posicionamento dos acelerômetros, conforme Figura 14. De forma geral, o 
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modelo apresentou excelente robustez diagnóstica mesmo com configurações enxutas. 

 

 
Figura 14 - Comparativo de F1-Score - Domínio do Tempo 

 

No cenário com 15 acelerômetros, observou-se que o maior valor de F1-Score 

(93,61%) foi alcançado com apenas uma característica estatística. À medida que mais 

características foram adicionadas (até 27), o desempenho caiu gradualmente, atingindo 

um F1-Score de 66,21%. Esse comportamento indica que, apesar do aumento de 

informação, a adição de variáveis irrelevantes ou redundantes pode comprometer a 

capacidade de generalização do modelo, possivelmente devido ao fenômeno conhecido 

como curse of dimensionality (TAN; STEINBACH; KUMAR, 2018). 

O cenário intermediário, com 3 melhores acelerômetros (seleção dos melhores 

realizadas pelo Relief-F), apresentou desempenho altamente competitivo. Com duas 

características estatísticas, foi obtido um F1-Score de 98,48%, praticamente equiparado 

ao modelo com apenas um acelerômetro. Além disso, esse cenário ofereceu uma redução 

no tempo de processamento, variando entre 127 e 269 segundos, comparado ao intervalo 

de 143 a 295 segundos observado com um único acelerômetro, evidenciando uma melhor 

eficiência computacional. 

Por outro lado, ao utilizar somente o melhor acelerômetro, a rede alcançou 

valores extremamente elevados de desempenho: o F1-score máximo foi de 98,74% 

utilizando duas características, superando inclusive o modelo com 15 acelerômetros. Isso 

demonstra a relevância de um processo criterioso de seleção de sensores e reforça a 
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hipótese de que um acelerômetro bem posicionado pode capturar assinaturas vibracionais 

representativas o suficiente para um diagnóstico preciso, especialmente quando 

combinado com um conjunto de características estatísticas relevantes. 

Ao fixar 27 características e variar a quantidade de acelerômetros de 1 a 15, 

verificou-se que o melhor desempenho foi obtido com 1 acelerômetro, atingindo um F1-

Score de 96,60%, decaindo gradativamente até atingir 66,21% com 15 acelerômetros, 

conforme Figura 15. Essa tendência corrobora a ideia de que o excesso de acelerômetros, 

sem um critério adequado de seleção, pode adicionar ruído e complexidade ao modelo, 

sem necessariamente melhorar sua capacidade de predição. 

 

 
Figura 15 - F1-Score e Tempo de Processamento (Domínio do Tempo - 27 
Características) 

 
A Figura 16 apresenta a relação entre o desempenho do modelo, medido pelo F1-

Score, e o tempo de processamento para diferentes cenários de combinação de 

acelerômetros e características extraídas no Domínio do Tempo. Observa-se que todos 

os cenários analisados mantêm valores elevados de F1-Score, variando de 

aproximadamente 93% a 99,43%, evidenciando a robustez do modelo na detecção de 

falhas. O melhor desempenho é alcançado no cenário que utiliza o acelerômetro 

individual mais representativo com duas características, atingindo 99,43%.  
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Figura 16 - Melhores F1-Score e Tempo de Processamento por Cenário no Domínio do 

Tempo 

 

Esse resultado sugere que a seleção criteriosa de um único sensor aliado a um 

número reduzido, porém discriminante, de características pode ser suficiente para 

garantir elevado desempenho na tarefa de classificação. Por outro lado, nota-se uma 

tendência de redução no F1-Score quando há incremento no número de acelerômetros, 

como observado no cenário com 15 sensores, cujo desempenho cai para cerca de 93%. 

Esse comportamento indica que o aumento indiscriminado do número de sensores não 

resulta em ganhos proporcionais, podendo inclusive introduzir redundâncias ou ruídos 

que prejudicam a capacidade de generalização do modelo.  

Em relação ao tempo de processamento, há um comportamento não linear: 

inicialmente elevado no cenário com 1 e 3 acelerômetros (aproximadamente 300 

segundos), o tempo reduz significativamente para cerca de 140 segundos com 15 

acelerômetros, aumentando novamente para cerca de 200/250 segundos no cenário com 

27 características. Essa variação reflete o impacto combinado do número de 

características e do processo de seleção de sensores sobre a complexidade computacional 

do modelo. Tais resultados reforçam que, para aplicações embarcadas em sistemas de 

monitoramento de motores marítimos, a estratégia de utilizar um conjunto reduzido e 

otimizado de sensores e características representa a solução mais eficiente, equilibrando 

precisão diagnóstica e viabilidade computacional. 

Essas observações reforçam a importância de abordagens sistemáticas para 

seleção de características e acelerômetros, especialmente quando se busca maximizar o 

desempenho diagnóstico com o mínimo de recursos físicos e computacionais. 
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6.2.2. Frequência e Contribuição dos Acelerômetros Mais Relevantes 

 
A avaliação da contribuição dos acelerômetros para o diagnóstico de falhas de 

injeção, no contexto da análise no Domínio do Tempo, revelou padrões claros quanto à 

localização dos sensores mais eficazes. A Tabela 13 apresenta os resultados dos 

principais cenários analisados, destacando o número de acelerômetros, a quantidade de 

características estatísticas, o acelerômetro de melhor desempenho em cada configuração 

e os respectivos F1-Score, Acurácia, Precisão, Sensibilidade e Especificidade. 

 

Tabela 13 - Resultados com melhores acelerômetros nos cenários avaliados no 
Domínio do Tempo 

DOMÍNIO DO TEMPO 
Cenários Resultados 

Nº 
Acel. 

Nº 
Caract 

Melhor 
Acel. 

F1-
Score 

(%) 

Acurácia 
(%) 

Precisão 
(%) 

Sensibilidade 
(%) 

Especificidade 
(%) 

1 2 7 99,44 99,43 99,43 99,48 99,95 
1 5 15 98,74 99,67 98,73 98,77 99,89 
1 9 13 96,34 96,20 96,37 96,38 99,68 
1 18 9 97,13 97,15 97,24 97,11 99,76 
1 27 2 96,60 96,77 96,69 96,67 99,73 
3 1 7 98,48 98,48 98,40 98,62 99,87 
3 2 7 95,20 95,26 95,24 95,26 99,61 

 

A análise desses dados foi aprofundada com o auxílio do croqui do motor Diesel 

marítimo (Figura 12), o qual representa a localização física dos acelerômetros nos 

cabeçotes dos cilindros e no bloco do motor. Esse esquema foi essencial para 

compreender a relação entre desempenho diagnóstico e posição do sensor. 

Observou-se que os acelerômetros localizados nos cabeçotes foram os mais 

frequentemente selecionados como os melhores pontos de medição (Figura 17). O que, 

de certa forma, era o resultado mais esperado uma vez que são os pontos mais próximos 

da origem da sinal de falha de injeção. Em especial, o acelerômetro 7 (cilindro 7, bancada 

B) destacou-se com 44,4% das ocorrências, seguido pelo acelerômetro 2 (cilindro 2, 

bancada A) com 22,2%. Os acelerômetros 9, 13 e 15 completaram a lista dos sensores 

mais representativos, todos também posicionados sobre os cilindros. Nenhum dos 

acelerômetros instalados no bloco ou regiões mais afastadas foi selecionado entre os 

melhores. 
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Figura 17 - Localização dos Acelerômetros Mais Relevantes (Domínio do Tempo) 

 
A distribuição da frequência de ocorrência dos melhores acelerômetros é 

sintetizada na Figura 18. 

 

 
Figura 18 - Frequência de seleção dos melhores acelerômetros (Domínio do Tempo) 

 

Esse padrão de ocorrência revela que os acelerômetros montados diretamente 

sobre os cabeçotes dos cilindros — áreas críticas do sistema de injeção — são mais 

sensíveis às alterações dinâmicas provocadas por falhas de injeção. Essa sensibilidade se 

deve à proximidade direta com os eventos mecânicos e combustão, o que permite a 

captura de assinaturas de vibração com maior sensibilidade. 

Do ponto de vista técnico e prático, esses resultados sustentam duas importantes 

conclusões: 

A seleção do ponto de medição é mais determinante do que a quantidade de 

sensores. É possível alcançar alto desempenho diagnóstico com apenas um acelerômetro 
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bem posicionado, como demonstrado pelos elevados F1-Scores (>98%) em 

configurações com sensor único. 

A concentração dos melhores resultados nos cilindros confirma a superioridade 

dessas posições para fins diagnósticos. Sensores instalados em regiões mais distantes, 

como o bloco do motor, não apresentaram desempenho competitivo neste estudo. 

A Tabela 14, que reúne as métricas de precisão de treinamento, validação e teste 

nos diferentes cenários do Domínio do Tempo, possui papel central na interpretação dos 

resultados desta dissertação. Ela não é apenas um registro numérico, mas evidencia 

aspectos fundamentais da metodologia e das conclusões do estudo. 

 

Tabela 14 - Precisões de Treinamento, Validação e Testes obtidas no Domínio do 
Tempo em diferentes configurações de número de acelerômetros e características 
estatísticas 

DOMÍNIO DO TEMPO 
Cenários Resultados 

Nº 
Acel. 

Nº 
Caract 

Melhor 
Acel. 

Precisão 
Treinamento (%) 

Precisão 
Validação (%) 

Precisão 
Teste (%) 

1 2 7 99,35 98,29 99,43 
1 5 15 99,80 98,48 98,67 
1 9 13 99,02 97,53 96,21 
1 18 9 99,47 97,15 97,15 
1 27 2 99,10 96,02 96,77 
3 1 7 99,19 96,77 98,48 
3 2 7 98,25 95,83 95,26 

 

Primeiro, a Tabela 14 demonstra a consistência e robustez do modelo de RNA 

desenvolvido. Ao comparar os valores de treinamento, validação e teste, percebe-se que 

não há discrepâncias relevantes que caracterizem overfitting (quando o modelo memoriza 

o conjunto de treinamento, mas falha em generalizar para dados novos) nem underfitting 

(quando o modelo não aprende adequadamente os padrões). A proximidade entre as três 

métricas indica que o sistema foi bem calibrado, reforçando a eficácia das estratégias 

metodológicas adotadas, como a seleção de características via Relief-F e a divisão 

estratificada dos conjuntos de dados. 

Em segundo lugar, ela evidencia a importância da otimização do número de 

acelerômetros e de características estatísticas. Resultados como o do cenário com 1 

acelerômetro e 2 características (Precisão de Teste = 99,43%) demonstram que é possível 
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alcançar desempenho superior com configurações enxutas, ao invés de aumentar 

indiscriminadamente sensores e atributos. Este achado confirma a hipótese de que 

qualidade e posicionamento dos sensores são mais relevantes que a quantidade, além de 

mitigar a chamada maldição da dimensionalidade, já identificada na fundamentação 

teórica como um desafio para problemas de alta dimensionalidade 

A Figura 19 mostra a Matriz de Confusão para o melhor resultado obtido no 

Domínio do Tempo (1 acelerômetro e 2 características). Aqui ela mostra quais classes 

foram corretamente identificadas (verdadeiros positivos) e quais foram confundidas entre 

si (falsos positivos e falsos negativos). Isso é essencial em problemas multiclasse, como 

neste estudo de falhas de injeção em motores Diesel, no qual há 13 classes (1 condição 

normal + 12 falhas de injeção simuladas). 

A Matriz de Confusão de Validação evidencia que o modelo apresentou 

desempenho global extremamente elevado, com precisão média em torno de 98,3%, o 

que valida sua robustez e capacidade de generalização. Observa-se que a maioria das 

classes, como as classes 2, 4, 6, 7, 9, 10 e 13, alcançou 100% de acerto, indicando que o 

modelo foi capaz de aprender padrões bem definidos e consistentes para esses cenários 

específicos, reforçando sua eficácia no diagnóstico de falhas de injeção. 

A predominância de valores na diagonal e pouquíssimos registros fora dela indica 

uma alta generalização do modelo. 
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Figura 19 - Matriz de Confusão do melhor resultado obtido no Domínio do Tempo 

 

A Figura 20 representa a função de custo por entropia cruzada durante o processo 

de treinamento da RNA onde mede a distância entre as distribuições de probabilidade 

previstas pela rede (saídas do modelo) e as distribuições reais (rótulos corretos, 

codificados em one-hot). Em termos práticos, ela penaliza classificações incorretas com 

alta confiança e recompensa previsões corretas. 

Pela Figura 20, observa-se que: 

• As três curvas (treinamento em azul, validação em verde e teste em 

vermelho) seguem trajetórias bastante próximas, o que demonstra que a RNA 

manteve consistência entre aprender e generalizar;  

• Houve uma queda acentuada da entropia cruzada nas primeiras épocas 

(até ~220), seguida de uma redução mais suave até estabilizar-se por volta da 

época 600. Esse comportamento é esperado, já que o modelo aprende 

rapidamente no início e depois realiza ajustes finos nos pesos; 
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• O melhor desempenho de validação ocorreu na época 590, com valor de 

entropia cruzada ≈ 0,0030559, o que é um resultado consideravelmente baixo, 

indicando uma relação muito alta entre as previsões e os rótulos reais; e 

• A sobreposição das curvas confirma que não houve overfitting 

significativo, pois o desempenho de validação e teste acompanhou o de 

treinamento até a convergência. 

 

 
Figura 20 - Função de custo por entropia cruzada durante o processo de treinamento 

da RNA no Domínio do Tempo 

 

Face ao exposto, o gráfico que representa a função de custo por entropia cruzada 

durante o processo de treinamento da RNA comprova que o modelo atingiu ótima 

capacidade de classificação, com baixo erro e elevada generalização, validando a eficácia 

da configuração de hiperparâmetros e da estratégia de seleção de características adotada, 

uma vez que o desempenho consistente no treino, validação e teste evita o risco de 

resultados artificiais. 

A Figura 21 (gráfico Gradiente vs Épocas) permite acompanhar a intensidade das 

atualizações dos pesos ao longo do processo de treinamento da RNA. O gradiente reflete 

diretamente a magnitude desses ajustes em que valores elevados indicam alterações 

bruscas nos parâmetros, enquanto valores mais baixos correspondem a ajustes mais sutis 

e refinados. Dessa forma, a análise do gradiente é essencial para verificar se o algoritmo 
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de otimização está de fato convergindo para um mínimo da função de custo. Quando se 

observa uma queda progressiva seguida de estabilização, tem-se um forte indicativo de 

que a RNA está se ajustando corretamente e se aproximando de uma configuração de 

pesos estável e otimizada. 

 

 
Figura 21 - Gradiente x Épocas no Domínio do Tempo 

 

Observa-se que o gradiente tem início em torno de 10"+ e decresce gradualmente 

até a ordem de 10": na última época de treinamento (época 620). Esse comportamento 

confirma que o processo de aprendizagem ocorreu de forma estável, com ajustes cada 

vez menores nos pesos da rede à medida que o modelo se aproximava do ponto ótimo de 

convergência. O valor final do gradiente, aproximadamente 2,8	𝑥	10":, é considerado 

baixo, o que indica que os pesos da RNA atingiram uma configuração próxima ao mínimo 

local da função de custo, evidenciando a consolidação do processo de otimização. 

Os resultados apresentados indicam que o treinamento da RNA ocorreu de 

maneira eficiente e convergente, com o gradiente reduzido progressivamente. Isso 

garante que o modelo não apenas se ajustou bem aos dados de treinamento, mas também 

manteve capacidade de generalização, evitando overfitting. 

A Figura 22 mostra o Histograma de Erros, para o melhor resultado obtido no 

Domínio do Tempo. Ele mostra a distribuição das diferenças entre os valores reais 

(targets) e os valores previstos (outputs) pela RNA. Esse tipo de representação é bastante 

útil porque permite avaliar a qualidade do ajuste do modelo de forma mais detalhada do 

que métricas globais, mostrando não apenas o valor médio do erro, mas também sua 

dispersão e simetria. 
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Figura 22 - Histograma de Erros no Domínio do Tempo 

 

No histograma apresentado na Figura 22, observa-se que a grande maioria dos 

erros está altamente concentrada em torno de zero, com barras azuis (treinamento), 

verdes (validação) e vermelhas (teste) sobrepostas, formando um pico estreito. Isso 

indica que a RNA apresentou excelente desempenho de predição, com erros residuais 

muito baixos em todos os conjuntos. 

As barras em torno do zero sugerem que não há viés sistemático relevante, já que 

os erros se distribuem de forma simétrica em torno do valor ideal. Além disso, o fato de 

os três conjuntos (treinamento, validação e teste) apresentarem distribuições semelhantes 

comprova que o modelo manteve consistência e capacidade de generalização, sem 

evidências significativas de sobreajuste. 

Esses resultados confirmam a eficácia das estratégias de seleção de características 

e acelerômetros adotadas no Domínio do Tempo, demonstrando que o modelo foi capaz 

de reproduzir com precisão o comportamento dinâmico do motor, mesmo em cenários 

complexos de diagnóstico de falhas de injeção. 
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6.2.3. Ranqueamento das 27 Características Estatísticas no Domínio do Tempo 
 

A seleção de características desempenha um papel decisivo na construção de 

modelos preditivos robustos, sobretudo em sistemas complexos como motores Diesel 

marítimos, nos quais os sinais de vibração são ricos em informações, mas também em 

redundâncias. A análise realizada por meio do algoritmo Relief-F revelou 

comportamentos distintos quanto à relevância das métricas estatísticas a depender do 

domínio de investigação, permitindo compreender não apenas quais atributos se 

destacam, mas também como a variância da sua importância se manifesta em cada caso. 

No domínio do tempo (Figura 23), observou-se uma clara dispersão entre as 

características avaliadas. Algumas métricas, como Fator de Impulso e Fator de Crista, 

surgem como fortemente discriminativas, enquanto outras, como Média e Soma, 

apresentam pesos negativos, sugerindo baixa ou até mesmo efeito adverso na 

classificação. Esse cenário evidencia que os atributos temporais não são uniformemente 

relevantes: há um contraste acentuado entre aqueles capazes de capturar assinaturas sutis 

do processo de combustão e outros que apenas acrescentam ruído ao modelo. Em outras 

palavras, a variância entre as relevâncias é elevada, o que reforça a necessidade de uma 

etapa criteriosa de seleção para evitar sobrecarga dimensional e perda de desempenho. 

 
 

 
Figura 23 - Ranqueamento das 27 Características no Domínio do Tempo 

 
6.3 Resultados no Domínio da Frequência 
 
6.3.1. Análise Comparativa de Desempenho com Diferentes Quantidades de 

Características e Acelerômetros 
 

A análise dos resultados no Domínio da Frequência buscou avaliar a capacidade 

das RNAs em identificar falhas de injeção em motores Diesel marítimos a partir de sinais 
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de vibração, considerando diferentes configurações de entrada: variação no número de 

características estatísticas extraídas (1, 2, 5, 9, 18 e 27) e na quantidade de acelerômetros 

utilizados (1, 3, 5, 10 e 15). 

Assim como observado no Domínio do Tempo, os resultados mostram que o 

desempenho dos modelos é altamente sensível tanto à seleção de características quanto à 

escolha dos sensores empregados, reforçando a importância do pré-processamento 

criterioso e da otimização dos hiperparâmetros de modelagem, conforme pode ser 

visualizado na Figura 24. 

 

 
Figura 24 - F1-Score por Nº de Características - Domínio da Frequência 

 

No cenário com os 15 acelerômetros ativos, observou-se que o melhor 

desempenho foi alcançado utilizando 2 características estatísticas, com um F1-Score de 

92,87%. Entretanto, houve uma queda progressiva de desempenho com o aumento do 

número de características: ao utilizar 27 características, o F1-Score reduziu drasticamente 

para 60,38%. Essa degradação evidencia novamente o impacto da maldição da 

dimensionalidade (TAN; STEINBACH; KUMAR, 2018), em que a adição 

indiscriminada de variáveis irrelevantes ou ruidosas compromete a capacidade 

discriminativa do modelo. 

Além disso, o tempo de processamento apresentou uma variação moderada, entre 

145 segundos (com 1 característica) e 274 segundos (com 18 características), sendo mais 

influenciado pelo aumento do número de características do que pelo número de 
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acelerômetros. 

Ao reduzir a quantidade de sensores para os 3 melhores acelerômetros, os 

resultados demonstraram uma melhoria substancial em todas as métricas. O melhor 

desempenho foi obtido com 2 características, atingindo um F1-Score de 98,30%, 

evidenciando o benefício da seleção estratégica de acelerômetros. Além disso, o tempo 

de processamento foi mantido em níveis bastante competitivos, variando de 154 a 257 

segundos. 

A comparação entre as combinações mostra que, mesmo com poucos 

acelerômetros e características selecionadas, é possível atingir desempenho de 

classificação superior, indicando que a qualidade das informações capturadas é mais 

relevante que a quantidade bruta de dados. 

Na configuração utilizando apenas o melhor acelerômetro, foram obtidos os 

melhores resultados absolutos no Domínio da Frequência: um F1-Score de 99,43% ao se 

utilizar 2 características estatísticas.  

Entretanto, o tempo de processamento em alguns casos foi elevado, atingindo 696 

segundos para o cenário de 2 características, devido à configuração da rede neural 

empregada para esse cenário específico (número de neurônios, taxa de aprendizado e 

número de épocas) além da necessidade de realizar FFT. 

Ao fixar 27 características e variar o número de acelerômetros de 1 a 15 (Figura 

25), verificou-se uma tendência clara de queda no desempenho com o aumento da 

quantidade de sensores: o F1-Score caiu de 98,10% (1 acelerômetro) para 60,38% (15 

acelerômetros). Esse comportamento reforça o entendimento de que o excesso de 

acelerômetros não necessariamente traduz-se em ganho de desempenho e pode, de fato, 

adicionar ruído ao sistema, impactando negativamente os resultados. 
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Figura 25 - F1-Score x Tempo de Processamento (Domínio da Frequência - 27 

Características) 

Na Figura 26, a qual compara os melhores resultados consolidados no Domínio 

da Frequência destaca que utilizar apenas 1 acelerômetro e 2 características 

proporcionou o melhor F1-Score de 99,43%. 

A configuração com 3 melhores acelerômetros e 2 características também se 

mostrou altamente eficaz, com F1-Score de 98,30%, apresentando um compromisso 

interessante entre desempenho e um tempo de processamento reduzido de apenas 229 

segundos, tempo de processamento três vezes menor do que o obtido no cenário com um 

acelerômetro e 2 características. 

A configuração com todos os 15 acelerômetros resultou em desempenho inferior 

à meta mínima de 95% de F1-Score. 

 
Figura 26 - F1-Score e Tempo de Processamento por Cenário no Domínio da 

Frequência 
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Os resultados no Domínio da Frequência reforçam a eficácia da metodologia 

proposta de diagnóstico de falhas de injeção via RNA, mesmo em cenários restritos em 

termos de número de acelerômetros e características. De maneira geral, observou-se que  

poucas características estatísticas selecionadas estrategicamente são suficientes para  

representar suficientemente bem o comportamento do sistema, a escolha criteriosa dos 

acelerômetros é fundamental para maximizar o desempenho do diagnóstico e o excesso 

de variáveis e acelerômetros sem critérios robustos de seleção, compromete a eficiência 

e a eficácia dos modelos, aumentando o custo computacional e reduzindo a capacidade 

de generalização da RNA. 

 

6.3.2. Frequência e Contribuição dos Acelerômetros Mais Relevantes 
 

A identificação dos acelerômetros mais relevantes no Domínio da Frequência 

revelou um padrão técnico significativo, alinhado com o comportamento mecânico do 

sistema de injeção de combustível do motor Diesel. A Tabela 15 apresenta os cenários 

com melhores resultados, discriminando o número de acelerômetros utilizados, a 

quantidade de características extraídas, o acelerômetro que apresentou o melhor 

desempenho e os respectivos F1-Score, Acurácia, Precisão, Sensibilidade e 

Especificidade. 

 

Tabela 15 - Resultados com melhores acelerômetros nos cenários avaliados no 
Domínio da Frequência 

DOMÍNIO DA FREQUÊNCIA 

Cenários Resultados 

Nº 
Acel. 

Nº 
Caract 

Melhor 
Acel. 

F1-Score 
(%) 

Acurácia 
(%) 

Precisão 
(%) 

Sensibilidade 
(%) 

Especificidade 
(%) 

1 2 2 99,43 99,43 99,50 99,39 99,95 
1 5 2 98,74 98,67 98,80 98,73 99,89 
1 9 1 98,43 98,48 98,39 98,52 99,87 
1 18 2 95,55 95,45 95,65 95,56 99,62 
1 27 4 98,10 98,10 98,17 98,05 99,84 
3 1 4 97,72 97,72 97,73 97,80 99,81 
3 2 2 98,30 98,29 98,39 98,25 99,86 
3 5 2 97,61 97,53 97,68 97,64 99,79 

 

A análise espacial desses sensores, conforme representado no croqui do motor 

Diesel (Figura 27), mostra que os acelerômetros 1, 2 e 4 estão localizados sobre os 
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cabeçotes dos cilindros 1, 2 e 4, todos pertencentes à bancada A. Esta informação é de 

extrema relevância, pois destaca que os sensores de maior contribuição diagnóstica não 

estão posicionados no bloco do motor ou em regiões periféricas, mas sim diretamente 

sobre os cilindros, onde os efeitos vibracionais das falhas de injeção se manifestam com 

maior intensidade e especificidade. 

 

 
Figura 27 - Localização dos acelerômetros no motor Diesel (bancada A em destaque) 

 
O gráfico apresentado na Figura 28 resume a frequência de ocorrência dos 

acelerômetros que obtiveram o melhor desempenho nos diferentes cenários modelados. 

O acelerômetro 2 se destaca de forma marcante, sendo o mais eficaz em 66,7% dos casos 

que alcançaram F1-Score acima de 95%. Em seguida, o acelerômetro 4 foi selecionado 

em 22,2% dos cenários, e o acelerômetro 1, em 11,1%. 

 
Figura 28 - Frequência de seleção dos melhores acelerômetros no Domínio da 

Frequência 
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A predominância do acelerômetro 2, posicionado sobre o cilindro 2, é 

tecnicamente justificável pela sua proximidade direta com a zona de combustão e atuação 

do sistema de injeção, o que permite captar com maior nitidez os efeitos vibracionais 

gerados por anomalias como falhas de atomização, atraso de ignição ou variações de 

pressão no bico injetor. 

Esses resultados confirmam que os melhores desempenhos de classificação, com 

F1-Scores superiores a 95%, foram obtidos a partir de sinais capturados por sensores 

localizados diretamente sobre os cilindros. Nenhum dos sensores situados no bloco do 

motor apresentou desempenho competitivo nos cenários analisados. 

Em termos práticos, essa evidência empírica reforça que a instrumentação 

otimizada pode ser concentrada em poucos pontos de medição estrategicamente 

posicionados sobre os cilindros. Essa abordagem reduz significativamente o número de 

sensores e a complexidade do sistema de aquisição, sem sacrificar a acurácia diagnóstica, 

o que é extremamente vantajoso para aplicações embarcadas e sistemas de manutenção 

preditiva em ambientes navais. 

Assim como no Domínio do Tempo, no Domínio da Frequência a concentração 

dos melhores resultados nos cilindros/cabeçotes confirma a superioridade dessas 

posições para fins diagnósticos. Os acelerômetros instalados nos cilindros da bancada A 

— especialmente o acelerômetro 2 — são os mais eficazes para identificação de falhas 

de injeção em motores Diesel, combinando precisão diagnóstica elevada e viabilidade 

prática de implementação. 

Analisando os valores de precisões de Treinamento, Validação e Teste mostrados 

na Tabela 16 é verificado que o valor de Precisão de Teste variou entre 95,45% e 99,43%, 

o que confirma a consistência dos resultados e a aplicabilidade prática da metodologia. 

Além disso, observa-se que cenários com configurações enxutas, como 1 acelerômetro e 

2 características, já foram capazes de atingir desempenho próximo ao máximo registrado 

(99,43%), reforçando que a qualidade da informação captada pelo sensor e a seleção 

criteriosa de atributos são mais determinantes do que a quantidade bruta de dados. 
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Tabela 16 - Precisões de Treinamento, Validação e Testes obtidas no Domínio da 
Frequência em diferentes configurações de número de Acelerômetros e Características 

Estatísticas 

DOMÍNIO DA FREQUÊNCIA 
Cenários Resultados 

Nº 
Acel. 

Nº 
Caract 

Melhor 
Acel. 

Precisão 
Treinamento 

(%) 

Precisão 
Validação 

(%) 

Precisão 
Teste 

(%) 

1 2 2 99,59 98,86 99,43 
1 5 2 99,76 98,48 98,67 
1 9 1 99,43 99,05 98,48 
1 18 2 97,96 96,77 95,45 
1 27 4 99,55 97,72 98,10 
3 1 4 99,67 97,72 97,72 
3 2 2 99,72 98,29 98,29 
3 5 2 99,22 96,02 97,53 

 

Outro aspecto evidenciado é a presença de pequenas variações entre as precisões 

de treinamento, validação e teste, sempre em patamares próximos, o que indica boa 

generalização e ausência de overfitting. Esse comportamento comprova que a RNA 

conseguiu aprender padrões relevantes de vibração sem memorizar o conjunto de 

treinamento, o que a torna adequada para cenários reais de operação. 

Também merece destaque a influência do número de características: enquanto 

cenários com poucas variáveis mantêm índices próximos a 99%, a inclusão de conjuntos 

maiores (como 18 características) leva a uma redução de desempenho (95,45% no teste), 

evidenciando os efeitos da maldição da dimensionalidade, já discutida em diferentes 

partes da dissertação. Assim, a tabela reforça a importância de técnicas de seleção como 

o Relief-F, que auxiliam na identificação dos atributos mais relevantes e evitam 

redundâncias prejudiciais. 

A Matriz de Confusão de Validação obtida no Domínio da Frequência (Figura 

29) demonstra o elevado desempenho da RNA na classificação das 13 classes. De forma 

geral, observa-se que os valores estão concentrados na diagonal principal, evidenciando 

que a maioria absoluta das amostras foi corretamente classificada. As taxas de acerto por 

classe variaram entre 97,5% e 100%, resultando em uma acurácia global próxima de 

98,9%, o que confirma a robustez e a confiabilidade do modelo desenvolvido. 

Algumas classes, como 1, 2, 6, 7, 8, 9 e 10, apresentaram desempenho perfeito, 

com 100% de acerto e nenhuma instância incorretamente classificada. Já outras classes, 
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como 3, 4, 5, 11, 12 e 13, mostraram pequenas taxas de erro, em torno de 2,2 a 2,6%, 

geralmente decorrentes de confusões com classes vizinhas. Esse comportamento é 

tecnicamente esperado, pois acelerômetros instalados em cilindros próximos captam 

assinaturas vibracionais semelhantes, o que pode levar a sobreposições sutis entre 

padrões de falha.  

Apesar dessas pequenas imprecisões, o desempenho obtido é altamente 

satisfatório, com erros limitados e estruturados em pares de classes adjacentes, sem 

comprometer a capacidade diagnóstica do modelo. A matriz, portanto, confirma que o 

Domínio da Frequência é uma abordagem eficaz para a identificação de falhas de injeção 

em motores Diesel, apresentando resultados homogêneos entre as classes e demonstrando 

tanto a sensibilidade da metodologia quanto a importância de uma seleção criteriosa de 

características e do posicionamento adequado dos acelerômetros para minimizar 

possíveis sobreposições de assinaturas. 

 

 
Figura 29 - Matriz de Confusão do melhor resultado obtido no Domínio da Frequência 
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O gráfico de Entropia Cruzada no Domínio da Frequência (Figura 30) ilustra o 

comportamento da função de custo durante o treinamento, validação e teste da RNA ao 

longo de 512 épocas. A entropia cruzada mede a discrepância entre as probabilidades 

previstas pela rede e as classes reais codificadas em one-hot, sendo, portanto, um 

indicador direto da qualidade da classificação. 

Observa-se que, nas primeiras 25 épocas, há uma queda acentuada da função de 

custo, reflexo do rápido aprendizado inicial da rede. A partir desse ponto, a redução torna-

se mais gradual até estabilizar-se próximo da época 467, onde foi registrada a melhor 

performance de validação, com valor de entropia cruzada de aproximadamente 0,0031. 

Esse resultado é extremamente baixo, indicando que as previsões do modelo estão 

fortemente alinhadas às classes reais. 

 

 

 
Figura 30 - Função de custo por entropia cruzada durante o processo de treinamento 

da RNA no Domínio da Frequência 

 

Outro aspecto relevante é a proximidade entre as curvas de treinamento (azul), 

validação (verde) e teste (vermelho). A ausência de grandes divergências entre elas 

confirma que o modelo alcançou boa capacidade de generalização, evitando tanto o 
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underfitting quanto o overfitting. Em outras palavras, a RNA aprendeu os padrões 

relevantes do conjunto de dados sem memorizar os exemplos de treinamento, mantendo 

desempenho consistente também nos dados não vistos. 

A convergência estável das curvas, somada ao baixo valor final da entropia 

cruzada, comprova a eficácia da configuração de hiperparâmetros e da estratégia de 

seleção de características adotadas. Esse comportamento valida a robustez do modelo no 

Domínio da Frequência e reforça sua aplicabilidade em cenários reais de diagnóstico de 

falhas de injeção, nos quais a confiabilidade e a consistência são fatores essenciais. 

A Figura 31 representa o gráfico Gradiente vs Épocas apresenta a evolução da 

magnitude do gradiente durante o processo de treinamento da RNA ao longo de 512 

épocas. O gradiente representa a intensidade das atualizações realizadas nos pesos da 

rede em cada iteração, estando diretamente ligado à eficiência do algoritmo de otimização 

em encontrar o mínimo da função de custo. 

 

 
Figura 31 - Gradiente x Épocas no Domínio da Frequência 

 

Observa-se que, nas primeiras épocas, o gradiente apresenta valores mais 

elevados, na ordem de 10"#, o que indica ajustes mais intensos nos parâmetros da RNA, 

característicos da fase inicial de aprendizado, quando o modelo ainda está distante da 

solução ótima. Com o avanço do treinamento, ocorre uma redução gradual da magnitude 

do gradiente, que se estabiliza na faixa de 10"9, mostrando que as atualizações nos pesos 

se tornam progressivamente menores, em razão da aproximação do ponto ótimo de 

convergência. 

Ao final do processo, na época 512, o gradiente atinge o valor de 

aproximadamente 0,00119, considerado baixo e adequado para indicar convergência 

estável. Esse comportamento demonstra que a RNA não apenas reduziu a função de 
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custo, mas também atingiu um ponto de equilíbrio, evitando oscilações que poderiam 

sugerir instabilidade ou dificuldade de convergência. 

O Histograma de Erros apresentado para o Domínio da Frequência (Figura 32) 

mostra a distribuição das diferenças entre os valores-alvo (targets) e as saídas produzidas 

pela RNA durante o treinamento, validação e teste. Esse tipo de gráfico é especialmente 

útil para avaliar a qualidade do ajuste do modelo, permitindo identificar a concentração, 

a dispersão e possíveis vieses nos erros. 

Na Figura 32, observa-se que a grande maioria das instâncias — representadas 

pelas barras em azul (treinamento), verde (validação) e vermelho (teste) — está 

concentrada em torno de zero, com pequenas variações residuais. Essa concentração 

indica que a RNA foi capaz de aprender os padrões do sinal de vibração com elevado 

grau de precisão, minimizando discrepâncias entre as previsões e os valores reais. A linha 

laranja, que representa o erro zero ideal, coincide com o centro da distribuição, 

reforçando que os erros médios estão praticamente nulos. 

 

 
Figura 32 - Histograma de Erros no Domínio da Frequência 

 

Outro aspecto relevante é a semelhança entre as distribuições dos conjuntos de 

treinamento, validação e teste. Essa consistência demonstra que o modelo não sofreu de 
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overfitting, pois apresentou comportamento homogêneo mesmo em dados não utilizados 

no aprendizado direto. Além disso, não há evidências de vieses sistemáticos: os erros não 

se deslocam significativamente para valores positivos ou negativos, o que mostra que a 

rede não tende a superestimar nem a subestimar os resultados. 

Por fim, a forma estreita e concentrada da distribuição reforça a robustez da 

modelagem no Domínio da Frequência, confirmando que a RNA alcançou previsões 

altamente confiáveis e generalizáveis. Esses resultados validam as estratégias de seleção 

de características e acelerômetros adotada, evidenciando que o modelo conseguiu 

representar com fidelidade o comportamento dinâmico do motor, mesmo em cenários 

complexos de diagnóstico de falhas de injeção. 

 

 

6.3.3. Ranqueamento das 27 Características Estatísticas no Domínio da Frequência 
 
No domínio da frequência (Figura 33), o comportamento é mais homogêneo. A 

maior parte das métricas estatísticas apresenta pesos positivos e relativamente próximos, 

com pequena amplitude de variação. Esse padrão sugere que, ao serem projetados no 

espectro, os sinais de vibração distribuem melhor a informação entre os diferentes 

atributos, resultando em menor contraste de relevância. Assim, a variância é reduzida, e 

praticamente todas as variáveis oferecem contribuição útil, ainda que em diferentes 

magnitudes. Esse equilíbrio faz do domínio da frequência um campo promissor para a 

construção de modelos estáveis, reduzindo o risco de sobreajuste associado a variáveis 

irrelevantes. 
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Figura 33 - Ranqueamento das 27 Características no Domínio da Frequência 

 

6.4 Resultados no Domínio Tempo-Frequência 
 
6.4.1. Desempenho com Diferentes Quantidades de Características e Acelerômetros 

 

O estudo realizado no Domínio Tempo-Frequência visou aprofundar a avaliação 

da capacidade dos modelos de RNAs de diagnosticar falhas de injeção de combustível 

em motores Diesel marítimos a partir dos sinais de vibração. Para tanto, foram analisados 

diferentes cenários, variando-se tanto o número de características extraídas (1, 2, 5, 9, 

18, 27 e 54) quanto o número de acelerômetros utilizados (1, 3, 5, 10 e 15). 

Esta análise exploratória demonstrou o impacto significativo da seleção criteriosa 

de atributos e sensores sobre o desempenho do sistema de diagnóstico, reafirmando 

tendências observadas nos Domínios do Tempo e da Frequência e revelando 

características específicas do comportamento no Domínio Tempo-Frequência, conforme 

pode ser verificado na Figura 34. 
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Figura 34 - F1-Score por Número de Características no Domínio Tempo-Frequência 

 

Quando utilizados 15 acelerômetros, observou-se que o melhor desempenho foi 

alcançado com apenas 1 característica estatística, obtendo-se um F1-Score de 92,95%. À 

medida que o número de características aumentava, houve uma clara tendência de 

degradação de desempenho: com 54 características, o F1-Score reduziu para 61,62%. 

Essa queda é um forte indicativo do fenômeno da maldição da dimensionalidade 

(TAN; STEINBACH; KUMAR, 2018), em que a adição excessiva de características 

irrelevantes ou redundantes gera sobrecarga no modelo, reduzindo sua capacidade de 

generalização. 

O tempo de processamento, por outro lado, variou de forma moderada, entre 162 

segundos (2 características) e 286 segundos (54 características), sendo proporcional ao 

aumento da dimensionalidade dos dados. 

Com a utilização dos 3 melhores acelerômetros, os resultados foram 

significativamente superiores. O melhor desempenho foi alcançado com apenas 1 

característica, resultando em um F1-Score de 98,08%. 

Além disso, o tempo de processamento foi otimizado, situando-se entre 135 e 511 

segundos. Destaca-se que, mesmo com o acréscimo de características, o impacto negativo 

sobre o desempenho foi muito mais suave do que no cenário com 15 acelerômetros, 

demonstrando a importância estratégica da seleção de acelerômetros para reduzir a 

complexidade sem comprometer a qualidade do diagnóstico. 

No cenário com apenas um acelerômetro, foram observados os melhores 
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resultados absolutos no Domínio Tempo-Frequência. Utilizando 2 características 

estatísticas, o modelo atingiu um F1-Score de 99,27%, Acurácia de 99,24%, Precisão de 

99,32% e um Recall de 99,23%. 

Tais métricas evidenciam uma extraordinária capacidade de diagnóstico, mesmo 

com configuração mínima de acelerômetros e características, o que é extremamente 

relevante para aplicações de manutenção preditiva em ambientes operacionais restritos. 

O tempo de processamento nesse cenário variou entre 152 segundos (27 

características) e 318 segundos (2 características), considerado plenamente aceitável 

diante dos elevados índices de performance obtidos. 

Ao fixar o número de características em 54 e variar o número de acelerômetros 

(Figura 35), observou-se novamente que a performance diminui com o aumento da 

quantidade de sensores: o F1-Score caiu de 93,99% (1 acelerômetro) para 61,62% (15 

acelerômetros). 

 

 
Figura 35 - F1-Score e Tempo de Processamento no Domínio Tempo-Frequência (54 

Características) 

Este resultado confirma a tendência previamente detectada nos Domínios de 

Tempo e da Frequência, onde a combinação de excesso de variáveis e muitos sensores 

sem seleção adequada prejudica a capacidade discriminativa dos modelos de RNA, 

indicando a necessidade imperativa de métodos eficientes de seleção de características e 

otimização da disposição dos acelerômetros. 

A análise final dos cenários no Domínio Tempo-Frequência (Figura 36) 

evidenciou que a utilização de 1 acelerômetro e 2 características resultou nos melhores 

desempenhos globais de F1-Score de 99,27%. 

No cenário com os 3 melhores acelerômetros, também com 1 e 2 características, 
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proporcionaram resultados consistentes e elevados, com F1-Scores superiores a 96%. 

As configurações com 15 acelerômetros apresentaram desempenho mais baixo 

(F1-Score máximo de 92,95%), mesmo realizando a seleção das características. 

 

 

 
Figura 36 - F1-Score e Tempo de Processamento por Cenário no Domínio Tempo-

Frequência 

Esses achados reforçam a conclusão de que a qualidade das informações é muito 

mais relevante que a quantidade de dados brutos no contexto de diagnóstico baseado em 

vibração. 

Dessa maneira, os resultados obtidos no Domínio Tempo-Frequência reafirmam 

que uma seleção criteriosa do número de características e acelerômetros pode maximizar 

o desempenho do diagnóstico. Características bem selecionadas capturam de forma 

eficiente os fenômenos físicos relacionados às falhas de injeção. 

RNAs são ferramentas poderosas para o reconhecimento de padrões em sinais 

complexos, especialmente quando alimentadas com dados adequadamente tratados. 

 

6.4.2. Frequência e Contribuição dos Acelerômetros Mais Relevantes 
 

No Domínio Tempo-Frequência, a análise dos acelerômetros mais relevantes para 

o diagnóstico de falhas de injeção em motores Diesel evidenciou, de forma consistente, 

a superioridade dos sensores localizados sobre os cilindros, quando comparados aos 

instalados no bloco do motor. 

A Tabela 17 apresenta os melhores resultados obtidos em diferentes cenários de 
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modelagem, detalhando o número de acelerômetros utilizados, o número de 

características extraídas, o acelerômetro com melhor desempenho em cada caso e os 

respectivos F1-Score, Acurácia, Precisão, Sensibilidade e Especificidade. 

 

Tabela 17 - Resultados com melhores acelerômetros nos cenários avaliados no 
Domínio Tempo-Frequência 

DOMÍNIO TEMPO-FREQUÊNCIA 
Cenários Resultados 

Nº 
Acel. 

Nº 
Caract 

Melhor 
Acel. 

F1-Score 
(%) 

Acurácia 
(%) 

Precisão 
(%) 

Sensibilidade 
(%) 

Especificidade 
(%) 

1 2 8 99,27 99,24 99,32 99,23 99,94 
1 5 15 97,27 97,34 97,33 97,26 99,78 
1 9 2 95,27 95,45 95,48 95,21 99,62 
1 18 3 95,36 95,45 5,32 95,45 99,62 
1 27 3 96,37 96,39 96,54 96,31 99,70 
3 1 8 98,08 98,10 98,17 98.04 99,84 
3 2 8 96,84 96,77 96,84 96,90 99,73 

 
 

Para compreender a relevância espacial dos sensores, a Figura 37 ilustra a 

disposição física dos acelerômetros sobre o motor Diesel marítimo. Os acelerômetros 2, 

3, 8 e 15 foram os que apresentaram melhor desempenho nos testes. Importante notar que 

os acelerômetros 2, 3 e 8 estão posicionados diretamente sobre os cabeçotes dos cilindros, 

ao passo que o acelerômetro 15 está situado no bloco do motor. 

 

 
Figura 37 - Localização dos Acelerômetros com melhores desempenhos  
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A distribuição da frequência de seleção dos melhores acelerômetros é sintetizada 

na Figura 38. O acelerômetro 8, montado sobre o cilindro 8, obteve o melhor desempenho 

em 42,9% dos cenários com F1-Score acima de 95%. Em seguida, o acelerômetro 3 

(cilindro 3) foi o mais eficaz em 28,6% dos casos. Já os acelerômetros 2 e 15 foram 

selecionados em apenas 14,3% dos cenários cada. 

 

 
Figura 38 - Frequência de seleção dos melhores acelerômetros no Domínio Tempo-

Frequência 

 
Esses dados confirmam a tendência observada nos demais domínios analisados, 

onde os sensores localizados nos cilindros capturam com maior fidelidade os eventos 

vibracionais relacionados às falhas de injeção, como variações na pressão de injeção, 

desequilíbrios de combustão e anomalias no acionamento da válvula injetora. Essa 

superioridade é resultado da proximidade direta com as fontes primárias de excitação 

mecânica, o que assegura a integridade dos sinais e amplia sua capacidade discriminativa 

nos modelos de RNA. 

Adicionalmente, mesmo nos cenários com múltiplos sensores e maior número de 

características, os acelerômetros dos cilindros se mantiveram como os mais eficazes. Isso 

reforça a tese de que a seleção espacial correta do ponto de medição é mais determinante 

que a quantidade de sensores, contribuindo diretamente para a viabilidade prática de 

sistemas de monitoramento embarcado com baixa complexidade. 

A Tabela 18 destaca a consistência entre as métricas de treinamento, validação e 

teste. Par os cenários apresentados, as diferenças entre elas são pequenas, o que confirma 

a boa capacidade de generalização do modelo e a ausência de sobreajuste (overfitting). 
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Mesmo em cenários com maior número de características (18 ou 27), onde há ligeira 

redução nas taxas de precisão, os valores se mantêm acima de 95%, demonstrando que a 

rede neural conseguiu aprender padrões discriminativos robustos, ainda que o excesso de 

variáveis tenha introduzido algum nível de redundância, associado ao fenômeno da 

maldição da dimensionalidade. 

A tabela também evidencia que, quando utilizados três acelerômetros, os 

resultados permanecem altamente satisfatórios, atingindo até 98,10% de precisão em 

teste, o que reforça o equilíbrio entre desempenho e custo computacional alcançado pela 

estratégia de seleção dos melhores sensores. 

 

Tabela 18 - Precisões de Treinamento, Validação e Testes obtidas no Domínio Tempo-
Frequência em diferentes configurações de número de Acelerômetros e Características 

Estatísticas 

DOMÍNIO TEMPO-FREQUÊNCIA 
Cenários Resultados 

Nº Nº Melhor Precisão Precisão Precisão 
Acel. Caract Acel. Treinamento (%) Validação (%) Teste (%) 

1 2 8 99,72 98,86 99,24 
1 5 15 99,72 98,48 97,34 
1 9 2 99,06 96,02 95,45 
1 18 3 99,72 97,15 95,45 
1 27 3 99,59 96,02 96,40 
3 1 8 99,67 98,10 98,10 
3 2 8 99,51 97,53 96,77 

 

A Matriz de Confusão de Validação no Domínio Tempo-Frequência (Figura 39) 

mostra que os resultados obtidos são altamente satisfatórios, com taxas de precisão por 

classe majoritariamente superiores a 95% e acertos perfeitos em diversas categorias. O 

desempenho médio manteve-se elevado, em 98,9%, o que confirma a robustez do modelo 

também no Domínio Tempo-Frequência.  

Algumas classes, como 1, 2, 3, 5, 6, 7, 8, 9 e 10, atingiram 100% de acerto, sem 

qualquer registro de falsos positivos ou falsos negativos, demonstrando que a rede foi 

capaz de aprender padrões muito bem definidos e consistentes nesses cenários. Os erros 

apresentados são residuais e estruturados, ocorrendo predominantemente entre classes 

vizinhas, como 12 ↔ 13. Tal padrão é tecnicamente esperado, uma vez que sensores 

posicionados em cilindros adjacentes captam assinaturas de vibração semelhantes, o que 

pode gerar sobreposições sutis entre os padrões de falha. 
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Figura 39 - Matriz de Confusão do melhor resultado obtido no Domínio Tempo-

Frequência 

 

O gráfico de Entropia Cruzada referente ao Domínio do Tempo-Frequência 

(Figura 40) mostra a evolução da função de custo ao longo de 501 épocas para os 

conjuntos de treinamento, validação e teste. A entropia cruzada mede a discrepância entre 

as probabilidades previstas pela RNA e os rótulos reais das classes, sendo um dos 

principais indicadores de desempenho do modelo. 

No início do treinamento, observa-se uma queda acentuada dos valores de 

entropia cruzada, reflexo do rápido ajuste da rede na fase inicial de aprendizado. Após 

aproximadamente 50 épocas, as curvas passam a decrescer de forma mais suave até se 

estabilizarem em patamares baixos, o que indica que o modelo se aproximou de sua 

configuração ótima. O melhor desempenho de validação foi obtido na época 476, com 

valor de entropia cruzada de aproximadamente 0,0037, evidenciando alta precisão na 
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classificação. 

 

 
Figura 40 - Função de custo por entropia cruzada durante o processo de treinamento 

da RNA no Domínio Tempo-Frequência 

 

Outro ponto relevante é a proximidade entre as curvas de treinamento (azul), 

validação (verde) e teste (vermelho). Essa sobreposição indica que o modelo não sofreu 

com overfitting, já que o erro não divergiu entre os conjuntos e não apresenta sinais de 

underfitting, pois as três curvas convergem para valores bastante reduzidos. Isso 

confirma a boa capacidade de generalização da rede. 

O gráfico “Gradiente vs Épocas” (Figura 41), referente ao Domínio Tempo-

Frequência, mostra a evolução da magnitude do gradiente durante o processo de 

treinamento da RNA ao longo de 501 épocas. O gradiente representa a intensidade das 

atualizações realizadas nos pesos da rede em cada iteração, sendo um parâmetro-chave 

para avaliar a eficiência do processo de otimização. 

Nas primeiras épocas, o gradiente apresenta valores mais elevados, na ordem de 

10"#, indicando ajustes intensos nos pesos da rede, característicos da fase inicial de 

aprendizado, quando o modelo ainda está distante do ponto ótimo. À medida que o 

treinamento avança, há uma redução gradual e consistente da magnitude do gradiente, 

que se estabiliza na faixa de 10"9. Esse comportamento mostra que os ajustes se tornam 
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progressivamente mais sutis, refletindo a aproximação da rede a um mínimo local da 

função de custo. 

 
Figura 41 - Gradiente x Épocas no Domínio Tempo-Frequência 

 

Ao final do treinamento, na época 501, o gradiente atinge o valor de 

aproximadamente 0,00107, considerado baixo e indicativo de convergência estável. 

Além disso, a trajetória descendente, mesmo com pequenas oscilações naturais ao longo 

do processo, confirma que a rede neural manteve um comportamento consistente e 

controlado durante a otimização. 
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Figura 42 - Histograma de Erros no Domínio Tempo-Frequência 

 

O Histograma de Erros referente ao Domínio Tempo-Frequência (Figura 42) 

mostra a distribuição das diferenças entre os valores reais (targets) e as saídas previstas 

pela RNA nos conjuntos de treinamento, validação e teste. Esse gráfico é uma ferramenta 

importante porque permite avaliar não apenas a magnitude média dos erros, mas também 

sua dispersão e consistência entre os diferentes conjuntos de dados. 

Observa-se que a imensa maioria das instâncias, representadas pelas barras em 

azul (treinamento), verde (validação) e vermelho (teste), está concentrada muito próxima 

de zero, exatamente em torno da linha laranja que indica o erro nulo ideal. Essa forte 

concentração revela que a RNA foi capaz de reproduzir as saídas com altíssima 

fidelidade, reduzindo os erros residuais a valores praticamente desprezíveis. 

Outro aspecto relevante é a semelhança entre as distribuições dos três conjuntos. 

A presença equilibrada de erros próximos de zero em treinamento, validação e teste 

demonstra que o modelo não sofreu com overfitting, uma vez que manteve desempenho 

consistente também em dados não utilizados no processo de aprendizado. Além disso, 

não se verificam deslocamentos sistemáticos dos erros para valores positivos ou 

negativos, o que indica ausência de vieses de superestimação ou subestimação das saídas. 
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Conclui-se, portanto, que no Domínio Tempo-Frequência — assim como nos 

Domínios do Tempo e da Frequência — a adoção de acelerômetros posicionados nos 

cilindros é uma estratégia técnica eficaz para o diagnóstico preciso de falhas de injeção 

em motores Diesel marítimos, representando uma solução de alto desempenho e elevada 

aplicabilidade industrial. 

 

6.4.3. Ranqueamento das 54 Características Estatísticas no Domínio da Tempo-
Frequência 
 
Quando se avança para o domínio tempo-frequência (Figura 43), a análise volta 

a revelar um quadro de heterogeneidade. O aumento no número de características — 

decorrente da combinação das representações no domínio do tempo e da frequência — 

intensifica a dispersão de relevâncias. Características como Valor Mínimo, Pico e 

Curtose destacam-se como fortemente positivas, ao passo que outras, como Fator de 

Crista e Moda, apresentam pesos negativos expressivos. Esse resultado reflete um 

paradoxo: o enriquecimento da base de características amplia o potencial de 

discriminação do modelo, mas, ao mesmo tempo, gera um conjunto mais heterogêneo, 

no qual muitos elementos tornam-se redundantes ou prejudiciais. A variância, nesse caso, 

cresce de forma significativa, reforçando a importância da seleção criteriosa para que 

apenas os atributos mais informativos sejam mantidos. 

 

 
Figura 43 - Ranqueamento das 54 Características no Domínio da Tempo-Frequência 

 

6.5. Comparação Entre os Domínios 

Os resultados obtidos com a aplicação das RNAs demonstram um desempenho 



127  

bastante satisfatório na tarefa de diagnóstico de falhas de injeção em motores Diesel 

marítimos, utilizando sinais de vibração. Independentemente do domínio de análise 

empregado — Tempo, Frequência ou Tempo-Frequência — os modelos foram capazes 

de identificar padrões representativos das diferentes condições operacionais com 

elevados índices de desempenho, em especial quando configurados com as melhores 

combinações de características estatísticas e parâmetros de treinamento. 

Os melhores resultados obtidos nos três domínios de análise evidenciam a elevada 

capacidade discriminativa dos modelos propostos, conforme apresentado na Figura 44. 

No Domínio do Tempo, destacou-se o F1-Score de 99,44%, utilizando apenas duas 

características estatísticas. Já no Domínio da Frequência, o melhor desempenho foi 

registrado com um F1-Score de 99,43%, ao se empregar duas características 

estatísticas. No Domínio Tempo-Frequência, o melhor desempenho foi obtido com um 

F1-Score de 99,27%, também com duas características estatísticas.  

 
Figura 44 - Melhores F1-Scores por Domínio de Análise 

 
A Tabela 19 foi utilizada para construir os gráficos Radar Plot para comparar 

simultaneamente o desempenho dos três domínios de análise em múltiplas métricas de 

classificação e eficiência computacional. Essa visualização possibilita uma interpretação 

intuitiva do equilíbrio entre acurácia, sensibilidade, precisão, especificidade, F1-Score e 

tempo de processamento normalizado, facilitando a identificação de pontos fortes e 
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limitações de cada abordagem, e subsidiando a escolha do método mais adequado aos 

objetivos propostos. 

Tabela 19 - Métricas de Desempenho por Domínio 

Métrica Domínio do 
Tempo (%) 

Domínio da 
Frequência (%) 

Domínio do 
Tempo-Frequência 

(%) 
Precisão 99,43 99,50 99,32 

Sensibilidade 99,48 99,39 99,23 
Acurácia 99,43 99,43 99,24 

Especificidade 99,95 99,95 99,94 
F1-Score 99,44 99,43 99,27 
Tempo de 

Processamento 
Normalizado 

86,11 65,86 84,95 

Tempo 294 s 696 s 318 s 
 

Para a análise comparativa do desempenho entre os três domínios de 

processamento — Domínio do Tempo, Domínio da Frequência e Domínio Tempo-

Frequência — foi utilizado um gráfico do tipo Radar Plot (Figura 45). Essa representação 

gráfica permite a visualização simultânea de múltiplas métricas de avaliação, englobando 

Precisão, Sensibilidade, Acurácia, Especificidade, F1-Score e Tempo de Processamento 

Normalizado. 

 
Figura 45 - Gráfico Radar Plot comparando os 3 Domínios Estudados 

A escolha desse tipo de gráfico justifica-se pelo seu potencial em oferecer uma 

visão integrada e intuitiva do desempenho de cada abordagem, possibilitando a 

identificação de padrões, pontos fortes e eventuais deficiências de forma mais clara do 
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que seria possível por meio de tabelas numéricas isoladas. Além disso, o Radar Plot 

facilita a interpretação dos resultados no contexto multidimensional, permitindo 

evidenciar possíveis trade-offs entre desempenho e custo computacional. 

A análise visual do gráfico evidencia que o Domínio do Tempo (azul) apresenta 

a maior área total, indicando um equilíbrio consistente entre alto F1-Score e rapidez de 

processamento. O Domínio da Frequência (laranja) destaca-se por apresentar o maior 

valor de Precisão, porém, apresenta desempenho inferior no eixo de velocidade de 

processamento. Já o Domínio Tempo-Frequência (verde) mostra-se competitivo em 

termos de velocidade, mas com métricas de classificação ligeiramente inferiores às das 

demais abordagens. Dessa forma, a visualização proporcionada pelo Radar Plot contribui 

para embasar, de maneira objetiva e fundamentada, a escolha do método no Domínio 

Tempo como o mais eficaz e adequado aos objetivos da pesquisa, considerando não 

apenas métricas isoladas, mas o desempenho global de cada domínio. 

 

6.5.1. Custo Computacional no Pré-processamento dos Sinais de Vibração 

Durante a etapa de pré-processamento dos sinais de vibração, observou-se uma 

diferença significativa no custo computacional entre os domínios de análise empregados. 

Em particular, o Domínio do Tempo apresentou tempo de processamento 

substancialmente inferior quando comparado aos Domínios da Frequência e Tempo-

Frequência. Essa diferença é atribuída à ausência da necessidade de aplicar a FFT no 

Domínio do Tempo. 

A análise no Domínio do Tempo utiliza diretamente os sinais de vibração brutos, 

extraindo características estatísticas básicas — como média, desvio padrão, fator de 

crista, entre outras — sem a necessidade de transformação dos dados para outro domínio. 

Isso implica que o processamento ocorre de forma linear e direta sobre os dados 

temporais. 

Por outro lado, nos Domínios da Frequência e Tempo-Frequência, a aplicação da 

FFT torna-se etapa obrigatória. A FFT é um algoritmo que converte o sinal do Domínio 

do Tempo para o Domínio da Frequência, permitindo analisar a distribuição espectral da 

energia do sinal. Embora a FFT seja computacionalmente eficiente, sua aplicação a cada 

segmento de dados gera um aumento significativo do custo de processamento, 

principalmente em bases de dados volumosas e em aplicações que exigem análise 

contínua ou em tempo real. 

Além disso, no Domínio Tempo-Frequência, a necessidade de calcular múltiplas 
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transformadas em janelas temporais sobrepostas ou sucessivas acentua ainda mais o custo 

computacional, uma vez que cada janela demanda uma nova execução da FFT. 

Portanto, a superioridade em termos de tempo de processamento observada no 

Domínio do Tempo é uma consequência direta da simplicidade do pré-processamento 

necessário. Essa característica faz com que o Domínio do Tempo seja particularmente 

vantajoso para aplicações embarcadas e sistemas de monitoramento em tempo real, onde 

tempo de resposta rápido e baixo consumo computacional são fatores críticos. 

Esta diferença operacional entre os domínios justifica, em parte, o excelente 

equilíbrio observado no Domínio do Tempo entre a alta acurácia diagnóstica e a 

eficiência computacional, sendo um dos fatores que contribuíram para a escolha desta 

abordagem como a mais adequada no contexto do presente estudo. 

 

6.5.2. Considerações Sobre Custo Computacional da RNA 

O Domínio do Tempo ofereceu o menor tempo de processamento (143 segundos) 

aliado ao melhor desempenho diagnóstico. 

O Domínio da Frequência, embora competitivo em desempenho, exigiu quase o 

dobro do tempo (257 segundos). 

O Domínio Tempo-Frequência teve um tempo intermediário (152 segundos), 

mas com desempenho ligeiramente inferior aos demais domínios. 

Esses dados mostram que menores tempos de processamento, sem perda de 

desempenho, são críticos para aplicações marítimas práticas, onde a resposta rápida é 

fundamental. A otimização do número de características e acelerômetros mostrou ser 

decisiva para atingir um alto desempenho no diagnóstico de falhas.  

 

6.5.3. Desempenho da RNA com Base nas Melhores Características 

Independentemente do domínio escolhido, os melhores desempenhos foram 

obtidos quando o cenários tinham apenas 1 ou 2 características estatísticas. No Domínio 

do Tempo, uma única característica proporcionou resultados extraordinários com F1-

Score de a 99,44%. Nos Domínios da Frequência e Tempo-Frequência, duas 

características adequadamente escolhidas bastaram para obter desempenhos também 

superiores a 99%. 

Esses resultados evidenciam que seleções adequadas das melhores características 

capturam informações suficientes para o diagnóstico de falha de injeção de combustível. 

Tal fato ressalta que modelos simples são mais rápidos e robustos, enquanto o uso 
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excessivo de atributos compromete o desempenho devido à maldição da 

dimensionalidade. 

A escolha das melhores características é, portanto, uma etapa crítica para 

maximizar o desempenho e minimizar os custos computacionais. 

 

6.5.4. Frequência e Contribuição dos Acelerômetros Mais Relevantes 

A análise da incidência dos acelerômetros mais relevantes mostrou que os 

acelerômetros localizados nos cabeçotes foram frequentemente selecionados nos 

cenários de melhor desempenho. 

Em todos os domínios, o uso de 1 ou 3 melhores acelerômetros foi suficiente para 

atingir F1-Score superiores a 98%, comprovando que a posição estratégica dos 

acelerômetro é mais importante do que a quantidade; 

É possível reduzir drasticamente o número de acelerômetros sem prejuízo no 

desempenho, o que é vital para sistemas de monitoramento embarcados onde espaço e 

custo são limitados. 

 

6.6. Comparação Entre Este Estudo e a Dissertação de Guerra (2023) 

6.6.1. Desempenho Diagnóstico Utilizando os Três Melhores Acelerômetros 
Com o objetivo de contextualizar os resultados obtidos neste trabalho, realizou-se uma 

comparação direta com os dados apresentados por GUERRA (2023), cujo trabalho abordou o 

diagnóstico de falhas de injeção em motores Diesel utilizando algoritmos de aprendizado de 

máquina, especificamente K-NN, SVM e RF. A comparação foi realizada com base no 

desempenho diagnóstico obtido a partir dos três melhores acelerômetros no Domínio do Tempo, 

para diferentes quantidades de características estatísticas extraídas dos sinais de vibração. 

A Tabela 20 sintetiza os principais resultados comparativos, considerando os valores de 

F1-score obtidos para 5, 9 e 18 características estatísticas. 

 
Tabela 20 - Comparação de desempenho entre GUERRA (2023) e o presente estudo utilizando 

3 acelerômetros no Domínio do Tempo 

Nº de 
Características Algoritmo (Guerra) F1-Score 

(%) Algoritmo (Bodanese ) F1-Score 
(%) 

5 K-NN 88,4 RNA 93,89 
5 SVM 91,74 RNA 93,89 
9 K-NN 96,15 RNA 94,55 
9 SVM 95,34 RNA 94,55 

18 K-NN 93,39 RNA 93,54 
18 SVM 97,36 RNA 93,54 
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Observa-se que os modelos baseados em RNAs utilizados neste estudo 

apresentaram desempenho robusto e estável em todos os cenários, com F1-Scores 

consistentemente superiores a 93%. Ainda que Guerra (2023) tenha alcançado seu melhor 

resultado com o algoritmo SVM (F1-score de 97,36% com 18 características), a RNA 

demonstrou um desempenho ainda melhor com menos características (F1-Score de 

98,48% com 1 característica), fator decisivo para aplicações em tempo real e com 

restrições computacionais. Este resultado evidencia a capacidade da RNA em extrair 

padrões relevantes mesmo em condições de baixa dimensionalidade, especto altamente 

desejável em sistemas de monitoramento embarcados. 

Além disso, destaca-se que o algoritmo Random Forest, testado por Guerra, 

apresentou desempenho significativamente inferior em dois cenários (F1-Score de 

apenas 46,98% com 9 e 18 características), enquanto a RNA mostrou-se estável e 

confiável, sem quedas abruptas de performance. 

 

6.6.2. Considerações Finais da Comparação 

Em síntese, os resultados obtidos neste estudo demonstram que as RNAs 

apresentam desempenho competitivo ou superior frente aos algoritmos tradicionais de 

aprendizado supervisionado; a estabilidade do modelo com variação do número de 

características foi maior na abordagem com RNA; a eficiência com menor número de 

entradas (acelerômetros e características descritivas) posiciona a RNA como alternativa 

preferencial para aplicações embarcadas e a simplicidade na configuração e a robustez 

frente a ruídos ou variações tornam as RNAs uma solução tecnicamente viável e 

operacionalmente eficiente. 

Por fim, a metodologia proposta contribui com o avanço técnico para o 

diagnóstico inteligente de falhas de injeção em motores Diesel marítimos. 
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7. CONCLUSÕES 
 

Este trabalho apresentou o desenvolvimento e avaliação de um sistema inteligente 

para o diagnóstico de falhas de injeção em motores Diesel marítimos, baseado na análise de 

sinais de vibração e no uso de RNAs. A investigação concentrou-se na aplicação de técnicas 

de extração e seleção de características nos Domínios do Tempo, Frequência e Tempo-

Frequência, associadas a diferentes configurações de acelerômetros, com o objetivo de 

identificar cenários otimizados que maximizassem o desempenho diagnóstico com o menor 

custo computacional. 

Os resultados experimentais comprovaram que a abordagem com RNAs, alimentadas 

por um conjunto reduzido e estrategicamente selecionado de características estatísticas e 

acelerômetros, é altamente eficaz na identificação precisa de falhas de injeção. Em particular, 

foi possível alcançar F1-scores superiores a 99% nos três domínios analisados, sendo o 

Domínio do Tempo o mais eficaz e eficiente em termos de custo computacional. A ausência 

da necessidade de transformações espectrais (como a FFT) nesse domínio contribuiu 

significativamente para a redução do tempo de processamento, tornando-o particularmente 

adequado para aplicações embarcadas e em tempo real. 

Adicionalmente, observou-se que o desempenho da RNA se manteve elevado mesmo 

em cenários de baixa dimensionalidade, com 1 ou 2 características e apenas um acelerômetro. 

Essa constatação reforça a viabilidade de se implementar soluções compactas e de alta 

precisão em ambientes com restrições físicas e operacionais, como navios e plataformas 

offshore. A consistência dos resultados também confirmou a influência direta da posição dos 

acelerômetros sobre os cabeçotes dos cilindros, em detrimento daqueles instalados no bloco 

do motor. 

Em termos comparativos, a metodologia proposta demonstrou desempenho 

competitivo ou superior em relação a algoritmos clássicos como SVM, K-NN e Random 

Forest, conforme análise comparativa com o trabalho de Guerra (2023). A RNA se destacou 

não apenas pelo desempenho, mas pela robustez frente a variações nas entradas e pela 

simplicidade de configuração. 

Dessa forma, a dissertação contribui tecnicamente ao propor uma solução otimizada, 

precisa e de baixo custo computacional para diagnóstico de falhas em sistemas críticos. Além 

disso, os resultados obtidos abrem caminho para futuras pesquisas com foco na implantação 

em tempo real, desenvolvimento de sistemas embarcados autônomos e expansão para outros 

tipos de falhas mecânicas além da injeção de combustível. 
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8. SUGESTÕES PARA TRABALHOS FUTUROS 
 

Durante a etapa de pesquisa de campo descrita no Estudo de Caso, foram obtidos 

diversos registros e parâmetros adicionais que, embora não tenham sido incorporados à 

análise principal desta dissertação, apresentam grande potencial para estudos 

complementares. Entre eles, destacam-se as variações de vibração em regimes 

transitórios, os dados de funcionamento em diferentes níveis de carga e rotação, bem 

como registros provenientes de diferentes pontos de medição no motor e na estrutura da 

embarcação. Adicionalmente, foram coletados dados por meio de strain gages instalados 

no sistema, com o objetivo de registrar deformações associadas ao comportamento 

torsional do eixo. Esses dados, ainda não explorados nesta pesquisa, representam uma 

oportunidade relevante para investigações voltadas ao estudo das vibrações torcionais do 

motor. 

O aproveitamento dessas informações em trabalhos futuros pode ampliar 

significativamente a compreensão sobre o comportamento dinâmico do sistema, 

especialmente em condições não estacionárias. Isso possibilitaria o desenvolvimento de 

modelos preditivos mais robustos e sensíveis a alterações sutis no desempenho, bem 

como a avaliação da relação entre vibrações torcionais e falhas de injeção, 

complementando as análises já realizadas com base nos sinais de acelerômetros. A 

aplicação de técnicas de análise no domínio tempo-frequência, associadas a métodos 

avançados de machine learning e deep learning, poderia revelar padrões complexos ainda 

não identificados nos sinais coletados, aumentando a capacidade diagnóstica e 

permitindo detecção mais precisa, inclusive em regimes transitórios. 
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