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Para que uma Marinha esteja pronta, é necessário não apenas dispor de meios 

tecnologicamente desenvolvidos, mas também de pessoas capacitadas para operá-los. Foi 

observado que a distribuição de vagas em cursos operativos comuns à tripulação dos 

navios não é apoiada em métodos quantitativos. Este trabalho propõe métodos para apoiar 

essa distribuição anual, para os militares embarcados em navios da Esquadra. Utiliza-se 

de séries mensais de 2020–2023 de uma amostra de 18 cursos comuns a três navios de 

um mesmo Esquadrão, integrando previsão de séries temporais de contagem com 

otimização estocástica orientada a risco e opinião de especialista. As séries são modeladas 

como processos de contagem do tipo random walk com termos Bernoulli–Poisson, 

gerando cenários de 12 meses validados por fan charts e julgamento de especialista. São 

formulados cinco modelos de programação linear inteira: determinístico; com buffer 

definido por especialista; e três estocásticos baseados em simulações e em Value at Risk 

(VaR) e Conditional Value at Risk (CVaR). Todos apresentaram custo global inferior à 

distribuição real. O modelo determinístico teve o melhor compromisso entre custo e 

cobertura; o modelo com buffer elevou o custo, mas acrescentou robustez; os modelos 

com VaR e CVaR foram mais eficientes em custo, porém com menor cobertura inicial. 

Nenhum curso ficou abaixo do índice mínimo nas distribuições sugeridas. Conclui-se que 
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os métodos são operacionalizáveis e reproduzíveis, permitindo calibrar risco e buffer para 

melhor atender às necessidades de capacitação a bordo e contribuir para a prontidão dos 

navios.  
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For a Navy to be ready, it is necessary not only to have technologically advanced 

assets, but also qualified personnel to operate them. It has been observed that the 

allocation of vacancies in operational courses common to ship crews is not supported by 

quantitative methods. This work proposes methods to support this annual allocation for 

service members embarked on Fleet ships. Monthly series from 2020–2023 are used for 

a sample of 18 courses common to three ships from the same Squadron, integrating 

forecasting of count time series with risk-oriented stochastic optimization and expert 

opinion. The series are modeled as count processes of the random-walk type with 

Bernoulli–Poisson terms, generating 12-month scenarios validated by fan charts and 

expert judgment. Five integer linear programming models are formulated: a deterministic 

model; a model with a buffer defined by an expert; and three stochastic models based on 

simulations and on Value at Risk (VaR) and Conditional Value at Risk (CVaR). All of 

them yielded a global cost lower than that of the actual allocation. The deterministic 

model achieved the best trade-off between cost and coverage; the buffered model 

increased the cost but added robustness; the VaR- and CVaR-based models were more 

cost-efficient, but with lower initial coverage. No course fell below the minimum index 

in any of the suggested allocations. It is concluded that the methods are operationalizable 

and reproducible, allowing the calibration of risk and buffer to better meet on-board 
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training needs and contribute to the readiness of the ships. 
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1 INTRODUÇÃO 

 

1.1 CONTEXTUALIZAÇÃO 

O mar tem uma grande importância para o Brasil, nele se encontra a Amazônia 

Azul, que é a região marítima brasileira composta pela superfície do mar, águas 

sobrejacentes ao leito, solo e subsolo marinho, na extensão do Oceano Atlântico que se 

projeta do litoral até o limite exterior da Plataforma Continental do Brasil. Ela recebe esse 

nome por sua relevância estratégica, econômica e ambiental, similar a floresta amazônica 

em terra. A sua importância para o país é devido aos seguintes fatores (MARINHA DO 

BRASIL, 2025): 

a) Comércio exterior: Mais de 95% das exportações e importações 

brasileiras ocorrem nessa área, sendo primordial para o escoamento da 

produção nacional. 

b) Energia: É a região onde cerca de 95% do petróleo nacional e grande parte 

do gás natural são extraídos. 

c) Recursos naturais: Abriga diversos recursos minerais, pesqueiros e 

biodiversidade marinha, além de centros industriais e energéticos. 

d) Soberania: É considerada patrimônio nacional, sob constante proteção, 

monitoramento e controle para enfrentar ameaças e garantir o uso 

sustentável, de acordo com diretrizes estratégicas da Marinha do Brasil. 

e) Vertentes: Deve ser vista por quatro vertentes fundamentais: econômica, 

científica, ambiental e de soberania. 

Portanto, a Amazônia Azul é essencial para o desenvolvimento econômico, 

pesquisa científica, preservação ambiental e garantia da soberania nacional do país. Seu 

papel é estratégico e demanda vigilância ativa e exploração sustentável para o presente e 

futuro do Brasil. Neste contexto, a Marinha do Brasil (MB), como sentinela dos mares, 

desempenha um papel fundamental na proteção e no aproveitamento desses recursos 

(SANTOS et al., 2022).  
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Figura 1 – Ilustração do tamanho da Amazônia Azul. Fonte: Rolim (2025). 

 

Os navios da MB, no entanto, não são apenas estruturas físicas navegando pelos 

mares, eles são sistemas complexos que requerem operação e manutenção por parte de 

pessoas altamente capacitadas. Segundo Holden (2005), o navio pode ser considerado um 

grande organismo formado por diversos sistemas, que por sua vez trabalham de forma a 

se complementarem, suprindo funções necessárias ao funcionamento dos demais, logo, a 

tripulação de um navio é tão importante quanto a própria embarcação. Cada membro da 

tripulação desempenha um papel vital, desde a manutenção dos sistemas de bordo até a 

tomada de decisões que podem impactar no cumprimento de uma missão. 

Nesse sentido, a capacitação das pessoas que trabalham a bordo dos navios é de 

suma importância, pois o sucesso das operações navais depende diretamente do nível de 
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habilidade e conhecimento da tripulação. Além disso, a capacitação adequada pode além 

de aumentar a segurança das operações, reduzir erros e evitar acidentes (SÁNCHEZ-

BEASKOETXEA, 2021). 

 

1.2 FORMULAÇÃO DO PROBLEMA 

Uma das etapas do processo de qualificação do pessoal que serve a bordo dos 

navios é através de cursos realizados em centros de instrução da própria MB. Na gestão 

interna de cada navio, há um documento chamado ‘mapa de cursados’ que controla esse 

processo, listando todos os cursos necessários para o pessoal embarcado. Para cada curso, 

há um índice mínimo a ser mantido e um índice ideal a ser atingido, e esse valor é 

referente a quantidade de pessoas com aquele respectivo curso. Mensalmente cada navio 

envia esse documento, em formato de planilha eletrônica, para o Esquadrão ao qual está 

subordinado, indicado o índice atual para cada um dos cursos. Abaixo está um exemplo 

ilustrativo do layout do mapa de cursados:  

 

Tabela 1 – Modelo de controle de cursados 

Curso Índice ideal Índice mínimo Índice atual 

Curso 1 3 1 2 

Curso 2 20 10 7 

... ... ... ... 

Curso n 10 5 12 

 

O processo de distribuição de vagas em cursos segue o seguinte trâmite: os navios 

enviam ao Esquadrão subsídios de necessidades de vagas em cursos para o ano seguinte, 

o Esquadrão compila os dados, os analisa, e faz uma solicitação ao Comando de Força 

que está subordinado. No ano seguinte, o Esquadrão recebe as vagas dos cursos deste 

Comando de Força e as distribui para os navios subordinados. O processo está ilustrado 

abaixo:   
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Figura 2 - Fluxograma de solicitação e distribuição de vagas em cursos. Fonte: Elaborado pelo autor. 

 

Um ponto a se notar, é que foi observado que a distribuição de vagas em cursos 

não tem ocorrido da melhor forma possível, ocorrendo alguns casos de navios com a 

quantidade de cursados abaixo do índice ideal em alguns cursos, e acima do índice ideal 

em outros cursos, ambos ocorrendo às vezes por períodos prolongados. Isso foi observado 

juntamente com um especialista da área que é responsável pela distribuição das vagas 

para os navios, ao serem gerados gráficos referentes ao período dos dados 

disponibilizados por ele. Abaixo encontra-se uma análise comparativa em 2 cursos em 

que essas observações foram consideradas mais significativas, de dados observados de 

2020 a 2023 para 3 navios do mesmo Esquadrão: 

 

 

Figura 3 – Dados históricos Curso 12. 
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Figura 4 – Dados históricos Curso 18. 

 

Durante a pesquisa, foi observado que não havia um processo baseado em 

métodos quantitativos para a distribuição de vagas aos navios subordinados, sendo o 

processo totalmente realizado de forma subjetiva. Com base nos elementos apresentados, 

as seguintes perguntas guiaram o problema de pesquisa deste estudo:   

a) Como otimizar a distribuição anual de vagas, assegurando que índices 

mínimos e ideais sejam respeitados de forma eficiente? 

b) Que métricas e medidas de risco podem contribuir para maior robustez nas 

decisões de alocação de vagas? 

 

1.3 JUSTIFICATIVA 

O não atingimento dos índices ideais ou a manutenção dos mínimos em 

determinados cursos, por períodos prolongados, mesmo após novas distribuições de 

vagas, evidencia uma necessidade de se reavaliar o processo de distribuição de vagas para 

os navios, observando-se os fatores que têm contribuído para o não atingimento desses 

índices. 

Levando-se em consideração que o orçamento da Marinha é limitado, e que cada 

um dos cursos destinados aos navios possui um custo, torna-se necessário a otimização 

do processo de distribuição. Isso está relacionado com uma alocação adequada de vagas, 

de forma a assegurar o atendimento das necessidades de conhecimento operativo da 

melhor forma possível. Segundo Tomaz e Tomaz (2023), uma gestão estratégica de 
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pessoal é um elemento de extrema relevância para o sucesso de qualquer organização, e 

na MB não seria diferente. 

Sob a perspectiva do navio, os resultados deste trabalho podem culminar em uma 

melhor preparação e desempenho dos militares que servem embarcados, contribuindo 

para uma melhor condição de eficiência do navio. Militares bem treinados e capacitados 

têm maior probabilidade de desempenhar melhor suas funções, e com maior precisão, o 

que é aspecto essencial para as operações de um navio de guerra.  

Para a instituição, a pesquisa pode contribuir para a identificação de lacunas e 

oportunidades de melhoria no processo de capacitação dos militares, possibilitando um 

ajuste e refino do atual processo de gestão de vagas em cursos. Assim, garante-se que eles 

adquiram as habilidades necessárias para cumprir suas funções da melhor forma. Isso 

aumentará a eficiência geral da MB, além de aplicar os recursos de uma forma mais 

eficiente. 

Uma boa gestão da capacitação dos militares embarcados é fundamental para o 

funcionamento adequado e a efetividade das operações navais. Então, uma pesquisa que 

analisa e otimiza esse processo, poderá garantir que a MB esteja mais adequadamente 

preparada e treinada para enfrentar os possíveis desafios e ameaças. Isso contribui para a 

segurança e o sucesso das missões da Marinha, trazendo benefícios significativos para a 

sociedade, no que tange à segurança nacional e no atendimento dos interesses do país.  

Diante exposto, ao transformar um processo hoje subjetivo em um procedimento 

quantitativo reprodutível, a pesquisa contribui para elevar a prontidão dos navios do ponto 

de vista da capacitação de pessoal que serve embarcado. 

 

1.4 OBJETIVOS 

Geral: Propor um modelo de otimização a ser aplicado na distribuição das vagas. 

Específicos:  

a) Desenvolver e aplicar modelos de Programação Linear Inteira (PLI) para 

a distribuição de vagas. 

b) Incorporar opinião de especialistas e medidas de risco, Percentil, Value-

at-Risk (VaR) e Conditional Value-at-Risk (CVaR), para aumentar a 

robustez das soluções. 

c) Comparar os resultados dos modelos propostos com a distribuição real, 

considerando eficiência no atingimento dos índices, complementando com 

uma análise de custo. 



 

 

20 

 

d) Identificar lacunas ou áreas de melhorias nas práticas atuais de gestão das 

vagas em cursos para o pessoal que serve embarcado.  

 

1.5 ESTRUTURA DA DISSERTAÇÃO 

Esta dissertação está organizada em seis capítulos, sendo estes distribuídos da 

seguinte forma: 

O Capítulo 1 apresenta a introdução com contextualização do assunto, iniciando 

com a importância do mar para o Brasil, e a importância da MB na defesa das riquezas 

provenientes dele. É exposto o problema de pesquisa, questões centrais, justificativa, 

além dos objetivos gerais e específicos. 

O Capítulo 2 apresenta o referencial teórico com os conceitos acadêmicos que 

fundamentam a pesquisa. Aborda temas de planejamento estratégico, previsão de 

demanda, séries temporais de contagem e programação linear inteira, incluindo opinião 

de especialista e medidas de risco. 

O Capítulo 3 apresenta a metodologia com a classificação da pesquisa e o estudo 

de caso realizado, além da coleta de dados dos cursos e navios analisados. É descrita a 

modelagem das simulações baseadas em séries temporais de dados de contagem, além da 

formulação de cinco modelos de programação inteira. 

O Capítulo 4 apresenta os resultados obtidos das simulações e dos modelos de 

otimização propostos, do ponto de vista do atingimento de índices nos cursos, das sobras 

de vagas, e dos recursos empregados em cada um dos diferentes tipos de distribuição. 

O Capítulo 5 apresenta a discussão com a interpretação e crítica dos resultados 

obtidos através dos modelos, comparando-os com a distribuição real que ocorreu, além 

comentar vantagens e desvantagens de cada um. Discute aspectos observados na 

qualidade dos dados coletados e suas implicações na interpretação dos modelos. 

O Capítulo 6 apresenta as conclusões com a síntese dos objetivos alcançados, 

evidenciando as contribuições da pesquisa para gestão da capacitação do pessoal que 

serve embarcado, incluindo a expansão para demais navios, além de sugerir trabalhos 

futuros. 
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2 REFERENCIAL TEÓRICO 

Para a atingimento dos objetivos desta pesquisa, serão apresentados trabalhos que 

estejam relacionados aos temas de planejamento estratégico de recursos humanos, 

previsão de demanda, otimização através de Programação Linear Inteira, além das 

medidas de risco e opinião de especialista na gestão dos processos. Isso tem por objetivo 

estabelecer uma base conceitual para justificar a escolha dos métodos propostos para a 

resolução do problema apresentado nos cursos operativos da MB. 

 

2.1 PLANEJAMENTO ESTRATÉGICO DE RECURSOS HUMANOS 

O planejamento estratégico é uma ferramenta de grande importância nas 

organizações, tanto privadas como públicas. Ferigato e Rosini (2021) verificam como a 

gestão de pessoas, com foco em planejamento estratégico, pode melhorar a produtividade, 

os resultados e o posicionamento de mercado de uma empresa, sendo essencial para a 

gestão organizacional ao orientar políticas, estratégias e objetivos de curto e longo prazo. 

Apesar de isso ser uma prática mais comumente vista no setor privado, Tomaz e Tomaz 

(2023) abordam a importância do treinamento e do desenvolvimento na gestão estratégica 

de pessoas na administração pública. Os autores afirmam que o setor público, apesar de 

não visar lucros, ao investir no capital humano, proporcionará as organizações a obterem 

funcionários mais preparados e qualificados, melhorando a produtividade, a eficiência e 

a qualidade na prestação de serviços ao cidadão.  

A MB possui o Plano Estratégico da Marinha para 2040 (PEM 2040) um 

documento de alto nível de acesso público que foi elaborado para orientar o seu 

planejamento de médio e longo prazo. Este plano é estruturado a partir da análise do 

ambiente operacional e da identificação de ameaças, estabelecendo programas 

estratégicos com o objetivo de prover o Brasil com uma Força Naval moderna e de 

dimensão compatível com a estatura político-estratégica do país (MARINHA DO 

BRASIL, 2020).  

O PEM 2040 visa contribuir para a defesa da pátria e a salvaguarda dos interesses 

nacionais, tanto no mar quanto em águas interiores. O plano detalha Objetivos Navais 

(OBNAV), organizados em uma cadeia de valores, que culminam no cumprimento da 

Missão da MB e no atingimento da Visão de Futuro da MB até 2040. 

No documento é apresentado um mapa estratégico, onde são listados os OBNAV 

a serem cumpridos. Estes são distribuídos em três perspectivas (institucional, processos 
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e resultados para a sociedade), onde os que estão nos patamares inferiores, de forma geral, 

contribuem para que seja possível cumprir os OBNAV dos superiores. Na figura abaixo 

é apresentado o mapa estratégico, com destaque para o OBNAV 11 que será abordado 

nessa pesquisa. 

 

Figura 5 - Mapa estratégico da MB. Fonte: PEM 2040 
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Os OBNAV são definidos como o ‘o que’ deve ser feito para se alcançar a missão 

e a visão de futuro da MB. Dentro deles existem as Estratégias Navais (EN), que são 

‘como’ devem ser feitos os OBNAV, e dentro de cada EN existem as Ações de Estratégia 

Naval (AEN), que adequam as EN em ações concretas para a realidade do país, levando-

se em consideração o orçamento, a tecnologia, a disponibilidade de matéria-prima e 

capacitação (MARINHA DO BRASIL, 2020). Dentro do OBNAV 11, ‘Aprimorar a 

Gestão de Pessoas’, existe a EN 11, ‘Pessoal – Nosso Maior Patrimônio’, e por seguinte, 

das AEN apresentadas, há a AEN – Pessoal -2 ‘Aprimorar a capacitação de pessoal da 

MB’, conforme ilustrado abaixo:  

 

 

Figura 6 - EN e AEN da MB. Fonte: Adaptado do PEM 2040. 

 

Segundo o PEM-2040, no que tange ao OBNAV-11 Aprimorar a gestão de 

Pessoas, a EN-11 visa “aperfeiçoar os sistemas e os procedimentos relacionados à gestão 

de pessoal, a fim de prover à Força a pessoa certa, com a capacitação adequada, no lugar 

e momentos certos, visando ao cumprimento da Missão da MB.” (MARINHA DO 

BRASIL, 2020). 

Nesse sentido, foi observado que a MB possui uma diretriz clara sobre aprimorar 

a capacitação de pessoas em seu mapa estratégico, porém notou-se que ainda há uma 

carência de métodos quantitativos que traduzam o PEM 2040 em práticas de gestão dos 

EN 11 - "PESSOAL - NOSSO MAIOR PATRIMÔNIO"

AEN - PESSOAL-1: 

Incorporar a Gestão por competências na 
administração de recursos humanos da MB.

AEN - PESSOAL-2: 

Aprimorar a capacitação de pessoal da MB.

AEN - PESSOAL-3: 

Aprimorar a saúde integrada da MB.

AEN - PESSOAL-4: 

Aprimorar o apoio à Família Naval.

AEN - PESSOAL-5: 

Aprimorar o Programa Olímpico da Marinha 
(PROLIM).
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cursos para o pessoal que serve embarcado, pelo menos no nível Esquadrão-navios. Isso 

justifica este trabalho, pois ele oferecerá uma ligação entre o planejamento estratégico 

qualitativo e a execução prática quantitativa. 

 

2.2 PREVISÃO DE DEMANDA 

Uma das formas de contribuir para a distribuição otimizada, seria tentar 

compreender qual seria a quantidade de cursados ou necessidades de vagas para o futuro. 

A previsão de demanda é comumente empregada no processo decisório de várias 

organizações, sendo vista como uma etapa fundamental, pois possibilita visualizar 

necessidades futuras, além de permitir realizar ajustes na alocação de recursos de uma 

forma mais eficiente.  

De acordo com Ackermann e Sellitto (2022), a previsão de demanda está presente 

em várias empresas, com diferentes portes e setores, sendo isso uma prática considerada 

essencial para o planejamento estratégico e operacional delas, possibilitando antecipar as 

suas necessidades. Petropoulos et al. (2022) afirmam que o intuito da previsão é melhorar 

a tomada de decisão em cenários em que haja incerteza, usando os dados históricos como 

subsídios para a realização de escolhas mais eficientes sobre o futuro. Para o contexto 

militar, que é um setor público, esse assunto é muito relevante, tendo em vista que os 

recursos costumam ser escassos, e decisões ruins podem comprometer a execução de 

tarefas específicas desse setor.   

 

2.2.1 Séries Temporais de Dados de Contagem 

Uma série temporal é o conjunto de observações realizadas por um período, em 

intervalos regulares, para entender os padrões dos dados históricos e possibilitar projetar 

novos valores (ENDERS, 2015; HYNDMAN e ATHANASOPOULOS, 2021), e a sua 

análise é uma abordagem adequada para projeções de curto prazo (ACKERMANN e 

SELLITTO, 2022). No caso da pesquisa, trata-se de séries temporais de dados de 

contagem, pois é uma sequência de números inteiros não-negativos, registrados em 

intervalos de tempo igualmente espaçados, onde cada valor representa uma contagem 

referente a quantidade de cursados no mês (FOKIANOS, 2012; WEISS, 2018). 

Esses tipos de séries possuem as seguintes caraterísticas (DAVIS et al., 2021): 

a) Valores inteiros não negativos (contagens): os dados assumem apenas 

valores inteiros maiores ou iguais a zero; 
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b) Dependência temporal: as observações vizinhas são correlacionadas, pois 

resultam de mecanismos de geração de contagem que atuam ao longo do 

tempo; 

c) Sobredispersão: a variância frequentemente excede a média, apresentado 

séreies sobredispersas (overdispersed); 

d) Inflação de zeros (zero-inflation): muitas vezes, há mais contagens iguais 

a zero (zero counts) do que o que pode ser explicado pelas distribuições 

marginais de contagem clássicas, como a Poisson, binomial ou binomial 

negativa; 

e) Autocorrelações predominantemente não negativas: é comum que as 

autocorrelações de primeira ordem sejam positivas. 

Inicialmente, McKenzie (1985) e Alzaid e Al-Osh (1987) apresentaram o modelo 

Integer-valued Autoregressive de primeira ordem – INAR(1), contraponto os modelos 

autorregressivos tradicionais para dados contínuos, com a seguinte formulação básica: 

 𝑋𝑡 = 𝛼 ∘ 𝑋𝑡−1 + 𝜀𝑡 (1) 

Em que 𝑋𝑡 representa o valor da série no tempo 𝑡, 𝛼 𝜖 (0, 1) é o parâmetro 

autorregressivo e 𝜀𝑡 é o termo de inovação com valores inteiros não negativos. Ela foi 

baseada no operador thinning binomial, introduzido por Steutel e Van Harn (1979), 

representado pelo símbolo ∘. Ele substitui a multiplicação escalar tradicional por uma 

operação que preserva a natureza inteira dos dados, mediante a verificação da manutenção 

da variável aleatória de contagem 𝑋 de forma probabilística, pois nos modelos 

tradicionais, após alguma multiplicação escalar podem ser gerados valores não inteiros. 

A estacionariedade costuma ser uma condição central em grande parte da teoria 

clássica de séries temporais, pois garante que as propriedades estatísticas da série, como 

média, variância e autocorrelação permaneçam constantes ao longo do tempo, facilitando 

a modelagem, a inferência e a previsão (DAVIS et al., 2021), porém há séries que não 

apresentam estacionariedade. Ryan et al. (2025) discutem que processos como o passeio 

aleatório (Random Walk - RW) ou séries com tendência podem invalidar testes e 

procedimentos construídos sob a hipótese de estacionariedade, exigindo transformações 

ou modelos específicos para lidar com essas estruturas. Assim, identificar corretamente o 

tipo de não estacionariedade é importante para escolher uma modelagem adequada. 

Além disso, é importante observar a quantidade de dados históricos necessários, 

que no caso deste estudo são de 48 observações. Hyndman e Kostenko (2007) abordam 
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sobre a questão de quantas observações são necessárias para modelos estatísticos de 

previsão sazonal, enfatizando que a resposta depende muito do tipo de modelo utilizado 

e da quantidade de variação aleatória presente nos dados. Segundo os autores, embora a 

regra geral seja usar "o máximo possível" de dados históricos e relevantes, o estudo 

documenta os requisitos mínimos teóricos de tamanho de amostra, que são alcançados 

apenas se a variação aleatória nos dados for muito pequena. Estatisticamente, os autores 

dizem que é sempre necessário ter mais observações do que parâmetros (coeficientes) 

para que os intervalos de previsão não sejam infinitamente amplos. No entanto, a 

aleatoriedade é o fator mais importante, tornando os requisitos mínimos insuficientes na 

prática. Os autores concluem que para estimar um modelo com precisão sob alta variação 

aleatória, é necessário ter substancialmente mais dados do que o mínimo teórico, e quando 

os dados são escassos, é aconselhável complementar com informações externas, como 

séries temporais análogas ou opinião de especialistas. 

A previsão também é afetada pelo tamanho amostral, pois em um estudo realizado 

por Pincheira e Medel (2016), foi investigado o problema de previsão de séries temporais 

estacionárias e altamente persistentes, como a inflação mensal, diante da limitação 

amostral e da elevada incerteza na estimação dos parâmetros dos modelos tradicionais. 

Nele, os autores compararam o desempenho de modelos simples de RW sem tendência 

com alternativas autoregressivas (ARIMA e SARIMA) por meio de simulações e testes 

empíricos com os índices de preços ao consumidor do Canadá, Suécia, Suíça, Reino 

Unido e Estados Unidos, em diferentes tamanhos de janela amostral. Os resultados 

mostraram que, em amostras pequenas ou moderadas e em horizontes de previsão mais 

longos, as previsões obtidas pela RW sem tendência podem ser superiores às de modelos 

mais complexos, mesmo quando a raiz unitária é rejeitada nos testes clássicos. Os autores 

concluíram que, sob alta persistência e forte restrição amostral, abordagens simples 

podem ser não apenas eficientes, mas também robustas para fins de previsão, devido ao 

menor impacto da incerteza paramétrica sobre o erro de previsão. 

Imoro et al. (2020) investigaram a queda e a instabilidade nas matrículas do curso 

de Estatística do Bolgatanga Polytechnic (Gana), no período de 2003 e 2019, utilizando 

modelos de séries temporais determinísticos e estocásticos. Os resultados mostraram que 

a série de matrículas apresenta variações altamente imprevisíveis, sendo mais bem 

modelada por um RW, especificamente através do modelo ARIMA(0,4,0), que indica 

ausência de tendência robusta e forte influência de choques aleatórios passados. Os 

autores concluíram que o fenômeno das matrículas se caracteriza por elevada 
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aleatoriedade e que, sem intervenções estruturais ou institucionais, o risco de estagnação 

ou queda persistente no número de alunos permanece elevado. 

Segundo Davis et al. (2021), em séries de contagem não há um modelo 

universalmente dominante, ao contrário das séries Gaussianas estacionárias onde os 

modelos autoregressivos de média móvel são o principal veículo de modelagem. Segundo 

os autores, a literatura evoluiu de forma ad hoc, com diferentes classes de modelos sendo 

desenvolvidas para situações específicas. 

Após a confecção do modelo que melhor representa o comportamento dos dados, 

a fim de que sejam realizadas simulações de possíveis cenários, é importante que haja o 

processo de validação desse modelo. Sargent (2020), estipula 8 passos para validação de 

simulações: 

1- Um acordo deve ser feito antes do desenvolvimento do modelo, especificando 

a abordagem de decisão e um conjunto de técnicas específicas de validação a 

serem usadas; 

2- Especificar a faixa aceitável de precisão exigida das variáveis de saída do 

modelo que são de interesse para a aplicação pretendida; 

3- Testar, sempre que possível, as premissas e teorias subjacentes ao modelo de 

simulação; 

4- Em cada iteração do modelo, realizar pelo menos a validação de face no 

modelo conceitual; 

5- Em cada iteração do modelo, pelo menos explorar o comportamento do 

modelo de simulação utilizando o modelo computacional; 

6- Na última iteração do modelo, fazer comparações, se possível, entre o modelo 

de simulação e os dados reais de comportamento do sistema (saída) para pelo 

menos alguns conjuntos de condições experimentais; 

7- Preparar a documentação de Verificação e Validação para inclusão na 

documentação geral do modelo de simulação; 

8- Se o modelo de simulação for utilizado por um período prolongado, elaborar 

um cronograma para a revisão periódica da validade dele. 

Em suma, levando-se em consideração o tamanho da amostra e a aleatoriedade 

dos dados, a opção por um modelo mais simples e parcimonioso é preferível, devendo ser 
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seguido do processo de validação mais aplicável. Isso possibilitará a geração de previsões 

que auxiliarão no processo de otimização da distribuição de vagas. 

 

2.3 PESQUISA OPERACIONAL – PROGRAMAÇÃO LINEAR INTEIRA 

Em situações de alocação de recursos, como vagas de cursos, decisões baseadas 

apenas em valores médios podem não refletir as necessidade e restrições operacionais 

reais. A Programação Linear Inteira (PLI) ou Programação Inteira (PI), garante soluções 

viáveis ao capturar indivisibilidades e exigências lógicas. Assim, a Pesquisa Operacional 

(PO) oferece um arcabouço robusto para modelar e resolver problemas concretos como o 

da capacitação naval. 

Segundo Belfiore e Fávero (2012) a Pesquisa Operacional (PO) teve origem na 

Inglaterra durante a Segunda Guerra Mundial com o intuito de resolver questões 

logísticas, táticas e estratégicas militares, quando um grupo de cientistas foi convocado 

para determinar a utilização mais eficaz dos recursos militares limitados, marcando assim 

a primeira atividade formal desse campo de estudo. Esta é uma área da matemática 

aplicada que utiliza modelos matemáticos e algoritmos para auxiliar na tomada de 

decisões. No caso de variáveis inteiras, como é o caso da pesquisa, as vagas que precisam 

ser alocadas sempre serão números inteiros, logo a PLI é a ferramenta ideal para a 

obtenção da solução ótima, que geralmente é caracterizada por: 

a) Variáveis de decisão: são as escolhas que serão feitas, que na pesquisa 

estão representadas pelas vagas alocadas a cada navio e cada curso; 

b) Parâmetros: são valores fixos conhecidos, como o índice dos cursos, 

quantidade de vagas a serem distribuídas e os valores dos cursos; 

c) Função objetivo: é o critério de otimização, sendo de minimização ou 

maximização, que na pesquisa será minimização de desvios em relação ao 

índice ideal; e 

d) Restrições: são os limites estabelecidos, como o cumprimento índices dos 

cursos e a limitação do total de vagas a serem alocadas. 

A formulação geral de um problema de PLI pode ser escrita como: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑟 𝑧 = ∑ 𝑐𝑖

𝑛

𝑖=1

𝑥𝑖 (2) 
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 𝑠𝑢𝑗𝑒𝑖𝑡𝑜 𝑎 ∑ 𝑎𝑗𝑖𝑥𝑖 ≤

𝑛

𝑖=1

𝑏𝑗 , 𝑗 = 1, … , 𝑚 (3) 

 𝑥𝑖 𝜖 ℤ, 𝑖 = 1, … , 𝑛 (4) 

Onde: 

• 𝑥𝑖 são as variáveis de decisão; 

• 𝑐𝑖 são coeficientes da função objetivo; 

• 𝑎𝑗𝑖 são os coeficientes das restrições; e 

• 𝑏𝑗 são os limites de cada restrição. 

Pujari et al. (2021) exploram técnicas de PO na tomada de decisões em Gestão de 

Recursos Humanos (GRH) em diversas organizações. Os autores argumentam que as 

decisões de RH frequentemente carecem de objetividade e estrutura, o que pode ser 

resolvido através da introdução de modelos quantitativos de PO. O estudo foca em três 

técnicas: Programação Linear, Problemas de Atribuição (Assignment 

Problems) e Simulação de Sistemas, explicando como elas podem otimizar processos de 

GRH, como recrutamento, treinamento e alocação de tarefas, ao minimizar custos e 

maximizar a eficiência. O estudo mostra uma interdependência clara e uma estrutura 

confiável para a tomada de decisões em RH utilizando a PO, concluindo que ela oferece 

objetividade e racionalidade para a GRH. 

Yamavaram et al. (2022) apresentam aplicações de PO no contexto militar, com 

métodos de otimização e modelagem que têm sido utilizados em diferentes forças 

armadas ao redor do mundo. Os autores destacam que há inúmeras oportunidades de 

otimização apoiadas pelos métodos de PO, dentre eles estão modelos empregando a PLI 

aplicados ao escalonamento de tripulações e à distribuição de munições, e os modelos 

estocásticos, como Cadeias de Markov e simulações, empregados na previsão de efetivos 

e planejamento de treinamentos. Isso demonstra a relevância dessas técnicas matemáticas 

e probabilísticas para lidar com problemas de alocação de recursos, planejamento 

estratégico e tomada de decisão em ambientes complexos e sujeitos a riscos, que comuns 

no contexto militar. 

Odion et al. (2023) apresentam uma aplicação da Programação Inteira Mista 

(MIP) na otimização da alocação de recursos de treinamento militar na Nigerian Defence 

Academy (NDA), de modo a minimizar o custo total sem comprometer a proficiência 

exigida dos cadetes. Os autores desenvolveram um modelo que buscou minimizar os 
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custos associados ao treinamento, assegurando que os cadetes atingissem níveis mínimos 

dos requisitos em tarefas consideradas essenciais. Os resultados obtidos demonstraram 

que esse tipo de abordagem permitiu reduzir significativamente os custos do processo de 

treinamento, sem comprometer a qualidade e a eficácia da formação, evidenciando o 

potencial da modelagem de otimização como instrumento de apoio à tomada de decisão 

naquele programa de treinamento militar. 

Hausken (2024) apresenta uma revisão sobre os cinquenta anos do uso de PO em 

defesa, mostrando como ela é extremamente útil nessa área, por aplicar técnicas 

matemáticas e de otimização para auxiliar na tomada de decisões complexas em contextos 

de conflito, segurança e risco. Segundo o autor, o objetivo da PO na defesa é fornecer 

análises rigorosas e insights para a alocação ótima de recursos e para a escolha das 

melhores estratégias, em face de ameaças intencionais e não intencionais, tornando-a uma 

ferramenta fundamental para a segurança e a resiliência de sistemas críticos. 

A PO é um assunto conhecido e consolidado na literatura acadêmica, e tem 

mostrado a sua eficiência de diferentes formas e em diferentes ambientes e aplicações. O 

seu uso nessa pesquisa trará grandes benefícios do ponto de vista de otimização e alocação 

de recursos escassos, que no caso são referentes a alocação de vagas em cursos.  

 

2.4 MEDIDAS DE RISCO: VAR E CVAR 

Em problemas de alocação de recursos limitados, às vezes escassos, e em 

ambientes de incertezas como a distribuição de vagas de cursos, as decisões baseadas em 

valores esperados talvez não sejam suficientes. Apesar dos modelos determinísticos 

oferecerem soluções ótimas, eles não consideram o tamanho das perdas em cenários 

adversos. Na administração naval, uma capacitação abaixo do mínimo esperado pode 

comprometer a prontidão operacional, logo, torna-se necessário avaliar não somente 

aquilo que é esperado, mas também os piores cenários possíveis.  

Em problemas de otimização sob incerteza, a inclusão de medidas de risco é um 

fator importante no apoio a tomada de decisão. Duas medidas de risco conhecidas na 

literatura são o Value-at-Risk (VaR) e o Conditional Value-at-Risk (CVaR), este último 

introduzido por Rockafellar e Uryasev (2000), e são empregadas amplamente no mercado 

financeiro e na otimização de portfólios. O VaR é o quantil (percentil inferior) de uma 

distribuição de perdas, para um determinado nível de confiança 𝛼, já o CVaR é a média 

das perdas que excedem o VaR dado um nível de confiança (SARYKALIN et al., 2008). 
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Nessa pesquisa, será considerado 𝛼 ∈ (0,1) como nível de confiança de 

VaR/CVaR, e 𝜁 para o ponto de corte (quantil) associado ao VaR no nível 𝛼, a partir de 

onde calcula-se o CVaR. Nesse estudo, a perda que será avaliada será o déficit de 

capacitação em um curso 𝑚, de um navio 𝑛, no mês 𝑡, sob um cenário possível 𝜔, 

representado por 𝐷𝑛,𝑚,𝑡,𝑤, definido como a diferença entre o índice mínimo e o índice 

observado nesse cenário:  

  𝐷𝑛,𝑚,𝑡,𝑤 =   𝐼𝑛𝑑𝑛,𝑚
𝑚𝑖𝑛 − 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤 (5) 

Em que 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤 representa o índice de cursados observado ou projetado para o 

curso 𝑚, no navio 𝑛, no mês 𝑡, sob um cenário 𝜔. Valores positivos de  𝐷𝑛,𝑚,𝑡,𝑤 indicam 

déficit (índice abaixo do mínimo) e valores negativos indicam que o índice atingiu ou 

superou o mínimo. 

Linsmeier e Pearson (1996) apresentam o Value-at-Risk (VaR), uma medida 

estatística que estima a perda máxima em uma carteira, considerando condições normais 

de mercado, em um horizonte de tempo específico e com certo nível de confiança. Isso 

surgiu para atender a necessidade de gestores de terem um número de referência para 

supervisionar o risco de carteiras compostas por diversos ativos. Uma das formas de se 

obter o VaR é através de simulação histórica, onde são usadas mudanças reais nos fatores 

do mercado dos períodos passados, para simular possíveis perdas da carteira mantida no 

presente. Outra forma apresentada pelos autores é através da simulação de Monte Carlo, 

onde são gerados vários cenários simulados de variações dos fatores de risco, de acordo 

com uma distribuição estatística assumida, de forma a estimar possíveis variações de 

valor da carteira. 

O VaR no nível de confiança 𝛼 é o quantil 𝛼 da distribuição de perdas por cenário, 

considerado o menor valor que não é excedido em 𝛼 ⋅ 100% dos cenários e, portanto, 

separa a cauda de probabilidade 1 − 𝛼 das perdas. Ela é uma medida utilizada como um 

ponto de corte de risco (ROCKAFELLAR e URYASEV, 2000; SARYKALIN et al., 

2008). Seja L uma variável aleatória de perda com distribuição 𝐹𝐿, o VaR com nível de 

confiança 𝛼 𝜖 (0, 1) é definido como: 

 𝑉𝑎𝑅𝛼(𝐿) = 𝑖𝑛𝑓{ℓ 𝜖 ℝ ∶  𝐹𝐿(ℓ) ≥ 𝛼} 
(6) 
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O menor valor de ℓ tal que, em aproximadamente 𝛼 ∙ 100% dos cenários, a perda 

não observada não excede ℓ, restando uma probabilidade de cerca de 1 − 𝛼 da perda ser 

maior que esse patamar. Por exemplo, se 𝛼 = 0.80 (80% de confiança), o 𝑉𝑎𝑅0.80(𝐿) é 

o valor da perda que não será excedido em 80% dos cenários. O equivalente é dizer que 

há 20% de probabilidade de a perda ser maior que o VaR. 

 O VaR é amplamente usado, porém apresenta algumas limitações (ARTZNER et 

al., 1999; ROCKAFELLAR e URYASEV, 2000): 

a) Não captura a magnitude das perdas extremas, pois informa somente o 

ponto de corte, não dizendo o quão graves são as perdas ao passar desse 

valor; 

b) Não satisfaz a propriedade de subaditividade, pois ao combinar dois 

portfólios, o VaR do portfólio agregado pode resultar em um risco maior 

do que considerar a soma dos VaRs individuais, contrariando a intuição de 

que a diversificação deveria reduzir o risco; 

c) Não é uma medida convexa, dificultando a garantia de soluções ótimas 

globais em problemas de otimização. 

O CVaR, também chamado Expected Shortfall (ES), é a média das perdas que 

ficam além do VaR dado um nível 𝛼: 

 𝐶𝑉𝑎𝑅𝛼(𝐿) =
1

1 − 𝛼
∫ ℓ𝑑𝐹𝐿(ℓ)

ℓ≥𝑉𝑎𝑅𝛼(𝐿)

 (7) 

Na equação acima, FL é a função distribuição de 𝐿. Assim, o CVaR é a média das 

perdas que excedem o VaR no mesmo nível 𝛼, o que o torna coerente e convexo, 

adequado à otimização (ARTZNER et al., 1999; ACERBI; TASCHE, 2002; 

ROCKAFELLAR; URYASEV, 2000). 

O CVaR possui as seguintes propriedades superiores ao VaR (ACERBI e 

TASCHE, 2002; ARTZNER et al., 1999; ROCKAFELLAR e URYASEV, 2000): 

a) É subaditivo, monotônico, possui homogeneidade positiva e invariância 

translacional; 

b) É uma medida convexa de risco, facilitando a resolução de problemas de 

otimização; 

c) É sensível a cauda de distribuição, capturando a magnitude das perdas 

extremas e não apenas a sua probabilidade ocorrência; 



 

 

33 

 

d) Em geral, minimizar o CVaR em um dado nível de confiança contribui 

para reduzir também o VaR correspondente, apesar do contrário não ser 

garantido. 

 

 

Figura 7 – Figura ilustrativa de VaR e CVaR. Fonte: Adaptado de Sarykalin et al. (2008). 

 

Para exemplificar numericamente os conceitos de VaR e CVaR, suponha 10 

cenários de déficit em cursos (em vagas): [0,0,1,1,2,3,3,4,6,8], o VaR 80% (𝛼 = 0,80) é 

o 80º percentil que é igual a 4, ou seja, em 8 de 10 cenários a perda é menor ou igual a 4. 

O CVaR 80% representa a média dos 20% piores cenários, média de [6, 8] = 7. Garantir 

VaR = 4 limita o ponto de corte, garantir CVaR = 7 controla a gravidade média nos piores 

casos. 

Sarykalin et al. (2008) fizeram um estudo comparativo entre VaR e CVaR. Os 

autores afirmam que o CVaR é uma medida de risco coerente e convexa, facilitando a 

otimização de restrições, já o VaR pode ser não convexo e não coerente (especialmente 

com distribuições discretas), dificultando a otimização. Do ponto de vista estatístico, 

destacam que estimativas de VaR tendem a ser mais estáveis do que as de CVaR quando 

as caudas não são bem modeladas, porém alertam que comparar ambos no mesmo nível 

de confiança α pode ser enganoso, pois “olham” fatias diferentes da cauda. Foi concluído 

que o ideal é escolher a medida conforme o objetivo e a qualidade do modelo de cauda: 

indicando o CVaR quando é crítico controlar extremos, ou o VaR quando a modelagem 

de caudas é fraca ou quando simplicidade/regulação pesam, apesar dele não controlar o 

que acontece além do quantil.  
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Zhu et al. (2020) observaram o desafio de quantificar o risco em simulação 

estocástica quando os parâmetros de entrada são incertos devido à estimação a partir de 

dados finitos, focando na inferência sobre cenários extremos da resposta média. Para lidar 

com a incerteza de entrada, os autores empregaram uma abordagem de simulação Monte 

Carlo aninhada (nested Monte Carlo), onde uma camada externa amostra possíveis 

valores dos parâmetros de entrada a partir dos dados observados, e para conjunto de 

parâmetros, uma camada interna realiza múltiplas replicações que estimam o valor médio 

da resposta. A partir da distribuição dessas respostas médias calcularam VaR e CVaR. 

Em experimentos variando o tamanho da amostra utilizado para estimar os parâmetros de 

entrada, foi observado que amostras menores ampliam a incerteza e tendem a produzir 

estimativas mais dispersas, alargando os intervalos de confiança para essas mediadas de 

risco, ao passo que amostras maiores estabilizam as estimativas. Na atual pesquisa, as 

medidas de VaR e CVaR obtidas a partir de simulações são interpretadas como 

indicadores aproximados para comparação entre alternativas de alocação de vagas, e não 

como representações exatas do risco verdadeiro. 

Resumindo, o VaR é bom para fornecer um limite para as perdas em um 

determinado nível de confiança, porém não apresenta a magnitude do que acontece além 

desse ponto. O CVaR, por outro lado, é útil para informar a gravidade dos cenários além 

do limite estipulado pelo VaR, considerando a média dos piores cenários. Essas medidas 

de risco podem ser complementadas pelo julgamento de um especialista da área. 

 

2.5 OPINIÃO DE ESPECIALISTA 

O uso da opinião de especialista é importante em contextos em que há elevada 

complexidade e incerteza, como em casos de distribuição otimizada de recursos, além da 

previsão de necessidades. A inclusão dessa abordagem, contribui para decisões mais 

embasadas e seguras, podendo complementar os resultados provenientes de modelos 

matemáticos e realizando um processo de distribuição mais eficiente e adaptado à 

realidade operacional da Marinha. 

Szwed (2016) apresenta a opinião de especialista como uma fonte extremamente 

importante que fornece uma contribuição vital aos gerentes de projeto, de forma a garantir 

que os projetos sejam concluídos com sucesso, no prazo e dentro do orçamento, de acordo 

com as expectativas das partes interessadas. O autor afirma que essa prática permite lidar 

com as incertezas e fatores desconhecidos no gerenciamento da natureza temporária e 

específica de cada projeto. As informações provenientes do especialista visam preencher 
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as lacunas referentes a ausência de dados históricos ou informações importantes, que são 

necessárias para estimar recursos necessários, prever cenários futuros ou possíveis riscos.  

Petropoulos et al. (2018) evidenciam que a seleção de modelos de previsão não 

deve se restringir apenas a abordagens estatísticas, os autores demonstram que o 

julgamento humano, quando aplicado tanto na escolha direta de modelos quanto na 

identificação de características estruturais das séries temporais, apresenta desempenho 

comparável ou superior ao dos algoritmos, especialmente na capacidade de evitar os 

piores modelos. A pesquisa mostra que a combinação entre julgamentos humanos e 

métodos estatísticos pode gerar ganhos adicionais de precisão e reforçam a robustez das 

decisões. Os resultados destacaram a importância de considerar a integração entre 

métodos quantitativos e julgamento humano como estratégia para aprimorar a 

confiabilidade das previsões em contextos de incerteza. 

Zellner et al. (2021), revisam de forma abrangente o uso de julgamento humano, 

métodos quantitativos e abordagens híbridas de previsão. Os autores argumentam que 

nem o julgamento de especialistas nem os modelos estatísticos são universalmente 

superiores, afirmam que o desempenho relativo de cada um depende da quantidade e 

qualidade dos dados disponíveis, do horizonte temporal, do contexto decisório e do tipo 

de informação relevante. Por essa razão, ou autores recomendam esquemas estruturados 

de combinação entre previsões algorítmicas e conhecimento especializado, seja pela 

seleção de modelos, pela realização de ajustes de julgamento às previsões ou por 

procedimentos formais de combinação de múltiplas fontes de previsão, destacando a 

importância de desenhar processos de previsão em que métodos estatísticos e julgamento 

de especialistas interajam de forma complementar. 

Petropoulos et al. (2022) afirmam que o julgamento humano possui uma 

importância crítica no contexto de previsão, pois são realizadas em contextos sociais e 

inevitavelmente são influenciadas por políticas organizacionais e agendas pessoais. A sua 

relevância está na integração de informações contextuais e externas, não capturadas por 

modelos estatísticos baseados em dados históricos, que às vezes são escassos ou 

inexistentes, ou quando apresentam erros de registros. Nesses casos, os autores alegam 

que a opinião do especialista acaba sendo a opção mais relevante em situações de alta 

incerteza em previsões, sendo comumente aplicada na prática por meio de ajustes em 

previsões geradas por computadores ou na seleção do modelo estatístico mais apropriado. 

Senna et al. (2022) evidenciam que a inclusão de variáveis qualitativas em 

modelos preditivos quantitativos, como as séries temporais, mostrou um aumento na 
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qualidade das previsões geradas, melhorando modelos considerados precisos. Os estudos 

realizados pelos autores mostraram que a união dessas variáveis é realizada 

transformando as características qualitativas em entradas quantificadas, com valores 

numéricos que podem ser definidos por especialista. Essa revisão sistemática mostrou 

que houve melhoria dos modelos criados com essa integração, podendo melhorar a 

qualidade de outras variáveis do sistema, evidenciando o potencial de desenvolvimento 

de modelos mais precisos com a inclusão de fatores qualitativos. 

Pino et al. (2023) falam sobre função estratégica do especialista na validação de 

instrumentos de coleta de informações para fins comerciais e a sus importância. É 

apresentado e contextualizado o papel do especialista, com o perfil adequado, na 

avaliação da qualidade dos dados e na confiança das inferências de uma pesquisa. Como 

benefícios, a opinião dos especialistas permitiu uma avaliação criteriosa dos itens que 

compõem o instrumento, ajudando a eliminar os que são irrelevantes, corrigindo as falhas 

e fortalecendo os seus aspectos importantes, contribuindo com o aumento da qualidade 

das decisões que serão tomadas a partir das informações coletadas. 

Os trabalhos apresentados mostram que a opinião de um especialista na área 

poderá contribuir para o aperfeiçoamento da técnica de otimização que será desenvolvida, 

do ponto de vista a incluir percepções, baseadas em experiência, que complementarão os 

resultados gerados pelos modelos tanto de distribuição como de previsão. 
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3 METODOLOGIA 

 

3.1 CLASSIFICAÇÃO DA PESQUISA 

O presente trabalho é caracterizado como uma pesquisa aplicada, pois busca 

solucionar um problema real da MB, no que tange a otimização da distribuição de vagas 

em cursos para o pessoal que serve embarcado. Segundo Gil (2017), esse tipo de pesquisa 

busca gerar conhecimentos para aplicação prática, sendo direcionados a problemas 

específicos. 

No quesito abordagem, é classificada como pesquisa quali-quanti, devido a 

necessidade de modelagem matemática para a resolução do problema, e pela incorporação 

da opinião de especialista para complementar a parte quantitativa. Gerhardt e Silveira 

(2009) dizem que a pesquisa qualitativa visa o aprofundamento da compreensão do 

fenômeno estudado, enquanto a pesquisa quantitativa visa a objetividade e mensuração 

dos dados, a junção das duas permite uma análise mais completa do problema estudado. 

Quanto aos fins e objetivos, é classificada como descritiva-explicativa. Descritiva 

pois descreve os atuais processos de distribuição de vagas em cursos, com a identificação 

de padrões e tendências existentes. Explicativa pois busca identificar os fatores que 

contribuem para a otimização do processo, além de estabelecer relações de causa e efeito 

entre as variáveis estudadas. Gil (2017) diz que a pesquisa descritiva descreve as 

características de determinadas populações ou fenômenos, e a pesquisa explicativa 

identifica os fatores que determinam ou contribuem para os acontecimentos estudados. 

No que tange ao procedimento técnico, a pesquisa é classificada como um estudo 

de caso, pois é referente a uma situação específica da MB, em que é possível estudar um 

fenômeno em seu contexto real. Yin (2015) afirma que o estudo de caso é uma estratégia 

de pesquisa abrangente, onde é investigado um fenômeno dentro de seu contexto da vida 

real. 

 

3.2 COLETA DOS DADOS 

Os dados foram coletados junto aos navios/Esquadrão, e todos se encontravam em 

formato de planilha eletrônica. O controle de cursados era enviado mensalmente do navio 

para o Esquadrão, que os compilava. Para facilitar a análise foram compilados todos os 

dados do período de 2020 a 2023 dos cursos dos três navios em uma única planilha. Os 
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dados coletados se trata de uma amostra, pois na realidade há mais cursos que são feitos 

pelos navios, e há mais navios no Esquadrão.  

Devido as restrições dos dados, os cursos considerados nessa pesquisa foram 

identificados por números, e os custos foram normalizados pela soma total e 

posteriormente multiplicados por um valor de referência, de modo a preservar as 

proporções originais entre eles. Os custos foram levantados para acrescentar mais uma 

análise, pois o Esquadrão não é o responsável pelos pagamentos dos cursos, e sim outra 

Organização Militar superior, que não foi abordada neste estudo. As vagas que foram 

efetivamente distribuídas em 2023, juntamente com os custos normalizados, encontram-

se na tabela abaixo:  

 

Tabela 2 – Vagas distribuídas em 2023 e custo por aluno 

 Vagas disponíveis em 2023 Custo individual por aluno 

Curso 1 2 R$ 7.094,75 

Curso 2 3 R$ 5.170,53 

Curso 3 4 R$ 163,57 

Curso 4 113 R$ 91,41 

Curso 5 0 R$ 700,92 

Curso 6 32 R$ 94,71 

Curso 7 3 R$ 360,47 

Curso 8 3 R$ 1.010,14 

Curso 9 2 R$ 658,87 

Curso 10 13 R$ 305,08 

Curso 11 8 R$ 190,89 

Curso 12 23 R$ 1.227,28 

Curso 13 39 R$ 96,23 

Curso 14 2 R$ 319,08 

Curso 15 26 R$ 232,34 

Curso 16 4 R$ 713,34 

Curso 17 27 R$ 130,63 

Curso 18 23 R$ 1.439,76 

 

3.3 ANÁLISE EXPLORATÓRIA DOS DADOS 

A partir dos dados coletados foi realizada uma análise exploratória inicial, por 

meio de análise gráfica, verificação de estacionariedade, dependência temporal, 

indicadores de dispersão e presença de zeros excessivos. O intuito foi de identificar 

padrões de comportamento e restrições impostas pelos dados, de forma a obter indícios 

modelo de séries de contagem que seria mais bem aplicado para representar o 
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comportamento deles. Inicialmente, verificou-se algumas estatísticas descritivas dos 

dados das séries dos cursos, para os navios 1, 2 e 3: 

Tabela 3 – Estatísticas descritivas dos cursos do navio 1 

curso min max media mediana IQR 

Curso 1 1 3 1,85 2,00 1,00 

Curso 2 3 4 3,40 3,00 1,00 

Curso 3 2 15 8,35 10,00 8,25 

Curso 4 84 189 103,00 97,50 15,25 

Curso 5 0 3 1,50 1,50 1,00 

Curso 6 27 50 37,00 39,00 11,50 

Curso 7 10 18 12,96 13,00 1,25 

Curso 8 0 4 1,67 1,00 2,00 

Curso 9 3 14 8,79 9,00 4,00 

Curso 10 6 10 8,21 8,00 2,00 

Curso 11 6 13 9,67 9,50 4,00 

Curso 12 5 12 6,73 6,00 1,25 

Curso 13 12 23 17,75 18,00 2,00 

Curso 14 1 3 1,90 2,00 2,00 

Curso 15 10 21 13,52 13,00 4,00 

Curso 16 1 6 2,63 2,00 2,00 

Curso 17 9 24 17,17 18,50 5,00 

Curso 18 9 23 15,17 14,00 4,00 

 

Tabela 4 – Estatísticas descritivas dos cursos do navio 2 

curso min max media mediana IQR 

Curso 1 0 2 1,13 1,00 0,00 

Curso 2 1 3 1,71 2,00 1,00 

Curso 3 3 7 5,83 6,00 1,50 

Curso 4 127 248 173,21 177,00 32,25 

Curso 5 0 3 2,23 3,00 2,00 

Curso 6 31 77 51,31 51,00 18,25 

Curso 7 5 21 12,67 14,00 7,00 

Curso 8 1 6 3,29 3,00 2,00 

Curso 9 2 10 6,23 6,00 5,25 

Curso 10 2 8 4,48 4,00 1,25 

Curso 11 7 19 11,83 11,00 5,00 

Curso 12 1 12 6,58 6,00 7,25 

Curso 13 18 37 27,63 30,50 14,00 

Curso 14 1 7 3,27 2,00 4,00 

Curso 15 17 32 24,33 24,00 9,50 

Curso 16 2 13 7,08 9,00 9,00 

Curso 17 14 33 22,25 23,50 12,25 

Curso 18 13 31 22,08 22,00 12,25 
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Tabela 5 – Estatísticas descritivas dos cursos do navio 3 

curso min max media mediana IQR 

Curso 1 4 8 5,67 5,00 3,00 

Curso 2 1 6 4,38 4,50 2,25 

Curso 3 9 13 12,00 13,00 2,00 

Curso 4 169 280 219,83 223,50 60,75 

Curso 5 4 10 7,71 8,50 3,00 

Curso 6 57 84 66,29 66,00 8,00 

Curso 7 18 22 19,96 20,00 0,25 

Curso 8 0 6 2,63 2,00 2,00 

Curso 9 1 3 2,60 3,00 1,00 

Curso 10 4 11 6,27 6,00 2,00 

Curso 11 10 22 16,73 18,00 10,00 

Curso 12 7 14 10,15 9,00 4,00 

Curso 13 26 91 57,29 69,50 47,00 

Curso 14 4 7 5,19 5,00 0,00 

Curso 15 21 33 27,33 28,50 6,25 

Curso 16 11 13 12,00 12,00 2,00 

Curso 17 9 47 24,90 25,50 5,25 

Curso 18 10 39 18,50 16,00 6,00 

 

Na análise gráfica, são apresentadas a série histórica da quantidade de cursados, 

por curso e navio, com a média e índices ideal/mínimo, juntamente com histograma e a 

estimativa de densidade por kernel (Kernel Density Estimate – KDE), além do boxplot. 

Inicialmente, é apresentado o gráfico do curso 12, citado na introdução, demais cursos 

encontram-se no apêndice A.  
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Figura 8 – Análise exploratória Curso 12 

 

Após a visualização inicial, é importante a execução de testes de raiz unitária e 

estacionariedade, neles o “span” temporal (duração no tempo) é determinante para o 

poder e para o tamanho do teste, os aumentos na frequência de amostragem (com período 

fixo) tendem a produzir ganhos marginais decrescentes (PERRON, 1989). Para verificar 

a estacionariedade das séries dos cursos através de testes formais, foram aplicados dois 

testes de forma complementar:  
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1. Augmented Dickey–Fuller (ADF), onde a hipótese nula é a presença de 

raiz unitária (não-estacionariedade); 

2. Kwiatkowski–Phillips–Schmidt–Shin (KPSS), onde hipótese nula é de 

estacionariedade (em nível ou em tendência, conforme a especificação). 

Levando em consideração que os testes possuem hipóteses nulas opostas, e 

apresentam sensibilidades distintas em amostras finitas, foi adotado o seguinte critério de 

classificação: “Uma série é considerada estacionária somente quando houver 

concordância entre os testes, isto é, ao mesmo nível de significância de 5% o ADF rejeita 

a hipótese nula de raiz unitária e o KPSS NÃO rejeita a hipótese nula de 

estacionariedade”. Em outras palavras, será considerado estacionariedade somente 

quando para ADF o p-valor < 0.05 e para KPSS o p-valor > 0.05. A adoção do critério de 

dupla concordância visou tentar reduzir a probabilidade de classificações equivocadas em 

amostras curtas, pois nesses casos a confiabilidade do poder do teste é reduzida, 

especialmente na presença de erros auto correlacionados (KWIATKOWSKI et al., 1992). 

Ambos os testes foram aplicados considerando que os dados possuíam ou não 

tendência, no caso de ocorrer eventuais tendências fracas por causa do tamanho da 

amostra, os resultados dos testes em todas as séries encontram-se no apêndice B. Após 

aplicação dos testes nas duas possibilidades, apenas 5 séries das 54 apresentaram 

comportamento estacionário segundo o critério adotado, a grande maioria apresentou 

comportamento não estacionário, que foi de aproximadamente 91%. Apesar dessa 

quantidade de dados permitir uma caracterização preliminar dos processos dos cursos, é 

importante reconhecer que amostras dessa magnitude implicam em limitações ao poder 

estatístico de testes formais e à capacidade de identificação de padrões complexos em 

séries temporais, como tendências fracas ou sazonalidade incipiente (HYNDMAN; 

ATHANASOPOULOS, 2021; PETROPOULOS et al., 2022; HOPKIN et al., 2015; 

PERRON, 1989). 

A visualização gráfica indica forte associação entre valores consecutivos e 

mudanças pouco frequentes, com trechos longos em patamares (platôs) e transições por 

degraus de nível. Essas mudanças estruturais observadas nas séries podem ser 

interpretadas como um choque integrador duradouro, que altera a trajetória esperada 

delas, e a acumulação dessas mudanças estruturais ao longo do tempo produz a evolução 

não estacionária observada, podendo estar atrelado à possibilidade de mudanças 

operacionais ou institucionais na Marinha do Brasil. 
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Isso sugere dependência de curto prazo relevante e propagação do nível entre 

períodos, quadro compatível com processos em que o estado (nível) persiste e é 

perturbado por inovações discretas, condizendo com um comportamento de processos 

estocásticos que incorporam inovações de forma cumulativa (ENDERS, 2015). Em 

amostras curtas, a avaliação gráfica ajuda a contextualizar a inferência formal, pois cada 

observação tem peso desproporcional na estimação (HYNDMAN e 

ATHANASOPOULOS, 2021; PETROPOULOS et al., 2022).  

Ao observar os gráficos de autocorrelação (ACF) e autocorrelação parcial 

(PACF), é possível verificar se há indícios de tendência estocástica (raiz unitária) quando 

são observados os seguintes pontos recorrentes (HASSANI et al., 2024; HYNDMAN e 

ATHANASOPOULOS, 2021): 

a) a ACF dos níveis permanece alta e positiva por muitas defasagens, decaindo 

lentamente (não “corta” logo para zero); 

b) a PACF exibe um pico dominante no lag 1 e ausência de picos relevantes nos lags 

seguintes. 

Para esta análise, foram gerados gráficos ACF e PACF para 12 lags nas séries dos 

cursos, devido aos dados serem mensais. Por exemplo, são apresentados novamente os 

gráficos do curso 12 da comentado na introdução, demais encontram-se no apêndice C. 
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Figura 9 – Gráficos de ACF/PACF para o Curso 12 

 

Os gráficos apresentaram persistências marcantes sem sinais claros de 

sazonalidade, que seriam picos consistentes no lag 12. Na maioria das séries a ACF dos 

níveis permaneceu elevada e decaiu lentamente, com valores positivos e decaimento lento 

ao longo das defasagens. Para o PACF, observou-se, majoritariamente, pico pronunciado 

no lag 1, e ausência de pico nos lags seguintes. Para amostras curtas, é recomendado 

concentrar a interpretação nos lags baixos (√𝑛 = √48 ≅ 7,

𝑜𝑛𝑑𝑒 𝑛 é 𝑜 𝑡𝑎𝑚𝑎𝑛ℎ𝑜 𝑑𝑎 𝑠é𝑟𝑖𝑒), onde as bandas de confiança são mais estáveis, 

garantindo maior confiabilidade estatística das estimativas (HASSANI et al., 2024; 

HYNDMAN e ATHANASOPOULOS, 2021).  

O índice de dispersão foi calculado para todos os cursos, de forma a identificar 

casos de equi-, sobre- ou subdispersão, além do percentual de zeros. Como se trata de 

uma amostra, foram utilizados estimadores amostrais, que para o índice de dispersão é: 

 Î =
𝑆2

𝑋̅
 (8) 
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Onde: 

• Î é o estimador amostral do índice de dispersão; 

• 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1  é a variância amostral não viesada; 

• 𝑋̅ =
1

𝑛−1
∑ 𝑋𝑖

𝑛
𝑖=1  é a média amostral; 

• 𝑛 é o tamanho da amostra. 

 

Nos casos em que: 

• Î ≈ 1: há equidispersão; 

• Î > 1: há sobredispersão; 

• Î < 1: há subdispersão. 

O percentual de zeros amostrais observados é calculado como: 

 𝑃0̂ =
𝑛0

𝑛
 (9) 

Onde: 

• 𝑃0̂ é o estimador amostral da proporção de zeros; 

• 𝑛0 é o número de observações iguais a zero na amostra; 

• 𝑛 é o tamanho da amostra. 

 

Após os cálculos dos índices e das proporções de zero da amostra em todos os 

cursos e navios, os dados foram tabelados, sendo indicado com * os cursos subdispersos 

e com ** os sobredispersos: 

 

Tabela 6 – Índices de dispersão e proporção de zeros 

Curso Î𝟏 Î𝟐 Î𝟑 𝑷𝟎,𝟏̂ 𝑷𝟎,𝟐̂ 𝑷𝟎,𝟑̂ 

Curso 1 0,30* 0,14* 0,39* 0 0,02 0 

Curso 2 0,07* 0,32* 0,64* 0 0 0 

Curso 3 2,36** 0,36* 0,16* 0 0 0 

Curso 4 2,62** 4,11** 4,56** 0 0 0 

Curso 5 0,34* 0,42* 0,45* 0,06 0,02 0 

Curso 6 1,25** 3,81** 0,94* 0 0 0 

Curso 7 0,23* 2,21** 0,05* 0 0 0 

Curso 8 1,13** 0,72* 1,40** 0,21 0 0,19 

Curso 9 0,75* 0,97* 0,18* 0 0 0 

Curso 10 0,16* 0,66* 0,44* 0 0 0 

Curso 11 0,64* 0,67* 1,45** 0 0 0 

Curso 12 0,49* 2,12** 0,46* 0 0 0 
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Curso 13 0,39* 1,63** 8,44** 0 0 0 

Curso 14 0,36* 1,65** 0,13* 0 0 0 

Curso 15 0,72* 1,05** 0,64* 0 0 0 

Curso 16 0,71* 3,08** 0,06* 0 0 0 

Curso 17 0,91* 1,79** 4,10** 0 0 0 

Curso 18 1,08** 1,84** 3,87** 0 0 0 

 

 Os cálculos reportaram 33 séries com índice de dispersão menor que 1, e 21 séries 

com índice de dispersão superior a 1. Em relação à proporção de zeros, somente dois 

casos chamaram atenção que foram referentes ao curso 8 dos navios 1 e 3, com proporções 

de zeros 0,21 e 0,19, respectivamente. A combinação de séries com subdispersão e 

sobredispersão, bem como a presença moderada de zeros em grande parte das séries, 

indica que nenhuma distribuição única descreve perfeitamente todos os cursos.  

Após essas verificações iniciais nos dados, foi realizada uma entrevista com o 

especialista do Esquadrão responsável pela distribuição das vagas para os navios, pois 

devido ao tamanho curto da amostra, observou-se a necessidade de acrescentar ao 

processo de inferência estatística um julgamento especializado, de forma a complementar 

a análise quantitativa com conhecimentos inerentes da área (HYNDMAN e KOSTENKO, 

2007). 

 

3.4 COLETA DA OPINIÃO DO ESPECIALISTA 

Para complementar a análise quantitativa, foi incorporado a opinião de um 

especialista responsável pela alocação de vagas, que trabalhou cerca de cinco anos nessa 

função. O fato de a entrevista ter ocorrido somente com um especialista, foi devido ao 

fato da hierarquia no processo permitir somente um decisor no Esquadrão. Através de 

uma entrevista ele informou que a quantidade de cursados pode variar com 

embarques/desembarques de pessoal, devido a questões como: 

a) O militar veio de um centro de formação e não possui cursos, ou veio 

de outra OM que não possui os cursos exigidos por aquele navio; 

b) O militar veio de outra OM e já possui alguns cursos exigidos por 

aquele navio; 

c) O militar ser selecionado em um processo seletivo para servir em outra 

OM, e desembarca em atendimento ao interesse da administração 

naval superior ao navio/Esquadrão; 
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d) O militar ser selecionado em um processo seletivo ao qual ele tenha 

sido voluntário para servir em outra OM ou para participar de uma 

missão específica, e isso gera o seu desembarque; 

e) Solicitação de movimentação do militar para outra OM, que pode ser 

atendida em um momento não esperado; 

f) Questões de saúde do militar que restrinjam o seu embarque; 

g) Questões familiares em que o militar pede uma licença que às vezes 

culmina no seu desembarque. 

Esses pontos indicam que a quantidade de militares cursados a bordo varia em 

função de eventos discretos de ingresso e saída de pessoal, muitos deles difíceis de 

antecipar com precisão. Do ponto de vista da modelagem, essas ocorrências podem ser 

interpretadas como choques aleatórios que podem produzir incrementos, como aumentos 

ou redução, na contagem de cursados ao longo do tempo. 

Além disso, foi informado pelo entrevistado que o ano de 2020 foi atípico devido 

a pandemia de COVID-19, onde os cursos não foram oferecidos da mesma forma que em 

anos anteriores pois eram presenciais. Nessa época, a MB precisou se reorganizar para 

adaptar-se as novas restrições impostas, e essa situação foi se normalizando em 2021. Isso 

pode ser observado nos gráficos em 2020, pois a quantidade de cursados tinha pouca 

variação ou queda.  

Há situações em que uma vaga de um curso pode ser transferida de um navio para 

outro, mesmo após a distribuição anual de vagas, que geralmente ocorre no mês de abril. 

Isso geralmente ocorre pela indisponibilidade do militar que faria o curso, pois os cursos 

são ministrados em diferentes épocas do ano, e pode acontecer o caso de em determinado 

período em que o curso seria ministrado, o navio ter saído para cumprir determinada 

missão, então o militar que faria esse curso estaria fora, e para não perder essa vaga, ela 

é realocada para outro navio.  

Outra situação, menos frequente, que às vezes pode resultar em transferência de 

vagas em curso, é o navio ter recebido uma vaga para determinado curso, e o ocorrer o 

embarque de militares que já possuem aquela qualificação, logo o índice para aquele 

curso aumentaria e a administração do navio entende que não seria necessário mais enviar 

um militar cursar.   

Mais uma possibilidade é quando um Esquadrão recebe vaga de outro, devido aos 

eventos já apresentados, como indisponibilidade de pessoal ou aumento não esperado dos 
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índices devido a embarque de pessoal. Isso resulta novamente em realocação ao longo do 

ano, de vagas já tinham sido distribuídas. 

Esses acontecimentos são monitorados pelo pessoal responsável pela alocação de 

vagas no Esquadrão, e o especialista disse que a quantidade de cursados não cresceria 

indefinidamente, pois devido ao controle mensal que é feito, por mais que haja um 

aumento na quantidade por um período, são feitos ajustes, quando possível, de forma que 

o índice ideal seja mantido ou buscado.  

Com base na entrevista, foi possível perceber que a quantidade de cursados é 

resultado de um processo dinâmico, sujeito a choques de entrada e saída de pessoal e a 

realocações de vagas ao longo do ano, além de ocorrer um acompanhamento mensal que 

busca manter os valores dos índices próximos dos estabelecidos. Logo, após a 

características observadas dos dados, tanto na análise exploratória como na entrevista, foi 

possível elaborar uma sugestão de modelo para gerar possíveis cenários futuros a ser 

apresentado na próxima seção. 

 

3.5 MODELAGEM PARA SIMULAÇÃO 

Uma das formas de se realizar uma distribuição otimizada, é através da observação 

possibilidades futuras, para tentar entender como se comportarão as quantidades de 

cursados no próximo anos. Durante o processo de análise exploratória dos dados, com a 

verificação da correlação e estacionariedade das séries, foi observado que havia uma 

aleatoriedade nos dados que não pode ser explicada observando simplesmente os registros 

históricos. Houve um entendimento melhor das ocorrências nas séries após a entrevista 

com o especialista, que clareou a dinâmica do aumento/redução das quantidades de 

cursados. 

Essas realocações dinâmicas constituem decisões sequenciais adaptativas sob 

incerteza, característica de gestão de recursos em ambientes estocásticos. Corlu et al. 

(2020) dizem que os processos que possuem ‘incerteza de entrada’, em que decisões 

futuras dependem de informações incompletas sobre demanda, disponibilidade e eventos 

aleatórios, requerem modelagem que capture explicitamente a variabilidade empírica ao 

invés de pressupostos paramétricos rígidos. 

Modelar todas essas situações, levando-se em consideração os dados históricos 

disponíveis (apenas 48 observações), tornaria o modelo extremamente complexo e sujeito 

a overfitting, quando o modelo se ajusta excessivamente aos dados ao invés de capturar o 

padrão deles (CORLU et al., 2020). Os autores recomendam que nesses casos, a 
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modelagem deve priorizar parcimônia e incorporar informação externa (como ocorreu 

com a opinião do especialista) ao invés de tentar extrair estruturas sofisticadas em séries 

curtas. Logo, optou-se pela elaboração de modelo simples, de forma a se obter uma 

estimativa razoável do comportamento das quantidades de cursados nos próximos 12 

meses.  

As simulações estocásticas foram baseadas na formulação de uma série temporal 

com uma estrutura do tipo Random Walk, pois além da amostra restrita dos dados, que 

compromete a execução de testes estatísticos formais, foram observados os seguintes 

fatores:  

a) Resultados formais compatíveis com não-estacionariedade, pois em 

grande parte das séries, ADF não rejeita raiz unitária e KPSS rejeita 

estacionariedade (critério conjunto).  

b) ACF dos níveis alta e com decaimento lento por vários lags (positiva até 

lags médios), indicando persistência do nível. 

c) PACF com pico dominante em lag 1 e sem picos relevantes nos demais 

lags, sugerindo que quase toda a dependência está no primeiro atraso. 

d) Ausência de sazonalidade estável: não há picos consistentes em lag 12 na 

ACF (dados mensais). 

e) Trajetórias em degraus e platôs nos gráficos de nível: choques alteram o 

patamar e permanecem por longos períodos (baixa reversão imediata à 

média). 

f) Bandas de confiança das autocorrelações mais estáveis em lags baixos 

(amostra curta, 𝑛 = 48), o que favorece modelos parcimoniosos centrados 

no nível. 

g) Contexto amostral (4 anos): com poucos pontos no tempo, modelos 

simples tendem a ser mais confiáveis do que especificações complexas, 

comunicando incerteza e parcimônia. 

Diante do exposto, foi elabora o seguinte modelo em que o valor simulado em um 

período, 𝑌𝑡, foi definido como a soma do valor do período anterior, 𝑌𝑡−1, com um termo 

de erro estocástico, 𝜖𝑡, conforme formulação abaixo: 

 𝑌𝑡 = 𝑌𝑡−1 + 𝜖𝑡 (10) 
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O termo de erro, 𝜖𝑡, foi elaborado de maneira a reproduzir os comportamentos que 

foram observados de forma empírica nos dados históricos, que foram: (i) a quantidade de 

cursados permanecia constante de um período para outro ou não, (ii) a quantidade de 

cursados aumentava ou diminuía e (iii) a quantidade que aumentava ou diminuía de um 

determinado valor. Devido a essa aleatoriedade dos dados históricos e discretos, optou-

se pela utilização de duas distribuições de Bernoulli e uma de Poisson, da seguinte 

maneira:  

 𝜖𝑡 = 𝐵𝑡
1 × (2𝐵𝑡

2 − 1) × 𝑃𝑡 (11) 

Onde: 

• 𝐵𝑡
1 é a primeira variável de Bernoulli, que indica se a quantidade de 

cursados de um período para o outro alterou ou permaneceu constante; ao 

ocorrer 𝐵𝑡
1 = 1, caso contrário 𝐵𝑡

1 = 0; 

• 𝐵𝑡
2 é a segunda variável de Bernoulli, que indica a direção da variação, se 

a quantidade de cursados de um período para o outro aumentou ou 

diminuiu, resultando em +1 ou −1. Se a variação foi positiva considerou-

se 𝐵𝑡
2 = 1, caso contrário 𝐵𝑡

2 = 0; 

• 𝑃𝑡 é a variável de Poisson, que indica a magnitude absoluta da variação, o 

quanto a quantidade de cursados aumentou ou diminuiu. A taxa neste caso 

refere-se à variação média de cursados para determinado curso.  

Para as simulações geradas por 𝑌𝑡, são consideradas somente os casos não 

negativos, pois não há contabilização de pessoas cursadas que sejam menores que zero, 

caso isso ocorra na simulação, é atribuído o menor valor. 

 𝑌𝑡 = {
𝑌𝑡−1 + 𝜖𝑡,     𝑠𝑒 𝑌𝑡−1 + 𝜖𝑡 ≥ 0
0,                   𝑠𝑒 𝑌𝑡−1 + 𝜖𝑡 < 0

 (12) 

A distribuição de Bernoulli é conhecida pela fórmula: 

 𝑃(𝑋 = 𝑥) = {
𝑝,             𝑥 = 1

1 − 𝑝, 𝑥 = 0
 (13) 

O cálculo da probabilidade de sucesso, 𝑝1, da primeira distribuição de Bernoulli,  

𝐵𝑡
1, foi a através da contabilização da quantidade de variações ocorridas em instantes 

consecutivos que fossem diferentes de zero, |Δ𝑡
1| > 0, durante o período dos dados 

históricos. 
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 Δ𝑡
1 = 𝑦𝑡+1 − 𝑦𝑡 , 𝑝𝑎𝑟𝑎 𝑡 = 1, 2, . . . , 𝑇 − 1 (14) 

 𝑝1 =
∑ 𝐼(|Δ𝑡

1| > 0)𝑇−1
𝑡=1

𝑇 − 1
 (15) 

Para ilustrar esse cálculo, segue o seguinte exemplo de uma série hipotética, 𝑦𝑡, 

com 7 termos aletoriamente escolhidos: 

 𝑦𝑡 = {1, 2, 3, 3, 5, 4, 7} (16) 

 Δ𝑡
1 = {1, 1, 0, 2, −1, 3} (17) 

 𝑝1 =
1 + 1 + 1 + 1 + 1

6
=

5

6
= 83% (18) 

De acordo com a análise dos dados históricos dessa série hipotética, haveria 83% 

de probabilidade de ocorrer uma mudança de um período para outro. 

O cálculo da probabilidade de sucesso, 𝑝2, da segunda distribuição de Bernoulli, 

𝐵𝑡
2, foi através da contabilização da quantidade de variações positivas (Δ𝑡

2 > 0) ocorridas 

em instantes consecutivos, referente aos períodos em que ocorreram variações. 

 

 Δ𝑡
2 = Δ𝑡

1, 𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝑜𝑠 𝑡 𝑡𝑎𝑙 𝑞𝑢𝑒 Δ𝑡
1 ≠ 0 (19) 

 𝑝2 =
∑ 𝐼(Δ𝑡

2 > 0)𝑇−1
𝑡=1

|Δ𝑡
2|

 (20) 

Para ilustrar o cálculo da probabilidade empregada na segunda distribuição de 

Bernoulli, segue o seguinte exemplo utilizando a mesma série hipotética anterior: 

 𝑦𝑡 = {1, 2, 3, 3, 5, 4, 7} (21) 

 Δ𝑡
1 = {1, 1, 0, 2, −1, 3} (22) 
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 Δ𝑡
2 = {1, 1, 2, −1, 3} (23) 

 𝑝2 =
1 + 1 + 1 + 1

5
=

4

5
= 80% (24) 

De acordo com o exemplo, haveria 80% de probabilidade de ocorrer uma mudança 

de um período para outro, cuja variação fosse de aumento. 

A magnitude das mudanças foi calculada por uma Poisson, cuja taxa média de 

variação, 𝜆, verificou a média dos módulos das variações pelo total de variações.   

 𝑃(𝑋 = 𝑘) =
𝜆𝑘 × 𝑒−𝜆

𝑘!
 (25) 

 𝜆 =
∑ |𝛥𝑡

2|𝑇−1
𝑡=1

|𝛥𝑡
2|

 (26) 

Para ilustrar o cálculo da taxa empregada na distribuição de Poisson, segue o 

seguinte exemplo utilizando a mesma série hipotética: 

 𝑦𝑡 = {1, 2, 3, 3, 5, 4, 7} (27) 

 Δ𝑡
1 = {1, 1, 0, 2, −1, 3} (28) 

 Δ𝑡
2 = {1, 1, 2, −1, 3} (29) 

 𝜆 =
1 + 1 + 2 + 1 + 3

5
=

8

5
= 1,6 (30) 

Após as simulações, é importante que essas sejam validadas de acordo com alguns 

critérios, que serão abordados na próxima seção. 
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3.6 VALIDAÇÃO DAS SIMULAÇÕES  

Após a especificação do modelo de simulação, foi elaborado um procedimento de 

validação. Os passos sugeridos por Sargent (2020) foram adaptados, com ênfase na 

validação de face do modelo, devido às particularidades desse estudo, como: tamanho 

reduzido da amostra histórica, natureza discreta dos dados e restrições operacionais da 

política de distribuição de vagas, resultando no seguinte procedimento resumido 

elaborado em conjunto com o especialista:  

1- Acordo prévio sobre a abordagem de modelagem adotada, utilizando uma 

formulação parcimoniosa que melhor representasse os principais mecanismos 

observados no comportamento dos dados; 

2- Especificação da faixa de precisão aceitável para as previsões, onde foi definido 

que elas deveriam manter, aproximadamente, uma trajetória central próxima da 

média histórica; e 

3- Validação visual do comportamento das simulações por meio de gráficos do tipo 

fanchart, avaliando se as séries simuladas são consideradas plausíveis se 

comparadas ao comportamento real dos dados. 

Quando a amostra é pequena, a validação visual gráfica ganha importância, pois 

testes estatísticos formais tendem a ter baixa potência (HOPKIN et al., 2015; SARGENT, 

2020). Como esse tipo de avaliação é considerado subjetivo, é importante que seja 

conduzido por um especialista na área, de forma a ancorar o julgamento em conhecimento 

do sistema (HYNDMAN e KOSTENKO, 2007; PETROPOULOS et al., 2022). 

Os gráficos do tipo fanchart, ou gráficos em leque, são adequados para a 

comunicação de previsões probabilísticas, pois permitem visualizar intuitivamente a 

incerteza dos cenários futuros por meio de faixas graduais de probabilidade. Esse tipo de 

visualização facilita a compreensão tanto das previsões centrais quanto dos riscos de 

eventos extremos, auxiliando a tomada de decisão em contextos incertos (GNEITING e 

KATZFUSS, 2014; SOKOL, 2025). 

 

3.7 MODELAGEM DA DISTRIBUIÇÃO DE VAGAS 

Com o intuito de verificar a melhor forma de se realizar a distribuição das vagas, 

foram testados cinco modelos, os dois primeiros sobre a total de vagas a serem 
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distribuídas em 2023, e os três seguintes sobre as simulações realizadas através da 

formulação de 𝑌𝑡. 

 

3.7.1 Modelo 1: PLI  

O modelo abaixo foi elaborado para minimizar a diferença absoluta entre o índice 

resultante após a distribuição anual de vagas (índice atual + vagas recebidas), e o índice 

ideal para cada curso em cada navio. Ele tenta aproximar o máximo possível os índices 

atuais do ideal, evitando tanto o excesso como o déficit.  

Função Objetivo do Modelo 1: 

 𝑚𝑖𝑛 ∑ ∑ |𝐼𝑛𝑑𝑛,𝑚
𝑎𝑡𝑢𝑎𝑙 +  𝑉𝑛,𝑚 − 𝐼𝑛𝑑𝑛,𝑚

𝑖𝑑𝑒𝑎𝑙|

𝑚𝜖𝑀𝑛𝜖𝑁

 (31) 

 

Restrições do Modelo 1: 

 𝐼𝑛𝑑𝑛,𝑚
𝑎𝑡𝑢𝑎𝑙 + 𝑉𝑛,𝑚 ≥ 𝐼𝑛𝑑𝑛,𝑚

𝑚𝑖𝑛, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (32) 

 ∑ 𝑉𝑛,𝑚

𝑛𝜖𝑁

≤ 𝕍𝑚, ∀𝑚 𝜖 𝑀 (33) 

 𝑉𝑛,𝑚 ≥ 0, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (34) 

 𝑉𝑛,𝑚 ∈ ℤ, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (35) 

Onde: 

• 𝑁: conjunto dos navios considerados; 

• 𝑀: conjunto dos cursos considerados; 

• 𝐼𝑛𝑑𝑛,𝑚
𝑎𝑡𝑢𝑎𝑙: índice atual do curso 𝑚, para o navio 𝑛 no momento anterior a 

distribuição, 𝑛 ϵ 𝑁 e 𝑚 ϵ 𝑀; 

• 𝐼𝑛𝑑𝑛,𝑚
𝑖𝑑𝑒𝑎𝑙: índice ideal do curso 𝑚, para o navio 𝑛, 𝑛 ϵ 𝑁 e 𝑚 ϵ 𝑀;  

• 𝐼𝑛𝑑𝑛,𝑚
𝑚𝑖𝑛: índice mínimo do curso 𝑚, para o navio 𝑛, 𝑛 ϵ 𝑁 e 𝑚 ϵ 𝑀; 

• 𝑉𝑛,𝑚: total de vagas do curso 𝑚 distribuídas para o navio 𝑛, 𝑛 ϵ 𝑁 e 𝑚 ϵ 𝑀; 

• 𝕍𝑚: total de vagas do curso 𝑚 que serão distribuídas para os navios,  

𝑚 ϵ 𝑀. 

A primeira restrição garante que nenhum navio tenha um índice abaixo do índice 

mínimo após a distribuição de vagas. A segunda restrição impede que sejam alocadas 

mais vagas que o total disponível para cada curso. A terceira e quarta restrição dizem que 

as vagas são números inteiros e não negativos. Para linearizar o valor absoluto na função 
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objetivo, foi utilizada uma variável auxiliar 𝑍𝑛,𝑚 ≥ 0 para cada navio e curso, de forma 

que o módulo fosse substituído por: 

 𝐼𝑛𝑑𝑛,𝑚
𝑎𝑡𝑢𝑎𝑙 +  𝑉𝑛,𝑚 − 𝐼𝑛𝑑𝑛,𝑚

𝑖𝑑𝑒𝑎𝑙 ≤ 𝑍𝑛,𝑚, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (36) 

 −(𝐼𝑛𝑑𝑛,𝑚
𝑎𝑡𝑢𝑎𝑙 +  𝑉𝑛,𝑚 − 𝐼𝑛𝑑𝑛,𝑚

𝑖𝑑𝑒𝑎𝑙) ≤ 𝑍𝑛,𝑚, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (37) 

 𝑍𝑛,𝑚 ≥ 0, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (38) 

   

Onde: 

• 𝑍𝑛,𝑚: variável auxiliar que representa o desvio absoluto entre o índice 

resultante e o índice ideal do curso 𝑚 no navio 𝑛. 

E a função objetivo passou a ser: 

  𝑚𝑖𝑛 ∑ ∑ 𝑍𝑛,𝑚

𝑚 𝜖 𝑀𝑛 𝜖 𝑁 

 (39) 

Nesse modelo, portanto, o decisor procura uma distribuição de vagas que, em um 

contexto determinístico, aproxima ao máximo os índices de cada navio e curso de seus 

respectivos valores ideais, garantindo simultaneamente que nenhum índice fique abaixo 

do mínimo estabelecido e que o total de vagas utilizadas em cada curso não exceda o 

limite disponível.  

 

3.7.2 Modelo 2: PLI + Buffer (Opinião de Especialista) 

Para este modelo foi incluído um buffer para servir como uma margem de 

segurança, sendo este aplicado na primeira restrição, de forma a garantir que a quantidade 

de cursados em determinado curso não fique abaixo do índice mínimo até a próxima 

distribuição anual de vagas, caso ocorram eventos imprevistos como desembarques. 

Para cada curso, em cada navio, foi elaborado um buffer específico. Este valor foi 

obtido através de uma entrevista com o especialista responsável pelo gerenciamento dos 

cursos nos navios da amostra. Com base em sua experiência, percepção e intuição, o 

especialista atribuiu um valor de buffer para cada curso e navio. Assim, o modelo busca 

não só atingir o ideal, mas também se aproximar de um patamar de segurança, ainda que 

sejam empregadas mais vagas que o modelo 1. 

Função Objetivo do Modelo 2: 

 
𝑚𝑖𝑛 ∑ ∑ |𝐼𝑛𝑑𝑛,𝑚

𝑎𝑡𝑢𝑎𝑙 +  𝑉𝑛,𝑚 − 𝐼𝑛𝑑𝑛,𝑚
𝑖𝑑𝑒𝑎𝑙|

𝑚𝜖𝑀𝑛𝜖𝑁

 
(40) 

Restrições do Modelo 2: 
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 𝐼𝑛𝑑𝑛,𝑚
𝑎𝑡𝑢𝑎𝑙 + 𝑉𝑛,𝑚 ≥ 𝐼𝑛𝑑𝑛,𝑚

𝑚𝑖𝑛 + 𝐵𝑛,𝑚, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (41) 

 ∑ 𝑉𝑛,𝑚

𝑛𝜖𝑁

≤ 𝕍𝑚, ∀𝑚 𝜖 𝑀 (42) 

 𝑉𝑛,𝑚 ≥ 0, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (43) 

 𝑉𝑛,𝑚 ∈ ℤ, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (44) 

Onde: 

• 𝐵𝑛,𝑚: buffer de vagas atribuído pelo especialista no navio 𝑛 para o curso 

𝑚, 𝑛 𝜖 𝑁, 𝑚 𝜖 𝑀, sendo um parâmetro inteiro e não negativo. 

A primeira restrição garante que as vagas alocadas sejam suficientes para superar 

o índice mínimo com uma margem de segurança, as demais restrições permanecem iguais 

ao do modelo 1. A função objetivo é idêntica ao modelo anterior, e o termo de valor 

absoluto foi linearizado da mesma forma, por meio da variável auxiliar 𝑍𝑛,𝑚.  

O Modelo 2 representa uma versão mais conservadora do Modelo 1, pois ao 

incorporar o buffer definido pelo especialista, ele prioriza a manutenção de uma folga de 

segurança acima do índice mínimo em cada curso e navio, aceitando o uso de um número 

maior de vagas. 

 

3.7.3 Modelo 3: PLI + Simulações Estocásticas + 𝑽𝒂𝑹𝟎.𝟕𝟏 

Este modelo foi elaborado de forma a incorporar, de maneira explícita, a incerteza 

dos dados históricos por meio de simulações estocásticas e de uma restrição baseada em 

medida de risco do tipo VaR, calculada a partir dessas simulações. Foram geradas W=100 

simulações para os próximos 12 meses (T), para cada curso 𝑚 𝜖 𝑀 de cada navio 𝑛 𝜖 𝑁, 

conforme descrito na seção 3.5. A função objetivo minimiza, de forma agregada, o desvio 

absoluto entre o índice resultante (simulado + vagas alocadas) e o índice ideal, com 

aplicação de PLI combinada com uma medida de risco do tipo VaR. Embora o VaR seja 

amplamente utilizado no contexto financeiro, aqui é adaptado à gestão de capacitação 

naval, sendo aplicado a simulações estocásticas de séries temporais de contagem. 

Função Objetivo do Modelo 3: 

 𝑚𝑖𝑛
1

|𝑊|
∑ (

1

|𝑇|
∑ ∑ ∑ |𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤

𝑠𝑖𝑚 + 𝑉𝑛,𝑚 − 𝐼𝑛𝑑𝑛,𝑚
𝑖𝑑𝑒𝑎𝑙|

𝑚 𝜖 𝑀𝑛 𝜖 𝑁𝑡 𝜖 𝑇

)

𝑤 𝜖 𝑊

 (45) 

Restrições do Modelo 3: 

 𝑉𝑛,𝑚 ≥ 𝑉𝑎𝑅0,71(∆𝑛,𝑚,𝑡), ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇 (46) 
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∑ 𝑉𝑛,𝑚 ≤ 𝕍𝑚

𝑛𝜖𝑁

,  ∀𝑚 𝜖 𝑀 
(47) 

 𝑉𝑛,𝑚 ≥ 0,  ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (48) 

 𝑉𝑛,𝑚 ∈ ℤ,   ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (49) 

Onde: 

• 𝑇: conjunto dos meses simulados (|𝑇| = 12).  

• 𝑊: conjunto dos cenários simulados (|𝑊| = 100).  

• 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤
𝑠𝑖𝑚 : índice simulado no mês 𝑡 𝜖 𝑇, para o navio 𝑛 𝜖 𝑁, no curso 

𝑚 𝜖 𝑀, no cenário 𝑤 ϵ 𝑊, antes da nova alocação de vagas. 

• 𝑉𝑎𝑅0,71(∆𝑛,𝑚,𝑡): valor de VaR no nível de 71% aplicado a distribuição 

empírica dos déficits simulados ∆𝑛,𝑚,𝑡,𝑤, associado ao par navio e curso 

(𝑛, 𝑚) no mês 𝑡. 

A restrição baseada em percentil implementa o 𝑉𝑎𝑅0,71 sobre a distribuição das 

diferenças  

 ∆𝑛,𝑚,𝑡,𝑤 =  𝐼𝑛𝑑𝑛,𝑚
𝑚𝑖𝑛 − 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤

𝑠𝑖𝑚 , ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇, ∀𝑤 𝜖 𝑊  (50) 

que podem ser interpretadas como déficits quando positivas (índice simulado 

abaixo do mínimo) e como folgas quando negativas. Para uma combinação (𝑛, 𝑚, 𝑡), 

calcula-se o percentil de ordem 0,71 dessa distribuição empírica {∆𝑛,𝑚,𝑡,𝑤 ∶  𝑤 𝜖 𝑊}, 

obtendo-se o valor de 𝑉𝑎𝑅0,71(∆𝑛,𝑚,𝑡). Essa restrição exige que as vagas alocadas, 𝑉𝑛,𝑚, 

sejam no mínimo iguais a esse valor, o que na prática estabelece o piso de alocação 

compatível com o risco de o índice ficar abaixo do mínimo em uma fração relevante dos 

cenários. O nível de confiança de 71% foi determinado empiricamente: inicialmente 

testou-se o percentil 90, mas o modelo tornou-se inviável; o percentil foi então reduzido 

gradualmente (85, 80, 75, ...) até 71%, ponto a partir do qual a solução passou a ser viável. 

Todas as demais restrições permanecem idênticas aos modelos anteriores. 

De forma semelhante aos modelos anteriores, a função objetivo passou por um 

processo de linearização, com a inclusão de uma variável auxiliar 𝑍𝑛,𝑚,𝑡,𝑤 ≥ 0 para cada 

navio, curso, mês e cenário, de forma que o módulo fosse substituído por: 

𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤
𝑠𝑖𝑚 + 𝑉𝑛,𝑚 − 𝐼𝑛𝑑𝑛,𝑚

𝑖𝑑𝑒𝑎𝑙 ≤ 𝑍𝑛,𝑚,𝑡,𝑤,        ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇, ∀𝑤 𝜖 𝑊 (51) 

−(𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤
𝑠𝑖𝑚 + 𝑉𝑛,𝑚 − 𝐼𝑛𝑑𝑛,𝑚

𝑖𝑑𝑒𝑎𝑙) ≤ 𝑍𝑛,𝑚,𝑡,𝑤,   ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇, ∀𝑤 𝜖 𝑊 (52) 
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Onde: 

• 𝑍𝑛,𝑚,𝑡,𝑤: variável auxiliar que representa o desvio absoluto entre o índice 

resultante e o índice ideal no navio 𝑛, para o curso 𝑚, no mês t e no cenário 

w. 

E a função objetivo passou a ser:  

 𝑚𝑖𝑛
1

|𝑊|
∑ (

1

|𝑇|
∑ ∑ ∑ 𝑍𝑛,𝑚,𝑡,𝑤

𝑚 𝜖 𝑀𝑛 𝜖 𝑁𝑡 𝜖 𝑇

)

𝑛 𝜖 𝑁 

 (53) 

 O Modelo 3 combina a estrutura de PLI dos modelos anteriores com a incerteza 

capturada por simulações estocásticas e uma restrição de risco VaR0,71, garantindo que, 

em uma fração significativa dos cenários, as vagas alocadas sejam suficientes para 

compensar os déficits simulados em relação ao índice mínimo, ao mesmo tempo em que 

minimiza o desvio médio em relação aos índices ideais. 

 

3.7.4 Modelo 4: PLI + Simulações Estocásticas + 𝑽𝒂𝑹𝟎.𝟗𝟎 

Este modelo é uma adaptação do modelo anterior, para trabalhar com um nível de 

confiança mais elevado, 𝑉𝑎𝑅0.90, o que significa considerar o percentil 90% dos déficits 

simulados. Para evitar a inviabilidade do modelo, dado o limite de vagas disponíveis, foi 

introduzida uma variável de excesso, 𝐸𝑛,𝑚, com uma penalização, 𝑃, na função objetivo, 

permitindo uma violação controlada da restrição de VaR. O excesso indica o trade-off 

entre cumprir integralmente a restrição e aceitar um pequeno nível de violação controlada, 

sempre sob penalização. O coeficiente de penalização é um valor elevado, de forma que 

o modelo utilize o excesso somente nos casos em que não haja alternativa viável. Os 

valores testados de 𝑃 variaram de 1.000, 10.000 e 100.000. 

Função objetivo 4: 

 𝑚𝑖𝑛
1

|W|
∑ (

1

|𝑇|
∑ ∑ ∑ |𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤

𝑠𝑖𝑚 + 𝑉𝑛,𝑚 − 𝐼𝑛𝑑𝑛,𝑚
𝑖𝑑𝑒𝑎𝑙|

𝑚 𝜖 𝑀𝑛 𝜖 𝑁𝑡 𝜖 𝑇

)

𝑤 𝜖 𝑊

+ 𝑃 ∑ ∑ 𝐸𝑛,𝑚

𝑚 𝜖 𝑀𝑛 𝜖 𝑁

 (54) 

Restrições do modelo 4: 

𝑉𝑛,𝑚 + 𝐸𝑛,𝑚 ≥ 𝑉𝑎𝑅0.90(∆𝑛,𝑚,𝑡), ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇 (55) 

∑ 𝑉𝑛,𝑚 ≤ 𝕍𝑚

𝑛𝜖𝑁

,  ∀𝑚 𝜖 𝑀 (56) 

𝑉𝑛,𝑚, 𝐸𝑛,𝑚 ≥ 0,  ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (57) 
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𝑉𝑛,𝑚,𝐸𝑛,𝑚 ∈ ℤ,   ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (58) 

Onde: 

• 𝐸𝑛,𝑚: variável de excesso associada à restrição de VaR para o navio 𝑛 e o 

curso 𝑚, inteira e não negativa, representando a violação permitida do piso 

definido por 𝑉𝑎𝑅0,90, penalizada na função objetivo pelo coeficiente 𝑃 

• 𝑃: coeficiente de penalização associado ao uso de 𝐸𝑛,𝑚, escolhido de 

forma suficientemente alta para desencorajar violações, salvo em casos em 

que a restrição de VaR0,90 não possa ser satisfeita apenas com 𝑉𝑛,𝑚. 

A restrição baseada em percentil implementa o 𝑉𝑎𝑅0.90 sobre a distribuição das 

diferenças  

 ∆𝑛,𝑚,𝑡,𝑤 =  𝐼𝑛𝑑𝑛,𝑚
𝑚𝑖𝑛 − 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤

𝑠𝑖𝑚 , ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇, ∀𝑤 𝜖 𝑊 (59) 

que podem ser interpretadas como déficits quando positivas (índice simulado 

abaixo do mínimo) e como folga quando negativas. Para uma combinação (𝑛, 𝑚, 𝑡), 

calcula-se o percentil de ordem 0.90 dessa distribuição empírica {∆𝑛,𝑚,𝑡,𝑤 ∶  𝑤 𝜖 𝑊}, 

obtendo-se o valor de 𝑉𝑎𝑅0.90(∆𝑛,𝑚,𝑡). Essa restrição exige que as vagas alocadas, 𝑉𝑛,𝑚 +

𝐸𝑛,𝑚, sejam no mínimo iguais a esse valor, estabelecendo um piso de alocação compatível 

com um nível de confiança de 90%, em que a variável 𝐸𝑛,𝑚 representa vagas adicionais 

necessárias além das disponíveis. As demais restrições permanecem iguais as anteriores, 

ocorrendo na última a inclusão de 𝐸𝑛,𝑚 ≥ 0. A linearização foi feita de forma idêntica ao 

modelo anterior, por meio da variável auxiliar 𝑍𝑛,𝑚,𝑡,𝑤. 

O Modelo 4 é um ajuste do modelo anterior, ao combinar um nível de confiança 

para o VaR0,90 com a possibilidade de violação controlada por meio da variável de 

excesso 𝐸𝑛,𝑚. Ele é mais adequado a situações em que o decisor deseja privilegiar a 

segurança em relação ao atendimento do índice mínimo, sabendo que os recursos (vagas 

disponíveis) podem não ser suficientes para cumprir integralmente essa política de risco 

em todos os casos.  

 

3.7.5 Modelo 5:  PLI + Simulações Estocásticas + CVaR 

Este modelo foi elaborado para verificar a alocação de vagas considerando a 

média dos piores cenários simulados. Em vez de controlar apenas um ponto de corte da 

distribuição (como no VaR), passou-se a controlar a média das perdas na cauda, por meio 

da medida de risco CVaR. A ideia foi garantir que, mesmo nos cenários mais 
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desfavoráveis, o atendimento (índice resultante após a alocação) não ficasse, em média, 

abaixo do índice mínimo estabelecido para cada par navio e curso. Para isso, foi definida 

a variável de perda: 

 𝑌𝑛,𝑚,𝑡,𝑤 = −(𝑉𝑛,𝑚 + 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤
𝑠𝑖𝑚 ),       ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇, ∀𝑤 𝜖 𝑊  

(

(60) 

onde 𝑉𝑛,𝑚 é o número de vagas alocadas ao navio 𝑛 no curso 𝑚, e 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤
𝑠𝑖𝑚  é o 

índice simulado de militares com o curso 𝑚 no navio 𝑛, no mês 𝑡, sob o cenário 𝑤. Dessa 

forma, valores menores de atendimento (𝑉𝑛,𝑚 + 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤
𝑠𝑖𝑚 ) correspondem a valores 

maiores de 𝑌𝑛,𝑚,𝑡,𝑤: cenários com pouco atendimento são interpretados como “perdas” 

mais elevadas. Isso permitiu aplicar o CVaR sobre 𝑌𝑛,𝑚,𝑡,𝑤, tratando quedas no 

atendimento como situações de risco. 

Foi adotada a formulação amostral de Rockafellar e Uryasev (2000) para o CVaR. 

Introduziu-se para cada par de navio e curso (𝑛, 𝑚), uma variável auxiliar 𝜁𝑛,𝑚 ∈ ℝ, que 

representa o VaR𝛼 (ponto de corte) da distribuição de 𝑌𝑛,𝑚,𝑡,𝑤, e variáveis auxiliares 

𝑢𝑛,𝑚,𝑡,𝑤 ≥ 0, que representam o excesso de perda em cada cenário e período. Essas 

variáveis obedecem às seguintes relações: 

 𝑢𝑛,𝑚,𝑤,𝑡 ≥ 𝑌𝑛,𝑚,𝑡,𝑤 − 𝜁𝑛,𝑚, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇, ∀𝑤 𝜖 𝑊 
(

(61) 

 𝜁𝑛,𝑚 +
1

(1 − 𝛼)|𝑊||𝑇|
∑ ∑ 𝑢𝑛,𝑚,𝑡,𝑤

𝑡 𝜖 𝑇𝑤 𝜖 𝑊

≤ −𝐼𝑛𝑑𝑛,𝑚
𝑚𝑖𝑛, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 

(

(62) 

O termo à esquerda em (62) é a aproximação amostral do 𝐶𝑉𝑎𝑅𝛼 calculado sobre 

os valores 𝑌𝑛,𝑚,𝑡,𝑤, 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊, para um navio 𝑛e curso 𝑚fixos. Como 𝑌𝑛,𝑚,𝑡,𝑤 =

−(𝑉𝑛,𝑚 + 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤
𝑠𝑖𝑚 ), impor 𝐶𝑉𝑎𝑅𝛼(𝑌𝑛,𝑚,⋅,⋅) ≤  −𝐼𝑛𝑑𝑛,𝑚

𝑚𝑖𝑛 equivale a garantir que a 

média dos piores cenários de atendimento  (𝑉𝑛,𝑚 + 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤
𝑠𝑖𝑚 ) seja pelo menos igual ao 

índice mínimo 𝐼𝑛𝑑𝑛,𝑚
𝑚𝑖𝑛 daquele par de navio e curso. Em outras palavras, mesmo quando 

se consideram os cenários mais desfavoráveis, o atendimento médio na cauda da 

distribuição não deve ficar abaixo do nível mínimo desejado. Logo o modelo 5 ficou da 

seguinte forma: 

Função Objetivo 5: 
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 𝑚𝑖𝑛
1

|W|
∑ (

1

|𝑇|
∑ ∑ ∑ |𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤

𝑠𝑖𝑚 + 𝑉𝑛,𝑚 − 𝐼𝑛𝑑𝑛,𝑚
𝑖𝑑𝑒𝑎𝑙|

𝑚 𝜖 𝑀𝑛 𝜖 𝑁𝑡

)

𝑤 𝜖 𝑊

 (63) 

 

Restrições do Modelo 5: 

 
𝜁𝑛,𝑚 +

1

(1 − 𝛼)|𝑊||𝑇|
∑ ∑ 𝑢𝑛,𝑚,𝑡,𝑤

𝑡 𝜖 𝑇𝑤 𝜖 𝑊

≤ −𝐼𝑛𝑑𝑛,𝑚
𝑚𝑖𝑛, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 

(64) 

 𝑢𝑛,𝑚,𝑡,𝑤 ≥ −(𝑉𝑛,𝑚 + 𝐼𝑛𝑑𝑛,𝑚,𝑡,𝑤
𝑠𝑖𝑚 ) − 𝜁𝑛,𝑚, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇, ∀𝑤 𝜖 𝑊 (65) 

 
∑ 𝑉𝑛,𝑚 ≤ 𝕍𝑚

𝑛𝜖𝑁

, ∀𝑚 𝜖 𝑀 
(66) 

 𝑢𝑛,𝑚,𝑡,𝑤 ≥ 0, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀, ∀𝑡 𝜖 𝑇, ∀𝑤 𝜖 𝑊 (67) 

 𝑉𝑛,𝑚 ≥ 0, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (68) 

 𝑉𝑛,𝑚 ∈ ℤ, ∀𝑛 𝜖 𝑁, ∀𝑚 𝜖 𝑀 (69) 

 

Onde: 

• 𝜁𝑛,𝑚: variável auxiliar contínua que representa o VaR𝛼 da distribuição de 

𝑌𝑛,𝑚,𝑡,𝑤para o navio 𝑛e o curso 𝑚, atuando como ponto de corte que separa 

a cauda de probabilidade (1 − 𝛼)dos piores cenários de atendimento; 

• 𝑢𝑛,𝑚,𝑡,𝑤: variável auxiliar contínua não negativa que representa o excesso 

de perda no cenário (𝑡, 𝑤), medindo quanto 𝑌𝑛,𝑚,𝑡,𝑤 ultrapassa o ponto de 

corte 𝜁𝑛,𝑚; 

• 
1

(1−𝛼)|𝑊||T|
: fator de normalização que converte a soma dos excessos 

𝑢𝑛,𝑚,𝑡,𝑤na média das perdas na cauda, compondo o termo de 𝐶𝑉𝑎𝑅𝛼em 

conjunto com 𝜁𝑛,𝑚; 

Nos modelos baseados em VaR, o risco foi controlado por meio de um valor que 

delimitava apenas um ponto de corte na cauda, onde uma fração dos cenários podiam 

violar o índice mínimo, mas sem levar em conta quão severas são essas violações. No 

caso do CVaR, o foco deslocou-se para a média das perdas na cauda, pois em vez de 

considerar apenas o ponto de corte, passou-se a considerar a severidade média dos 

cenários extremos. 
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O parâmetro 𝛼 foi calibrado empiricamente, iniciou-se com 𝛼 = 0,70, mas o 

problema tornou-se inviável, dado o número limitado de vagas disponíveis. O parâmetro 

foi então reduzido gradualmente até 𝛼 = 0,62, valor a partir do qual o modelo se tornou 

viável. No CVaR, 𝛼 controla o tamanho da cauda considerada, onde a fração (1 − 𝛼) 

corresponde à proporção dos piores cenários incluídos na média. Por exemplo, 𝛼 = 0,70 

implica considerar a média dos 30% piores cenários, enquanto 𝛼 = 0,62 corresponde à 

média dos 38% piores cenários. Quando a cauda é menor (isto é, 𝛼 é maior), o CVaR se 

concentra em um subconjunto mais extremo da distribuição, com pouca ou nenhuma 

“diluição” por cenários menos severos; isso tende a produzir valores mais altos de 𝐶𝑉𝑎𝑅𝛼 

e torna a restrição de risco mais difícil de ser satisfeita, tornando o critério mais rigoroso. 

Por outro lado, ao aumentar a cauda (reduzir 𝛼), os cenários muito ruins passam a ser 

combinados, na média, com cenários menos críticos, o que reduz o valor do CVaR e torna 

a restrição mais branda. 

Assim como nos modelos anteriores, o módulo presente na função objetivo (63) é 

linearizado por meio da variável auxiliar 𝑍𝑛,𝑚,𝑡,𝑤, utilizando a mesma estrutura de 

desigualdades apresentada anteriormente. 
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4 RESULTADOS 

 

Os modelos 1 e 2 foram aplicados sobre os dados das vagas distribuídas em 2023, 

e os modelos 3, 4 e 5 foram aplicados sobre 100 simulações geradas de cursados para os 

próximos 12 meses, utilizando a sugestão de série baseada em Random Walk. 

 

4.1 RESULTADOS DAS PREVISÕES 

Foram geradas 100 simulações de 12 meses subsequentes para cada curso de cada 

navio, em gráficos do tipo fanchart, os quais contêm: a série histórica, a média da série 

histórica, a mediana e média simuladas, além das faixas dos percentis 40-60%, 25-75% e 

5-95%. Esses gráficos serviram como instrumento de validação visual pelo especialista, 

tendo em vista que a formulação das simulações foi elaborada de forma empírica, levando 

em consideração a amostra curta e comportamento dos dados da amostra, além das 

observações e expectativas do especialista, conforma critérios discutidos na seção 3.6. 

Na avaliação, o especialista observou os seguintes pontos de razoabilidade: 

ancoragem da mediana no patamar mais recente do histórico, o alargamento progressivo 

das faixas de percentis com o horizonte, refletindo a incerteza acumulada e a assimetria 

plausível à direita, compatível com dados de contagem (média ligeiramente acima da 

mediana e banda inferior limitada pelo zero). Também foram considerados eventos do 

histórico, como platôs e meses zerados, que se refletiram em faixas inferiores mais 

próximas do piso em alguns cursos. 

De modo geral, o julgamento foi de que as simulações eram razoáveis pois os 

fancharts preservaram o nível recente das séries, comunicaram a incerteza de forma 

transparente e reproduziram padrões esperados para contagens. A partir desse parecer, os 

cenários simulados foram usados como base para os Modelos estocásticos, nos quais a 

incerteza foi tratada por medidas de risco. Como exemplo ilustrativo, foi apresentado o 

curso 12 na figura 10, discutido na introdução, demais cursos encontram-se no apêndice 

D. 
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Figura 10 – Simulações para o Curso 12 

 

4.2 RESULTADOS DOS MODELOS OTIMIZADOS 

Os modelos foram aplicados para os 18 cursos de cada um dos 3 navios, 

contabilizando um total de 54 cursos, levando-se em consideração os seus respectivos 

índices. Após a distribuição ótima foram observados os seguintes resultados envolvendo 

todos os cursos e navios da amostra, atentando para o atingimento dos índices ideais, 

conforme gráfico abaixo: 
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Figura 11 - Gráfico sobre atingimento do índice ideal nos cursos após a distribuição. 

 

De acordo com a figura 11, o modelo 1 apresentou o melhor desempenho, com 

uma maior quantidade de cursos atingindo o índice ideal (aproximadamente 94% do total 

de cursos da amostra), além de restar somente 3 cursos abaixo deste índice. Após ele, o 

modelo 2 foi o que apresentou o melhor desempenho, com a segunda maior quantidade 

de cursos atingindo o índice ideal (cerca de 91% do total de cursos), restando 5 cursos 

abaixo do ideal. Os modelos 3, 4 e 5, que utilizaram as simulações estocásticas 

apresentaram desempenho inferior à distribuição real, tanto no atingimento de índices 

ideais, como na quantidade de cursos que ficaram abaixo deste índice após a distribuição. 

Em todos os tipos de distribuições não foram observados casos de cursos abaixo do índice 

mínimo.  

Dos cursos que não atingiram o índice ideal, foram contabilizadas quantas vagas 

faltaram para o seu atingimento, por navio e tipo de distribuição. Os casos em que este 

índice foi alcançado estão representados por -. A distribuição completa de todas as vagas 

por navio e modelo, juntamente com o atingimento dos índices ideais, encontra-se no 

Apêndice E. 
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Tabela 7 - Vagas que faltaram para atingir o índice ideal no Navio 1 após a alocação, por curso e por tipo 

de distribuição. 

Navio Curso Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5 

1 

Curso 1 1 - - - - - 

Curso 4 - - - 7 - 8 

Curso 12 4 7 6 5 - 5 

Curso 13 - - - 6 6 6 

Curso 15 - - - 1 1 1 

Curso 16 - - - 2 2 2 

Curso 17 - - - 1 1 1 

 

Tabela 8 - Vagas que faltaram para atingir o índice ideal no Navio 2 após a alocação, por curso e por tipo 

de distribuição. 

Navio Curso Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5 

2 

Curso 1 1 - - - - - 

Curso 2 - - - 1 1 1 

Curso 4 2 - - - - - 

Curso 12 3 10 6 7 7 7 

Curso 15 8 - 5 4 - 4 

 

Tabela 9 - Vagas que faltaram para atingir o índice ideal no Navio 3 após a alocação, por curso e por tipo 

de distribuição. 

Navio Curso Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5 

3 

Curso 11 - - - 2 2 2 

Curso 12 10 - 5 5 11 5 

Curso 15 6 7 4 4 12 4 

Curso 17 - - - 4 4 4 

 

Os resultados evidenciam que os modelos propostos são capazes de orientar a 

distribuição de vagas de forma consistente com as metas de qualificação, mensuradas pelo 

atingimento dos índices ideais e pela ausência de índices abaixo do mínimo, ao mesmo 

tempo em que explicitam o trade-off entre desempenho agregado e robustez quando se 

incorporam mecanismos estocásticos e medidas de risco. Dado que diferentes 

configurações de modelagem podem produzir níveis distintos de atingimento do índice 

ideal, torna-se necessário avaliar também as implicações associadas ao uso de recursos e 

à eficiência econômica dessas soluções. Assim, no item 4.3, é apresentada a análise de 

custo das distribuições obtidas, permitindo comparar os modelos sob a ótica do dispêndio 

requerido para alcançar os níveis de desempenho observados. 
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4.3 ANÁLISE DE CUSTO 

Os modelos foram formulados para maximizar o atendimento de índices sem 

otimizar custo. Os valores de custo que serão apresentados, são apurados sobre as 

soluções obtidas e foram interpretados apenas como diagnóstico gerencial, não como 

desempenho de otimização. Para esta análise, considerou-se como total de recursos 

disponíveis o valor do custo individual de cada vaga em cada curso, multiplicado pelas 

vagas que seriam distribuídas, dando um total de R$ 132.791,93. Com base nisso, foi 

possível entender o quanto de recurso foi utilizado em cada modelo, através da 

contabilização das vagas alocadas e a multiplicação pelos seus respectivos custos 

individuais. Para a distribuição real foi considerado o valor total, pois todas as vagas 

foram distribuídas, não havendo sobras. Os custos com as distribuições estão ilustrados 

abaixo: 

 

 

Figura 12 - Gráfico sobre o valor gasto na distribuição de vagas. 

 

Observando-se o gráfico, é possível notar que o modelo 3 foi o que teve o menor 

custo com a distribuição ótima de vagas, empregando aproximadamente 46% dos 

recursos considerados disponíveis, sendo seguido, por ordem de economia, pelos modelos 

5, 1, 2 e 4. Em todos os casos, os recursos empregados foram inferiores ao que foi 

utilizado na prática.  

Após a distribuição realizada pelos modelos, considerando as vagas disponíveis 

para a distribuição, foi observado que houve sobra de vagas, então elas foram 

contabilizadas e foram calculados os seus respectivos valores, a fim de estimar o quanto 

R$ 132.791,93

R$ 65.016,10
R$ 69.556,53

R$ 61.036,80

R$ 123.639,22

R$ 61.355,88

Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5
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de recurso restaria após a aplicação de cada modelo. Além disso, ao verificar quantas 

vagas seriam necessárias para atingir os índices ideais nos cursos que não conseguiram, 

após as distribuições, foi possível estimar a quantidade de recurso que seria necessário 

ainda para o atingimento desses índices, conforme gráfico abaixo:  

Figura 13 - Gráfico comparativo entre os valores que sobraram após a distribuição e os necessários para 

atingir os índices ideais restantes. 

 

De acordo com o gráfico, é possível notar que em todos os modelos, com exceção 

do modelo 4, os recursos que sobraram após as distribuições seriam suficientes para 

atender o necessário para que os demais cursos atingissem os seus respectivos índices 

ideais. Na distribuição real não há sobra, pois todas as vagas foram alocadas. Após isso, 

foi possível fazer uma análise de quanto que sobraria de recurso após a utilização das 

sobras dos modelos para o atingimento dos índices ideais restantes, de acordo com o 

gráfico abaixo: 

 

R$ 0,00

R$ 67.775,83
R$ 63.235,40

R$ 71.755,13

R$ 14.899,96

R$ 71.436,06

R$ 38.488,85

R$ 22.490,16 R$ 22.954,84

R$ 31.804,23 R$ 33.321,03 R$ 31.895,64

Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5

Valor que sobrou após a distribuição

Valor necessário para atingir o ideal nos demais cursos
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Figura 14 - Gráfico sobre valores que restaram após aplicação da sobra inicial para atingir os índices 

ideais restantes. 

 

Segundo os dados, o modelo 1 foi o que apresentaria a maior sobra, caso os 

recursos remanescentes da distribuição das vagas fossem utilizados para adquirir novas 

vagas para os cursos restantes, que não haviam atingido os índices ideais após a alocação 

inicial. O modelo 2 foi o que apresentaria a segunda maior sobra, seguido dos modelos 3 

e 5, na ordem decrescente. O modelo 4 não teria recursos suficientes para atender a todas 

as demandas remanescestes de índices ideais, pois a necessidade de recursos para isso 

seria superior ao que sobrou após a distribuição, sendo a diferença apresentada no gráfico 

com valores negativos. Na distribuição real não sobraram vagas e nem recursos, logo, o 

total estimado para o atingimento dos ideais nesse caso também está representado por 

valores negativos no gráfico.  

De posse dos valores utilizados nas distribuições, e dos custos necessários para 

atingir os índices ideais após elas ocorrerem, foi possível estimar um custo global para 

verificar o quanto seria necessário investir para que todos os índices ideais fossem 

alcançados, independentemente do tipo de distribuição. Esse custo seria composto pela 

soma do valor utilizado pelo modelo na distribuição, com o valor ainda necessário após 

a ela, para o atingimento dos índices ideais restantes, conforme ilustrado abaixo: 

 

-R$ 38.488,85

R$ 45.285,67
R$ 40.280,56 R$ 39.950,90

-R$ 18.421,07

R$ 39.540,42

Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5
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Figura 15 - Gráfico com o valor total necessário para que todos os cursos atinjam o índice ideal, 

considerando o valor gasto na distribuição somado ao valor necessário para atingir os índices ideais 

restantes. 

 

Dos tipos de distribuições realizadas, a do modelo 1 mostrou-se mais econômica, 

com um melhor aproveitamento dos recursos, utilizando cerca de 51% do valor total da 

distribuição real, sendo seguida pelos modelos 2, 3, 5 e 4, por ordem de economia. Todos 

os modelos apresentaram um custo global inferior ao utilizado na distribuição real.  

A partir dos resultados obtidos, foi confeccionada uma tabela-resumo, onde 

encontra-se um ranking entre os modelos e a distribuição real, do melhor ao pior, 

comparando: atendimento dos índices ideais após a primeira alocação de vagas, recursos 

remanescentes após essa alocação (1ª sobra), recursos remanescentes após o uso da 1ª 

sobra nos cursos que não atingiram o ideal na distribuição (2ª sobra), recursos totais 

alocados para que todos os cursos atinjam o ideal. Não houve casos de curso abaixo do 

índice mínimo após qualquer tipo de distribuição. Quando não restou recurso, foi 

colocado um traço -. 

Tabela 10 – Ranking dos modelos 

Modelo 
Atendimento 

Índ. ideais 
(1=melhor) 

1ª sobra 
(1=maior) 

2ª sobra 
(1=maior) 

Custo total 
aplicado 

(1=menor) 

Modelo 1 (PLI) 1 3 1 1 

Modelo 2 (PLI+Buf) 2 5 2 2 

Modelo 3 (VaR 0,71) 5 (empate) 1 3 3 

Modelo 4 (VaR 0,90) 4 2 - 5 

Modelo 5 (CVaR) 5 (empate) 4 4 4 

Real 3 - - 6 

R$ 171.280,78

R$ 87.506,26
R$ 92.511,37 R$ 92.841,03

R$ 156.960,26

R$ 93.251,52

Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5



 

 

71 

 

5 DISCUSSÃO 

Foi realizada uma análise crítica e comparativa dos diferentes modelos testados 

para alocação de vagas, observando: o atingimento de índices, uso de recursos – gasto 

inicial e sobra após alocação, robustez operacional e viabilidade/praticabilidade. Com 

isso, foi evidenciado o trade-off entre cobertura e custo, além da resiliência frente a 

imprevistos, tomando a distribuição real como referência. As comparações de custo são 

descritivas, pois os valores não integraram a função objetivo dos modelos; a análise 

comparativa entre modelos é, portanto, conduzida principalmente por cobertura dos 

índices, os valores serviram somente como evidências auxiliares. 

 

5.1 INTERPRETAÇÃO DOS RESULTADOS. 

De forma geral, pode-se dizer que todos os modelos propostos ofereceram uma 

vantagem em relação ao método atualmente empregado, quando avaliados sob a ótica de 

eficiência de alocação de vagas (relação entre cobertura dos índices e recursos utilizados). 

Mesmo nos casos em que a cobertura após a distribuição inicial não tenha superado a 

obtida na distribuição real para todos os cursos, os modelos indicaram que seria possível 

alcançar níveis semelhantes ou superiores de atendimento utilizando menos recursos em 

comparação à prática vigente. 

Do ponto de vista do atingimento de índices por curso na alocação inicial, 

destacaram-se os Modelos 1 e 2, que superaram a distribuição real no número de índices 

ideais atendidos e reduziram o número de cursos pendentes para o atendimento integral. 

Esses resultados colocam os Modelos 1 e 2 na fronteira de eficiência entre cobertura e 

custo, sendo particularmente indicados para decisões no momento da distribuição. 

Sob a perspectiva operacional, os modelos oferecem um ponto de partida 

quantitativo para o gestor, ao substituir um procedimento predominantemente subjetivo 

por um processo estruturado e reproduzível. De acordo com relato do especialista, a 

distribuição atual demanda cerca de uma semana; com o uso dos modelos, o responsável 

passa a dispor de propostas iniciais consistentes para auxílio a decisão, o que otimiza o 

tempo de análise e ajuda na padronização de critérios ao longo dos navios e cursos, 

preservando um espaço para ajustes gerenciais. 

Os modelos 3, 4 e 5, baseados em simulações estocásticas incorporam a incerteza 

através de medidas de risco no momento da distribuição, além de se mostrarem úteis na 

fase de planejamento, quando é feita a solicitação para o ano seguinte, pois incorporam a 



 

 

72 

 

incerteza dos próximos doze meses a partir do comportamento dos dados históricos. 

Dessa forma, atuam como um instrumento de antecipação de possíveis necessidades, 

realimentando o ciclo decisório com evidências quantitativas em um ponto do processo 

que hoje também é conduzido por julgamento subjetivo. 

 

5.2 PONTOS FORTES E LIMITAÇÕES DOS MODELOS. 

A partir dos resultados foi possível organizar os pontos fortes e limitações de cada 

modelo, além de avaliar as recomendações do uso de cada um deles conforme as 

prioridades definidas na gestão do processo (eficiência no atingimento dos índices, 

resiliência a imprevistos ou restrições orçamentárias). 

 

5.2.1 Modelo 1: PLI 

O Modelo determinístico utilizou somente os dados das vagas as serem 

distribuídas e os índices no momento da distribuição. Apresentou como pontos fortes um 

melhor compromisso entre cobertura e custo dentre as alternativas, além de sobra 

financeira elevada que ainda permite elevar cursos remanescentes ao ideal. Como 

limitações, observou-se que ele não protege contra desembarques imprevistos: se o ideal 

já foi atingido, o modelo não aloca vagas adicionais, podendo cair abaixo do mínimo em 

casos de cursos com índices ideais e mínimos baixos, além de não haver componente de 

risco, pois decide para o cenário médio de hoje. A sugestão de uso é quando orçamento 

for restrito e ambiente estável. 

 

5.2.2 Modelo 2: PLI + Buffer (Opinião de Especialista) 

O Modelo determinístico, de forma semelhante ao anterior, utilizou os dados das 

vagas as serem distribuídas e os índices no momento da distribuição, acrescidos da 

opinião de especialista incluída na restrição de atendimento do índice mínimo em forma 

de buffer. Apresentou como pontos fortes uma solução para a lacuna do Modelo 1 para os 

casos de saídas inopinadas, como um tipo de reserva, de forma a evitar que haja índices 

abaixo do mínimo até a próxima distribuição, usando mais recursos que o modelo anterior 

para gerar uma cobertura de segurança dos índices. Como limitações apresentou um custo 

inicial maior que o Modelo 1, e dependência de calibração regular do buffer, de acordo 

com a observação dos dados históricos. Um buffer maior aumenta o custo e pode gerar 



 

 

73 

 

excessos. A sugestão de uso é quando a prioridade for operar com estabilidade e evitar 

déficits entre as distribuições anuais. 

 

5.2.3 Modelo 3: PLI + Simulações Estocásticas + 𝑽𝒂𝑹𝟎.𝟕𝟏 

Diferentemente dos modelos anteriores, este utilizou-se dos dados históricos para 

realização de simulações estocásticas para subsidiar a distribuição feita com PLI baseada 

em riscos. Apresentou como pontos fortes uma boa eficiência no custo inicial pois 

apresentou menor uso de recursos nessa fase, inclui restrições de risco abrangendo um 

nível de 71% dos possíveis cenários. Como limitações, observou-se uma cobertura inicial 

inferior após a alocação inicial, pois ficou abaixo da distribuição real. O 𝛼 = 0,71 foi um 

nível escolhido por viabilidade do modelo, além de poder transmitir uma falsa segurança 

se a cauda tiver eventos raros e severos, pois eles não são considerados. A sugestão de 

uso é quando for incluir risco e a prioridade for um custo menor, ao invés da cobertura dos 

índices. 

 

5.2.4 Modelo 4: PLI + Simulações Estocásticas + 𝑽𝒂𝑹𝟎.𝟗𝟎 

De forma semelhante ao modelo anterior, utilizou-se dos dados históricos para 

realização de simulações estocásticas juntamente com PLI baseada em riscos, porém 

elevando para 90% dos possíveis cenários, incluindo variável de excesso para 

viabilização do modelo. Apresentou como pontos fortes um nível de abrangência mais 

alto (90%), sendo mais conservador que o modelo anterior. Indica necessidades extras de 

vagas para aumentar a garantia de robustez do modelo, podendo aumentar a cobertura em 

alguns pontos. Como limitações, observou-se que custo da alocação inicial é muito 

elevado (o pior entre os modelos), e a variável de excesso foi acionada em 4 cursos, 

requerendo plausibilidade gerencial para obter vagas extras, além de continuar não 

considerando a severidade média dos piores casos. A sugestão de uso é quando foi exigido 

o atendimento de um quantil alto, valendo a pena somente no caso de ser possível 

alocações extras. 

 

5.2.5 Modelo 5: PLI + Simulações Estocásticas + CVaR 

Fez uso das simulações nos mesmos moldes dos modelos 3 e 4, porém 

considerando como medida de risco a média dos piores casos, com escolha do α mais 

conservador possível. Apresentou como pontos fortes a aversão a risco na cauda (CVaR) 



 

 

74 

 

que é adequada quando se deseja proteger contra a média dos piores cenários, além de ter 

boa eficiência do ponto de vista do custo na alocação inicial. Como limitações, observou-

se que o custo total foi um pouco maior que os modelos 1 e 3, além de não converter a 

aversão a risco da média dos piores casos em melhor cobertura na alocação inicial, pois 

ficou abaixo da prática. A sugestão de uso é quando a prioridade for garantir a operação 

em cenários ruins, aceitando um leve aumento de custo para aumentar a resiliência. 

Os pontos fortes, limitações e sugestões de uso foram compilados em uma única 

tabela:
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Tabela 11 – Pontos fortes e limitações dos modelos 

Modelo Pontos fortes Limitações Sugestão de uso 

Modelo 1: PLI 

Melhor compromisso entre cobertura e custo dentre as 

alternativas. Sobra financeira elevada que ainda permite 

elevar cursos remanescentes ao ideal. 

Não protege contra desembarques imprevistos: se o ideal 

já foi atingido, o modelo não aloca vagas adicionais, 

podendo cair abaixo do mínimo em casos de cursos com 

índices ideais e mínimos baixos. Não há componente de 

risco, pois decide para o cenário médio de hoje. 

Orçamento restrito e ambiente 

estável. 

Modelo 2: PLI + 

Buffer (Opinião de 

Especialista) 

Apresenta uma solução para a lacuna do Modelo 1 para os 

casos de saídas inopinadas, como um tipo de reserva, de forma 

a evitar que haja índices abaixo do mínimo até a próxima 

distribuição. Usa mais recursos que o modelo anterior para 

gerar uma cobertura de segurança dos índices. 

Há um custo inicial maior que o Modelo 1, e dependência 

de calibração regular do buffer, de acordo com a 

observação dos dados históricos. Um buffer mais aumenta 

o custo e pode gerar excessos. 

Quando a prioridade for operar 

com estabilidade e evitar déficits 

entre as distribuições anuais. 

Modelo 3: PLI + 

Simulações 

Estocásticas + 

𝑽𝒂𝑹𝟎.𝟕𝟏 

Boa eficiência no custo inicial pois apresentou menor uso de 

recursos nessa fase, inclui restrições de risco abrangendo um 

nível de 71% dos possíveis cenários. 

Apresentou uma cobertura inicial inferior após a alocação 

inicial, pois ficou abaixo da distribuição real. O 𝛼 = 0,71 

foi um nível escolhido por viabilidade do modelo. Pode 

transmitir uma falsa segurança se a cauda tiver eventos 

raros e severos, pois eles não são considerados. 

Quando for incluir risco e a prioridade 

for um custo menor, ao invés da 

cobertura dos índices. 

Modelo 4: PLI + 

Simulações 

Estocásticas + 

𝑽𝒂𝑹𝟎.𝟗𝟎 

Impõe nível de abrangência mais alto (90%), sendo mais 

conservador que o modelo anterior. Indica necessidades 

extras de vagas para aumentar a garantia de robustez do 

modelo, podendo aumentar a cobertura em alguns pontos. 

O custo da alocação inicial é muito elevado (o pior entre 

os modelos). A variável de excesso foi acionada em 4 

cursos, requerendo plausibilidade gerencial para obter 

vagas extras, além de continuar não considerando a 

severidade média dos piores casos. 

Quando foi exigido o atendimento de 

um quantil alto, valendo a pena 

somente no caso de ser possível 

alocações extras. 

Modelo 5: PLI + 

Simulações 

Estocásticas + 

CVaR 

Apresentação da aversão a risco na cauda (CVaR) é 

adequada quando se deseja proteger contra a média dos 

piores cenários, e teve boa eficiência do ponto de vista do 

custo na alocação inicial. 

O custo total foi um pouco maior que os modelos 1 e 3. 

Não converteu a aversão a risco da média dos piores casos 

em melhor cobertura na alocação inicial, pois ficou abaixo 

da prática. 

Quando a prioridade for garantir a 

operação em cenários ruins, aceitando 

um leve aumento de custo para 

aumentar a resiliência. 

 



 

 

76 

 

Em síntese, se o objetivo for eficiência com cobertura alta com os dados 

disponíveis no momento da distribuição, sugere-se priorizar o Modelo 1 (ou 2, quando 

for importante a garantia contra desembarques); se a meta é minimizar custo inicial 

incluindo possiblidades futuras e medidas de risco, Modelo 3 e 5 são mais adequados; o 

Modelo 4 requer revisão de plausibilidade para o caso de alocações extras. 

  

5.3 OBSERVAÇÕES SOBRE OS DADOS COLETADOS 

As análises indicam bom desempenho do Modelo 1 tanto no atingimento dos 

índices quanto na utilização de recursos. Entretanto, observou-se que o mapa de cursados 

registra quem possui o curso, mas não necessariamente quem exerce a função que 

necessita daquela qualificação. Logo, alguns excessos observados em alguns cursos 

podem não ser tão significativos quanto parecem, influenciando na interpretação dos 

modelos, que alocam as vagas conforme a necessidade percebida. 

Essa limitação se propaga para as simulações através da incerteza de entrada 

(input uncertainty): onde os parâmetros são estimados a partir de dados escassos e 

potencialmente enviesados pela forma de registro, as estimativas de desempenho e os 

indicadores agregados (como déficits projetados) exibem variabilidade adicional e podem 

ser de certa forma sistematicamente otimistas em cenários com “suficiência” apenas 

aparente. A literatura sobre simulação estocástica apresenta que, mesmo com muitas 

replicações, a incerteza nos insumos permanece um determinante central da 

confiabilidade dos resultados (CORLU et al., 2020). 

Outro ponto a ser observado é o choque exógeno associado à pandemia de 2020, 

com normalização da situação ao longo do ano de 2021. O período apresentou patamares 

constantes e/ou quedas na quantidade de cursados por restrição de oferta, não 

necessariamente por redução da necessidade de capacitação a bordo dos navios. Em séries 

curtas, choques desse tipo configuram quebras estruturais, que podem distorcer a 

inferência e a extrapolação se interpretados como uma dinâmica permanente; logo, parte 

do comportamento observado nesse intervalo reflete condições atípicas de oferta 

(STOCK, 1994).  

Em síntese, o estudo de caso ficou sujeito a (i) limitação de mensuração dos 

cursado (pessoas que possuem curso vs pessoas que possuem o curso e exercem funções 

que precisam desse curso), (ii) choque de quebra estrutural no início da amostra e (iii) 

incerteza de entrada pela curta extensão histórica. Tais fatores não invalidam os 

resultados, mas delimitam o nível de confiança apropriado: as recomendações configuram 
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uma orientação quantitativa superior ao processo atual, devendo ser interpretadas com 

cautela e complementadas por julgamento especializado e revisão contínua à luz de novos 

dados e de eventos operacionais. Essa prática de combinar evidência quantitativa com 

conhecimento de domínio e atualização iterativa, é consistente com diretrizes 

consolidadas em previsão e tomada de decisão (HYNDMAN e ATHANASOPOULOS, 

2021; PETROPOULOS, 2022; ZELLNER et al., 2021). 

Por fim, convém ressaltar que os ganhos observados no Modelo 1 devem ser vistos 

levando-se em consideração essas informações: onde a quantidade de pessoas que 

possuem o curso pode não ser a mesma que exerce a função que usa essa qualificação, 

ocorrendo uma carência não observada que a modelagem, por construção dos dados, não 

captaria plenamente. Assim, as conclusões desta pesquisa permanecem válidas no escopo 

do que é mensurado, e reforçam a importância de documentação transparente das 

hipóteses de dados e da verificação e validação contínuas do processo analítico 

(SARGENT, 2020). 
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6 CONCLUSÕES 

 

6.1 SÍNTESE DOS OBJETIVO ATINGIDOS 

De modo geral, assumindo que os dados coletados representam adequadamente o 

fenômeno observado, pode-se afirmar que os objetivos da pesquisa foram atingidos. O 

objetivo geral — propor e avaliar modelos quantitativos de apoio à distribuição das vagas 

em cursos — foi atendido por meio do desenvolvimento e aplicação de cinco modelos de 

otimização capazes de apoiar decisões sob restrições de recursos e metas de atingimento 

de índices. Dentre eles, dois modelos são determinísticos e operam com a “fotografia” 

das informações no momento da distribuição, enquanto três são estocásticos e incorporam 

a dinâmica dos dados históricos por meio de simulações de cenários, permitindo antecipar 

possíveis necessidades antes da distribuição anual de vagas. 

Quanto aos objetivos específicos, foram elaboradas e aplicadas formulações que 

equilibram o atingimento de índices e o uso eficiente de recursos; foi incorporada a 

opinião de especialista para refletir conhecimento tácito do processo; e foram integradas 

medidas de risco para lidar com incertezas, conferindo maior robustez às recomendações. 

As soluções foram comparadas à prática vigente, possibilitando avaliar ganhos de 

eficiência tanto no atendimento das metas quanto na contenção de sobras e déficits. Por 

fim, a análise crítica das práticas atualmente realizadas permitiu identificar lacunas e 

oportunidades de melhoria no processo, tanto de distribuição quanto de solicitação de 

vagas em cursos, oferecendo um avanço metodológico e prático para o problema 

estudado. 

Como evidência quantitativa sintética dos resultados, considerando o conjunto 

avaliado de 54 cursos (18 cursos em cada um dos 3 navios), observou-se melhora no 

atingimento do índice ideal após a otimização, com destaque para os modelos 

determinísticos. O Modelo 1 atingiu 51 cursos no índice ideal (94,4%), restando 3 cursos 

abaixo do ideal, enquanto o Modelo 2 atingiu 49 cursos no índice ideal (90,7%), restando 

5 abaixo do ideal; no baseline (Real), 46 cursos atingiam o ideal (85,2%), com 8 abaixo 

do ideal. Ressalta-se que, em todos os modelos avaliados, não foram observados casos de 

cursos abaixo do índice mínimo, o que reforça a aderência das formulações às metas de 

qualificação. 

As metodologias propostas abrem espaço para refinamentos futuros, sobretudo 

com a integração de métodos quantitativos adicionais ao que já é realizado atualmente, 
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quando dados mais extensos e consistentes estiverem disponíveis, sem prejuízo da 

validade das evidências apresentadas neste estudo. 

 

6.2 CONTRIBUIÇÕES PARA A MARINHA 

Os modelos propostos constituem um bom instrumento de apoio à gestão de vagas 

em cursos, com potencial de aumentar a eficiência na distribuição de vagas e reduzir o 

uso de recursos, frente à restrição orçamentária que tem sido um enfrentamento constante 

na instituição. Ao estruturar o problema matematicamente, a decisão deixa de depender 

exclusivamente de critérios subjetivos e passa a ser auditável e reproduzível, favorecendo 

a expansão para outros cursos, navios e Esquadrões. 

Adicionalmente, as simulações estocásticas baseadas em dados históricos indicam 

a viabilidade do uso na fase de planejamento (solicitação de vagas para o ano seguinte), 

ao antecipar cenários de possíveis demandas de capacitação e permitir incorporar níveis 

de aversão ao risco. Em conjunto, esses resultados contribuem para o aumento da precisão 

e da governança do processo de capacitação e se alinham às diretrizes institucionais, em 

especial a OBNAV-11 (Aprimorar a gestão de pessoas), a AEN-Pessoal 2 (Aprimorar a 

capacitação de pessoal da MB) e a PEM-2040, reforçando o vínculo entre capacitação e 

prontidão operacional. 

 

6.3 SUGESTÕES PARA TRABALHOS FUTUROS 

Com a realização desta pesquisa, vislumbrou-se a possibilidade de realização de 

trabalhos futuros como: 

a) Identificar de fatores que influenciam a movimentação não planejada de 

pessoal a bordo e quantificar seus impactos na cobertura de cursos; 

b) Avaliar métodos de previsão mais avançados, incluindo técnicas de 

Inteligência Artificial para séries de contagem, comparando-os com as 

estratégias atuais utilizadas neste trabalho; 

c) Aplicar metodologias de consenso, como o método Delphi, para a 

definição de buffers, envolvendo um número maior de cursos e navios; e 

d) Integrar o controle de cursos aos sistemas de informação da Marinha utilizados 

para gestão de pessoal, de forma que, além de registrar entrada e saída de militares, 

passem também a relacionar cada militar aos cursos que possui, permitindo 

atualização contínua dos índices de capacitação. 
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APÊNDICE A – ANÁLISE EXPLORATÓRIA DOS CURSOS 

 

Figura 16 – Análise exploratória do Curso 1 
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Figura 17 – Análise exploratória do Curso 2 
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Figura 18 – Análise exploratória do Curso 3 
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Figura 19 – Análise exploratória do Curso 41 

 
1 A tripulação dos navios é dividida em Oficiais e Praças. O Curso 4 é o único caso em que os 

índices variam de acordo com a quantidade de Praças a bordo, o ideal é 100% e o mínimo 90% 

desse pessoal.  
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Figura 20 – Análise exploratória do Curso 5 
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Figura 21 – Análise exploratória do Curso 6 

 



 

 

94 

 

 

Figura 22 – Análise exploratória do Curso 7 
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Figura 23 – Análise exploratória do Curso 8 
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Figura 24 – Análise exploratória do Curso 9 
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Figura 25 – Análise exploratória do Curso 10 
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Figura 26 – Análise exploratória do Curso 11 
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Figura 27 – Análise exploratória do Curso 12 
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Figura 28 – Análise exploratória do Curso 13 
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Figura 29 – Análise exploratória do Curso 14 
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Figura 30 – Análise exploratória do Curso 15 
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Figura 31 – Análise exploratória do Curso 16 
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Figura 32 – Análise exploratória do Curso 17 
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Figura 33 – Análise exploratória do Curso 18 
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APENDICE B – TESTES DE ESTACIONARIEDADE 

 

Os testes foram aplicados em todas as séries, considerando a presença de 

tendência ou não nos dados. Na tabela 8 estão destacados com * os casos em que o critério 

foi atingido em ambos os testes, apresentando um total de 5 de 54 cursos 

(aproximadamente 9% dos casos). Na tabela 9, além dos destaques com *, há os destaques 

com **, pois nestes o critério foi atendido no nível da casa dos milésimos/décimos de 

milésimos - 0,000111421 para o curso 3 do navio 2; 0,0005207285 para o curso 3 do 

navio 2; 0,000541371 para o curso 15 do navio 3. Considerando uma aproximação não 

tão detalhada, foram considerados somente os casos destacados em verde, que são 5 de 

54 cursos. 

 

Tabela 12 – Verificação de estacionariedade (sem considerar a tendência) 

Navio Curso 
ADF 

p-valor 
ADF rejeita H0 
(raiz unitária) 

KPSS 
p-valor 

KPSS não rejeita H0 
(estacionária) 

Estacionária 
segundo critério 

Navio 1 Curso 1 0,438121963 FALSO 0,01 FALSO FALSO 

Navio 1 Curso 2 0,025991675 VERDADEIRO 0,1 VERDADEIRO VERDADEIRO* 

Navio 1 Curso 3 0,689768271 FALSO 0,01 FALSO FALSO 

Navio 1 Curso 4 2,40724E-12 VERDADEIRO 0,1 VERDADEIRO VERDADEIRO* 

Navio 1 Curso 5 0,538430961 FALSO 0,01 FALSO FALSO 

Navio 1 Curso 6 0,786439901 FALSO 0,01 FALSO FALSO 

Navio 1 Curso 7 0,019638111 VERDADEIRO 0,1 VERDADEIRO VERDADEIRO* 

Navio 1 Curso 8 0,753847643 FALSO 0,01 FALSO FALSO 

Navio 1 Curso 9 0,142304673 FALSO 0,068998221 VERDADEIRO FALSO 

Navio 1 Curso 10 0,118711437 FALSO 0,1 VERDADEIRO FALSO 

Navio 1 Curso 11 0,778676811 FALSO 0,01 FALSO FALSO 

Navio 1 Curso 12 0,718642433 FALSO 0,013532403 FALSO FALSO 

Navio 1 Curso 13 0,325740506 FALSO 0,1 VERDADEIRO FALSO 

Navio 1 Curso 14 0,4596517 FALSO 0,014082455 FALSO FALSO 

Navio 1 Curso 15 0,282545692 FALSO 0,01503845 FALSO FALSO 

Navio 1 Curso 16 0,931860747 FALSO 0,036357768 FALSO FALSO 

Navio 1 Curso 17 0,649141954 FALSO 0,013001133 FALSO FALSO 

Navio 1 Curso 18 0,89584809 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 1 0,039116365 VERDADEIRO 0,041083061 FALSO FALSO 

Navio 2 Curso 2 0,605811745 FALSO 0,025676456 FALSO FALSO 

Navio 2 Curso 3 0,461120188 FALSO 0,020768757 FALSO FALSO 

Navio 2 Curso 4 0,013959484 VERDADEIRO 0,062237699 VERDADEIRO VERDADEIRO* 

Navio 2 Curso 5 0,586513154 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 6 0,875198798 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 7 0,83712503 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 8 0,878377387 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 9 0,27039522 FALSO 0,099114865 VERDADEIRO FALSO 
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Navio 2 Curso 10 0,153399339 FALSO 0,1 VERDADEIRO FALSO 

Navio 2 Curso 11 0,074791007 FALSO 0,1 VERDADEIRO FALSO 

Navio 2 Curso 12 0,638568674 FALSO 0,030704261 FALSO FALSO 

Navio 2 Curso 13 0,797046698 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 14 0,677456024 FALSO 0,068012882 VERDADEIRO FALSO 

Navio 2 Curso 15 0,814871357 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 16 0,773699698 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 17 0,721846504 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 18 0,874458114 FALSO 0,01 FALSO FALSO 

Navio 3 Curso 1 0,794520102 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 2 0,506919441 FALSO 0,033262008 FALSO FALSO 

Navio 3 Curso 3 0,602515236 FALSO 0,048176223 FALSO FALSO 

Navio 3 Curso 4 0,605697938 FALSO 0,01360413 FALSO FALSO 

Navio 3 Curso 5 0,928180115 FALSO 0,014286803 FALSO FALSO 

Navio 3 Curso 6 0,19449951 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 7 0,076197222 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 8 0,931114586 FALSO 0,01 FALSO FALSO 

Navio 3 Curso 9 0,310267391 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 10 0,019678809 VERDADEIRO 0,1 VERDADEIRO VERDADEIRO* 

Navio 3 Curso 11 0,594927544 FALSO 0,015426574 FALSO FALSO 

Navio 3 Curso 12 0,943961445 FALSO 0,01 FALSO FALSO 

Navio 3 Curso 13 0,625642237 FALSO 0,01 FALSO FALSO 

Navio 3 Curso 14 0,617981024 FALSO 0,01 FALSO FALSO 

Navio 3 Curso 15 0,211838933 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 16 0,821982744 FALSO 0,01 FALSO FALSO 

Navio 3 Curso 17 0,732441869 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 18 0,13496478 FALSO 0,01 FALSO FALSO 

 

Tabela 13 – Verificação da estacionariedade considerando a tendência 

Navio Curso ADF  
p-valor 

ADF rejeita H0  
(raiz unitária) 

KPSS  
p-valor 

KPSS não rejeita H0  
(estacionária) 

Estacionária  
segundo critério 

Navio 1 Curso 1 0,000524811 VERDADEIRO 0,1 VERDADEIRO VERDADEIRO* 

Navio 1 Curso 2 0,124629012 FALSO 0,1 VERDADEIRO FALSO 

Navio 1 Curso 3 0,987035215 FALSO 0,043119614 FALSO FALSO 

Navio 1 Curso 4 0,039564866 VERDADEIRO 0,043989356 FALSO FALSO 

Navio 1 Curso 5 0,406083981 FALSO 0,1 VERDADEIRO FALSO 

Navio 1 Curso 6 0,401422763 FALSO 0,090623774 VERDADEIRO FALSO 

Navio 1 Curso 7 0,105759215 FALSO 0,1 VERDADEIRO FALSO 

Navio 1 Curso 8 0,870026512 FALSO 0,08846903 VERDADEIRO FALSO 

Navio 1 Curso 9 0,537528666 FALSO 0,01 FALSO FALSO 

Navio 1 Curso 10 0,075958545 FALSO 0,1 VERDADEIRO FALSO 

Navio 1 Curso 11 0,867779931 FALSO 0,059521085 VERDADEIRO FALSO 

Navio 1 Curso 12 0,494647013 FALSO 0,015550901 FALSO FALSO 

Navio 1 Curso 13 0,55657367 FALSO 0,1 VERDADEIRO FALSO 

Navio 1 Curso 14 0,245014249 FALSO 0,1 VERDADEIRO FALSO 

Navio 1 Curso 15 6,31708E-06 VERDADEIRO 0,01 FALSO FALSO 
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Navio 1 Curso 16 0,004702461 VERDADEIRO 0,1 VERDADEIRO VERDADEIRO* 

Navio 1 Curso 17 0,595780503 FALSO 0,1 VERDADEIRO FALSO 

Navio 1 Curso 18 0,323569125 FALSO 0,01606994 FALSO FALSO 

Navio 2 Curso 1 0,126456507 FALSO 0,016615806 FALSO FALSO 

Navio 2 Curso 2 0,609976763 FALSO 0,023931137 FALSO FALSO 

Navio 2 Curso 3 0,049888579** VERDADEIRO 0,1 VERDADEIRO VERDADEIRO** 

Navio 2 Curso 4 3,82641E-05 VERDADEIRO 0,1 VERDADEIRO VERDADEIRO* 

Navio 2 Curso 5 0,867202965 FALSO 0,019813762 FALSO FALSO 

Navio 2 Curso 6 0,173066424 FALSO 0,040039719 FALSO FALSO 

Navio 2 Curso 7 0,063111486 FALSO 0,1 VERDADEIRO FALSO 

Navio 2 Curso 8 0,756283234 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 9 0,459922339 FALSO 0,013967261 FALSO FALSO 

Navio 2 Curso 10 0,410786749 FALSO 0,1 VERDADEIRO FALSO 

Navio 2 Curso 11 0,246270888 FALSO 0,1 VERDADEIRO FALSO 

Navio 2 Curso 12 0,172221101 FALSO 0,01 FALSO FALSO 

Navio 2 Curso 13 0,044792715** VERDADEIRO 0,074286184 VERDADEIRO VERDADEIRO** 

Navio 2 Curso 14 0,976867458 FALSO 0,014338964 FALSO FALSO 

Navio 2 Curso 15 0,002692509 VERDADEIRO 0,1 VERDADEIRO VERDADEIRO* 

Navio 2 Curso 16 0,373263174 FALSO 0,1 VERDADEIRO FALSO 

Navio 2 Curso 17 0,264162611 FALSO 0,1 VERDADEIRO FALSO 

Navio 2 Curso 18 0,2173206 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 1 0,970662806 FALSO 0,01 FALSO FALSO 

Navio 3 Curso 2 0,984839126 FALSO 0,018888888 FALSO FALSO 

Navio 3 Curso 3 6,1421E-05 VERDADEIRO 0,09970549 VERDADEIRO VERDADEIRO* 

Navio 3 Curso 4 0,386424279 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 5 0,793382633 FALSO 0,018684942 FALSO FALSO 

Navio 3 Curso 6 0,527562618 FALSO 0,014473053 FALSO FALSO 

Navio 3 Curso 7 0,298518705 FALSO 0,060670667 VERDADEIRO FALSO 

Navio 3 Curso 8 0,354962545 FALSO 0,093278904 VERDADEIRO FALSO 

Navio 3 Curso 9 0,634022534 FALSO 0,034506674 FALSO FALSO 

Navio 3 Curso 10 0,169594258 FALSO 0,028647216 FALSO FALSO 

Navio 3 Curso 11 0,40106824 FALSO 0,060650442 VERDADEIRO FALSO 

Navio 3 Curso 12 0,433568388 FALSO 0,022549878 FALSO FALSO 

Navio 3 Curso 13 0,470727135 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 14 0,303936655 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 15 0,01122013 VERDADEIRO 0,050541371** VERDADEIRO VERDADEIRO** 

Navio 3 Curso 16 0,389136207 FALSO 0,1 VERDADEIRO FALSO 

Navio 3 Curso 17 0,000290179 VERDADEIRO 0,019493222 FALSO FALSO 

Navio 3 Curso 18 0,715994277 FALSO 0,010384725 FALSO FALSO 
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APÊNDICE C – GRÁFICOS DE ACF/PACF DOS CURSOS 

 

Figura 34 – Gráficos de ACF/PACF para o Curso 1 

 

Figura 35 – Gráficos de ACF/PACF para o Curso 2 



 

 

110 

 

 

Figura 36 – Gráficos de ACF/PACF para o Curso 3 

 

Figura 37 – Gráficos de ACF/PACF para o Curso 4 
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Figura 38 – Gráficos de ACF/PACF para o Curso 5 

 

Figura 39 – Gráficos de ACF/PACF para o Curso 6 
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Figura 40 – Gráficos de ACF/PACF para o Curso 7 

 

Figura 41 – Gráficos de ACF/PACF para o Curso 8 
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Figura 42 – Gráficos de ACF/PACF para o Curso 9 

 

 

Figura 43 – Gráficos de ACF/PACF para o Curso 10 
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Figura 44 – Gráficos de ACF/PACF para o Curso 11 

 

Figura 45 – Gráficos de ACF/PACF para o Curso 13 
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Figura 46 – Gráficos de ACF/PACF para o Curso 14 

 

Figura 47 – Gráficos de ACF/PACF para o Curso 15 
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Figura 48 – Gráficos de ACF/PACF para o Curso 16 

 

Figura 49 – Gráficos de ACF/PACF para o Curso 17 
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Figura 50 – Gráficos de ACF/PACF para o Curso 18 
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APÊNDICE D – SIMULAÇÕES DOS CURSOS 

 

Figura 51 – Simulações para o Curso 1 

 

Figura 52 – Simulações para o Curso 2 
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Figura 53 – Simulações para o Curso 3 

 

Figura 54 – Simulações para o Curso 4 
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Figura 55 – Simulações para o Curso 5 

 

Figura 56 – Simulações para o Curso 6 
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Figura 57 – Simulações para o Curso 7 

 

Figura 58 – Simulações para o Curso 8 
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Figura 59 – Simulações para o Curso 9 

 

Figura 60 – Simulações para o Curso 10 
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Figura 61 – Simulações para o Curso 11 

 

Figura 62 – Simulações para o Curso 13 
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Figura 63 – Simulações para o Curso 14 

 

Figura 64 – Simulações para o Curso 15 
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Figura 65 – Simulações para o Curso 16 

 

Figura 66 – Simulações para o Curso 17 
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Figura 67 – Simulações para o Curso 18 
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APÊNDICE E – VAGAS ALOCADAS POR TIPO DE DISTRIBUIÇÃO  

Alocação de vagas e atingimento de índices ideias, por navio e tipo de distribuição. 

As tabelas 9, 10 e 11 apresentam quantas vagas cada modelo alocou por curso, sendo que 

no modelo 4 estão separas por vagas alocadas pela variável de decisão e as vagas 

sugeridas incluir com a variável de excesso. 

 

Tabela 14 – Vagas alocadas para o Navio 1 por tipo de distribuição. 

Navio Curso Real Modelo 1 Modelo 2 Modelo 3 
Modelo 4 

Modelo 5 Var 
Decisão 

Var 
Excesso 

1 

Curso 1 0 1 1 1 1 0 1 
Curso 2 1 0 1 0 0 0 0 
Curso 3 1 0 2 0 0 0 0 
Curso 4 32 23 23 16 0 26 15 
Curso 5 0 0 0 0 0 0 0 
Curso 6 4 0 6 0 0 0 0 
Curso 7 0 0 0 0 0 0 0 
Curso 8 1 0 1 1 3 0 1 
Curso 9 0 0 0 0 0 0 0 

Curso 10 3 0 0 0 0 0 0 
Curso 11 2 0 0 0 0 0 0 
Curso 12 8 5 6 7 13 0 7 
Curso 13 7 6 12 0 0 0 0 
Curso 14 1 0 0 0 0 0 0 
Curso 15 8 1 3 0 0 0 0 
Curso 16 2 2 4 0 0 0 0 
Curso 17 7 1 8 0 0 0 0 
Curso 18 6 0 0 0 0 0 0 

 

Tabela 15 – Vagas alocadas para o Navio 2 por tipo de distribuição. 

Navio Curso Real Modelo 1 Modelo 2 Modelo 3 
Modelo 4 

Modelo 5 Var 
Decisão 

Var 
Excesso 

2 

Curso 1 0 1 1 1 1 0 1 
Curso 2 1 1 2 0 0 0 0 
Curso 3 1 0 0 0 0 0 0 
Curso 4 34 36 35 68 66 22 64 
Curso 5 0 0 0 0 0 0 0 
Curso 6 17 0 9 0 0 0 0 
Curso 7 2 0 0 0 0 0 0 
Curso 8 1 0 0 0 0 0 0 
Curso 9 2 0 0 0 1 0 0 

Curso 10 5 1 4 3 11 0 3 
Curso 11 1 0 2 0 8 0 0 
Curso 12 8 1 5 4 4 0 4 
Curso 13 6 0 3 0 0 0 0 
Curso 14 1 0 0 0 2 0 1 
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Curso 15 9 17 10 13 23 0 13 
Curso 16 1 0 0 0 0 0 0 
Curso 17 11 0 9 1 0 0 1 
Curso 18 10 0 0 0 0 0 0 

 

Tabela 16 – Vagas alocadas para o Navio 3 por tipo de distribuição. 

Navio Curso Real Modelo 1 Modelo 2 Modelo 3 
Modelo 4 

Modelo 5 Var 
Decisão 

Var 
Excesso 

3 

Curso 1 2 0 0 0 0 0 0 
Curso 2 1 0 0 0 3 0 0 
Curso 3 2 0 0 0 0 0 0 
Curso 4 47 29 55 29 47 0 34 
Curso 5 0 0 0 0 0 1 0 
Curso 6 11 0 0 0 0 0 0 
Curso 7 1 0 3 0 0 0 0 
Curso 8 1 0 0 0 0 0 0 
Curso 9 0 0 2 1 1 1 1 

Curso 10 5 0 0 0 2 0 0 
Curso 11 5 2 6 0 0 0 0 
Curso 12 7 17 12 12 6 0 12 
Curso 13 26 0 0 0 0 0 0 
Curso 14 0 0 0 0 0 0 0 
Curso 15 9 8 13 11 3 0 11 
Curso 16 1 0 0 0 0 0 0 
Curso 17 9 4 10 0 0 0 0 
Curso 18 7 0 4 0 23 0 0 

 

As tabelas 12,13 e 14 apresentam os índices após a alocação de vagas, e a 

comparação com o índice ideal de cada curso, destacando com * os casos em que índice 

após a distribuição ficou abaixo do ideal. Não houve casos de índices abaixo do mínimo. 

 

Tabela 17 – Índices após a alocação de vagas para o Navio 1 por tipo de distribuição. 

Navio Curso 
Índice 
ideal 

Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5 

1 

Curso 1 2 1* 2 2 2 2 2 
Curso 2 3 4 3 4 3 3 3 
Curso 3 10 13 12 14 12 12 12 
Curso 4 130 139 130 130 123* 133 122* 
Curso 5 2 2 2 2 2 2 2 
Curso 6 40 48 44 50 44 44 44 
Curso 7 7 11 11 11 11 11 11 
Curso 8 3 4 3 4 4 6 4 
Curso 9 3 7 7 7 7 7 7 

Curso 10 4 10 7 7 7 7 7 
Curso 11 4 14 12 12 12 12 12 
Curso 12 20 16* 13* 14* 15* 21 15* 



 

 

129 

 

Curso 13 20 21 20 26 14* 14* 14* 
Curso 14 2 4 3 3 3 3 3 
Curso 15 15 22 15 17 14* 14* 14* 
Curso 16 4 4 4 6 2* 2* 2* 
Curso 17 20 26 20 27 19* 19* 19* 
Curso 18 12 27 21 21 21 21 21 

 

Tabela 18 - Índices após a alocação de vagas para o Navio 2 por tipo de distribuição. 

Navio Curso 
Índice 
ideal 

Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5 

2 

Curso 1 2 1* 2 2 2 2 2 
Curso 2 3 3 3 4 2* 2* 2* 
Curso 3 6 8 7 7 7 7 7 
Curso 4 229 227* 229 228* 261 281 257 
Curso 5 2 3 3 3 3 3 3 
Curso 6 50 68 51 60 51 51 51 
Curso 7 8 17 15 15 15 15 15 
Curso 8 3 6 5 5 5 5 5 
Curso 9 3 6 4 4 4 5 4 

Curso 10 4 8 4 7 6 14 6 
Curso 11 10 12 11 13 11 19 11 
Curso 12 20 17* 10* 14* 13* 13* 13* 
Curso 13 30 40 34 37 34 34 34 
Curso 14 2 5 4 4 4 6 5 
Curso 15 45 37* 45 38* 41* 51 41* 
Curso 16 4 11 10 10 10 10 10 
Curso 17 30 41 30 39 31 30 31 
Curso 18 12 36 26 26 26 26 26 

 

Tabela 19 - Índices após a alocação de vagas para o Navio 3 por tipo de distribuição. 

Navio Curso 
Índice 
ideal 

Real Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5 

3 

Curso 1 5 8 6 6 6 6 6 
Curso 2 3 7 6 6 6 9 6 
Curso 3 6 15 13 13 13 13 13 
Curso 4 292 310 292 318 292 310 297 
Curso 5 2 6 6 6 6 7 6 
Curso 6 40 75 64 64 64 64 64 
Curso 7 20 21 20 23 20 20 20 
Curso 8 3 5 4 4 4 4 4 
Curso 9 3 3 3 5 4 5 4 

Curso 10 4 12 7 7 7 9 7 
Curso 11 12 15 12 16 10* 10* 10* 
Curso 12 30 20* 30 25* 25* 19* 25* 
Curso 13 47 104 78 78 78 78 78 
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Curso 14 2 5 5 5 5 5 5 
Curso 15 41 35* 34* 39* 37* 29* 37* 
Curso 16 2 14 13 13 13 13 13 
Curso 17 29 34 29 35 25* 25* 25* 
Curso 18 8 17 10 14 10 33 10 

 


