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RESUMO

As vantagens do uso de redes de comunicação para interconectar controladores e plantas
físicas têm motivado o crescente número de Sistemas de Controle em Rede, ou Networked
Control Systems (NCS), na indústria e em infraestruturas críticas. Entretanto, esta
integração expõe tais sistemas a novas ameaças, típicas do domínio cibernético. Neste
contexto, estudos têm sido realizados com o objetivo de explorar as vulnerabilidades e
propor soluções de segurança para NCSs. O presente trabalho, primeiramente, propõe dois
ataques de identificação de sistemas: um ataque passivo; e um ataque ativo. Estes ataques,
que utilizam metaheurísticas bioinspiradas para estimar os modelos do NCS atacado,
são estudados e avaliados como ferramenta para o projeto de ofensivas furtivas/baseadas
em modelo. Em seguida, o trabalho apresenta três ataques baseados em modelo: um
novo ataque que opera por meio da perda controlada de pacotes no NCS; e dois ataques
que operam por meio da injeção de dados no sistema. Os resultados demonstram que a
informação fornecida pelos ataques de identificação de sistemas permite o desenvolvimento
eficaz dos referidos ataques furtivos/baseados em modelo. Para amparar a discussão
sobre a relação entre ataques de Identificação de Sistemas e ataques furtivos/baseados em
modelo, este trabalho demandou a formalização de um conjunto de conceitos relacionados
à furtividade e inteligência no contexto da segurança de NCSs. Sendo assim, uma
contribuição adicional do trabalho é a proposição de uma terminologia que abarca
toda uma nova classe de ataques em sistemas físicos cibernéticos. Por fim, esta tese
propõe duas contramedidas que visam contribuir para a segurança de NCSs em casos
de falha ou ausência de outros mecanismos de segurança convencionais – tais como
criptografia, autenticação, e segmentação de redes. A primeira contramedida visa mitigar
os ataques de identificação por meio de uma estratégia de controle chaveado. Os resultados
indicam que esta contramedida é capaz de mitigar os ataques de Identificação de Sistema
propostos – desencorajando a implementação de ataques furtivos/baseados em modelo
– ao mesmo tempo em que desempenha um controle satisfatório da planta. A segunda
contramedida visa detectar/identificar funções lineares e invariantes no tempo (LTI)
executadas por ataques de injeção controlada de dados no NCS. Para aumentar a acurácia
da contramedida, é proposta uma técnica de Integração de Impulsos de Ruído, ou Noise
Impulse Integration, a qual foi desenvolvida utilizando como inspiração a técnica de
integração de pulsos radar. Os resultados demonstram que esta contramedida é capaz de
identificar funções LTI de ataque, de forma acurada, sem interferir no funcionamento do
NCS quando o sistema está em operação normal.

Palavras-chaves: Segurança. Sistemas Físicos Cibernéticos. Sistemas de Controle em
Rede. Ataques furtivos. Identificação de Sistemas. Contramedidas.



ABSTRACT

The advantages of using communication networks to interconnect controllers and physical
plants motivate the increasing number of Networked Control Systems (NCS) in industrial
facilities and critical infrastructures. However, this integration also exposes such control
systems to new threats, typical of the cyber domain. In this context, studies have been
conducted aiming to explore vulnerabilities and propose security solutions for NCSs. The
present work, firstly, proposes two system identification attacks: a passive attack; and an
active attack. These attacks, which use bioinspired metaheuristics to estimate the models
of the attacked NCS, are studied and evaluated as an attack tool to support the design
of covert/model-based offensives. Then, this work presents three model-based attacks: a
novel attack that operates causing controlled data loss in the NCS; and two attacks that
operate through the injection of false data into the system. The simulation results show
that the information provided by these System Identification attacks allow the effective
design of the referred covert/model-based offensives. To support the discussion regarding
the relationship between System Identification attacks and covert/model-based offensives,
this work required the formalization of a number of concepts related to covertness and
intelligence in the context of the security of NCSs. Thus, an additional contribution
of this work is the proposition of a terminology that encompasses a whole new class
of attacks in cyber-physical systems. Finally, this thesis proposes two countermeasures
intended to contribute to the security of NCSs in case of failure or absence of other
conventional security mechanisms – such as encryption, authentication, and network
segmentation. The first countermeasure aims to hinder the system identification attacks
through a switching control strategy. The results indicate that this countermeasure is able
to mitigate the proposed System Identification attacks – discouraging the implementation
of covert/model-based attacks – at the same time that it performs a satisfactory plant
control. The second countermeasure aims to detect/identify linear time-invariant (LTI)
functions executed by controlled data injection attacks in NCSs. To increase the accuracy
of this countermeasure, it is proposed the Noise Impulse integration technique, which
was developed using the radar pulse integration technique as inspiration. The results
demonstrate that this countermeasure is able to accurately identify LTI attack functions,
without interfering with the NCS behavior when the system is in its normal operation.

Keywords: Security. Cyber Physical Systems. Networked Control Systems. Covert
Attacks. System Identification. Countermeasures.
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1 INTRODUCTION

The integration of systems used to control physical processes via commu-
nication networks aims to assign to such systems better operational and management
capabilities, as well as reduce its costs (GUPTA; CHOW, 2008). Motivated by these
advantages, there is a trend to have an increasing number of industrial process and criti-
cal infrastructure systems driven by Networked Control Systems (NCS) (FAROOQUI
et al., 2014; GUPTA; CHOW, 2008; GUPTA; CHOW, 2010; TIPSUWAN; CHOW;
VANIJJIRATTIKHAN, 2003; ZHANG et al., 2013), also referred to as Network-Based
Control Systems (NBCS) (CHOW; TIPSUWAN, 2001; LONG; WU; HUNG, 2005). As
detailed in Figure 1, an NCS consists of a controller, which runs a control function C(z),
a physical plant, described by its transfer function G(z), and a communication network
that interconnects both devices through a forward stream and a feedback stream. The
forward stream connects the controller output to the plant actuators. The feedback
stream connects the output of the plant’s sensors to the controller input.
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Figure 1 – Networked Control Systems (NCS) – own figure published in (SA; CARMO;
MACHADO, 2017c).
At the same time it brings several advantages, the integration of controllers

and physical plants in a closed loop through a communication network also exposes
such control systems to new threats, typical of the cyber domain. Indeed, the literature
(MCLAUGHLIN et al., 2016) reports the execution of real cyber attacks against physical
plants since 1982, affecting a wide variety of targets, such as a diesel generator, a gas
pipeline, and a steel plant. Among these known cases, the most emblematic example
of attack in a cyber-physical system is the Stuxnet worm (LANGNER, 2011), whose
strategic purpose was to deny nuclear weapons to Iran (ZETTER, 2014). Specifically, the
targets were the uranium enrichment centrifuges installed at Natanz nuclear plant, which
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were controlled by a Supervisory Control and Data Acquisition (SCADA) system built
with Siemens STEP7 programmable logic controllers (PLC) (FALLIERE; MURCHU;
CHIEN, 2011; LANGNER, 2011; ZETTER, 2014). To reach the PLCs, which were
in an isolated control network, the Stuxnet infected the Windows computers used by
programmers to configure the PLCs. Once the infected computer was connected to the
target controller, the Stuxnet installed a modified control algorithm into the PLC. The
modified algorithm was specially designed to cause subtle and harmful behaviors to the
centrifuges, reducing their efficiency and causing damage.

Note that, one possible way to attack an NCS, for example, is by hacking its
software (i.e. changing the configuration or even the code executed by the controller),
following a strategy similar to that used by the Stuxnet worm (LANGNER, 2011).
Another possible way for an attacker to negatively affect an NCS is by interfering on
its communication process. Basically, an attacker may interfere in the forward and/or
feedback streams by three different means: inducing jitter, causing data loss due to packet
drop outs, or even injecting false data in the communication process due to failure or
absence of security mechanisms in the NCS.

In fact, although some new industrial communication protocols were devel-
oped including security features (FERRARI et al., 2013; MULLER; NETTO; PEREIRA,
2011; PETERSEN; CARLSEN, 2011), there are protocols in industry that still lack
security mechanisms (COLLANTES; PADILLA, 2015) – such as the Profinet, MOD-
BUS/TCP, and Ethernet/IP. The main issue of these industrial protocols is the lack of
encryption and authentication (COLLANTES; PADILLA, 2015) between devices used
in automation and control systems. A wide collection of scientific literature about this
topic is available, reporting security breaches in all the major Real-Time Ethernet (RTE)
protocols used in industry (PESCHKE et al., 2006; GRANAT; HÖFKEN; SCHUBA,
2017; AKPINAR; OZCELIK, 2018; YUNG; DEBAR; GRANBOULAN, 2016; MATHUR;
TIPPENHAUER, 2016; PFRANG; MEIER, 2017; AKERBERG; BJORKMAN, 2009;
COLLANTES; PADILLA, 2015). Still, even when the NCS uses secure communication
protocols, it must be considered the possibility of the security mechanisms being overcome.
The security of the NCS communication may be compromised if an attacker, for instance,
succeed in obtaining security keys or passwords (used for encryption and authentication)
through social engineering attacks (KROMBHOLZ et al., 2015).

Given the feasibility of occurring cyber attacks against physical systems, as
evidenced by the real cases already reported in the literature (MCLAUGHLIN et al., 2016;
LANGNER, 2011; ZETTER, 2014), studies have been conduced aiming to characterize
vulnerabilities and propose security solutions for NCSs. According to (TEIXEIRA et
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al., 2015), the attacks in NCSs, in general, can be analyzed based on three aspects: the
attacker’s a priori system model knowledge; its disclosure resources; and its disruption
resources. Regarding the requirement of model knowledge, from the point of view of
control theory, the literature indicates that covert/model-based attacks must be planned
based on an accurate knowledge about the NCS models (AMIN et al., 2013a; SMITH,
2011; SMITH, 2015; TEIXEIRA et al., 2015). However, despite the importance of model
knowledge for this set of covert/model-based offensives, the literature does not explore
attacks intended to reveal NCS models.

To fill this gap, in this work, two System Identification attacks are proposed,
studied and evaluated as an attack tool to support the design of covert/model-based
attacks. These attacks are: the Passive System Identification attack (SA; CARMO;
MACHADO, 2017c); and the Active System Identification attack (SA; CARMO; MACHADO,
2017b). The system identification process, i.e. the action of building mathematical models
of dynamic systems, is often used to obtain the model of physical processes aiming to
support the design of their respective control systems. However, as demonstrated in
this work, the system identification process can also be considered a key step for the
execution of covert/model-based attacks against NCSs.

It is worth mentioning that the System Identification attacks herein proposed
are different from the passive and active attacks performed to identify vulnerabilities
of protocols and applications within the OSI model layers, such as the active scanning
process used to identify network services (BOU-HARB; DEBBABI; ASSI, 2014). The
attacks herein proposed aim to identify the physical model of a plant and the control
functions that, in an NCS, lies above the application layer of the OSI model.

In addition to the proposed System Identification attacks, this thesis also
presents three model-based offensives and evaluate their performances when supported
by the referred System Identification attacks:

• The novel Controlled Data Loss attack, which is proposed in the present work;

• The Controlled Data Injection attack, which was characterized by this research in
(SA; CARMO; MACHADO, 2017c);

• The Covert Misappropriation attack proposed in (SMITH, 2011; SMITH, 2015);

To support the discussion regarding the relationship between System Identifi-
cation attacks and covert/model-based attacks, this work required the formalization of a
number of concepts related to covertness and intelligence in the context of cyber-physical
security. Thus, an additional contribution of this work is the proposition of a terminology
that encompasses a whole new class of attacks in cyber-physical systems.
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The analysis of system identification processes as feasible attacks led to the
development of a countermeasure intended to inhibit the identification task, in case
of failure of other conventional security mechanisms – such as encryption, network
segmentation and firewall policies. In this sense, another contribution of this work is
the proposal of a switching controller design (SA; CARMO; MACHADO, 2018) to
hinder the System Identification attacks proposed in this work – and, therefore, dissuade
covert/model-based attacks.

Finally, this work also proposes an identification strategy to estimate linear
time-invariant (LTI) functions executed during controlled data injection attacks in NCSs.
It consists of a link monitoring strategy, which uses white gaussian noise to excite possible
attack functions in the NCS, in order to obtain the information necessary to identify
the attack. To increase the accuracy of the attack function identification using white
gaussian noise, this work also proposes a Noise Impulse Integration (NII) technique,
which is developed inspired by the pulse integration process of radar systems (SKOLNIK,
1990).

It is worth emphasizing that the applications of NCSs can range from cooper-
ative control of vehicles using mobile networks (ÖNCÜ et al., 2014; SABĂU et al., 2017)
to wired NCS intended to control devices in Industry 4.0 (JAZDI, 2014; LASI et al.,
2014), water canal systems (AMIN et al., 2013a; SMITH, 2015) or even large Pressurized
Heavy Water Reactors (PHWR) (DASGUPTA et al., 2013). It includes a vast number of
potential – sometimes critical – targets that can suffer from the attacks herein studied,
as well as benefit from the countermeasures herein proposed.

1.1 OBJECTIVES

The first objective of this work is to study covert/model-based attacks in
NCSs. The second objective of this work is to investigate disclosure attacks – particularly
system identification attacks – as a tool to gather information from the plant and control
algorithms, as well as the role of these attacks in the design of covert/model-based
offensives against NCSs. With the lessons learned from the first two objectives, the third
objective of this work is to develop countermeasures to mitigate system identification
attacks and model-based offensives in NCSs, while ensuring adequate levels of plant
control. It is worth mentioning that the aim of this work is not to facilitate System
Identification attacks or covert/model-based offensives in NCSs.
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1.2 CONTRIBUTIONS

So far, this research has resulted in contributions that encompass novel
System Identification attacks and model-based offensives in NCS, as well as propose
countermeasures to improve the security of NCSs against these kinds of attack. In
summary, the main contributions of this work are listed below:

I - The proposition of a Passive System Identification attack to support the design of
covert/model based attacks against NCSs;

II - The proposition of an Active System Identification attack, which is an alternative
to the Passive System Identification attack when the attacker cannot wait for
the occurrence of an event that produces the signals needed for the identification
process;

III - The proposition of a novel controlled data loss attack, which is built upon the
models learned through a System Identification attack. Based on the NCS models,
this attack causes the loss of specific network packets to induce harmful behaviors
to a plant. The attack uses a bio-inspired metaheuristic to smartly decide which
packets the NCS must lose – through malicious interferences – in order to cause
the desired effect on the plant;

IV - The evaluation on the effectiveness and accuracy of the joint operation of System
Identification attacks and model-based offensives against NCSs, which is done
considering an example of a common industrial device – a DC motor – and a
nuclear critical infrastructure – a large Pressurized Heavy Water Reactor (PHWR);

V - The introduction of a taxonomy to support the discussion regarding the relationship
between System Identification attacks and covert/model-based attacks in NCSs.
This taxonomy also sets the requirements for the attacks discussed in this work,
which helps on the development of layered defense strategies against System
Identification attacks and covert/model-based offensives. Moreover, regarding
covert attacks in cyber-physical systems – such as an NCS –, this taxonomy also
dismembers the concept of covertness in two different domains: the cyber domain;
and the physical domain.

VI - The proposition of a switching controller design to mitigate the proposed Passive and
Active System Identification attacks – and, therefore, discourage the implementation
of covert/model-based attacks –, while providing an adequate control performance;

VII - The proposition of a countermeasure to detect/identify linear time-invariant (LTI)
functions executed by controlled data injection attacks in NCSs. To increase the
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accuracy of this countermeasure, it is proposed the Noise Impulse integration
technique, which was developed using the radar pulse integration technique as
inspiration.

1.3 ORGANIZATION OF THIS WORK

The rest of this work is organized as follows:

• First, Chapter 2 presents the related works and introduces a taxonomy regarding
cyber-physical attacks that may happen in the control loop of an NCS.

• After that, Chapter 3 introduces two System Identification attacks, and then de-
scribes three model-based offensives in NCSs. The two System Identification attacks
are the Passive System Identification attack and the Active System Identification
attack. The three model-based offensives comprehend: a Controlled Data Loss
attack; a Controlled Data Injection attack; and a Covert Misappropriation attack.

• Chapter 4 proposes two countermeasures: the switching controller strategy to
mitigate the System Identification attacks described in Chapter 3; and the Sys-
tem Identification scheme to identify possible LTI attack functions executed by
controlled data injection attacks in the NCS links.

• Chapter 5 presents results obtained through the joint operation of the System
Identification attacks and the model-based offensives described in Chapter 3.

• Chapter 6 evaluates the performance of the countermeasures proposed in Chapter
4;

• Finally, Chapter 7 presents the conclusions and directions for possible future works.

A diagram representing simplified roadmap to the thesis is shown in Figure 2.
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2 TAXONOMY AND RELATED WORKS

The present chapter aims to introduce a taxonomy developed in this thesis
to support the discussion on System Identification attacks and model-based offensives in
NCSs, as well as present the works related to this research. The proposed taxonomy is
described in Section 2.1. The related works are presented in Section 2.2.

2.1 TAXONOMY

This work motivated the formalization of a number of concepts related to
covertness and intelligence in the context of cyber-physical security. Thus, the first
contribution of this work is the proposition of a terminology that encompasses a whole
new class of attacks on cyber-physical systems in general, and on NCSs in particular.
This taxonomy was introduced in (SA; CARMO; MACHADO, 2017c), in order to depict
the role that System Identification attacks play in the development of covert/model-based
attacks in NCSs. The referred taxonomy was then revised in (SA; CARMO; MACHADO,
2017b), in order to divide the System Identification attacks into two categories, namely:
Passive System Identification attacks; and Active System Identification attacks. The
proposed taxonomy also establishes a new approach regarding to the covertness of attacks
on cyber-physical systems, which must be analyzed from two aspects simultaneously:
physical; and cybernetic.

This section presents a taxonomy that enfolds all concepts covered in (SA;
CARMO; MACHADO, 2017b; SA; CARMO; MACHADO, 2017c). The taxonomy herein
presented establishes a basis for the discussions made in this work, regarding attacks on
NCSs and possible countermeasures. In Section 2.1.1, the attacks on NCSs are briefly
described and classified according to the way they act in the system. In Section 2.1.2,
it is introduced a new approach for the analysis of covert attacks in cyber-physichal
systems.

2.1.1 Classification of the Attacks

The attacks to cyber-physichal control systems may take place on its devices
– i.e. the controller, and the plant’s sensors and actuators – and/or on its communication
system, affecting the forward and feedback streams. As a premise, we must consider that
the service intended to be attacked/protected in such system is the work performed by
the physical process controlled by the NCS.
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Figure 3 – Classification and requirements of cyber-physical attacks that act in the
control loop of an NCS – adapted from own figure published in (SA; CARMO;
MACHADO, 2017c).

Considering the aforementioned definition of service in an NCS, the attacks
may be classified within three different categories, as shown in Figure 3:

• Denial-of-Service (DoS) (HUSSAIN; HEIDEMANN; PAPADOPOULOS, 2003): in
an NCS, the DoS attacks comprehends all kind of cyber-physical attacks that deny
the physical process operation, interrupting the execution of the work, or service,
that the controlled plant is intended to do. The attack results, for example, in
behaviors that may shut the plant down or even destroy it in a short therm.

• Service Degradation (SD) (SA; CARMO; MACHADO, 2017c): the SD attacks
consist of malicious interventions that are done in the control loop in order to
reduce the service efficiency, i.e. the efficiency of the physical process, or even
reduce the mean time between failure (MTBF) of the plant in mid therm or long
therm.

• Cyber-physical Intelligence (CPI) (SA; CARMO; MACHADO, 2017c): the concept
of Cyber-physical Intelligence, herein proposed, is different from the concept where
cyber-physical systems are integrated with intelligent systems (RAMOS; VALE;
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FARIA, 2011). In the present taxonomy, CPI attacks comprehend actions that
are performed in the control loop of an NCS in order to gather information about
the system’s operation and/or its design. This attacks are intended to acquire the
intelligence necessary to plan covert and model-based attacks, or even to provide
data for replay attacks (LANGNER, 2011).

In Figure 3, six kinds of DoS attacks are presented, with their respective
requirements. From these six DoS attacks, the less complex are the three arbitrary ones:

• DoS-Arbitrary Jitter: in this kind of attack, the delay of the forward and/or
feedback stream is arbitrarily changed, without a previous knowledge about the
NCS models, in order to lead the system to an instability or to a condition that
causes the physical process interruption. This attack only requires access to the
control loop, once it may be performed by just consuming the system resources,
such as the bandwidth of communication links or the computational resources of
the equipments that are in the control loop.

• DoS-Arbitrary Data Loss: in this kind of attack, the attacker prevents data from
reaching the actuator and/or the controller of the NCS. The communication channel
is arbitrarily jammed, without a previous knowledge about the NCS models, leading
the system to an instability or to a condition that causes the physical process
interruption. It is worth mentioning that some DoS-Arbitrary Jitter attack may
result in a DoS-Arbitrary Data Loss attack, if an eventual higher delay cause packet
drop outs. As the DoS-Arbitrary Jitter attack, this attack only requires access to
the NCS control loop.

• DoS-Arbitrary Data Injection: in such attacks, the attacker sends arbitrary false
data to the controller, as it was sent by the sensors, and/or to the actuators, as
it was sent by the controller. The false data is injected in the NCS closed loop
without a previous knowledge about the NCS models. This attack is more complex
than the DoS-Arbitrary Jitter and DoS-Arbitrary Data Loss attacks, given that it
requires access to the data that flows in the NCS control loop.

The attacks classified as DoS-controlled – DoS-Controlled Jitter, DoS-Control-
led Data Loss, and DoS-Controlled Data Injection – shown in Figure 3 interfere in the
control loop of an NCS by the same means that their respective DoS-Arbitrary attacks.
The difference between a DoS-Controlled attack and a DoS-Arbitrary attack is that, in
the former, the interference caused by the attacker is precisely planned and executed,
in order to achieve the exact desired behavior that leads the physical service to an
interruption, in a more efficient way. Thus, to achieve such efficiency, a DoS-Controlled
attack requires an accurate knowledge about the NCS models, i.e. the plant and controller
transfer functions, which have to be analyzed to plan the attack.
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Regarding to the SD attacks, we must consider the three different kinds
of attack shown in Figure 3: SD-Controlled Jitter, SD-Controlled Data Loss, and SD-
Controlled Data Injection. The difference between an SD-Controlled attack and a DoS-
Controlled attack is that the former is not intended to interrupt the physical process in
a short therm. It aims to keep the process running with reduced efficiency, sometimes
also targeting a gradual physical deterioration of the controlled devices. To succeed, the
SD-Controlled attacks need to be planned based on an accurate knowledge about the
dynamics and the design of the NCS. Otherwise, the attack can eventually interrupt the
physical process, due to unpredicted reasons, evolving to a DoS attack.

The system knowledge required to both DoS-Controlled and SD-Controlled
attacks, can be gathered through CPI attacks, as shown in Figure 3. The first and
simpler CPI attack is the eavesdropping attack (KHATRI et al., 2015; ZOU; WANG,
2016), which consists of simply capturing the data transmitted through the forward and
feedback streams of the NCS. In addition to the eavesdropping attack, the CPI attacks
also include two kinds of System Identification attacks. These System Identification
attacks were proposed in (SA; CARMO; MACHADO, 2017c; SA; CARMO; MACHADO,
2017b), as a result of the present research, and their concepts are described bellow:

• Passive System Identification attack (SA; CARMO; MACHADO, 2017c): this kind
of attack estimates the model of an NCS based on the analysis of the signals collected
from the input and output of the system’s devices. This kind of attack analyzes
signals that typically flow through the NCS, as a result of its normal operation. In
this case, both input and output signals must carry meaningful information – i.e.
information enough to estimate the transfer function of the attacked system/device
–, and it is not necessary to inject signals into the attacked system.

• Active System Identification attack (SA; CARMO; MACHADO, 2017b): in this
kind of attack, the attacker injects an attack signal into the system, in order to
estimate the NCS model based on the system response to such signal. From the
attacker point of view, this attack is useful, for example, when the system is in
steady state and the attacker cannot wait for a signal carrying the meaningful
information required for the identification process.

It is noteworthy that an Active System Identification attack is less stealthy
than a Passive System Identification attack, given that the former needs to interfere in
the system and the latter just needs to listen its signals. In this sense, when performing an
Active System Identification attack, the attacker must choose signals that, when injected
on the NCS, are more difficult to be perceived by a defense system. From the defender
perspective, it is important to be aware of this kind of attack and also learn about the
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stealthiness of Active System Identification attacks, in order to develop techniques to
identify and avoid them.

2.1.2 Cybernetic vs. Physical Covertness

The covertness of an attack regards to its capacity to not be perceived
or detected. In the case of cyber-physical attacks on NCSs, the covertness must be
simultaneously analyzed in two different domains: the cyber domain; and the physical
domain. In this sense, it is presented in this section the definition proposed in (SA;
CARMO; MACHADO, 2017c) about what is a cybernetically covert attack and what is
a physically covert attack:

• Cybernetically covert attacks: are the attacks that have low probability to be
detected by algorithms that monitor the softwares, communications and data of
the NCS, or by systems that monitor the plant dynamics.

• Physically covert attacks: are attacks that cause physical effects that can not be
easily noticed or identified by a human observer. The attack slightly modifies some
behaviors of the system in a way that it physically affects the plant, but the effect
is not easily perceptible or it can eventually be understood as a consequence of
another root cause, other than an attack.

The taxonomy available in the literature before the approach provided by this
research – published in (SA; CARMO; MACHADO, 2017c) – does not clearly distinguish
that an attack may have different degrees of covertness regarding to the cybernetic
and physical domains. However, analyzing cyber-physical attacks, it is possible to state
that the measures taken to make an attack cybernetically covert do not necessarily
guarantee a physically covert behavior, and vice versa. Thus, in order to provide a clear
comprehension about these two aspects of covertness of a cyber-physical attack, this
research introduces the two aforementioned classifications for covertness. For instance, in
(SMITH, 2011; SMITH, 2015), it is proposed an attack architecture, where the attacker
eliminates from the feedback signal the interference caused by him on a plant through
data injection. That architecture hinders the system’s ability to detect the attack through
signal analysis, making it cybernetically covert. However, such architecture does not
guarantee that the physical effects of the attack will not facilitate its disclosure. Indeed,
depending on the plant’s behavior, the attack can provide physical evidences that it
is being manipulated, drawing the attention for the possibility of a cyber-physichal
attack. Thus, to be physically covert, the attacker’s control function of (SMITH, 2011;
SMITH, 2015) have to be adjusted to meet the requirements of a physically covert attack,
as herein defined, independently of the cybernetic covertness provided by the attack
architecture.
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2.2 RELATED WORKS

This section discusses the works related to the subject of this research.
Section 2.2.1 regards to cyber attacks in NCSs, situating the attacks herein proposed in
the existing literature. Section 2.2.2, in turn, presents works regarding countermeasures
for cyberattacks in NCSs, as well as indicates how the countermeasures herein proposed
complement the existing security solutions.

2.2.1 Attacks in NCSs

The launch of cyber-physical attacks in real world systems (MCLAUGHLIN
et al., 2016), such as the case of Stuxnet (LANGNER, 2011) worm, raised the concern
of governments and NCS owners, and is motivating the research on cybersecurity of
industrial facilities and critical infrastructures. In this context, recent studies demonstrate
the development of a set of sophisticated attacks that, to achieve a high level of covertness
and accuracy, rely on the knowledge about the model of the attacked system. Therefore,
this section presents a review on cybersecurity of NCSs, giving special attention to
covert/model-based attacks, as well as their inherent need for accurate NCS models.

In (LONG; WU; HUNG, 2005), the authors evaluate the impact of delay
jitter and packet loss in an NCS under DoS attack. The conception of such DoS attack
does not take into account the models of the controller and physical plant of the attacked
NCS (i.e. these models are not known by the attacker). Therefore, to affect the physical
process, the attacker arbitrarily floods the network, causing jitter and packet loss in the
NCS communication links. In this tactic, the excess of packets in the network may reveal
the attack, allowing the implementation of countermeasures such as packet filtering
(LONG; WU; HUNG, 2005) or blocking of malicious traffic on its origin (SNOEREN et
al., 2002). Additionally, as stated in (SA; CARMO; MACHADO, 2017c), an arbitrary
intervention in a system which the models are unknown may lead the plant to an extreme
physical behavior, which is not desired if a physically covert (SA; CARMO; MACHADO,
2017c) attack is intended.

In (FAROOQUI et al., 2014), the authors demonstrate an attack where false
signals are transmitted to the controller and actuators of an NCS. The false signals are
randomly generated by the attacker, aiming to cause instability on the plant (a DC
motor). To evaluate this arbitrary data injection attack, the authors propose a testbed
for SCADA systems, using TrueTime (a MATLAB/Simulink based tool). Such arbitrary
data injection attack does not require a previous knowledge about the models of the
plant and its controller. Therefore, the desired physical effect and the attack covertness
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cannot be ensured due to the unpredictable consequences of the injection of random
false signals in a system whose model is not known.

In (TEIXEIRA et al., 2015), the authors analyze a wide variety of attacks
in NCSs and establish requirements for those attacks in terms of model knowledge,
disclosure and disruption resources. In their work, it is stated that the design of covert
attacks requires high level of knowledge about the attacked system model. In (SMITH,
2011; AMIN et al., 2013a; SMITH, 2015), examples of covert attacks that agree with the
statement provided in (TEIXEIRA et al., 2015) are proposed and analyzed. In (SMITH,
2011; SMITH, 2015), the attacker, acting as a man-in-the-middle (MitM), injects false
data in the NCS forward stream to take control of the plant. Then, to make the attack
covert, the attacker uses the attacked plant model to compute the data injected in the
feedback stream. The covertness of the attack proposed in (SMITH, 2011) is analyzed
from the perspective of signals arriving at the controller and, as demonstrated in (SMITH,
2015), it depends on the difference between the actual plant model and the model known
by the attacker. In (AMIN et al., 2013a), the attacker, aware of the NCS model, injects
data in its communication links to covertly steal water from the Gignac canal system
located in Southern France.

In (AMIN et al., 2013a; SMITH, 2011; SMITH, 2015; TEIXEIRA et al., 2015),
although the attacks are designed based on the NCS models, the authors do not describe
how these models are obtained by the attacker. It is just stated that the models, used to
design covert/model-based attacks, are previously known by the attacker. In order to
fill this gap, this work proposes two new kinds of attack to estimate the models of the
attacked system: the Passive System Identification attack (SA; CARMO; MACHADO,
2017c); and the Active System Identification attack (SA; CARMO; MACHADO, 2017a).
According to the taxonomy proposed in section 2.1 – and published in (SA; CARMO;
MACHADO, 2017c) –, these attacks belong to the category of Cyber-physical Intelligence
attacks.

The Passive System Identification attack (SA; CARMO; MACHADO, 2017c)
– formerly referred to as System Identification attack 1 – does not need to inject signals
in the NCS to estimate its models. However, the effectiveness of the Passive System
Identification attack depends on the occurrence of events – not controlled by the attacker
– to produce signals that carry meaningful information for the system identification
algorithm. This attack passively estimates the transfer functions of both controller and
1 The Passive System Identification attack was originally referred in (SA; CARMO; MACHADO, 2017c)

as System Identification attack. However, with the introduction of the Active System Identification
attack in (SA; CARMO; MACHADO, 2017a), its designation was reviewed to Passive System
Identification attack, in order to evince the differences between the two attacks.
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plant by simply eavesdropping the forward and feedback streams of the system. On
the other hand, the Active System Identification attack (SA; CARMO; MACHADO,
2017a) constitutes an alternative to the Passive System Identification attack in situations
where the attacker cannot wait so long for the occurrence of such meaningful signals. In
the Active System Identification attack, the attacker estimates the open-loop transfer
function of the NCS by injecting an attack signal and eavesdropping its response at a
single point of interception.

In this work, the aforementioned System Identification attacks are evaluated
in joint operations with the following model-based offensives:

• The SD-Controlled Data Injection attack, characterized in this research (SA;
CARMO; MACHADO, 2017c);

• The Covert Misappropriation attack proposed in (SMITH, 2011; SMITH, 2015);

• The novel SD-Controlled Data Loss attack.

The SD-Controlled Data Loss attack, proposed in this work, demonstrates the ability to
produce the same accurate and harmful behaviors of the SD-Controlled Data Injection
attack (SA; CARMO; MACHADO, 2017c), however, without the need to overcome
eventual security mechanisms for data integrity and authenticity that may hinder an
SD-Controlled Data Injection attack. Moreover, in contrast with the arbitrary data loss
attack shown in (LONG; WU; HUNG, 2005), the SD-Controlled Data Loss attack takes
special care to avoid the indiscriminate loss of samples, as well as the complete denial of
communication. The SD-Controlled Data Injection attack uses the models estimated by
a System Identification attack to smartly cause the loss of a limited number of specific
samples, which makes the attack more difficult to be noticed.

A synthesis of the attacks addressed in this section is presented in Table 1.
Based on these works, it is possible to verify how the proposed System Identification
attacks and model-based offensives are included in the scenario of attacks in NCSs,
as well as how they contribute for the study of cybersecurity of NCSs. It is worth
mentioning that, given the recent inclusion of the System Identification attacks in the
context of NCSs cybersecurity – which was done through this research –, as far was we
know, the scientific literature does not present specific countermeasures to mitigate the
identification process performed by the proposed attacks.
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Table 1 – Synthesis of related attacks

Knowledge How the knowledge
Attack Method about the is obtained?

system?
Stuxnet worm (LANGNER, 2011) Modifications Yes Experiments in

in PLC code a real system

Long, et al. (LONG; WU; HUNG, 2005) Jitter and None N/A
packet loss

Farooqui, et al. (FAROOQUI et al., 2014) Data injection None N/A

Smith (SMITH, 2011; SMITH, 2015) Data injection Yes Not described

Teixeira (TEIXEIRA et al., 2015) Packet loss None N/A
Data injection Yes Not described

Amin (AMIN et al., 2013a) Data injection Yes Not described

SD-Controlled Data injection Yes Passive System
(SA; CARMO; MACHADO, 2017c) Identification attack

SD-Controlled Data injection Yes Active System
(SA; CARMO; MACHADO, 2017b) Identification attack

SD-Controlled Data Loss Yes Passive System
Identification attack

2.2.2 Countermeasures in NCSs

As discussed in Chapter 1, the occurrence of cyber attacks against real-world
cyber-physical systems (MCLAUGHLIN et al., 2016) evince the feasibility of launching
actual attacks in NCSs. At the same time, the literature on NCS (AMIN et al., 2013a;
AMIN et al., 2013b; PANG; LIU, 2012; WANG; LU, 2013) brings theoretical studies
and practical experiments that demonstrate the efforts to propose countermeasures
for cyberattacks in NCSs. This section presents works reporting security solutions for
NCSs, in order to indicate how the countermeasures proposed in this work contribute for
the security of these systems – specially against the System Identification attacks and
model-based offensives addressed in this thesis.

The straightforward countermeasure to prevent cyberattacks in NCSs (includ-
ing the System Identification attacks and model-based offensives discussed in Sections 2.1
and 2.2.1) is to avoid unauthorized access to the system control loop. It can be achieved
by using, for instance, network segmentation, demilitarized zones (DMZ), firewall policies
and implementing specific network architectures, such as recommended in (STOUFFER
et al., 2015).
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As proposed in (PANG; LIU, 2012), a complementary countermeasure – in
case the attacker is able to access the control loop – is to hinder the access to the
data flowing in the NCS using, for example, symmetric-key encryption algorithms, hash
algorithms and a timestamp strategy to form a secure transmission mechanism between
controller and plant. In (WANG; LU, 2013), the use of cyber-security mechanisms in
devices endowed with limited computational resources – such as actuators and sensors
of an NCS – is quantitatively evaluated through experiments using the communication
module TS7250 (200-MHz ARM9 CPU and 32-MB SD-RAM). The results of (WANG;
LU, 2013) indicate that a DES-CBC encryption requires 183.81ms of processing time,
while a RSA encryption requires 228.18ms to encrypt the same amount of data from a
solid-state transformer, using a 1024-bit key. If a 2048-bit key is used, the processing
time of RSA, for example, grows to 1457.14ms. This may be an issue if it is considered
an NCS sensitive to delay. Such processing times exemplify the tradeoff between security
and performance, which must be taken into account when dealing with NCS where
real-time communication is normally required.

In (AMIN et al., 2013a; AMIN et al., 2013b) the authors report field-
operational test attacks, performed at the Gignac canal system (in Southern France),
where the attacker pilfers water from the canal, without being noticed, by manipulat-
ing the data transmitted by a sensor. The authors indicate that, among all sensors of
the attacked canal, there is a set of sensors that are more critical and should receive
more investments on cyber-security mechanisms aiming more resilience to tampering.
Examples of such cyber-security mechanisms are experimentally assessed in (PANG;
LIU, 2012), where the authors propose a recursive networked predictive control (RNPC)
technique, combined with a symmetric-key encryption algorithm, a times-tamp and a
hash algorithm to ensure data confidentiality and integrity.

However, in spite of these security mechanisms, one must consider the possi-
bility of the mentioned countermeasures fail and the attacker gain access to the data
flowing in the NCS. Indeed, the access to the NCS data can be facilitated by alternative
attack methods, such as social engineering attacks (KROMBHOLZ et al., 2015) to
obtain passwords or encryption keys in use. In this case, specifically for the System
Identification attacks and model-based offensives addressed in this work, an alternative
to impair them is to prevent the attacker in obtaining the system model by hindering
the analysis of the captured data – i.e. making the System Identification algorithm
inaccurate/ineffective. Therefore, this work proposes a countermeasure to mitigate the
mentioned System Identification attacks, in situations where the attacker gets access
to the data that is transmitted through the NCS. This countermeasure consists of a
switching controller design that hinders the identification process and, at the same time,
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allows a satisfactory plant control. It is worth emphasizing that this countermeasure
is intended to increase the security of NCSs against System Identification attacks and
model-based offensives, in case of failure or absence of conventional security mechanisms
for data confidentiality, integrity and authenticity (PANG; LIU, 2012; WANG; LU, 2013;
STOUFFER et al., 2015).

Additionally, the present work also proposes a countermeasure to detect/iden-
tify SD-Controlled Data Injection attacks, in case an attacker gathers all resources needed
to implement it in an NCS. The countermeasure consists of a link monitoring strategy
that uses white gaussian noise to excite the attack function an obtain the information
necessary for the identification process. A Noise Impulse Integration (NII) technique is
proposed to increase the accuracy of the countermeasure.

The literature (MO; SINOPOLI, 2009; MO et al., 2012; PASQUALETTI;
DORFLER; BULLO, 2015) report countermeasures that analyze the NCS signals to
detect/identify possible cyberattacks in the system control loop. A brief discussion on
these countermeasures is presented below.

In (MO; SINOPOLI, 2009; MO et al., 2012; PASQUALETTI; DORFLER;
BULLO, 2015) the authors report a countermeasure that make use of random Gaussian
noise to detect replay attacks in NCSs. According to (PASQUALETTI; DORFLER;
BULLO, 2015), a replay attack is carried out by hijacking the NCS sensors, recording the
readings for a certain time, and repeating such readings while injecting a malicious signal
into the system. In (MO; SINOPOLI, 2009; MO et al., 2012), it is shown that these replay
attacks can be detected by injecting a random signal (unknown to the attacker) into the
system. The random signal, in this case, acts as an authentication signal. Considering
that the random signal is unknown to the attacker, the authors prove that the detector is
able to verify whether the received signals derive from a replay attack or not. Note that
the countermeasure proposed in (MO; SINOPOLI, 2009; MO et al., 2012) is restricted
to the case of replay attacks, not being able to identify an SD-Controlled Data Injection
attack. Moreover, it incurs a drawback: as stated by the authors, when the system is
under normal operation, the controller is not optimal anymore, which means that in
order to detect the attack, the solution needs to sacrifice control performance.

In (PASQUALETTI; DORFLER; BULLO, 2013; PASQUALETTI; DOR-
FLER; BULLO, 2015) the authors address a general class of monitors that, to detect
and identify additive attacks in cyberphysical systems, does not inject signals in the
communication links. This class of monitors detect and identify attacks based on the



Chapter 2. Taxonomy and Related Works 35

presumed knowledge of the system dynamics and measurements. Let (2.1) represent the
model of the attacked system:

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t).

(2.1)

wherein x : R → Rn and y : R → Rp are the maps describing the evolution of the
system state and measurements, respectively, and E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n and D ∈ Rp×m are constant matrices that characterize the system. So, to
perform the detection and identification tasks in (PASQUALETTI; DORFLER; BULLO,
2013; PASQUALETTI; DORFLER; BULLO, 2015), the input of the monitoring system
is Λ = {E,A,C, y(t)}. By knowing {E,A,C}, the attack is detected and identified based
on its effect in the output measurements y(t). A drawback of this kind of monitor is
that a fortuitous and involuntary incident modifying the actual system model (i.e.,
modifying E, A or C) may affect the attack detection and identification processes. In
this case, modifications in the physical domain that reflect changes in E , A or C can
cause inconsistencies to the monitor, suggesting an attack and drawing the attention to
the cyber domain even when the problem is not there.

Another approach to reveal data deception attacks in NCSs is presented in
(TEIXEIRA, 2014). The author tackle the problem of detecting attack signals (added to
the NCS links) by modifying the system’s structure (2.1). Specifically, to reveal attacks,
the method requires modifications in the system dynamics, inputs, and outputs, through
changes in matrices A, B, and C, respectively. The results show that such strategy is
effective, however, some considerations regarding practical constraints of the method
are necessary. First, according to (TEIXEIRA, 2014), to reveal attacks by modifying
matrix C, it is necessary to add measurement signals to the system, which consequently
increases the network traffic. Then, the strategy to modify the system matrix A may
not be convenient, or even feasible, given that it may imply structural changes in the
physical process. Last, to modify the input matrix B, the authors propose a coordinated
scaling of the control inputs between the controller and actuator. To do so, the authors
define a new plant input matrix B̃ = BW and a new control signal ũ(t) = W−1u(t),
where W is an invertible matrix unknown to the attacker. According to the authors, this
scheme can be interpreted as a coding or encryption performed between the controller
and actuator, where W acts as their secret key. The issue that arises from this scheme is
that, when modifying W , an occasional lack of synchronism between the controller and
actuators may actually scale the control signal applied to the plant, which may affect
the system performance.
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Regarding the aspects and characteristics of the monitoring systems discussed
in this section, the countermeasure proposed in this work takes special care to avoid
some of the reported issues when specifically detecting/identifying SD-Controlled Data
Injection attacks:

1. The proposed countermeasure does not interfere in the NCS behavior when the
system is in its normal operation. Without the attack the injected noise is canceled,
manifesting only in the presence of an attack;

2. Ocasional changes in the physical process does not lead the monitoring system to
inappropriately suggest a cyberattack. In the present work, to avoid this problem,
the proposed solution injects a noisy signal in the NCS in such way that the noise
only manifests itself when an SD-Controlled Data Injection attack is present in
the monitored link. In this case, if the injected noise is present in measurements,
it is possible to state that an SD-Controlled Data Injection attack is occurring.
On the other hand, if the noise is cancelled, it is possible to state that there is no
SD-Controlled Data Injection attack in the NCS link, regardless of whether the
monitored system is physically modified or not. This way, it is possible to evaluate
whether the problem is restricted to the cybernetic domain or not.

3. In the present work, the countermeasure specifically proposed to reveal SD-
Controlled Data Injection attacks, does not require modifications in the plant
structure, avoiding changes in the physical process, increase of network traffic, and
risks associated with occasional lack of coordination when scaling the NCS signals,
for instance.
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3 SYSTEM IDENTIFICATION ATTACKS AND MODEL-BASED OFFEN-
SIVES

This chapter discusses System Identification attacks and model-based offen-
sives in NCSs, describing the underlying details on how they are built, as well as how
they can work together to compose intelligent and sophisticated threats to cyber-physical
systems. Section 3.1 presents the two System Identification attacks proposed in this work.
Section 3.2 presents the three model-based offensives that can be built with the support
of System Identification attacks.

3.1 SYSTEM IDENTIFICATION ATTACKS

This section describes the two system identification attacks defined in the
taxonomy discussed in Section 2.1: the Passive System Identification attack; and the
Active System Identification attack. These attacks aim NCSs constituted by impulse-
response systems, defined by Linear Time Invariant (LTI) transfer functions, such as the
NCSs presented in (TIPSUWAN; CHOW; VANIJJIRATTIKHAN, 2003; ZHANG et al.,
2013; FAROOQUI et al., 2014; SMITH, 2011; PANG; LIU, 2012; DASGUPTA et al., 2013;
AMIN et al., 2013a; SMITH, 2015). Exemples of potential targets with this characteristic
can range from non-critical industrial plants controlled by wireless networked control
systems (WNCS) (FERRARI et al., 2013; SADI; ERGEN; PARK, 2014), to large
Pressurized Heavy Water Reactors (PHWR) (DAS et al., 2006; DASGUPTA et al., 2013;
SÁ; CARMO; MACHADO, 2018) or water canal systems (AMIN et al., 2013a; SMITH,
2015) controlled by wired NCSs. The well known vulnerabilities of the cyber domain
(UMA; PADMAVATHI, 2013; DRIAS; SERHROUCHNI; VOGEL, 2015; COLLANTES;
PADILLA, 2015), which may allow an attacker to have access to the control loop of an
NCS, and the typical model of the aforementioned cyber-physical systems, which are
consistent with the attack herein proposed, evince why this attack may actually happen.
Note that it includes targets with potentially significant impacts, such as a PHWR and
water canal systems. Section 3.1.1 presents the details of the Passive System Identification
attack, while Section 3.1.2 describes the Active System Identification attack.

3.1.1 Passive System Identification Attack

The Passive System Identification attack (SA; CARMO; MACHADO, 2017c)
is intended to assess the coefficients of the plant’s transfer function G(z) and the
controller’s control function C(z) of the generic NCS shown in Figure 1. Both functions
are LTI. The attack uses the Backtracking Search Optimization Algorithm (BSA) – a
metaheuristic proposed in (CIVICIOGLU, 2013) and briefly described in (SÁ; NEDJAH;
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MOURELLE, 2016) – to minimize the fitness function presented in this section. The BSA
is specifically chosen to demonstrate the feasibility of System Identification attacks on
NCSs. Moreover, it is noteworthy that the use of BSA to perform a system identification
process was not reported before in the literature, which constitutes another novelty of
this work.

The BSA is an evolutionary algorithm that uses the information obtained by
past generations – or iterations – to search for solutions for optimization problems. The
algorithm has two parameters that are empirically adjusted: the size of its population P ;
and η, described in (SÁ; NEDJAH; MOURELLE, 2016), that establishes the amplitude
of the movements of the individuals of P . The parameter η must be adjusted aiming to
assign to the algorithm both good exploration and exploitation capabilities.

If both input i(k) and output o(k) of an NCS device are known, the model of
such device can be assessed by applying the known i(k) in an estimated model, which
must be adjusted until its estimated output ô(k) converge to o(k). In this sense, the
BSA is used to iteratively adjust the estimated model, by minimizing a specific fitness
function, until the estimated model converge to the actual model of the real device, that
can be either a controller or a plant.

To establish the fitness function, firstly, it must be considered a generic LTI
system, whose transfer function Q(z) is represented by (3.1):

Q(z) = O(z)
I(z) = anz

n + an−1z
n−1 + ...+ a1z

1 + a0

zm + bm−1zm−1 + ...+ b1z1 + b0
, (3.1)

wherein I(z) is the system input, O(z) is the system output, n and m are the order of the
numerator and denominator, respectively, and [an,an−1,...a1, a0] and [bm−1,bm−2,...b1, b0]
are the coefficients of the numerator and denominator, respectively, that are intended
to be found by this System Identification attack. Also, it must be considered that i(k)
and o(k) represent the sampled input and output of the system, respectively, where
I(z) = Z[i(k)], O(z) = Z[o(k)], k is the sample number and Z represents the Z-transform
operation.

In this System Identification attack, i(k) and o(k) are firstly captured by an
eavesdropping attack (KHATRI et al., 2015; ZOU; WANG, 2016), for exemple, during a
monitoring period T . To deal with the eventual loss of samples, that may not be received
by the attacker during T , the algorithm holds the value of the last received sample,
according to (3.2), wherein x(k) can either be i(k) or o(k):

x(k) =
 x(k − 1) if sample k is lost;
x(k) otherwise.

(3.2)
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Then, after acquiring i(k) and o(k), the captured i(k) is applied to the
input of an estimated model, that is described by a transfer function whose coefficients
[an,j,an−1,j,...a1,j,a0,j,bm−1,j, bm−2,j,...b1,j,b0,j] are the coordinates of an individual j of
the BSA. The application of i(k) to the input of the estimated model results in an
output signal ôj(k). After obtaining ôj(k), the fitness fj of individual j is computed
comparing the output o(k), captured from the attacked device, with the output ôj(k) of
the estimated model, according to (3.3):

fj =

N∑
k=0

(o(k)− ôj(k))2

N
, (3.3)

wherein N is the number of samples that exist during the monitoring period T . Note that,
if the attacker does not lose any sample of i(k) and o(k) during T , then min fj = 0 when
[an,j,an−1,j,...a1,j,a0,j,bm−1,j,bm−2,j,...b1,j,b0,j] = [an,an−1,...a1, a0, bm−1,bm−2,...b1, b0], i.e.
when the estimated model converges to the actual model of the attacked device.

It is possible to establish an analogy between this System Identification attack
and the Known Plaintext cryptanalytic attack (STALLINGS, 2006), wherein i(k) and
o(k) correspond to the plaintext and ciphertext, respectively, the form of the generic
transfer function Q(z) corresponds to the encryption algorithm and the actual coefficients
of Q(z) corresponds to the secret key.

Note that, in this Passive System Identification attack, by definition, the
attacker does not interfere in – or excite – the system to collect the signals necessary
to estimate the model of the attacked system. However, the attack depends on the
occurrence of events, that are not controlled by him/her, to produce signals that carry
meaningful information for the system identification algorithm. This passive approach
can make the system identification more time consuming, until meaningful information
transits through the eavesdropped communication links. The situation is even worse if
the system is in steady state because no meaningful information may transit through
the NCS’s communication links for a long time. This results from the fact that the
information content of signals measured under steady operating conditions is often
insufficient for identification purposes (TULLEKEN, 1990).

3.1.2 Active System Identification Attack

The Active System Identification attack (SA; CARMO; MACHADO, 2017b)
is intended to overcome the constraint of the Passive System Identification Attack. It
constitutes an alternative to the Passive System Identification attacks in situations where
the attacker may not wait so long for the occurrence of meaningful signals. This attack
is used to assess the coefficients of the transfer function G(z) = C(z)P (z) of the NCS
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shown in Figure 4, wherein C(z) is the controller’s control function and P (z) is the
plant’s transfer function. These transfer functions are all LTI. The attack is performed
by a MitM that may be located either in the forward or in the feedback link. For the
sake of clarity of the analysis presentation, but without loss of generality, we focus on
the case where the MitM is in the feedback link, i.e. between the plant’s sensors and the
controller’s input.
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Figure 4 – Active System Identification attack with a MitM in the feedback link – own
figure published in (SA; CARMO; MACHADO, 2017b).

To estimate the attacked NCS model, the attacker injects an attack signal a(k)
and measures the system response to such signal. The complete response of the generic
NCS shown in Figure 4, considering only the inputs R(z) = Z[r(k)] and A(z) = Z[a(k)],
is expressed in the z domain by (3.4):

Y (z) = G(z)
1 +G(z)R(z)− G(z)

1 +G(z)A(z), (3.4)

wherein Y (z) = Z[y(k)]. As a premise, in a normal condition, it is considered that
a(k) = 0 and the system is designed to make y(k) → q, in such way that y(k) ≈ q

∀k > ks, i.e. the NCS output y(k) converges and stabilizes at a constant value q after a
certain amount of samples ks. Indeed, it is usually one of the main aims of a control system.
Now, considering a(k) 6= 0, the output y(k), ∀k > ks, may be defined approximately
as (3.5):

y(k) = q −Z−1
[

G(z)
1 +G(z)A(z)

]
,∀k > ks. (3.5)

Thus, after ks, the portion of y(k) caused by r(k) can be eliminated by just
subtracting q from (3.5), which leads to (3.6):

ya(k) = y(k)− q = −Z−1
[

G(z)
1 +G(z)A(z)

]
,∀k > ks. (3.6)
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wherein ya(k) represents the portion of y(k) caused by the attack signal a(k). The value
of q can be assessed by the attacker through an eavesdropping attack in the feedback
stream, by just capturing y(k) after the NCS stabilization. The subtraction of q after ks
makes the system identification attack independent of r(k) ∀k > ks. The Active System
Identification attack now just relies on the attack signal a(k) – which can be chosen – and
the system response to the attack ya(k), which can be obtained in accordance with (3.6).
The signal ya(k) starts with the injection of a(k) and has the size of a monitoring
period T .

If the attack input a(k) and its consequent output ya(k) are known, the model
of G(z) can be assessed by applying a(k) in an estimated system, defined by (3.7):

ŷa(k) = −Z−1
[

Ge(z)
1 +Ge(z)

]
∗ a(k), (3.7)

wherein Ge(z) is the estimation of G(z) and ŷa(k) is the output of the estimated system
in face of Ge(z). By comparing ŷa(k) with ya(k), the attacker is capable to evaluate
whether Ge(z) is equal/approximately G(z). Note that Ge(z) is a generic transfer function
represented by (3.8):

Ge(z) = αnz
n + αn−1z

n−1 + ...+ α1z
1 + α0

zm + βm−1zm−1 + ...+ β1z1 + β0
, (3.8)

wherein n and m are the order of the numerator and denominator, respectively, while
[αn,αn−1,...α1, α0] and [βm−1, βm−2,...β1, β0] are the coefficients of the numerator and
denominator, respectively, that are intended to be found by this Active System Identifi-
cation attack. Therefore, to find G(z), the coefficients of Ge(z) are adjusted until the
estimated output ŷa(k) converges to the known ya(k).

In this attack, two bio-inspired metaheuristics – BSA and Particle Swarm
Optimization (PSO) (KENNEDY J. E EBERHART, 1995) – are used to iteratively
adjust the estimated model, by minimizing a specific fitness function until the estimated
model Ge(z) converges to the actual G(z) of the real NCS. To compute the fitness of
the individuals of the optimization algorithm (i.e. BSA or PSO), the same attack signal
a(k) that caused ya(k) is applied on the estimated system defined by (3.7) and (3.8),
where the coefficients of Ge(z) are the coordinates xj = [αn,j,αn−1,j,...α1,j, α0,j,βm−1,j,
βm−2,j,...β1,j,β0,j] of an individual j of the BSA/PSO. The output ŷaj(k) is the response
of the estimated model (3.7) (3.8) in face of a(k), when the coefficients of Ge(z) are
xj. Then, the fitness fj of each individual j is obtained comparing ŷaj(k) with ya(k),
according to (3.9):

fj =

N∑
k=0

(ya(k)− ŷaj(k))2

N
, (3.9)
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wherein N is the number of samples that exist during a monitoring period T of
ya(k). Note that, if no other inputs – perturbation or noise – occur in the NCS
during T , then min fj = 0 when [αn,j,αn−1,j,...α1,j,α0,j, βm−1,j,βm−2,j,... β1,j,β0,j] =
[αn,αn−1,...α1, α0,βm−1, βm−2,...β1, β0], i.e. when the estimated Ge(z) converges to G(z).

An analogy may be established between this Active System Identification
attack and the Chosen Plaintext cryptanalytic attack (STALLINGS, 2006), wherein
a(k) corresponds to the chosen plaintext, ya(k) represents the ciphertext, equations (3.7)
and (3.8) together correspond to the encryption algorithm, and the actual coefficients
[αn,αn−1,...α1, α0] and [βm−1,βm−2,...β1, β0] of Ge(z) correspond to the secret key.

It is worth mentioning that this attack requires the previous knowledge about
the order of the numerator and denominator of equation (3.8) (n and m, respectively).
Using the analogy with the Chosen Plaintext cryptanalytic attack, it is equivalent to
require the knowledge about the size of the secret key of the encryption algorithm. In
this Active System Identification attack – such as in the Passive System Identification
attack –, the information of n and m is necessary to define the number of dimensions of
the search space of the optimization algorithm (or the number of unknown coefficients
of G(z)) which must be set to n + m − 1. Although this is an attack constraint, this
information may be inferred if the attacker, at least, knows what the attacked plant is
and what type of controller is being used.

3.2 MODEL-BASED OFFENSIVES

This section describes three covert and accurate model-based attacks that, to
be implemented, require the support of system identification attacks: the SD-Controlled
Data Injection attack; the Covert Misappropriation attack; and the SD-Controlled
Data Loss attack. Section 3.2.1 characterizes and explains the SD-Controlled Data
Injection attack (SA; CARMO; MACHADO, 2017c) which, according to the taxonomy
of Section 2.1, is intended to be physically covert. Section 3.2.2 describes the the Covert
Misappropriation attack, which is endowed with a specific architecture that makes it
cybernetically covert from the perspective of the signal arriving at the controller. Lastly,
Section 3.2.3 presents the novel SD-Controlled Data Loss attack, which aims to cause the
same impacts of the SD-Controlled Data Injection attack, however, by causing packets
dropouts instead of injecting false signals in the NCS. It is worth mentioning that these
attacks require access to the NCS control loop and data. In this Chapter, as a premise,
it is assumed that this requirement is satisfied.
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3.2.1 SD-Controlled Data Injection

Based on the taxonomy presented in Section 2.1.1, the attack described
in this section is classified as an SD-Controlled Data Injection attack (SA; CARMO;
MACHADO, 2017c). It is a model-based attack and its purpose is to reduce the plant
MTBF and/or reduce the efficiency of the physical process that the plant performs, by
inserting false data in the control loop. At the same time, the attack is designed to meet
the requirement of being physically covert, as the definition presented in Section 2.1.2.

One way to degrade the physical service of a plant, for example, is through
the induction of an overshoot during its transient response. The overshoots, or peaks
occurred when the system exceeds the targeted value during its transient response, can
cause stress and possibly damage physical systems such as mechanical, chemical and
electromechanical systems (EL-SHARKAWI; HUANG, 1989; TRAN; HA; NGUYEN,
2007). Additionally, once they occur in a short period of time, the overshoots are often
difficult to be noticed by a human observer. Another way to degrade the service of a
plant is causing a constant steady state error on it, i.e. producing a constant error when
t→∞. A low proportion steady state error, besides being difficult to be perceived by a
human observer, may reduce the efficiency of the physical process or, occasionally, stress
and damage the system in mid/long term.

In the present attack, to achieve either of the two mentioned effects, i.e.
an overshoot or a constant steady state error, the attacker interfere in the NCS’s
communication process by injecting false data into the system in a controlled way. To do
so, the attacker act as a MitM that executes an attack function M(z), as presented in
Figure 5, wherein U ′(z) = M(z)U(z), U(z) = Z[u(k)] and U ′(z) = Z[u′(k)].

The functionM(z) is designed based on the models of the plant and controller,
both obtained through one of the system identification attacks described in Section 3.1.
Therefore, the SD-Controlled Data Injection attack is implemented together with a
System Identification attack, in a joint operation composed by two stages:

STAGE-I: The system identification attack is executed to provide the attacker an
accurate knowledge about the models of the targeted system, i.e. the plant’s
transfer function G(z) and the controller’s control function C(z). This
knowledge is obtained based on signals that are collected from the input
and output of the NCS’s devices.

STAGE-II: The Data Injection attack is performed. The attacker, as an MitM, injects
false data in the NCS control loop. The injected false data is computed
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based on the knowledge obtained by the attacker during STAGE-I, in order
to covertly and accurately change the plant physical behavior.
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Figure 5 – MitM attack – own figure published in (SA; CARMO; MACHADO, 2017c).

This joint operation is able to degrade the service performed by a plant,
through interventions that produce subtle changes on its physical behavior. It is worth
mentioning that an uncontrolled intervention in an NCS may lead the plant to an
immediate breakdown, or even significantly change its behavior, which may cause the
attack disclosure and the eventual failure of the operation. Thus, the changes driven
by the attack herein described are dimensioned so that the modifications in the plant’s
behavior are physically difficult to be perceived. That is why this attack is classified as
physically covert.

To ensure that the attack to an NCS is physically covert, the attacker must
plan his offensive based on an accurate knowledge about the system dynamics, otherwise
the attack consequences may be unpredictable. One possible way to obtain such knowledge
is through conventional intelligence operations, performed to collect information regarding
the design and dynamics of the NCS. Another way to gather information about the
targeted system is through what we refer in Section 2.1.1 as a Cyber-Physical Intelligence
attack. Specifically, the CPI attack that supports this SD-Controlled Data Injection attack
is a system identification attack, which is performed in the aforementioned STAGE-I.

The attack effectiveness, therefore, depends on the design of M(z) which, in
turn, depends on the accuracy of the system identification attack. It is worth mentioning
that, in Figure 5, although the MitM is placed in the forward stream, it is also possible
perform an attack by interfering in the NCS feedback stream. Moreover, the MitM may
act in wired or wireless networks, such as in (HWANG et al., 2008).
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3.2.2 Covert Misappropriation

The attack for covert misappropriation of NCSs was introduced in (SMITH,
2015). The aim of this attack is to allow a Man-in-the-Middle (MitM) to perform
malicious control actions in a physical plant, while remaining undetectable from the point
of view of the signals arriving at the original networked controller. Figure 6 shows an
implementation of such covert misappropriation attack, based on the attack architecture
proposed in (SMITH, 2015), wherein A(z) is the covert controller and G′(z) is model of
the plant’s actuation to output response – i.e. the plant model, which the attacker is
supposed to know. The input λ(k) drives the attacker’s feedback loop and allows the
MitM to lead the actual plant output to the desired offset.
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Figure 6 – Covert Misappropriation attack – own figure published in (SÁ; CARMO;
MACHADO, 2018).

Note in Figure 6 that, in the forward stream, the MitM performs a data
injection attack in which the plant input is given by (3.10):

u′(k) = u(k) + ψ(k), (3.10)

wherein ψ(k) is the attack signal (3.11):

ψ(k) = λ(k) ∗ Z−1
[

A(z)
1 + A(z)G′(z)

]
, (3.11)

wherein Z represents the Z-transform operation. Therefore, considering this data injection,
the plant output Y (z) = Z [y(k)] is defined as (3.12):

Y (z) = Z [u(k) + ψ(k)]G(z). (3.12)

Yet, from Figure 6, it is possible to see that in the feedback stream the MitM also
implements a data injection attack in order to manipulate the controller’s input signal
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Y ′(z) = Z [y′(k)]. With this manipulation, considering (3.12), the signal that arrives at
the controller is defined as (3.13):

Y ′(z) = Y (z)−Z [ψ(k)]G′(z)
= Z [u(k) + ψ(k)]G(z)−Z [ψ(k)]G′(z).

(3.13)

In this sense, if the attacker perfectly knows the model of the actual plant – i.e. if
G′(z) = G(z) –, then (3.13) can be rewritten as (3.14):

Y ′(z) = Z [u(k) + ψ(k)]G(z)−Z [ψ(k)]G(z)
= Z [u(k) + ψ(k)− ψ(k)]G(z)
= Z [u(k)]G(z)

(3.14)

which, from the controller’s point of view, means that the plant is behaving as in a normal
operation, where Y (z) = Z [u(k)]G(z). In other words, by analyzing y(k), one should
assume that u′(k) = u(k) and y′(k) = y(k) and, therefore, there is no data injection
attack in the NCS.

As demonstrated in (SMITH, 2015) and explained in this section, the Covert
Misappropriation attack is model-based and its cybernetic covertness depends on how
accurate is the plant model known by the attacker. Despite this fact, in (SMITH, 2015) it
was not discussed the step that should be taken before implementing the referred attack –
i.e., a cyber attack to obtain the plant model (a System Identification attack). Therefore,
an evaluation on how effective the joint operation of a System Identification attack and
a Covert Misappropriation attack was not done in (SMITH, 2015). In the present work –
specifically in Chapter 5 –, it is demonstrated how effective the Covert Misappropriation
attack can be when supported by a System Identification attack, enforcing the importance
to prevent the disclosure of the NCS models.

3.2.3 SD-Controlled Data Loss

The Controlled Data Loss attack herein proposed is intended to degrade the
service performed by a plant. It aims to reduce the efficiency of the physical process
being controlled, or even diminish the plant MTBF in mid/long term. For this reason,
according to the taxonomy presented in Section 2.1, this attack belongs to the category
of Service Degradation (SD) attacks and, therefore, is referred to as an SD-Controlled
Data Loss attack. The attack is designed to produce subtle and harmful changes in the
plant behavior by causing data loss in the NCS communication process. Additionally,
special care is taken to avoid the indiscriminate loss of samples, as well as the complete
denial of communication, which could facilitate the attack disclosure.

As discussed in Section 3.2.1, one possible strategy to degrade the service
of a plant is by inducing overshoots on it, which can stress and eventually damage the
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physical system (SA; CARMO; MACHADO, 2017c; EL-SHARKAWI; HUANG, 1989;
TRAN; HA; NGUYEN, 2007). In this sense, for the sake of presentation clarity, but
without loss of generality, in this work, the SD-Controlled Data Loss attack is designed to
cause overshoots on the plant. It would be possible, however, to design other controlled
data loss attacks to cause different harmful behaviors, such as increasing the plant
settling time.

For an SD-Controlled Data Injection attack to cause an overshoot, the attacker
– acting as an MitM – modifies the data flowing in the forward and/or feedback streams of
the NCS, based on the models obtained through a System Identification attack. However,
to be able to perform an SD-Controlled Data Injection attack and send forged samples
to the attacked device, the attacker may have to deal with possibly existing security
mechanisms for data integrity and authenticity, which increases the attack complexity.

The SD-Controlled Data Loss attack arises as an alternative to produce the
same kind of harmful behavior in a simpler fashion, i.e., without the need to deal with
these security mechanisms. In the proposed attack strategy, the overshoot is produced
by causing the loss of packets containing specific samples in the forward and feedback
streams of the NCS. In a Wireless Networked Control System (WNCS), for instance,
loss of samples can be caused by jamming the wireless links during data transmission.
To find which samples must be lost to achieve a certain desired overshoot effect, the
BSA can once again be used, as it was used in the context of the System Identification
attacks presented in Section 3.1. To do so, a fitness function whose minimum value leads
to an attack solution must be designed.

To design such fitness function, firstly, it is necessary to consider how the
attacked system deals with a lost sample. In NCSs, where real-time communication is
normally required, the retransmission of old samples is generally not useful (HESPANHA;
NAGHSHTABRIZI; XU, 2007). Therefore, as described in (DASGUPTA et al., 2013;
HESPANHA; NAGHSHTABRIZI; XU, 2007), it is often assumed that when the packet
containing a sample s(k) is dropped, the NCS uses the value of most recently received
sample. This assumption is also made in the design of the present data loss attack, where
s(k) may be a sample in either forward or feedback streams.

Now, let S = {s(k),s(k + 1), . . . ,s(k + h − 1)} be a sequence of h samples
among which the attacker will choose the ones that should be lost to cause the desired
harmful behavior. Based on this, let W = {b0,b1, . . . ,b(h−1)} be a word of h bits used
to indicate which samples of S should be lost or preserved from the attacker’s point of
view. In this representation, a bit of W is set to 0 if the attacker should cause the loss of
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the corresponding sample in S. Conversely, a bit of W is set to 1 if the attacker should
preserve the corresponding sample in S. We consider the possibility that an attacker will
remove samples from forward and/or feedback streams. Therefore, in an attack solution,
let the words Wfw and Wfb indicate which samples should be lost in the sequences
Sfw = {u(k),u(k + 1), . . . ,u(k + h− 1)} and Sfb = {y(k),y(k + 1), . . . ,y(k + h− 1)} of
the forward and feedback streams, respectively.

The attacker’s task is to find the words Wfw and Wfb that cause the desired
harmful behavior in the NCS. This task is performed using the BSA, taking into account
the models previously obtained by a System Identification attack. The coordinates of
an individual j of the BSA are xj = [Wfw,j,Wfb,j], wherein Wfw,j and Wfb,j are an
estimation of Wfw and Wfb. Aiming an overshoot, the fitness Fj of each individual j is
computed according to (3.15):

Fj = F1,j + F2,j, (3.15)

in which terms F1,j and F2,j are computed as indicated in equations (3.16) and (3.17),
respectively:

F1,j =
 (max ŷj(k)−Υ)2 , if k1 ≤ kpeak ≤ k2,
P , otherwise.

(3.16)

F2,j =
kl∑

k=ks

(ŷj(k)− yss)2 , (3.17)

wherein ŷj(k) is the plant output of a simulated NCS, in which the set of samples defined
by xj = [Wfw,j,Wfb,j ] are lost. The control function and the plant transfer function of the
simulated NCS, used to obtain ŷj(k), are provided by the System Identification attack.
The term F1,j aims to make the overshoot, i.e. the peak of ŷj(k), as close as possible to
the overshoot level aimed by the attacker, defined by Υ. Also, it specifies that kpeak, i.e.
the instant when the peak of ŷj(k) occurs, must be within a specific period bounded by
k1 and k2. Otherwise, the fitness of the individual is penalized by P , empirically defined.
In turn, F2,j aims to ensure that the plant output ŷj(k) converges to yss after a specific
moment defined by ks. The constant yss is the value which y(k) should assume in steady
state without attack. The attacker can obtain yss by measuring the actual plant output
y(k) in a normal operation. Note that, in F2,j, the steady state error is computed from
ks until the end of the simulation, defined by kl. It is possible to see, from (3.15), (3.16)
and (3.17), that minFj = 0 when an overshoot with amplitude Υ occurs between k1 and
k2, and ŷj(k) stabilizes at yss after ks.
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3.3 SUMMARY

This chapter presents two System Identification attacks and three model
based offensives that can work together in order to cause harmful effects in an NCS,
even if the attacker does not have, in a first moment, the models of the attacked system.
The joint operation of these attacks occurs according to the following sequence:

1. First, a System Identification attack estimates the NCS models based on signals
eavesdropped in the attacked system;

2. Then, a model based offensive (designed based on the models learned through the
System Identification attack) performs malicious interferences in the NCS links in
order to cause accurate and covert behaviors that affect the plant service.

The System Identification attacks herein proposed are: the Passive System
Identification attack; and the Active System Identification attack. Both attacks use
bioinspired metaheuristics to estimate the NCS models. The Passive System Identification
attack estimates the NCS models through the analysis of signals eavesdropped in the
attacked system. This attack does not interfere in the NCS to obtain data for the
identification process. Instead, it passively analyzes signals that typically flow in the
NCS in normal operating conditions. The Active System Identification attack, in turn,
injects an attack signal into the NCS in order to estimate its models based on the system
response to the injected signal. From the attacker’s perspective, this attack is useful, for
instance, when the system is in steady state and the attacker cannot wait for a signal
carrying the meaningful information required for the identification process.

The model-based offensives presented in this chapter are: the SD-Controlled
Data Injection attack; the Covert Misappropriation attack; and the SD-Controlled Data
Loss attack. First, this chapter characterizes the SD-Controlled Data Injection attack,
which modifies the data transmitted through the NCS links in order to cause physically
covert behaviors that degrade the plant services. To do so, an MitM executes an attack
function M(z) that is designed based on the NCS models. Then, this chapter describes
the Covert Misappropriation attack, introduced in (SMITH, 2015), which injects an
attack signal in the NCS forward stream and, then, eliminates from the feedback signal
the interference it caused to the plant. The attack architecture allows the attacker to
be cybernetically covert from the perspective of signals arriving at the controller. To
compute the signal that is subtracted from the feedback stream, the attacker uses the
models provided by the system identification attack. Finally, this chapter proposes the
SD-Controlled Data Loss attack. This novel attack aims to cause subtle and harmful
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changes in the plant behavior by causing data loss in the NCS communication process. To
smartly find a suitable attack solution (i.e. a sequence of packets to be dropped through
malicious interferences in the communication process), the attacker uses a bioinspired
metaheuristic and the models previously learned through the System Identification attack.
Chapter 5 presents simulation results of the attacks covered in the present chapter.
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4 COUNTERMEASURES

This chapter presents two countermeasures against attacks in NCSs. The first
countermeasure, described in Section 4.1, is used to hinder an attacker from obtaining
the NCS models through the System Identification attacks proposed in Section 3.1. The
second countermeasure, presented in Section 4.2, introduces a link monitoring strategy
to identify possible SD-Controlled Data Injection attacks – characterized in Section 3.2.1
– in the NCS links.

4.1 MITIGATION OF SYSTEM IDENTIFICATION ATTACKS

This section presents the use of switching controllers as a technique to hinder
system identification attacks. The use of this technique is motivated by the concept
that the less the attacker knows the NCS, the more difficult is his task implement a
covert/model-based attack. In Section 4.1.1, it is discussed the motivation and the role of
this technique as part of a layered defense strategy. Section 4.1.2 presents the underlying
details of the referred technique.

4.1.1 Discussion

An NCS owner might think being safe from covert/model-based attacks,
supposing that an eventual attacker does not know the plant’s design and, thus, its
models. Notwithstanding, this work demonstrates how a covert/model-based attack
may be built starting from few information about the NCS – here, the only starting
information is the structure of the transfer functions of both the plant and controller.
Thus, system security must not be relaxed, and countermeasures have to be adopted.

As shown in Figure 3, a complete model-based attack is composed by a
sequence of three individual attacks – or stages –, namely: eavesdropping; system
identification (active or passive); and a model-based interference (a controlled data
injection, packet loss, or jitter). Note that the requirements specified in Figure 3 help
in the development of layered defense strategies (HAHN, 2016) for covert/model-based
attacks, where both information technology (IT) and operational technology (OT)
countermeasures may be involved. Thus, a set of preventive countermeasures can be
systematically thought based on the requirements drawn in Figure 3:

I - The first, and straightforward preventive countermeasure, is to increase the dif-
ficulties for an attacker to have access to the control loop which, according with
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Figure 3, may prevent the execution of the three mentioned stages of the attack.
According to (STOUFFER et al., 2015) the most effective architectural concept to
protect an NCS is to segregate the control network from other networks. However,
sometimes, it is not feasible or even wanted. Then, the possibility of an undesir-
able access to the control loop can be reduced by applying network segmentation,
DMZ, firewall policies and using specific network architectures, such as established
in the guidelines described in (STOUFFER et al., 2015). In the case of WNCS,
that are techniques designed to minimize the transmitting power of the network
devices (SADI; ERGEN; PARK, 2014) that should be used in order to reduce the
probability of an attacker getting access to the control loop. Note that, minimizing
the transmitting power of the WNCS’s devices also minimizes the area from where
the control loop can be accessed, which preventively reduces the probability to
have the proposed attack launched on the WNCS.

II - In addition to the countermeasures aimed to prevent access to the control loop,
other countermeasures are recommended to deny the access to the data that flows
through the NCS, in case the former fails. In (PANG; LIU, 2012), it is proposed
a countermeasure that integrates a symmetric-key encryption algorithm, a hash
algorithm and a timestamp strategy to form a secure transmission mechanism
between the controller side and plant side, which is responsible for enforcing the
data confidentiality and checking its integrity and authenticity. The use of such
countermeasure should hinder the access to the NCS data, which, according to
Figure 3, is required for the system identification attack and the model-based data
injection (an SD-Controlled Data Injection attack, for instance).

III - Another way to avoid a covert/model-based attack is preventing the attacker
to obtain the required knowledge about the system. If the attacker eventually
gets access to the NCS’s control loop and data, then it is necessary to make
the system identification process harder and/or less accurate. Thus, the third
preventive countermeasure lies on the use of control functions harder to be accurately
identified, such as switching controllers (ZHANG; FAN; HAO, 2012; SA; CARMO;
MACHADO, 2018; SA; CARMO; MACHADO, 2017d), for instance. The strategy
of using switching controllers to mitigate system identification attacks is presented
in Section 4.1.2.

4.1.2 Mitigation using Switching Controllers

As discussed in Section 4.1.1, one possible strategy to mitigate system identi-
fication attacks is to build the NCS with specific transfer functions that are harder to
be identified. Therefore, it is necessary to analyze the two transfer functions C(z) and
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G(z), shown in Figure 1, to verify what can be done to hinder the NCS identification.
Regarding the plant, it is not desired or even feasible to modify its transfer function G(z)
just to make it harder to be identified. This follows from the simple fact that the plant’s
transfer function is a consequence of the physical structure of the controlled system. In
other words, modify G(z) means to modify the physical process being controlled, which
is not convenient. However, it is reasonable to think about the design of controllers that
are capable to meet, simultaneously, two objectives:

Objective I - Comply with the plant control requirements. In general, the primary
requirement is to preserve the system stability. However, additional
requirements – such as low settling time, low overshoot, etc. – may be
considered depending on the process being controlled.

Objective II - Hinder the identification of the controller, so that the model obtained by
the attacker is imprecise or ambiguous, in such a way that the attacker
hesitates to launch covert or model-based attacks against the NCS.

Considering these two objectives, this work proposes the use of randomly
switching controllers to mitigate system identification attacks and, thus, prevent the
design of a set of covert/model-based attacks. Note that, the use of a switching controller
does not avoid the identification of the plant’s transfer function G(z) by the Passive
System Identification attack described in Section 3.1.1. Regardless of the controller
switchings, the plant’s transfer function is still an LTI system that can be identified by
the mentioned System Identification attack, based on the analysis of the plant’s input
and output signals.

A Switching Controller, shown in Figure 7, is composed by a set of N control
functions Ci(z), i ∈ I = {1,...,N}, that are switched by a switching rule S, to perform
the control of a plant G(z). If all control functions Ci(z) and the plant’s transfer function
G(z) are linear, as the NCS herein discussed, then the system is referred as a switched
linear system (SLS). For the sake of clarity, but without loss of generality, in the present
work, the switching controller is represented and discussed with only two control functions
C1(z) and C2(z) – i.e., N = 2.

In a conventional switching controller (SKAFIDAS et al., 1999; LIBERZON;
MORSE, 1999; SAFAEI et al., 2014; FERRARA; SACONE; SIRI, 2015), whose sole
objective is to control the plant, the switching rule S, in general, orchestrates the
switching events based on the plant and/or network behaviors. However, in the solution
proposed in this work, the switching rule is not driven by the plant and/or network
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Figure 7 – NCS with a switching controller – own figure published in (SA; CARMO;
MACHADO, 2018).

behaviors. To achieve both Objectives I and II, the switching rule herein proposed
operates as the Markov chain shown in Figure 8. In this scheme, the control functions
are switched at random intervals, in accordance with probabilities p11(l), p12(l). p21(l)
and p12(l), wherein l is the number of sampling intervals occurred since the last switch.
The probabilities, p12(l) and p21(l) are taken from the probability density function (PDF)
shown in Figure 9, wherein a is the minimum number of sampling intervals that the
system have to remain in the same state and b is the maximum number of sampling
intervals that the system can remain in the same state. Note that p11(l) = 1− p12(l) and
p22(l) = 1− p21(l).

C1(z) C1(z)

p12(l)

p21(l)

p11(l) p22(l)

Figure 8 – Markov chain switching rule – own figure published in (SA; CARMO;
MACHADO, 2018).

p(l)

a b

1/(b-a)

l

Figure 9 – PDF of p12 and p21 – own figure published in (SA; CARMO; MACHADO,
2018).



Chapter 4. Countermeasures 55

The reason to switch at random intervals is that, according to (WANG, 2013),
if the switching times are known, the SLS identification is straightforward. However, when
the switching times are not available, the SLS identification turns into a nontrivial task.
Moreover, even if the attacker obtain the plant’s transfer function G(z) and – somehow –
discovers the control functions Ci(z), the random switching rule still hinders the set of
attacks that depend on the controller model. This follows from the simple fact that it is
more difficult to synchronize the interference caused by these attacks with the controller
states, which are switched at random intervals.

However, despite the benefits that the switchings can bring from the point of
view of a countermeasure, it can affect the stability of the NCS. Even if all subsystems
of an SLS are stable, there are situations in which the switching events can make the
SLS unstable. According to (LIN; ANTSAKLIS, 2009; DASGUPTA et al., 2013), to be
stable under arbitrary and unrestricted switchings, the SLS must meet two conditions:

1. All its subsystems must be asymptotically stable; and

2. There must exist a common Lyapunov function for all of its subsystems.

Note that, in the case of the NCS shown in Figure 7, each subsystem is constituted by the
plant transfer function G(z) arranged in a closed loop with one control function Ci(z). So,
to make the NCS stable under arbitrary and unrestricted switching, all control functions
Ci(z), i ∈ I = {1,2}, have to be designed in order to meet the two aforementioned
conditions.

Another valid strategy to obtain stability in an SLS with stable subsystems
is by restricting the switching events. This can be done, for example, by establishing
a minimum dwell time – i.e. the time between two consecutive switches. In an SLS,
the instability generated when switching among two – or more – stable subsystems is
caused by the failure to absorb the energy increase, caused by the switchings (LIN;
ANTSAKLIS, 2009). Intuitively, it is reasonable to think that if an SLS stays at stable
subsystems long enough – using a slow switching rule – it becomes able to avoid the
energy increase caused by the switchings, maintaining the desired stability. As proved
in (MORSE, 1996), it is always possible to preserve the stability of an SLS when all
the subsystems are stable and the dwell time is sufficiently large. Actually, it is not
critical if the SLS occasionally have a smaller dwell time, provided this does not occur
too frequently. As demonstrated in (HESPANHA; MORSE, 1999), if all subsystems
are exponentially stable, then the SLS remains exponentially stable provided that the
average dwell time is sufficiently large. In (ZHAI et al., 2002), this concept of average
dwell-time is extended to the discrete-time switched systems – which is the case of an
NCS endowed with the proposed countermeasure.
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In the present work, instead of designing C1(z) and C2(z) to make the SLS
stable under arbitrary and unrestricted switchings – i.e. meeting both conditions 1 and 2 –
the restricted switching strategy is used. Thus, C1(z) and C2(z) are firstly designed based
on the root-locus analysis (DORF; BISHOP, 2011), in order to make each subsystem
stable. Then, the overall stability of the SLS is obtained by adjusting the parameters a
and b of the PDF shown in Figure 9, aiming an average dwell-time that makes the NCS
stable.

Besides being adjusted for stability, parameters a and b also have to be
adjusted to hinder the system identification attack. So, concerning Objective I, specifically
for the sake of stability, a and b are increased as much as possible to ensure the minimum
average dwell-time required for stability. On the other hand, concerning Objective II, a
and b are adjusted to make the system identification attack as much imprecise/ambiguous
as possible, which not necessarily occur with high dwell times. In this sense, in this
work, a and b are empirically adjusted in order to satisfy the two potentially conflicting
objectives.

Note that the use of switching controllers does not prevent the plant identifi-
cation when it is individually identified. For instance, if the Passive System Identification
attack is launched directly on the plant, the identification process is not impacted by the
switching controller given that the plant output only depends on the plant’s input and its
transfer function. Therefore, the use of a switching controller does not prevent the design
of attacks that require the knowledge of only the plant transfer function. An example is
the Covert Misappropriation attack described in Section 3.2.2. If the attacker aims a
cybernetically covert attack, he/she can achieve this goal by using the attack architecture
shown in Figure 6, which only requires the knowledge of the plant transfer function. On
the other hand, as evaluated in Chapter 6, the proposed countermeasure hinders the
design of attacks that depend on the knowledge of C(z) or rely on the knowledge of an
open-loop transfer functions composed by C(z).

4.2 IDENTIFICATION OF CONTROLLED DATA INJECTION ATTACKS

This section proposes a link monitoring strategy to identify the LTI transfer
function that is performed by a MitM during an SD-Controlled Data Injection attack
(described in Section 3.2.1). From the NCS owner perspective, the knowledge about the
attack function may be useful, for instance, to:

• provide information for an autonomous process intended to redesign the NCS
control function, in order to mitigate the attack effects in the plant behavior;
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• reveal the attacker intentions, for forensic purposes, helping to estimate the possible
impacts of the attack on the plant and its services.

Section 4.2.1 describes the proposed link monitoring strategy, which uses white gaus-
sian noise to excite the attack function and obtain the information necessary for the
identification process. To increase the accuracy of the attack identification using white
gaussian noise, this work proposes a Noise Impulse Integration (NII) technique, which is
presented in Section 4.2.2.

4.2.1 Strategy to Identify the Attack

This section describes a link monitoring strategy to identify the LTI attack
functions used by a MitM during the SD-Controlled Data Injection attack characterized
in Section 3.2.1. Consider, for instance, the SD-Controlled Data Injection attack shown in
Figure 10, where the attacker only has access to the data flowing in the feedback stream.
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Figure 10 – Identification of an SD-Controlled Data Injection attack.

As discussed in Section 3.1, the LTI system to be identified – in the present
problem, the attack function M(z) – has to be excited by an input signal, in order
to produce meaningful information for the identification process. If the system is in
steady operating conditions, for instance, the information content of measured signals
is often insufficient for identification purposes (TULLEKEN, 1990). Considering this,
one possible strategy to identify an attack function is to use typical variations in the
NCS signals – such as a variation caused by a change in the setpoint r(k) – to estimate
M(z). However, depending on the system, this variations may not occur often, which
can make the identification of M(z) time consuming. Furthermore, causing arbitrary
variations in such signals in order to identify M(z) may not be convenient as it may
affect the behavior of the plant.
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The architecture shown in Figure 10 is proposed as a solution that can be
used to excite M(z) at any time, without affecting the plant behavior when the system
is working in normal conditions – i.e., without attack. To do so, as shown in Figure 10, a
white gaussian noise w(k) is injected (added) in the signal to be transmitted through the
monitored link. To avoid interfering in the controlled plant when the system in not under
attack, the same noise signal w(k) is subtracted from the monitored NCS signal at the
other end of the link. In Figure 10, where the feedback link is the one being monitored,
w(k) is injected at the sensor’s network interface, and subtracted at the controller input.
In this system, the NCS output Y (z) = Z[y(k)] is defined as (4.1):

Y (z) = C(z)P (z)
1 + C(z)P (z)M(z) [R(z) +W (z) (1−M(z))] , (4.1)

wherein R(z) = Z[r(k)] and W (z) = Z[w(k)]. Note that, if w(k) is exactly the same
signal at both ends of the monitored link and the system is not under attack (i.e.,
M(z) = 1), then the injection of w(k) is cancelled and does not influence in y(k). In this
case, based on (4.1), the plant output Y (z) is defined as (4.2):

Y (z) = C(z)P (z)
1 + C(z)P (z)R(z). (4.2)

The white gaussian noise w(k) is chosen to excite the attack function due to
its unpredictability, which makes it harder for an attacker to estimate the noise that will
be added to the link at any given moment. The white gaussian noise w(k) is obtained
from a normal distribution, such that w(k) ∼ N(µ,σ), wherein µ = 0 is the mean and
σ is the standard deviation. To have the same noise signal w(k) at both ends of the
monitored link, it is considered that these two sources of noise are synchronized and
both signals are produced based on the same seed. Moreover, to avoid an attacker to
predict the noise values, the seed is exchanged among both devices – i.e., the transmitter
and receiver – using a secure key exchange method, such as the Diffie-Hellman algorithm
(STALLINGS, 2006).

Now, if the system is under attack (i.e., M(z) 6= 1), then, according to (4.1),
the noise is not cancelled. In this case, the the signal observed at the controller input
y′′(k) is given by (4.3):

y′′(k) = w(k) ∗ Z−1
[
M(z)

(
1 + C(z)P (z)

1 + C(z)P (z)M(z)

)]
︸ ︷︷ ︸

y′′
1 (k)

+

r(k) ∗ Z−1
[

C(z)P (z)M(z)
1 + C(z)P (z)M(z)

]
︸ ︷︷ ︸

y′′
2 (k)

.

(4.3)
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In the present countermeasure, the identification of M(z) is performed by
observing the variations produced by w(k) in y′′(k) when M(z) 6= 1. Note, in Figure 10,
that both w(k) and y′′(k) are provided to the Attack Identification process. The effect of
w(k) in y′′(k) is specifically indicated in (4.3) as y′′1(k). To have the identification relying
on y′′1(k), and independent from variations in y′′2(k), it is executed when the system is in
steady state with regard to r(k). In other words, the identification occurs when y′′2(k) –
driven by the setpoint r(k) – converges to a constant value ρ. In this case, considering
the time window defined by ks < k < ku in which y′′2(k) is in its steady state, (4.3) can
be rewritten as (4.4) without initial conditons:

y′′(k) = w(k) ∗ Z−1
[
M(z)

(
1 + C(z)P (z)

1 + C(z)P (z)M(z)

)]
︸ ︷︷ ︸

y′′
1 (k)

+ ρ︸︷︷︸
y′′

2 (k)

, ∀ks < k < ku, (4.4)

wherein ρ can be estimated by computing the average ȳ′′ of y′′(k) during a certain amount
of samples τ ≤ ku − ks starting at ks, as indicated in (4.5):

ȳ′′ =
ks+τ∑
ks

y′′(k)
τ

=
ks+τ∑
ks

w(k) ∗ Z−1
[
M(z)

(
1+C(z)P (z)

1+C(z)P (z)M(z)

)]
τ︸ ︷︷ ︸

ȳ′′
1 (k)

+
ks+τ∑
ks

ρ

τ︸ ︷︷ ︸
ȳ′′

2 (k)

, (4.5)

Considering that w(k) ∼ N(µ,σ), wherein µ = 0, as previously stated, then ȳ′′1(k)→ 0
when τ →∞. In this case, for a sufficiently large τ , (4.5) can be simplified to (4.6):

ȳ′′ ≈ ρ, (4.6)

Thus, by applying (4.6) in (4.4), we may define (4.7):

y′′1(k) ≈ y′′(k)− ȳ′′, ∀ks < k < ku, (4.7)

wherein y′′1(k) – obtained through measurements of y′′(k) – is the output of the model
defined by (4.8) when the noise w(k) is applied to its input:

y′′1(k) = w(k) ∗ Z−1
[
M(z)

(
1 + C(z)P (z)

1 + C(z)P (z)M(z)

)]
. (4.8)

Based on (4.8), if C(z) and P (z) are known, the Attack Identification process
can estimate M(z) by applying w(k) in an estimated system, defined by (4.9):

ŷ′′1(k) = w(k) ∗ Z−1
[
Me(z)

(
1 + C(z)P (z)

1 + C(z)P (z)Me(z)

)]
, (4.9)

wherein Me(z) is the estimation of M(z) and ŷ′′1(k) is the output of the estimated system
in face of Me(z). By comparing ŷ′′1(k) with y′′1(k), the Attack Identification process is able
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to evaluate whether Me(z) is equal/approximately M(z). Note that Me(z) is a generic
LTI attack function represented by (4.10):

Me(z) = αnz
n + αn−1z

n−1 + ...+ α1z
1 + α0

zm + βm−1zm−1 + ...+ β1z1 + β0
, (4.10)

wherein n and m are the order of the numerator and denominator, respectively, while
[αn,αn−1,...α1, α0] and [βm−1, βm−2,...β1, β0] are the coefficients of the numerator and de-
nominator, respectively, that are intended to be found by Attack Identification algorithm.
Therefore, to find M(z), the coefficients of Me(z) are adjusted until the estimated output
ŷ′′1(k) converges to y′′1(k) – obtained from measurements of y′′(k) in the real NCS.

As in the System Identification attacks described in Section 3.1, the BSA is
also used here to iteratively adjust the estimated model, by minimizing a specific fitness
function until Me(z) converges to the actual M(z). To compute the fitness of the BSA
individuals, the noise w(k) – recorded while y′′(k) was being captured – is applied on
the estimated system defined by (4.9) and (4.10), where the coefficients of Me(z) are
the coordinates xj = [αn,j,αn−1,j,...α1,j, α0,j,βm−1,j, βm−2,j,...β1,j,β0,j] of an individual
j of the BSA. Let ŷ′′1j(k) be the output of the estimated model (4.9) (4.10) in face of
w(k), when the coefficients of Me(z) are xj. Then, the fitness fj of each individual j is
obtained comparing ŷ′′1j(k) with y′′1(k), according to (4.11):

fj =

N∑
k=0

(y′′1(k)− ŷ′′1j(k))2

N
, (4.11)

wherein N is the number of samples that exist during a monitoring period T of
y′′1(k). Note that, min fj occurs when [αn,j,αn−1,j,...α1,j,α0,j, βm−1,j,βm−2,j,... β1,j,β0,j ]→
[αn,αn−1,...α1, α0,βm−1, βm−2,...β1, β0], i.e. when the estimated Me(z) converges to M(z).

The attack identification process described in this section, without the use of
the Noise Impulse Integration technique (to be described in Section 4.2.2), is summarized
in Algorithm 1.

Algorithm 1: Attack Identification without the NII technique
begin

if y′′(k) is in steady state with regard to r(k) then
Record w(k) and y′′(k) during T seconds;
Compute ȳ′′ according to (4.5);
Compute y′′1(k) according to (4.7);
Execute BSA, using w(k) and y′′1(k) to find Me(z) based on (4.9), (4.10)
and (4.11).

end if
end
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4.2.2 Integrating Impulses of Noise

This section presents the Noise Impulse Integration (NII) technique, which
is added to the attack identification process described in Section 4.2.1 to improve its
accuracy. This technique was reported in (SA et al., 2019) as part of the present research.
It is inspired by the Pulse Integration technique (SKOLNIK, 1990), used in pulse radar
systems to improve the probability of detection and reduce the probability of false alarms
of those systems. To allow a clear comprehension on the inspiration obtained from the
radar Pulse Integration technique, it is necessary to provide a brief explanation on how a
pulse radar system works and what is the main idea behind the pulse integration process.
The explanation on the radar pulse integration process is provided in Section 4.2.2.1.
Section 4.2.2.2, then, introduces the NII technique.

4.2.2.1 Radar Pulse Integration

In a pulse radar system, the radar transmits electromagnetic pulses to the
environment in order to detect and obtain information about targets. When a pulse
reaches a reflective surface – of a target or other objects in the environment –, it is
reflected producing an echo that travels back to the radar antenna, allowing the target
detection. To increase the probability of detection, the radar does not transmit a single
pulse during the detection process. Instead, as depicted in Figure 11, the radar transmits
a series of pulses, one at each pulse repetition interval TR. Also, as shown in Figure 11,
between two consecutive transmissions, there is a silence period TL in which the radar
remains listening the ecoes that arrive from the monitored environment. These echoes
may represent a target or another reflective body situated within the line of sight of the
radar antenna.

t(s)

TR

echoes

TL

pulse transmissions

Figure 11 – Pulse transmissions.

Note that, while the radar scans the environment by rotating its antenna, for
each antenna pointing angle θ, several pulses are transmitted in sequence as shown in
Figure 12. Naturally, for each pulse p transmitted from a given antenna pointing angle
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t(s)

TL(1,1) TL(1,2) TL(1,3)

θ
1

0º

t(s)

TL(2,1) TL(2,2) TL(2,3)

θ
2

0º

...

...

Figure 12 – Radar scan process, in which a sequence of pulses is transmitted for each
antenna pointing angle.

θd, there will be a listening period TL(d,p) to receive echoes. It happens that, in a real
system, the signal received during each listening period TL(d,p) does not contain only
target echoes. Typically, as represented in Figure 13, the received signal also contains
uncorrelated signal fluctuations (noise), whose amplitude follows a gaussian distribution
with zero mean (AHMED, 2015; SCHWARTZ, 1956).
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Figure 13 – Noisy signal typically received during a given listening period TL(d,p).

To increase signal-to-noise ratio (SNR), the radar Pulse Integration (RPI)
technique combines the signals received in multiple listening periods TL(d,p), in a given θd,
taking advantage of the mentioned noise properties – i.e. uncorrelated fluctuations with
gaussian distribution and zero mean. Basically, all signals S(d,p)(t) received in a sequence
of listening periods TL(d,p) are integrated by computing their mean according to (4.12):

I(t) =

h∑
p=1

S(d,p)(t)

h
, (4.12)
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wherein I(t) is the integrated signal and h is the amount of signals buffered in a sequence
of listening periods. A representation of this computation is shown in Figure 14, where
the signals received in a sequence of four listening periods (i.e. h = 4) are buffered and
integrated according to (4.12). Note that, the integrated signal has a better SNR when
compared to the other signals. The uncorrelated noise, is minimized (almost cancelled)
thanks to its gaussian distribution with zero mean. On the other hand, the target echo
(constantly present with non-zero mean amplitude) is reinforced. Ideally, the noise of the
integrated signal is completely cancelled when h→∞. In this case, I(t) would contain
only echoes.
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Figure 14 – Radar pulse integration.

4.2.2.2 Noise Impulse Integration Technique

The NII technique described in this section works similarly to the RPI process
described in Section 4.2.2.1. Basically, it integrates portions of noisy signals to cancel
information that may disturb the identification process, and extract the information that
is useful to obtain accurate models. Despite the inspiration obtained from the RPI, it is
worth mentioning the following diferences between both techniques:

• Goal: The goal of the RPI technique is to minimize the uncorrelated noise contained
in signals received by the radar, and reinforce the echoes reflected by bodies within
the radar antenna’s line of sight – i.e., produce a signal with grater SNR. The
goal of the NII technique is to obtain a clear impulse response function of an LTI
system, when it is excited by a white gaussian noise;

• Integrated signals: The RPI technique integrates signals received between con-
secutive pulse transmissions, containing, in general, reflected pulses and noise. The
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NII technique integrates portions of the signal produced by an LTI system when
white gaussian noise is injected into it.

• Selection of signals to be integrated: In the RPI technique, the selection
of signals to be integrated is straightforward. As explained in Section 4.2.2.1, it
integrates signals received between the transmission of consecutive radar pulses.
This selection provides a synchronism between the signals to be integrated, which,
as shown in Figure 14, aligns the information that must be reinforced by the RPI –
i.e., reinforce echoes that are constantly present in the received signal. The RPI’s
signal selection cannot be used in the NII technique, given that the latter is not
triggered by pulses. Therefore, it is necessary to use another criteria to select the
portions of signal to be integrated, which is explained in the remainder of this
section.

The white gaussian noise w(k), herein used to excite the LTI transfer function
to be identified, can be defined as a sum of time-shifted impulses with uncorrelated
random weights (amplitudes) according to (4.13):

w(k) =
∞∑

i=−∞
ω(i)δ(k − i), (4.13)

in which the amplitudes ω(i) ∼ N(µ,σ), N is a normal distribution, µ is its mean and σ
is its non-zero standard deviation. When a weighted time-shifted impulse ω(i)δ(k − i)
of w(k) is individually applied to a given LTI system H(z) = Z{h(k)}, it produces an
output signal yi(k) defined by (4.14):

yi(k) = ω(i)δ(k − i) ∗ h(k)
= ω(i)h(k − i).

(4.14)

Note that yi(k) is the impulse response of h(k) – i.e., h(k) itself –, weighted by the
impulse’s amplitude ω(i) and time-shifted by i samples. However, when w(k) is applied
to h(k), the output signal is no more composed by a single weighted time-shifted impulse
response function. In this case, the discrete-time output y(k) produced when h(k) is
excited by a white gaussian noise w(k) is determined by the discrete convolution (4.15):

y(k) = w(k) ∗ h(k). (4.15)

Considering (4.13), equation (4.15) can be rewritten as (4.16) and (4.17):

y(k) =
∞∑

i=−∞
ω(i)δ(k − i) ∗ h(k) (4.16)
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y(k) =
−1∑

i=−∞
ω(i)δ(k − i) ∗ h(k)

+ω(0)δ(k) ∗ h(k)

+
∞∑
i=1

ω(i)δ(k − i) ∗ h(k).

(4.17)

which means that the output y(k) is composed by a sum of randomly weighted time-
shifted impulse responses of h(k). Evidently, by observing (4.17), it is possible to verify
that y(k) could result in a weighted impulse response of h(k) if conditions (4.18) and
(4.19) were met:

ω(0) 6= 0 (4.18)

ω(i) = 0, ∀i 6= 0, (4.19)

which would make straightforward to reveal h(k) by measuring y(k). However, although
condition (4.18) is possible, condition (4.19) is not feasible, given that ω(i) ∼ N(µ,σ),
and σ 6= 0, as previously defined. Thus, the task of the NII technique is to overcome the
constraint imposed by condition (4.19). Its goal is to produce a signal derived from y(k)
that can reveal h(k) in the same way as if conditions (4.18) and (4.19) were met.

Inspired by the RPI, the NII technique consists of separating portions of
y(k) that, when integrated, reinforce selected impulse responses of h(k) and minimize
(cancel) the interferences produced other weighted time-shifted impulse responses of h(k)
contained in y(k). So, let yj(k) be a portion of signal extracted from y(k), wherein j is a
reference number used to identify each yj(k). The instances yj(k) are extracted from the
output y(k) based on the amplitudes of the input signal w(k), which is evaluated during
a monitoring period staring in sample kf and ending in sample kl. This said, each yj(k)
is obtained according Algorithm 2:

Algorithm 2: Generation of signals yj(k)
begin

for k = kf to kl do
if w(k) ≥ Ω then

j ← k;
yj(k) = y(k + j).

end if
end for

end
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According to Algorithm 2, each j is a value of k in which the input w(k) is
grater or equal than an amplitude threshold Ω. Note that yj(k) is an instance of y(k)
advanced (left-shifted) by j samples. Thus, in the same way that y(k) is defined by
(4.17), yj(k) can be written as (4.20):

yj(k) =
−1∑

i=−∞
ωj(i)δ(k − i) ∗ h(k)

+ωj(0)δ(k) ∗ h(k)

+
∞∑
i=1

ωj(i)δ(k − i) ∗ h(k)

(4.20)

wherein ωj(i), defined according to (4.21), are the advanced (left-shifted) amplitudes of
the white gaussian noise (4.13):

ωj(i) = ω(i+ j). (4.21)

Considering that Algorithm 2 is intended to produce a collection of yj(k) –
which is necessary for the NII technique –, let J be the set of all j, and |J | be the total
number of elements j ∈ J . So, analogously to the RPI process, the mean Υ(k) of all
yj(k) is computed according to (4.22):

Υ(k) =

∑
j∈J

yj(k)

|J |
, (4.22)

Thus, considering (4.20), equation (4.22) can be rewritten as (4.23):

Υ(k) =

∑
j∈J

[
−1∑

i=−∞
ωj(i)δ(k − i) ∗ h(k)

]
|J |︸ ︷︷ ︸

Υ1(k)

+

∑
j∈J

ωj(0)δ(k) ∗ h(k)

|J |︸ ︷︷ ︸
Υ2(k)

+

∑
j∈J

[ ∞∑
i=1

ωj(i)δ(k − i) ∗ h(k)
]

|J |︸ ︷︷ ︸
Υ3(k)

(4.23)

Note that ωj(i) has the same probability distribution function of ω(i) (i.e.
ωj(i) ∼ N(µ,σ)) since that, according to (4.21), ωj(i) consists of the same amplitudes of
ω(i), however left-shifted. Thus, considering that µ = 0, then Υ1(k)→ 0 and Υ3(k)→ 0
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when |J | increases. It means that, for a given i 6= 0 the impulse responses produced by
all ωj(i)δ(k − i) are canceled when the average of yj(k) is computed among all j ∈ J .

On the other hand, Υ2(k) 6= 0 since that the mean of ωj(0), among all j ∈ J ,
is different from zero. Note that, according to (4.21) ωj(0) = ω(j). From Algorithm 2,
w(j) ≥ Ω which, according to (4.13), means that ω(j) ≥ Ω. So, ωj(0) ≥ Ω, ∀j. This
reasoning demonstrates that the mean of all ωj(0) is grater than Ω and, therefore,
Υ2(k) 6= 0. In this case, the responses produced by all ωj(0)δ(k) are the impulses
responses of h(k) selected to be reinforced through the NII technique. This reinforcement
is analogous to what the RPI technique does with target echoes. This said, (4.23) can be
simplified as (4.24):

Υ(k) = ω̄j(0)δ(k) ∗ h(k), (4.24)

wherein ω̄j(0) is the mean of all ωj(0), according to (4.25):

ω̄j(0) =

∑
j∈J

ωj(0)

|J |
. (4.25)

An example of the computation performed by the NII technique is represented
in Figures 15 and 16. Figure 15 shows a set of signals yj(k) aligned to be integrated,
similarly to the representation shown in Figure 14 for the RPI process. Figure 16 shows
the signal Υ(k) produced by the computation of (4.22) using the set of signals represented
in Figure 15. The signal Υ(k), highlighted in red, is the result of the integration of all
yj(k) which, according to (4.24), reveals the impulse response of the system as it was
excited by the impulse ω̄j(0)δ(k).

Figure 15 – Signals yj(k) aligned to be integrated.
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Figure 16 – The impulse response Υ(k) (in red) produced by the NII technique after the
integration of a set of signals yj(k) (shown overlapped in black).

As previously discussed, the NII technique is herein used to complement the
attack identification strategy described in Section 4.2.1 in order to improve its accuracy.
To do so, lets consider that:

• ω̄j(0) and Υ(k) are obtained through the NII technique, by processing signals w(k)
and y′′1(k) – specified in Section 4.2.1;

• h(k) is the transfer function between w(k) and y′′1(k) which, according to (4.8), is
defined as (4.26):

h(k) = Z−1
[
M(z)

(
1 + C(z)P (z)

1 + C(z)P (z)M(z)

)]
. (4.26)

Doing so, (4.24) can be rewritten as (4.27):

Υ(k) = ω̄j(0)δ(k) ∗ Z−1
[
M(z)

(
1 + C(z)P (z)

1 + C(z)P (z)M(z)

)]
, (4.27)

which can now be used to estimate M(z) in the same way as in Section 4.2.1 for equation
(4.8). Note that, the diferences between (4.8) and (4.27) are:

• the input of (4.8) is a white gaussian noise and its output is a white gaussian noise
filtered by h(k);

• the input of (4.27) is a weighted impulse signal and its output is a weighted impulse
response of h(k).
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Now, given (4.27), the attack function M(z) can be estimated by an opti-
mization algorithm (e.g. the BSA), such as described in Section 4.2.1. In this case, if
C(z) and P (z) are known, M(z) can be estimated by applying ω̄j(0)δ(k) in an estimated
system, defined by (4.28):

Υ̂(k) = ω̄j(0)δ(k) ∗ Z−1
[
Me(z)

(
1 + C(z)P (z)

1 + C(z)P (z)Me(z)

)]
, (4.28)

wherein Me(z) is the estimation of M(z) and Υ̂(k) is the output of the estimated system
in face of Me(z). Recall that Me(z) is the generic LTI attack function represented by
(4.10) wherein [αn,αn−1,...α1, α0] and [βm−1, βm−2,...β1, β0] are the coefficients of the
numerator and denominator, respectively, that are intended to be found by Attack
Identification algorithm. By comparing Υ̂(k) with Υ(k), the Attack Identification process
is able to evaluate whether Me(z) is equal/approximately M(z).

In the same way that in Section 4.2.1, to discover M(z), the coefficients of
Me(z) are adjusted by the BSA until the estimated output Υ̂(k) converges to Υ(k) –
obtained by the NII technique from measurements of y′′(k) and w(k) in the real NCS. Let
Υ̂j(k) be the output of the estimated model (4.28) (4.10) in face of the input ω̄j(0)δ(k),
when the coefficients of Me(z) are the coordinates xj = [αn,j,αn−1,j,...α1,j, α0,j,βm−1,j,
βm−2,j,...β1,j,β0,j] of an individual j of the BSA. In this case, the fitness fj of each
individual j of the BSA is obtained comparing Υ̂j(k) with Υ(k), according to (4.29):

fj =

N∑
k=0

(Υ(k)− Υ̂j(k))2

N
, (4.29)

wherein N is the number of samples that exist in Υ(k). As already discussed in
Section 4.2.1, min fj occurs when [αn,j,αn−1,j,...α1,j,α0,j, βm−1,j,βm−2,j,... β1,j,β0,j] →
[αn,αn−1,...α1, α0,βm−1, βm−2,...β1, β0], i.e. when the estimated Me(z) converges to M(z).

The complete attack identification process described in this section, per-
formed with the Noise Impulse Integration technique, is summarized in Algorithm 3.
Note that the differences between Algorithms 1 and 3 is that the former does not have
the NII stage. This way, while Algorithm 1 uses w(k) and y′′1(k) as input signals to the
BSA-based identification, Algorithm 3 uses ω̄j(0)δ(k) and Υ(k) as input signals to the
BSA-based identification.
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Algorithm 3: Attack Identification with the NII technique
begin

if y′′(k) is in steady state with regard to r(k) then
Record w(k) and y′′(k) during T seconds;
Compute ȳ′′ according to (4.5);
Compute y′′1(k) according to (4.7);
NII stage:

Obtain a set of yj(k) from y′′1(k) and w(k) using Algorithm 2;
Compute Υ(k) according to equation (4.22);
Compute ω̄j(0) according to equation (4.25);

end
Execute BSA, using ω̄j(0)δ(k) and Υ(k) to find Me(z) based on (4.10),
(4.28) and (4.29).

end if
end

4.3 SUMMARY

This chapter presents two countermeasures intended to contribute to the
security of NCSs in case of failure or absence of conventional security mechanisms – such as
encryption, authentication, network segmentation, etc. Specifically, these countermeasures
target the mitigation of the system identification attacks described in Section 3.1, and
the SD-Controlled Data Injection attack described in Section 3.2.1.

Concerning the System Identification attacks described in Section 3.1, the first
countermeasure consists of a switching controller design that aims to meet, simultaneously,
two objectives:

Objective I - Comply with the plant control requirements;

Objective II - Hinder the identification of the controller, so that the model obtained by
the attacker is imprecise or ambiguous, in such a way that the attacker
hesitates to launch covert or model-based attacks against the NCS.

To achieve both objectives, the switching controller uses a random switching rule described
by a Markov chain where the switching events follow a specific PDF configured by two
parameters: the minimum number of sampling intervals that the system have to remain
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in the same state; and the maximum number of sampling intervals that the system can
remain in the same state.

The second countermeasure proposed in this chapter aims to identify the
LTI attack function executed by the SD-Controlled Data Injection attacks described in
Section 3.2.1. It consists of a link monitoring strategy that uses white gaussian noise to
excite the attack function and, thus, produce signals with the information necessary for
the identification process. Its is demonstrated that in normal operating conditions – i.e.
without attack – the injected white gaussian noise is cancelled and does not affect the
plant output. The injected white gaussian noise only manifests itself in the plant output
when an attack is present. To increase the accuracy of this countermeasure, this chapter
introduces the NII technique, which is developed using the radar pulse integration process
as inspiration. It is proven that the NII technique is able to reveal the impulse response
of the attack based on the signals produced by the white gaussian noise injected in
the NCS.

Chapter 6 presents simulation results of the two countermeasures described
in the present chapter.
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5 EVALUATION ON THE ATTACKS

This chapter presents the results obtained through the joint operation of the
System Identification attacks introduced in Section 3.1, with the covert/model-based
attacks described in Section 3.2. The aim of these simulations is to study and evaluate
how effective and accurate are those covert/model-based attacks when supported by
the proposed System Identification attacks. It is also evaluated the resilience of these
metaheuristic based System Identification attacks when they are impaired by data loss
or noise. The simulations explore two types of plants, namely: a DC motor – which has
broad applications in industry and real world systems; and a large Pressurized Heavy
Water Reactor (PHWR) – which is an example of a nuclear critical infrastructure. The
rest of this chapter is organized as follows:

• Section 5.1 evaluates the joint operation of the Passive System Identification attack
with an SD-Controlled Data Injection offensive.

• Section 5.2 analyses the joint operation of the Passive System Identification attack
with an SD-Controlled Data Loss offensive.

• Section 5.3 evaluates the joint operation of the Passive System Identification attack
with a Covert Misappropriation offensive.

• Section 5.4 examines the performance of the SD-Controlled Data Injection attack
when supported by the Active System Identification attack.

5.1 PASSIVE SYSTEM IDENTIFICATION WITH SD-CONTROLLED DATA INJECTION
ATTACK

This section presents the results obtained through simulations that combine
the Passive System Identification attack with a physically covert SD-Controlled Data
Injection attack. First, Section 5.1.1 describes the model of the attacked system. Then,
Section 5.1.2 presents the results obtained by the Passive System Identification attack.
After that, Section 5.1.3 evaluates the results achieved by simulations of physically covert
SD-Controlled Data Injection attacks, planned based on the data gathered by the Passive
System Identification attack.

5.1.1 The Attacked System: DC Motor

The attacked NCS has the same architecture of the NCS shown in Figure 1,
and consists of a Proportional-Integral (PI) controller that controls the rotational speed
of a DC motor. This example is chosen due to the use of DC motors in a vast number of
real world control systems. Moreover, DC motors have been widely used in previous
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works about NCS (CHEN; SONG; YU, 2012; SA; CARMO; MACHADO, 2017c; LONG;
WU; HUNG, 2005; SHI; HUANG; YU, 2013; SI et al., 2010). It is noteworthy that the
model herein chosen as an example does not exhaust the potential targets for this attack.
NCSs composed by another kinds of LTI devices may also be a target. However, it must
be taken into account that the computational cost of the attack, when launched over
different LTI systems, may vary with the number of their unknown coefficients – i.e. the
number of dimensions of the search space explored by the optimization algorithms.

The PI control function C(z) and the DC motor transfer function G(z) are
the same as in (LONG; WU; HUNG, 2005). The equations of this NCS are represented
by (5.1):

C(z) = c1z + c2

z − 1 G(z) = g1z + g2

z2 + g3z + g4
(5.1)

wherein c1 = 0.1701, c2 = −0.1673, g1 = 0.3379, g2 = 0.2793, g3 = −1.5462 and
g4 = 0.5646. The sample rate of the system is 50 samples/s and the set point r(k) is an
unitary step function. The network delay is not taken into account in the simulations
shown in Sections 5.1.2 and 5.1.3.

5.1.2 Results of the Passive System Identification Attack

In this Section, the performance of the Passive System Identification attack
is evaluated through a set of simulations performed in MATLAB. The SIMULINK tool
is used to compute the output ôj of the estimated models, whose coefficients are the
coordinates of an individual j of the BSA – as defined in Section 3.1.1.

The structure of the equations represented in (5.1) are previously known by
the attacker once that, as a premise, it is known that the target is an NCS that controls
a DC motor using a PI controller. In these simulations, the goal of the Passive System
Identification attack is to discover g1, g2, g3, g4, c1 and c2, also taking into account
scenarios in which the attacker occasionally loses samples of the forward and feedback
streams.

Each time that the DC motor is turned on, the forward and the feedback
streams are captured by the attacker during a period T = 2s. All initial conditions
are considered 0, by the time that the motor is turned on. The coefficients of G(z),
[g1,g2,g3,g4], and the coefficients of C(z), [c1,c2], are computed separately considering
that, albeit the closed loop, G(z) and C(z) are independent transfer functions. To assess
[g1,g2,g3,g4], the attacker considers the forward stream as the input and the feedback
stream as the output of the estimated plant. In the opposite way, to assess [c1,c2], the
attacker considers the feedback stream as the input and the forward stream as the output
of the estimated controller.
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To simulate the loss of samples, it is considered four different rates l of sample
loss: 0, 0.05, 0.1 and 0.2. Thus, a sample is lost by the attacker every time that l < L,
where L ∼ U(0,1) and U is the uniform distribution. There are executed 100 different
simulations for each rate of sample loss.

In the BSA, the population is set to 100 individuals and η, empirically
adjusted, is 1. To assess the coefficients of the controller [c1,c2], the algorithm is executed
for 600 iterations. To assess the coefficients of the plant [g1,g2,g3,g4], the number of
iterations is increased to 800, due to the higher number of dimensions of the search space
in this case. The limits of each dimension of the search space are [−10,10].

Figure 17 shows the means of 100 estimated values of g1, g2, g3, g4, c1 and c2,
with a Confidence Interval (CI) of 95%, considering different rates of sample loss. The
actual values of the coefficients of C(z) and G(z) are also depicted in Figure 17. Note
that the scales of Figures 17(a), 17(b), 17(c) and 17(d) are different from the scales of
Figures 17(f) and 17(f), due to the smaller amplitude of the CI of c1 and c2. In Addition,
some statistics of the obtained results are presented in Table 2.
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Figure 17 – Mean of the estimated coefficients of G(z) and C(z), with a CI of 95%, in
face of different rates of sample loss – own figure published in (SA; CARMO;
MACHADO, 2017c).

According to Table 2 the distributions of g1, g2, g3 and g4 have a high skewness,
while the distributions of c1 and c2 have a moderate skewness. Table 2 also provides the
kurtosis of all coefficients of G(z) and C(z). The kurtosis, computed in accordance with
(SACHS, 2012), is a statistical information used to evaluate whether the distribution
is tall and thin (leptokurtic) or flat (platykurtic) when compared with the normal
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distribution. Based on the criteria defined in (SACHS, 2012), the distributions of all
coefficients of G(z) and C(z) are leptokurtic, which means that these distributions have
more results closer to the mean than the normal distribution. However, analyzing Table
2, it is not possible to state a clear general pattern of an increasing/decreasing skewness
or kurtosis, in face of the growth of sample loss.

Table 2 – Statistics of the results obtained with different rates of sample loss – own table
published in (SA; CARMO; MACHADO, 2017c)

Loss of Mean
samples g1 g2 g3 g4 c1 c2
0% 0.32793 0.29652 -1.54121 0.55983 0.16991 -0.16712
5% 0.31835 0.29689 -1.54251 0.56085 0.16997 -0.16719
10% 0.30473 0.30461 -1.54110 0.55925 0.16999 -0.16724
20% 0.26963 0.33352 -1.53119 0.54916 0.16989 -0.16716
Loss of Standard deviation
samples g1 g2 g3 g4 c1 c2
0% 0.03097 0.04288 0.00986 0.00944 0.00167 0.00178
5% 0.07572 0.11523 0.03322 0.03194 0.00287 0.00287
10% 0.08781 0.13483 0.04076 0.03922 0.00397 0.00399
20% 0.14120 0.22378 0.08596 0.08313 0.00596 0.00598
Loss of Skewness(*)
samples g1 g2 g3 g4 c1 c2
0% -1.21214 1.23278 1.75298 -1.73202 -0.64331 0.79458
5% -2.34607 1.64875 1.35284 -1.41346 -0.42288 0.36037
10% -2.52938 1.97711 1.18018 -1.26045 -0.23379 0.13377
20% -3.24122 1.75186 1.68335 -1.71055 -0.40055 0.37927
Loss of Kurtosis(**)
samples g1 g2 g3 g4 c1 c2
0% 0.18846 0.19433 0.21259 0.21218 0.15119 0.16472
5% 0.08094 0.10527 0.09412 0.09802 0.02540 0.03118
10% 0.16833 0.17123 0.25041 0.24811 0.24361 0.23429
20% 0.21292 0.21127 0.25054 0.24932 0.23883 0.24441
(*) Computed in accordance with the Pearson’s 2nd Coefficient of Skewness.
(**) Computed in accordance with (SACHS, 2012)

In Figure 17, it is possible to verify that, in all cases, the ICs tend to grow with
the increase of the sample loss. The same thing occurs with the standard deviations shown
in Table 2. Regarding to the coefficients of G(z), Figure 17 shows that the difference
between the mean and the actual value of g1, g2, g3 and g4 also tends to raise with the
increase of sample loss. It is worth mentioning that the performance of the algorithm
when computing g3 and g4 is better then when computing g1 and g2, regarding the means
and their CIs. This behavior results from the higher sensitivity that the output of G(z)
has to the variation of its poles than to the variations of its zeros. It means that, in this
problem, fj grows faster for errors in g3 and g4 than for errors in g1 and g2, making the
BSA population converge more accurately in dimensions g3 and g4.
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In Figure 17 it is also possible to note that the accuracy obtained with the
coefficients of C(z) is better than the accuracy of the coefficients of G(z), for all rates of
sample loss. The means of c1 and c2 are closer to their actual values, with a smaller CI.
In fact, the optimization process is more effective when computing the coefficients of
C(z) due to its smaller search space, that has only two dimensions instead of the four
dimensions of the G(z) problem.

(a) Distribution of |Eg| (b) Distribution of |Ec|

Figure 18 – Histograms of |Eg| and |Ec| in face of different rates of sample loss – own
figure published in (SA; CARMO; MACHADO, 2017c).

As an additional metric to evaluate the performance of the algorithm, it is
computed |Eg| = |Gr−Ge| and |Ec| = |Cr−Ce|, that synthesize the error of the estimated
coefficients of G(z) and C(z), respectively, for each solution found. Gr and Ge are vectors
that contain the actual and the estimated coefficients of G(z), respectively. Similarly,
Cr and Ce are vectors that contain the actual and the estimated coefficients of C(z),
respectively. The histograms of |Eg| and |Ec| are presented in Figure 18, considering
the mentioned rates of sample loss. The histograms graphically show that |Eg| and |Ec|,
which correspond to the modulus of the error of the estimated coefficients of G(z) and
C(z), respectively, tend to present higher values as the loss of samples grows. It can
also be confirmed by the increase of the standard deviation of the coefficients of G(z)
and C(z) presented in Table 2. However, according to Figure 18, the mode of this errors
remain close to zero for all considered rates of sample loss.

5.1.3 Results of the Service Degradation Attacks

In this section, the results obtained through simulations of SD-Controlled
Data Injection attacks are presented, performed by a MitM acting in the control link
of the NCS, as shown in Figure (5). The attacks were simulated in MATLAB, aiming
to evaluate their accuracy when planned based on the results provided in Section 5.1.2,
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obtained by the Passive System Identification attack. Two sets of attack were performed.
The first one, aims to cause an overshoot of 50% in the rotational speed of the motor.
The second one, aims to cause a stationary error of −10% in the rotational speed of the
motor when it is on the steady state.

In the attack aiming the overshoot, the function executed by the attacker
is M(z) = Ko. Performing a root locus analysis considering the obtained models, the
attacker adjusts Ko to make the system underdamped, with a peak of rotational speed
50% higher than its steady state speed. The values of Ko are adjusted considering
the average of the coefficients estimated in Section 5.1.2. Table 3 shows the values
of Ko, estimated considering different rates of sample loss during the Passive System
Identification attack, as well as the overshoots obtained with the respective Ko in the
real model. In Figure 19 it is possible to compare the response of the system without
attack, with the response of the system with an attack aiming the overshoot of 50%. The
curves referred as estimated attack, represent the results predicted by the attacker when
applying the designed attack function M(z) on the estimated model – i.e. the model
discovered by the attacker through to the Passive System Identification attack. On the
other hand, the curves referred as actual attack represent the response of the actual
system in face of the same attack function M(z). In other words, the curve estimated
attack is the result achieved in a first moment, during the design stage of the attack, and
the curve actual attack is the result obtained in a second moment, when the designed
attack is launched over the actual system. It is noteworthy that the attack to the actual
model – represented by the actual attack curve – presents, in the time domain, a response
quite similar to the attack estimated with the model obtained by the Passive System
Identification attack – represented by the estimated attack curve. This can be verified
not only in the case where the system is identified with 0% of sample loss, but also in
the worst considered case, i.e. with 20% of sample loss. It is worth mentioning that all
responses presented in Figure 19 converge to 1 rad/s.

Table 3 – Values of Ko, KEss and the results obtained with the attacks – own table
published in (SA; CARMO; MACHADO, 2017c).

Sample loss in the System Identification attack
0 % 5 % 10 % 20 %

Ko 4.0451 4.0745 4.0828 3.796
Overshoot in the real model 48.90 % 49.43 % 49.57 % 45.94 %
KEss 5.7471 5.7803 5.8140 5.8823
Stationary error in the real model −10% −10% −9.9% −9.8%
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Figure 19 – Response of the system to SD-Controlled Data Injection attacks planned to
cause an overshoot of 50% in the rotational speed of the motor – own figure
published in (SA; CARMO; MACHADO, 2017c).

In the attack where objective is to cause a stationary error of −10% on the
rotational speed of the motor, the attacker executes (5.2):

M(z) = KEss(z − 1)
z − 0.94 , (5.2)

wherein KEss is adjusted based on the data obtained with the System Identification
attack. The pole of M(z) is added aiming to allow a stationary error in the system. The
zero of M(z) is intended to format the root locus in order to guarantee the existence of a
stable KEss that leads the system to a stationary error of −10%. Table 3 shows the KEss
resultant from different rates of sample loss during the System Identification attack, as
well as the stationary errors obtained with the respective KEss in the real model.

According to the data presented in Table 3, it is possible to state that the
SD-Controlled Data Injection attack, designed based on the data gathered by the Passive
System Identification attack, is capable to modify, in an accurate way, the response of
the physical system, considering all the evaluated rates of sample loss. In the worst case,
i.e. with 20% of sample loss, it is obtained an overshoot of 45.94% and a stationary error
of −9.8%, quite close to the desired values of 50% and −10%, respectively. Such accuracy
allows the attacker to keep his offensive under control, leading the system to a behavior
that is predefined as physically covert and capable to degrade the service performed by
the plant under attack.

These simulations provide conclusive data regarding to the effectiveness
and potential impacts of the joint operation of Passive System Identification and SD-
Controlled Data Injection attacks on cyber-physical systems. However, the following
issues, not explored in this section, should be considered in case of actual experiments



Chapter 5. Evaluation on the Attacks 79

or real attacks: the presence of noise, coming from the physical process, actuator and
sensors, as well as possible jitter on the network (ZHANG; GAO; KAYNAK, 2013),
which might influence both the Passive System Identification and SD-Controlled Data
Injection attacks; the delay unwittingly introduced by the MitM in the control loop
during the SD-Controlled Data Injection, which, depending on the magnitude, may
influence the system dynamics; and last, but not least, the existing techniques/systems
for communication security that must be overcome to allow the attacker get access to
the NCS’s control loop and data.

5.2 PASSIVE SYSTEM IDENTIFICATIONWITH SD-CONTROLLED DATA LOSS ATTACK

This section evaluates the performance of the joint operation of the Passive
System Identification attack and the SD-Controlled Data Loss offensive. The attacked
NCS consists of a DC motor and a proportional-integral (PI) controller. As in Section
5.1, this NCS example is chosen considering the application of DC motors in many real
systems, as well as its common use in the literature on NCS (SA; CARMO; MACHADO,
2017c; SA; CARMO; MACHADO, 2017b). To compare with the results of the SD-
Controlled Data Injection attack shown in Section 5.1, the DC motor transfer function
G(z) and the PI control function C(z) are defined as (5.1) – the same models used in
the referred section.

The controller setpoint is a unitary step function and the sample rate is 50
samples/s. The attack sequence is organized as follows:

• First, the Passive System Identification attack is performed to estimate the DC
motor model G(z) and the control function C(z);

• Then, the SD-Controlled Data Loss is performed to induce a controlled overshoot
on the rotation speed of the DC motor, by causing loss of samples in the NCS. To
select which samples should be lost, the attacker uses the models learned through
the Passive System Identification attack.

For the sake of briefness, it is considered that the models estimated by the
Passive System Identification attack are the same as those obtained by the same attack
in Section 5.1.2, assuming the scenario in which the attacker does not lose samples during
the system identification process. Therefore, the estimated plant model Ge(z) and the
estimated control function Ce(z) used to design the SD-Controlled Data Loss attack are
represented in (5.3):

Ce(z) = 0.16991z − 0.16712
z − 1 Ge(z) = 0.32793z + 0.29652

z2 − 1.54121z + 0.55983 (5.3)
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To evaluate the accuracy and adjustability of the SD-Controlled Data Loss
attack, the simulations consider four different overshoot levels, which are configured
in (3.16): Υ = 1.25rad/s, Υ = 1.5rad/s, Υ = 1.75rad/s and Υ = 2rad/s. The other
parameters of (3.16) and (3.17) are configured as follows: k1 = 10, k2 = 30, P = 10000,
ks = 100, kl = 200, and yss – obtained by measuring y(k) in a normal operation – is
1 rad/s. The beginning of the attack is triggered by the DC motor startup, which is
used as reference for k1, k2, ks and kl. Also, both Sfw and Sfb begin when the DC motor
starts up and are constituted by a sequence of h = 49 samples each.

Figure 20 shows the results obtained by the SD-Controlled Data Loss attack,
considering the four different overshoot levels Υ. The response of the system without
attack is also depicted in this figure for comparison. The words Wfw and Wfb – found
by the BSA to cause the corresponding overshoots – are also shown in Figure 20, in
hexadecimal radix. Note that, a vertical dashed line indicates the end of the period
during which the attacker causes the loss of samples in the forward and feedback streams,
based on Wfw and Wfb. The simulation results indicate the high degree of accuracy
provided by the proposed attack, as well as its adjustability to different overshoot levels.
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Figure 20 – Performance of the SD-Controlled Data Loss Attack for different overshoot
levels Υ.

The proposed attack gives the attacker the ability to cause overshoots on
the plant and accurately adjusts its intensity to the level that the attacker considers
harmful/covert, depending on the characteristics of the attacked system. At the same



Chapter 5. Evaluation on the Attacks 81

time, the attack does not need to cause the indiscriminate loss of samples, which makes
it quieter than an attack that completely denies the NCS communication. Moreover, the
results indicate that the plant behavior accurately meets what the attacker planned, not
evolving to an unwanted behavior that could be either extreme – which could cause the
attack disclosure – or ineffective.

It is possible to compare the performance of the attack herein proposed with
the performance of the SD-Controlled Data Injection attack, shown in Section 5.1, by
analyzing the simulation where Υ = 1.5rad/s. The overshoot level caused by the attack
herein proposed is 1.4994rad/s while the overshoot level obtained by the SD-Controlled
Data Injection attack in Section 5.1 is 1.4890rad/s. Based on this result, it is possible
to state that the performance of the SD-Controlled Data Loss is equivalent to the
performance obtained by the SD-Controlled Data Injection attack. However, the attack
herein proposed does not need to overcome possibly existing security mechanisms for
data integrity and authenticity. From the attacker perspective, this is an advantage of
the present attack when compared to the SD-Controlled Data Injection attack.

5.3 PASSIVE SYSTEM IDENTIFICATIONWITH COVERTMISAPPROPRIATION ATTACK

This section presents the results obtained through simulations that combine
the Passive System Identification attack with a Covert Misappropriation attack. The
results of both attacks are obtained using MATLAB/SIMULINK. Besides evaluating
the ability of the Passive System Identification attack in supporting the Covert Mis-
appropriation, this section also explores another system as target. Instead of being a
DC motor, the target here is the large PHWR described in Section 5.3.1. In Section
5.3.2, the Passive System Identification attack is performed, in order provide the attacker
with an estimate of the model G′(z) of the attacked PHWR zone. After that, in Section
5.3.3, the Covert Misappropriation attack is carried out using the data provided by the
mentioned Passive System Identification attack.

5.3.1 The Attacked System: Pressurized Heavy Water Reactor

It is known that, in nuclear power plants, the reactor power is controlled by
changing the reactivity input of the reactor using reactivity control devices like control
rods, liquid poisons and light water. Similarly, a Pressurized Heavy Water Reactor
(PHWR) – which is fuelled by natural Uranium – is cooled and moderated by Heavy
Water (D2O, or 2H2O). According to (BANERJEE et al., 2015), in a nuclear reactor,
the control system generates the inputs which modulate the reactivity control devices to
alter the reactivity input to the reactor. An increased reactivity increases the neutron
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flux and hence burn-up of fissile material. On the other hand, a reduction in reactivity
input reduces the burn-up of fissile material.

The literature on nuclear science (DAS et al., 2006; DASGUPTA et al., 2013;
DASGUPTA et al., 2015) demonstrates the feasibility of controlling a large Pressurized
Heavy Water Reactor (PHWR) through an NCS. In (DAS et al., 2006), the satisfactory
control of a large PHWR is achieved using a state-feedback controller and a 100 Mbps
Ethernet LAN, using UDP/IP. More recently, in (DASGUPTA et al., 2013; DASGUPTA
et al., 2015), the authors demonstrate the feasibility of using PID controllers to control
a large PHWR through an UDP/IP Ethernet communication.

As in (DAS et al., 2006; DASGUPTA et al., 2013; DASGUPTA et al., 2015),
the reactor model used in the present simulations assumes a 540 MWe Indian PHWR.
As described in (DAS et al., 2006) this 540 MWe PHWR consists of 14 zones which can
be de-coupled into 14 individual Single-Input-Single-Output (SISO) Systems. For the
sake of simplicity, we choose one of these 14 zones to evaluate the impact of the joint
operation of the Passive System Identification attack and the Covert Misappropriation
attack. The transfer function of the attacked zone and its PID controller, both obtained
from (DASGUPTA et al., 2015), are defined by (5.4) and (5.5), respectively:

G(z) = 0.0001889z
z2 − 1.289z + 0.2891 , (5.4)

C(z) = kp + Tski

(
z

z − 1

)
+ kd
Ts

(
z − 1
z

)
, (5.5)

wherein the sample time is Ts = 500ms, kp = 348.52, ki = 17.25 and kd = 10.79. This
plant transfer function has been derived from practical plant data (DASGUPTA et al.,
2013; DASGUPTA et al., 2015). In a PHWR, the power of a specific zone is controlled
by either filling in or draining out water from a compartment using a control valve.
Therefore, the equation (5.4) represents the transfer function between power P and valve
input v for the zone 6 of the PHWR reported in (DASGUPTA et al., 2013; DASGUPTA
et al., 2015), which has a full power of 132.75MWt. As in (DASGUPTA et al., 2015),
the set point of the controller is ramped up at the rate of 0.66MWt/s – i.e. of 0.5%
of the full power – for 10s and then kept steady. This ramping rate is the maximum
allowable rate of power increase for the class of PHWR considered.

5.3.2 Results of the Passive System Identification Attack

As described in Section 3.1.1 the Passive System Identification attack aims
to estimate the coefficients of the attacked plant which, according to (5.4), are: α1 =
1.889×10−4, β1 = 1.289 and β0 = 0.2891. The monitoring time of the attack is T = 200s,
starting when the power P of the attacked zone begins to increase – i.e. when the ramp
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setpoint specified in Section 5.3.1 starts. The parameters of the BSA are the same as in
Section 5.1.2: the population has 100 individuals; the limits of each dimension of the
search space are [−10,10]; and η – that establishes the amplitude of the movements of the
individuals of the BSA – is set to 1. The accuracy of the Passive System Identification
attack is evaluated considering three different numbers of iterations of the BSA: 200, 400
and 600. For each number of iterations, there were executed 100 attack simulations.

The statistics of the Passive System Identification attack in the PHWR zone
are shown in Table 4. It is possible to see that, when the attacker increases the number
of BSA iterations, he/she improves the performance of the attack – the mean estimated
coefficients become closer to their actual values and the standard deviation decreases.
Note that, a high level of accuracy is achieved when the attacker runs the BSA for 600
iterations.

Table 4 – Statistics of the Passive System Identification attack in the PHWR zone – own
table published in (SÁ; CARMO; MACHADO, 2018).

Mean Standard Deviation
BSA α1 β1 β0 α1 β1 β0

Iterations (×10−4) (×10−6) (×10−2) (×10−2)
200 4.331 -0.383 -0.617 87.64 31.18 31.18
400 2.013 -1.242 0.242 19.55 7.51 7.51
600 1.890 -1.289 0.288 0.40 0.15 0.15

5.3.3 Results of the Covert Misappropriation attack

To evaluate how the accuracy of the Passive System Identification attack
may contribute for the covertness of the misappropriation attack, G′(z) is configured
with the mean estimated coefficients shown in Table 4. Recall that the architecture of
the Covert Misappropriation attack is shown in Figure 6. Here, the aim of the Covert
Misappropriation attack is to reduce 1MWt of attacked zone power, modifying as less as
possible the controller input signal y′(k) (comparing with a normal operation scenario).
The input λ(k) of the MitM is a ramp signal that starts at 30s, decreases at the rate
of −0.2 during 5s and then is kept steady. The covert controller A(z) computes the
same PID function defined in (5.5), however, using the following configuration: kp = 310,
ki = 40 and kd = 10.
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Figure 21 – PHWR responses with and without the Covert Misappropriation attack
(G′(z) estimated by 200 BSA iterations) – own figure published in (SÁ;
CARMO; MACHADO, 2018).

Figure 21 shows the responses of the PHWR zone with and without the
influence of the Covert Misappropriation attack, considering the worst estimated model
– i.e. when G′(z) is estimated through 200 BSA iterations. The time when the covert
misappropriation begins is indicated by the dotted line, placed at 30s. It is possible to
see that the attacker is able to make the output y(k) of the plant converge to a power
1MWt lower than in its normal operation (i.e. without the Covert Misappropriation
attack). Additionally, by comparing the controller input signals y′(k) with and without
the attack, it is possible to verify that both are quite similar. It indicates the high degree
of covertness achieved using the model estimated by the Passive System Identification
attack – even executing only 200 BSA iterations. When G′(z) is estimated using 400
and 600 iterations, the covertness of the misappropriation attack is better than the
covertness obtained with 200 iterations. The difference between y′(k) with attack and
y′(k) without attack decreases as the number of BSA iterations increases. It is difficult to
perceive the differences of covertness if the three cases (using 200, 400 and 600 iterations)
are represented as in Figure 21. Thus, to compare the covertness of these three attack
conditions, we compute ξ(k) (5.6):

ξ(k) = y′A(k)− y′N(k). (5.6)

wherein y′A(k) and y′N(k) are the controller input signal y′(k) with and without the
Covert Misappropriation attack, respectively. Figure 22 shows the differences ξ(k) in the
controller input, considering Covert Misappropriation attacks where G′(z) is estimated
through 200, 400 and 600 BSA iterations.
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Figure 22 – Differences in the controller’s input signal – own figure published in (SÁ;
CARMO; MACHADO, 2018).

Note in Figure 22 that the highest amplitude of ξ(k) is obtained when G′(z) is
estimated with 200 iterations. With 200 iterations max |ξ(k)| = 3.9× 10−2MWt (during
the transient regime of the attack), while with 400 iterations max |ξ(k)| = 3.8×10−3MWt.
From the attacker point of view, the best covertness is achieved when G′(z) is estimated
with 600 iterations. In this case, max |ξ(k)| = 2.9× 10−5MWt, which is a quite small
deviation in the controller input, considering the magnitude of the zone power.

These results provide an idea on how covert and harmful may be the joint
operation of the these two attacks in a PHWR. The attacker is able to achieve his/her
goal, reducing 1MWt of attacked zone power, while causing low levels of ξ(k) – especially
when the Passive System Identification attack is performed with 600 iterations. These
low levels of ξ(k) may be considered in the development of standards and requirements
for PHWR monitoring systems.

5.4 ACTIVE SYSTEM IDENTIFICATION WITH SD-CONTROLLED DATA INJECTION
ATTACK

As described in Sections 2.1 and 3.1.2, the Active System Identification
attack is an alternative to the Passive System Identification attack, when the attacker
cannot wait so long for a signal that carry meaningful information for the identification
process. In this sense, this Section aims to evaluate the performance of the Active System
Identification attack and its importance in the design of a covert/model-based attack.

It is clear from Section 3.1 that both Passive and Active System Identification
attacks proposed in this work rely on metaheuristic-based algorithms to iteratively find
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the model of the attacked systems. In Sections 5.1, 5.2 and 5.3, the Passive Identification
attack is implemented and evaluated using the BSA metaheuristic. In this section, the
Active System Identification attack is implemented and evaluated using two different
mataheutistics, namely: the BSA; and the PSO. In Section 5.4.1, the results obtained
by both BSA-based and PSO-based Active System Identification attacks are analyzed,
in order to provide a demonstration of the degree of accuracy that the attacker may
obtain with the proposed attack. Additionally, to increase model accuracy, the results
of the Active System Identification attack are submitted to a process for eliminating
outliers. Section 5.4.2 presents a data injection attack designed based on the models
estimated by the Active System Identification attack. The purpose of these simulations
is to demonstrate how an Active System Identification attack may contribute for the
accuracy of model-based attacks.

5.4.1 Active System Identification Attack

The targeted system, shown in Figure 23, consists of a DC motor whose
rotational speed is controlled by a Proportional-Integral (PI) controller – as the system
attacked in Section 5.1. The PI control function C(z) and the DC motor transfer function
P (z), obtained from (LONG; WU; HUNG, 2005), are represented by (5.7) and (5.8),
respectively:

C(z) = 0.1701z − 0.1673
z − 1 , (5.7)

P (z) = 0.3379z + 0.2793
z2 − 1.5462z + 0.5646 . (5.8)

Physical

process

P(z)

Control

function

C(z)
Network

r(k)

y(k)

A
ct

u
at

o
rs

S
en

so
rs+

_

y’(k)

Controller

Plant
forward stream

feedback stream

MitM

G(z)

+

+

a(k)

+

+

w(k)

Figure 23 – Attack on a noisy NCS – own figure published in (SA; CARMO; MACHADO,
2017b).

Recall that in this attack, according to Section 3.1.2, the data is collected
at only one point of the NCS (be it in the forward or in the feedback stream). In the
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present simulations, the data is collected only at the feedback stream. Thereby, the
transfer function to be identified G(z) – which is also the open-loop transfer function of
the NCS – is defined by (5.9):

G(z) = C(z)P (z) = g1z
2 + g2z + g3

z3 + g4z2 + g5z + g6
, (5.9)

wherein g1 = 0.0575, g2 = −0.0090, g3 = −0.0467, g4 = −2.5462, g5 = 2.1108 and
g6 = −0.5646. The sample rate of the system is 50 samples/s and the set point r(k) is
an unitary step function. Network delay and packet loss are not taken into account in
these simulations.

The structure of the equations (5.1), and so the structure of (5.9), are
previously known by the attacker once that, as a premise, it is known that the target is
an NCS that controls a DC motor using a PI controller. Thus, in these simulations, the
goal of the Active System Identification attack is to discover g1, g2, g3, g4, g5 and g6.

The chosen attack signal a(k) is a discrete-time unit impulse (5.10):

a(k) =
 1 if k = ka;

0 otherwise,
(5.10)

wherein ka is the single sample in which the attacker interfere in the system by adding 1
to the feedback stream. Note that the discrete-time unit impulse is chosen to excite the
NCS due to its short active time – i.e., one sample –, which increases the stealthiness of
the attack in the time domain. Moreover, the Fourier transform of an impulse function
has an uniform – flat – density in the frequency domain, which is easily masked by the
frequency distribution of a white Gaussian noise. This fact also increases the stealthiness
of the attack signal in the frequency domain.

The effectiveness of the Active System Identification attack is evaluated with
and without noise. To simulate the noise, w(k) ∼ N(µ,σ) is inserted in the NCS as
indicated in Figure 23. Note that w(k) is a white Gaussian noise wherein N is a normal
distribution, µ is its mean and σ is its standard deviation. In all simulations, the mean
is µ = 0 rad/s. The standard deviation is adjusted in such manner that 95% of the
amplitudes of w(k) are within ±I (I = 2σ). The simulations consider four different
noise intensities I: 0 (no noise), 0.0025 rad/s, 0.005 rad/s and 0.01 rad/s. For each
noise intensity I, 100 different simulations are executed using each of the mentioned
metaheuristics. In each simulation, the feedback stream is captured by the attacker
during a period T = 2s (100 samples), starting at sample ka + 1.

The attack model was implemented in MATLAB, where the simulations were
carried out. The SIMULINK tool was used to compute ya(k) and ŷaj(k) – the latter,
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for each individual j of the optimization algorithms. The parameters of the BSA and
PSO were empirically adjusted through a set of simulations without noise (I = 0).
These parameters are then used for all noise conditions. In the BSA-based attacks, the
parameter η – that establishes the amplitude of the movements of the BSA individuals –
is set to 1. In the PSO-based attacks, the following parameters are used:

• Inertial coefficient: ω = 0.4,
• Cognitive coefficient: ϕ1 = 1.5
• Social Coefficient: ϕ2 = 1.5
• Velocity limit coefficient: δ = 0.1

In both algorithms, the population is set to 100 individuals and the limits of each
dimension of the search space are [−10,10]. In each simulation, the BSA and the PSO
are executed for 4500 iterations.

Let Su be the solution of an attack simulation u, and gi,u the value estimated
for the ith coefficient of G(z) in the uth attack simulation. Each attack simulation
provides a solution Su = [g1,u,g2,u,g3,u,g4,u,g5,u, g6,u] containing estimated values for the
six coefficients of G(z). In a preliminary work (SA; CARMO; MACHADO, 2017a) –
published as part of this research –, for a given coefficient gi of G(z), if an estimated
value gi,u was beyond two standard deviation from the mean, then gi,u was considered
an outlier and eliminated from the set of values found for gi. After that, the estimated
value of each gi was assumed to be the mean of the remaining gi,u. However, in the
present work, as in (SA; CARMO; MACHADO, 2017b)1, the process for eliminating
outliers is modified to improve the accuracy of the estimated model. In this work, if an
estimated value gi,u is beyond two standard deviation from the mean, the whole solution
Su (to which gi,u belongs) is considered as an outlier and eliminated from the set of
solutions. Doing so, the estimated value of each gi is assumed to be mean of all gi,u
contained in the set of remaining Su. Table 5 presents a summary that compares the
results achieved with the outliers elimination process used in (SA; CARMO; MACHADO,
2017b) with the results obtained in (SA; CARMO; MACHADO, 2017a), in both BSA-
based and PSO-based attacks. The most accurate results are highlighted. Note that in
all cases the most accurate results were achieved by the BSA-based attacks. According
to Table 5, the outliers elimination process used (SA; CARMO; MACHADO, 2017b),
in general, improves the accuracy of the results obtained by the BSA-based attacks.
This improvement is more evident in Section 5.4.2, where the performance of other
attacks designed with the data presented in Table 5 is analyzed. Note that, in Table 5,
for the PSO-based attacks, the results obtained in (SA; CARMO; MACHADO, 2017b)
1 The paper (SA; CARMO; MACHADO, 2017b) constitutes a part of the present research and is an

extended version of (SA; CARMO; MACHADO, 2017a).
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are the same as the results obtained in (SA; CARMO; MACHADO, 2017a). It occurs
because in PSO-based attacks all outlier coefficients belong to solutions wherein all other
coefficients are also outliers – i.e. beyond two standard deviations from their means.
Thus, in the PSO-based attacks, the whole solution Su which contains an outlier is
eliminated from the set of solutions even when the outliers elimination process of (SA;
CARMO; MACHADO, 2017a) is applied.

Table 5 – Mean estimated coefficients of G(z) after the processes to eliminate outliers –
own table published in (SA; CARMO; MACHADO, 2017b).

Mean of the estimated coefficients
Noise g1 g2 g3 g4 g5 g6
(I) ×10−2 ×10−3 ×10−2 ×10−1
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0 5.7756 -9.3337 -4.6261 -2.5431 2.1063 -5.6319
0.0025 5.7736 -9.2001 -4.6301 -2.5428 2.1058 -5.6305
0.005 5.7826 -9.0411 -4.5528 -2.5345 2.0937 -5.5924
0.0075 5.8215 -0.7908 -3.4930 -2.4023 1.8911 -4.7857
0.01 5.8561 20.7982 -2.5371 -2.0906 1.3852 -3.1095

PS
O

0 5.8799 -10.6784 -4.4361 -2.5341 2.0940 -5.5989
0.0025 5.8987 19.7038 -2.1653 -2.0568 1.3567 -2.9982
0.005 5.9148 28.7309 -1.6431 -1.9242 1.1493 -2.2507
0.0075 5.9357 34.5026 -1.2472 -1.8347 1.0102 -1.7552
0.01 5.9288 43.4950 -0.6878 -1.7036 0.8073 -1.0370
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SA

0 5.7750 -9.3128 -4.6268 -2.5431 2.1063 -5.6319
0.0025 5.7714 -9.2299 -4.6294 -2.5428 2.1059 -5.6306
0.005 5.7628 -8.6145 -4.5870 -2.5350 2.0944 -5.5931
0.0075 5.7843 -4.0346 -4.1886 -2.4578 1.9761 -5.1824
0.01 5.8763 15.6817 -2.6009 -2.1322 1.4738 -3.4164

PS
O

0 5.8799 -10.6784 -4.4361 -2.5341 2.0940 -5.5989
0.0025 5.8987 19.7038 -2.1653 -2.0568 1.3567 -2.9982
0.005 5.9148 28.7309 -1.6431 -1.9242 1.1493 -2.2507
0.0075 5.9357 34.5026 -1.2472 -1.8347 1.0102 -1.7552
0.01 5.9288 43.4950 -0.6878 -1.7036 0.8073 -1.0370

The mean estimated values of g1, g2, g3, g4, g5 and g6, after applying the
outliers elimination process of (SA; CARMO; MACHADO, 2017b), are shown in Figure 24
with a Confidence Interval (CI) of 95%, for different values of noise intensity I. Note that
the actual values of these coefficients are also depicted in Figure 24. In this Figure, it is
possible to compare the results achieved by the BSA-based and the PSO-based attacks.
According to Figure 24, it is possible to verify that, for all coefficients of G(z), both
BSA-based and PSO-based attacks present good accuracy when I = 0 (i.e. without noise,
the mean values of the estimated coefficients are close to their actual values). Despite the
similar and accurate performance of the two metaheuristics without noise, it is possible
to state that the BSA presented a slightly better performance than the PSO in this noise
condition (I = 0), specially with regard to the coefficients g1, g2 and g3. Note that the
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Figure 24 – Mean of the estimated coefficients of G(z), with CI of 95%, in face of
different noise intensities I – own figure published in (SA; CARMO;

MACHADO, 2017b).

performance of the PSO-based attack is degraded when noise is added to the system.
This performance degradation of the PSO occurs for I ≥ 0.0025 and tends to be more
expressive with the increase of I. On the other hand, it is possible to verify in Figure 24
that the BSA-based attack still present good accuracy for noise intensities up to 0.005.
When I ≤ 0.005, all coefficients estimated by the BSA-based attack present a mean close
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to their actual values and with a small CI. When I ≥ 0.0075, the performance of the
BSA-based attack decreases with the raise of noise in a more expressive way, being at its
worst when I = 0.01. In general, among the six coefficients of G(z), the estimation of g2

presents the lowest accuracy for both BSA-based and PSO-based attacks. This behavior
is attributed to a lower sensitivity that the output ŷa(k) of the estimated system has to
the variation of g2. This means that, in this problem, fj grows faster for errors in g1, g3,
g4, g5 and g6 than for errors in g2, making the BSA population converge less accurately
in dimension g2.
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Figure 25 – Response of actual and estimated systems produced by a(k), in face of
different noise intensities – own figure published in (SA; CARMO;

MACHADO, 2017b).

The performance of the attacks can also be evaluated in the k domain through
the examples provided in Figure 25, considering two different intensities of noise: without
noise, in Figure 25(a); and with I = 0.005, in Figures 25(b) and 25(c). Figure 25(a) shows
that, without noise, the response of the system estimated by both BSA-based and PSO-
based attacks matches the response of the actual system with high accuracy. In Figure
25(b), even with a noise intensity of I = 0.005, the response of the system estimated
by the BSA-based attack still matches the response of the actual system, indicating the
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convergence of Ge(z) to G(z) and ratifying the statistics shown in Figure 24 for the BSA
with such noise intensity. On the other hand, when applying the PSO-based attack with
the same noise, as exemplified in Figure 25(c), there is a slight difference between the
response of the estimated system and the response of the actual system, produced by
the mismatch of the estimated coefficients in the presence of such noise intensity. This
exemplifies the worse performance of the PSO-based attacks, when compared with the
BSA-based attacks, in face of the same noise intensities.

To synthesize the error of each solution found, |Eg| is computed as (5.11):

|Eg| =

√√√√ 6∑
i=1

(gi − gei)2, (5.11)

wherein gi and gei are the actual and estimated coefficients of the attacked system,
respectively, and i is the index number of each of the six coefficients of the model being
assessed. Note that |Eg| is the module of a vector composed by the error of each coefficient
found, which represents another metric to evaluate the performance of each attack. The
histograms of |Eg| are presented in Figure 26, considering the mentioned noise intensities.
It graphically shows that higher values of |Eg| tend to appear more frequently as the
noise intensity grows, in both BSA-based and PSO-based attacks. However, based on
these histograms it is possible to verify that the mode of |Eg| is close to zero for all noise
intensities, using both metaheuristics. This indicates that, even in the presence of noise,
most solutions present low deviations from the actual coefficients. Note that, for all
noise intensities, the BSA-based attacks provide more results in the modal class – where
|Eg| is close to zero – than the PSO-based attacks. Moreover, the worst results of the
BSA-based attacks have an |Eg| of about 4 when I ≥ 0.005, while the worst results of
the PSO-based attacks have an |Eg| > 20 when I ≥ 0.0025. These results, together with
the statistics shown in Figure 24, indicate that the performance of the Active System
Identification attack is better when implemented with the BSA than with the PSO. It is
worth mentioning that, to achieve these results, the BSA-based attacks consumed an
average processing time (6.68± 0.47)% higher than the PSO-based attacks.

In general, the outcomes indicate that, for the same amplitude of attack signal
a(k), the performance of the attack tends to decrease as the noise intensity increases
(i.e. when the attack signal-to-noise ratio decreases). The minimum length of the attack
signal in terms of number of manipulated samples (i.e. one single sample) improves
the stealthiness of the attack in the k domain. On the other hand, a minimum attack
signal-to-noise ratio required to guarantee the performance of this attack is a drawback
with respect to its stealthiness, from the attacker’s point of view. This issue makes more
difficult for the attacker to approximate the amplitude of a(k) to the noise amplitude or
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to noise values that have higher probability to occur, which should help to increase the
stealthiness of the attack signal in terms of amplitude.

(a) BSA

(b) PSO

Figure 26 – Histograms of |Eg| for different noise intensities – own figure published in
(SA; CARMO; MACHADO, 2017b).

5.4.2 Data Injection Attack

The proposed Active System Identification attack is an useful tool – from the
attacker point of view – for the design of other sophisticated and accurate attacks. To
demonstrate this capability, this section presents a set of data injection attacks designed
based on the models estimated in Section 5.4.1 by the Active System Identification
attacks. These data injection attacks aim to cause an overshoot of 50% on the rotational
speed of the DC motor during its transient response. As mentioned in Sections 2.1 and
3.2, this physically covert interference (SA; CARMO; MACHADO, 2017c) may cause
stress and possibly damages to the plant, reducing its MTBF.
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Aware of the estimated model of the NCS, the attacker – acting as an MitM –
executes the attack function defined by (5.12):

y′(k) = γ1y(k − 1) + γ2y
′(k − 1). (5.12)

wherein γ1 and γ2 are adjusted through a root locus analysis, considering the estimated
open-loop transfer functions. Note that in (5.12) the attacker is on the NCS’s feedback
stream, given that, according to Figure 23, y(k) is the sensor’s output and y′(k) is the
controller’s input.

The models used to design these data injection attacks are built with the mean
estimated coefficients shown in Table 5. Note that γ1 and γ2 have to be adjusted for each
estimated model which, in turn, vary with the noise condition, the optimization algorithm
(BSA or PSO) and the process for elimination of outliers, as shown in Table 5. The
values of γ1 and γ2 used in each data injection attack are shown in Table 6, as well as the
respective overshoots achieved with the attack. In Table 6, the row (I) contains the data
injection attacks designed with the models estimated by the BSA-based attacks using the
outliers elimination process of (SA; CARMO; MACHADO, 2017a). Row (II) contains
the data injection attacks designed with the models estimated by the BSA-based attacks
using the outliers elimination process proposed in (SA; CARMO; MACHADO, 2017b).
As described in Section 5.4.1, the models estimated in (SA; CARMO; MACHADO,
2017b) and (SA; CARMO; MACHADO, 2017a) by the PSO-based attacks do not change
with the different outliers elimination processes. Thus, in Table 6, the attacks designed
with the models estimated by the PSO-based attacks – after either of the two outliers
elimination processes – are contained in row (III).

Table 6 – Values of γ1, γ2 and the overshoot obtained with the data injection attacks –
own table published in (SA; CARMO; MACHADO, 2017b).

Noise (I) during the System Identification attack
0 0.0025 0.005 0.0075 0.01

γ1 0.25316 0.25485 0.25523 0.58959 0.53297
(I) γ2 0.74679 0.74515 0.74477 -0.07354 0.5911

Overshoot 49.53 % 49.49 % 49.65 % (*) (*)
γ1 0.25318 0.25286 0.2551 0.27652 0.31407

(II) γ2 0.74682 0.74714 0.7449 0.72348 0.68593
Overshoot 49.52 % 49.78 % 49.67 % 46.91 % 42.42 %
γ1 0.26801 0.32328 0.32816 0.33074 0.33204

(III) γ2 0.73199 0.67672 0.67184 0.66926 0.66796
Overshoot 47.43 % 40.70 % 40.37 % 40.30 % 40.38 %

(*) The inaccuracy of the data injection attack caused a collateral effect:
an expressive steady state error in the motor’s rotational speed.
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Examples of the data injection attacks shown in Table 6 are depicted, in the
time domain, in Figures 27, 28 and 29. In these figures, the curves named as estimated
attack represent the results predicted by the attacker when applying the designed attack
function (5.12) on the estimated model – i.e. the model provided by the Active System
Identification attack. On the other hand, the curves referred as actual attack represent
the response of the actual system in face of the same attack function (5.12). In other
words, the curve estimated attack is the result achieved in a first moment, during the
design stage of the attack, and the curve actual attack is the result obtained in a second
moment, when the designed attack is launched over the actual system.
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(b) I = 0.0075

Figure 27 – Data injection attack using models estimated by a BSA-based attack with
the outliers elimination process of (SA; CARMO; MACHADO, 2017a) –

own figure published in (SA; CARMO; MACHADO, 2017b).
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(b) I = 0.0075

Figure 28 – Data injection attack using models estimated by a BSA-based attack with
the outliers elimination process of (SA; CARMO; MACHADO, 2017b) –

own figure published in (SA; CARMO; MACHADO, 2017b).

In rows (I) and (II) of Table 6, it is possible to see that, when 0 ≤ I ≤ 0.005,
the data provided by the BSA-based Active System Identification attacks produce
accurate data injection attacks, either with the outliers elimination process of (SA;
CARMO; MACHADO, 2017a) or (SA; CARMO; MACHADO, 2017b). In these data
injection attacks, all overshoots lie between 49.49% and 49.78% – i.e., close to the goal
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Figure 29 – Data injection attack using models estimated by a PSO-based attack with
the outliers elimination process – own figure published in (SA; CARMO;

MACHADO, 2017b).

of 50%. However, for 0.0075 ≤ I ≤ 0.01, the data injection attacks of row (I) – i.e.,
using the models estimated by BSA-based attacks with the outliers elimination process
of (SA; CARMO; MACHADO, 2017a) – produce a collateral behavior on the attacked
system. They cause expressive steady state errors in the motor’s rotational speed, as
indicated, for instance, in Figure 27(b). On the other hand, for 0.0075 ≤ I ≤ 0.01,
when the outliers elimination process proposed in (SA; CARMO; MACHADO, 2017b) is
applied to the BSA-based Active System Identification attacks, the estimated models
eliminate the mentioned collateral effects on the data injection attacks. This can be seen
in the example shown in Figure 28(b), for I = 0.0075, where the response of the actual
attack is close to the response of the estimated attack, without a steady state error and
with an overshoot of 46.91%. The reason for these different performances is explained
by the impact of the outliers elimination process in the root locus analysis. When only
an outlier coefficient gi,u is eliminated – as in (SA; CARMO; MACHADO, 2017a) –,
instead of eliminating the whole solution Su from where it belongs – as proposed in
(SA; CARMO; MACHADO, 2017b) –, the roots of the open-loop transfer function suffer
a distortion. For instance, in these simulations, when 0.0075 ≤ I ≤ 0.01, the outliers
elimination process of (SA; CARMO; MACHADO, 2017a) modifies a pole of G(z) that
should be 1. This pole exists due to the use of the PI controller – a premise known by the
attacker – and, when modified, influences the adjustment of γ1 and γ2 of equation (5.12).
On the other hand, by eliminating the whole solution Su containing an outlier coefficient
gi,u, the mean estimated coefficients of G(z) preserve the interdependencies necessary to
produce less distorted roots. Note that, as shown in row (III) of Table 6 and in Figure 29,
the PSO-based attacks produce less accurate data injection attacks than the BSA-based
attacks with the outliers elimination process proposed in (SA; CARMO; MACHADO,
2017b). It is worth mentioning that the data injection attacks designed with the models
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estimated by the PSO-based attacks do not present any collateral effects, using any of
the two outliers elimination processes. In both cases, as explained in Section 5.4.1, the
whole solution Su containing an outlier is eliminated from the set of solutions, producing
less distortion in the roots of G(z).

Moreover, with the exception of the attacks of row (I) for 0.0075 ≤ I ≤ 0.01,
all data injection attacks achieved satisfactory results. However, it is shown that the
accuracy of the data injection attack, in general, decreases as the noise intensity increases
during the Active System Identification attack.

5.5 SUMMARY

This chapter evaluates the System Identification attacks and model-based
offensives described in chapter 3. The attacks are arranged in joint operations were the
System Identification attacks are executed first, in order to provide the NCS models
required to implement the subsequent model-based offensives.

The System Identification attacks, implemented with bioinspired metaheuris-
tics (BSA and PSO), are evaluated in scenarios with and without data loss and noise.
The results demonstrate that the proposed System Identification attacks are an effective
tool to support the design of the model-based offensives addressed in this work, namely:
SD-Controlled Data Injection attack; Covert Misappropriation attack; and SD-Controlled
Data Loss attack. The outcomes indicate that the models learned through System Iden-
tification attacks are accurate enough build attacks considered to be physically covert
(in case of SD-Controlled Data Injection attacks, or SD-Controlled Data Loss attacks),
as well as cybernetically covert attacks (in case of Covert Misappropriation attacks).
In general, the results indicate that the model-based attacks accurately meet what the
attacker has planned, not evolving to an unwanted behavior that could be either extreme
– which could cause the attack disclosure – or ineffective.

The results also demonstrate that the novel SD-Controlled Data Loss attack
has a performance equivalent to the SD-Controlled Data Injection attack, however
without the need to overcome possibly existing security mechanisms for data integrity
and authenticity (which may be necessary in the latter). The SD-Controlled Data Loss
attack demonstrates to be adjustable (obtaining accuracy for different overshoot levels)
and does not cause indiscriminate loss of samples to achieve its goal.
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6 EVALUATION ON THE COUNTERMEASURES

This Chapter evaluates the performance of the countermeasures proposed
in Chapter 4. Sections 6.1 and 6.2 analyze the performance of the switching controller
design proposed in Section 4.1 against the Active System Identification attack and the
Passive System Identification attack, respectively. Section 6.3, in turn, analyzes the
performance of the attack identification strategy proposed in section 4.2 when identifying
the Controlled Data Injection attack described in Section 3.2.1.

6.1 MITIGATION OF THE ACTIVE SYSTEM IDENTIFICATION ATTACK

In this section, the performance of the countermeasure proposed in Chapter 4
is analyzed in face of the Active System Identification attack described in Section 3.1.2.
In the simulations of this section, two NCSs are used for comparison: one with the
proposed countermeasure – i.e. using a switching controller; and another without the
proposed countermeasure – i.e. using a non-switching controller. The performance of the
attack in both NCSs is evaluated through a set of simulations performed in MATLAB.
The model of the two attacked NCSs, as well as the parameters of the Active System
Identification attack, are specified in Section 6.1.1.

Recall that, as mentioned in Section 4.1.2, the design of the switching controller
must meet simultaneously two objectives: comply with the plant control requirements;
and hinder the identification process. In this sense, Section 6.1.2 presents the results of
the switching controller as a countermeasure for the Active System Identification attack.
Section 6.1.3, in turn, evaluates the performance of the proposed countermeasure from
the control perspective, in order to identify possible trade-offs that may exist between
the two mentioned objectives.

6.1.1 Attacked NCSs and Parameters of the Attack

The NCS without the proposed countermeasure – also referred in this section
as a system with vulnerable model – is the same NCS attacked in Sections 5.1 and 5.4,
endowed with a non-switching controller. It consists of a DC motor whose rotational
speed is controlled by a Proportional-Integral (PI) controller. The DC motor’s transfer
function P (z) and the PI control function C1(z) are represented by (6.1) and (6.2),
respectively:

P (z) = 0.3379z + 0.2793
z2 − 1.5462z + 0.5646 , (6.1)
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C1(z) = 0.1701z − 0.1673
z − 1 . (6.2)

Thereby, the open-loop transfer function of the system with vulnerable model
G1(z) – to be identified – is defined as (6.3):

G1(z) = C1(z)P (z) = g1,1z
2 + g2,1z + g3,1

z3 + g4,1z2 + g5,1z + g6,1
, (6.3)

wherein g1,1 = 0.0575, g2,1 = −0.0090, g3,1 = −0.0467, g4,1 = −2.5462, g5,1 = 2.1108 and
g6,1 = −0.5646.

The NCS endowed with the proposed countermeasure – i.e. the switching
controller – also controls a DC motor defined by the transfer function (6.1). The switching
controller switches among two control functions: C1(z), that is the same control function
(6.2) of the system with vulnerable model; and C2(z) defined by (6.4).

C2(z) = 0.1208z − 0,1167
z − 1 . (6.4)

Therefore, the NCS with the switching controller is an SLS composed by two
subsystems, each one having an open-loop transfer function. The two open-loop transfer
functions are, respectively: G1(z), that is the same open-loop transfer function (6.3) of
the system with vulnerable model; and G2(z) defined by (6.5),

G2(z) = C2(z)P (z) = g1,2z
2 + g2,2z + g3,2

z3 + g4,2z2 + g5,2z + g6,2
, (6.5)

wherein g1,2 = 0.0408, g2,2 = −0.0057, g3,2 = −0.0326, g4,2 = −2.5462, g5,2 = 2.1108 and
g6,2 = −0.5646. Note that the denominators of G1(z) and G2(z) are equal, given that
only the numerators of C1(z) and C2(z) are different. Thus, g4,1 = g4,2, g5,1 = g5,2 and
g6,1 = g6,2.

The control functions C1(z) and C2(z) are designed to make the two subsys-
tems of this SLS stable. As described in Section 4.1.2, the control functions are randomly
switched based on the Markov chain shown in Figure 8, under a restricted switching
policy, whose restrictions are bounded by the PDF shown in Figure 9. The parameters
a and b of the PDF were empirically adjusted to a = 20 and b = 40, in order to meet
Objectives I and II, as discussed in Section 4.1.2. It is worth mentioning that, regarding
the Objective I, the parameters a and b were empirically adjusted aiming, primarily,
the overall stability of the system. However, the settling time and the overshoot of the
system are also evaluated in these simulations.
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The attack is implemented using the BSA, given that this metaheuristic
presented the best performance in the attack simulations shown in Section 5.4. Also,
the parameters of the BSA are the same as in Section 5.4: the population is set to 100
individuals; the limits of each dimension of the search space are [−10,10]; and η – that
establishes the amplitude of the movements of the individuals of the BSA – is set to 1.
In each simulation, the BSA is executed for 4500 iterations.

As in Section 5.4, the attack signal a(k) shown in Figure 4 is a discrete-time
unitary impulse defined by (5.10). In each simulation, the feedback stream is captured
by the attacker during a period T = 2s (100 samples), starting at sample ka + 1. In both
NCSs, the sample rate is 50 samples/s and the set point r(k) is an unitary step function.
Network delay and packet loss are not taken into account in these simulations.

6.1.2 Performance as a Countermeasure

This section presents the results obtained by the Active System Identification
attack when launched in the NCSs described in Section 6.1.1 – one NCS using the
switching controller and the other using the non-switching controller. In each NCS, there
were executed 100 attack simulations. All coefficients estimated by these 100 attack
simulations in each NCS are presented in Figure 30. Recall that the NCS with the
non-switching controller has only one open-loop transfer function G1(z), while the NCS
with the switching controller has two open-loop transfer functions G1(z) and G2(z).
Note that the actual values of the coefficients [g1,1,g2,1,g3,1,g4,1,g5,1,g6,1] and [g1,2,g2,2,g3,2,

g4,2,g5,2,g6,2] of the two open-loop transfer functions G1(z) and G2(z), respectively, are
also depicted in Figure 30. By observing Figures 30(a) to 30(f), it is possible to state that
the coefficients estimated in the NCS with the non-switching controller are precise and
accurate. In this NCS, with non-switching controller, the Active System Identification
attack provides the information and the confidence that the attacker needs to design
other covert/model-based attacks. On the other hand, in the NCS endowed with the
proposed countermeasure, the use of the switching controller causes the dispersion of the
estimated values, reducing the precision and the accuracy of the coefficients obtained by
the attacker. As shown in Figure 30, the set of estimated values in this SLS are spread
and does not accurately indicate any of the coefficients of G1(z) and G2(z).

The impact of the use of the switching controller in the attack performance
can also be verified by comparing the global minimum values found for the fitness
function (3.9). In the NCS endowed with the switching controller, the global minimum
values of all attack simulations are within 1.81× 10−06 and 1.96× 10−04 (the mean is
2.50× 10−05, and the standard deviation is 3.97× 10−05). On the other hand, in the NCS
with the non-switching controller, all global minimum values are within 7.82 × 10−09
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Figure 30 – Coefficients estimated by the Active System Identification Attack in NCSs
using the proposed countermeasure (with a switching controller) and

without the proposed countermeasure (using a non-switching controller) –
own figure published in (SA; CARMO; MACHADO, 2017d).

and 4.46× 10−08 (the mean is 8.75× 10−09, and the standard deviation is 4.80× 10−09).
Recall that, as discussed in Section 3.1.2, without perturbation or noise, the minimum
value of (3.9) is min fj = 0 when the attacked system is perfectly identified. So, the
higher order of the global minimum values caused by the use of the switching controller
also demonstrates the effectiveness of the proposed countermeasure. From the attacker
point o view, these higher global minimum values may be an indicative that the Active
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System Identification attack was not effective in obtaining the model of the attacked
system. In this sense, the attacker must hesitate to launch covert/model-based attacks
based on the information gathered by the Active System Identification attack.
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Figure 31 – Zeros and poles estimated by the Active System Identification attack – own
figure published in (SA; CARMO; MACHADO, 2017d).

The impact of the proposed countermeasure in the referred Active System
Identification attack can also be verified in the pole-zero maps shown in Figure 31. Figure
31(a) shows the zeros and poles of the open-loop transfer functions estimated by the 100
simulations with the non-switching controller. Figure 31(b), in turn, shows the zeros
and poles of the open-loop transfer functions estimated by the simulations using the
switching controller. Note that, in the simulations with the non-switching controller, the
estimated zeros and poles accurately meet the actual zeros and poles of the open-loop
transfer function G1(z) of the NCS. On the other hand, Figure 31(b) shows that when
the proposed countermeasure is used, the estimated zeros and poles are spread and do
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not concur for the actual zeros and poles of G1(z) and G2(z) – i.e. the open-loop transfer
functions of the two subsystems of the SLS.

The spreading of the estimated poles and zeros in Figure 31(b), the inaccuracy
of the estimated coefficients shown in Figure 30, and the higher global minimum values
found by the BSA demonstrate the effectiveness of using switching controllers as a
countermeasure for the Active System Identification attack described in Section 3.1.2.
With the proposed countermeasure, it is possible to state that the model obtained by
the attacker is imprecise/ambiguous in such a way that, with the obtained information,
the attacker may hesitate in launching other covert/model-based attacks. So, Objective
II defined in Section 4.1.2 is met.

6.1.3 Complying the Control Requirements

In this section, the performance of the proposed countermeasure is analyzed
from the control perspective, in order to identify possible impacts that it may produce in
the control of the plant. To do so, the following aspects are evaluated: stability; overshoot;
and settling time. Considering these aspects, the performance of the switching controller
is compared with the performance of the non-switching controller. Given the stochastic
nature of the switching controller described in Section 6.1.1, which randomly switches
among two control functions, the mentioned aspects are evaluated through a set of
100,000 simulations.

Figure 32 shows the responses of both NCSs in the time domain. The responses
of the NCS endowed with the proposed countermeasure is represented by the highlighted
area. The bounds of this area are drawn based on the maximum and minimum values
of the output of the plant, considering all 100,000 simulations. In another words, when
using the switching controller, all output signals provided by the simulations are within
this highlighted area. The non-stochastic response of the NCS using the non-switching
controller is represented in Figure 32 by the red line. Note that, up to t = 0.4s the
responses using the switching controller are the same as the response with the non-
switching controller. This is caused by the minimum dwell time of 0.4s, set by the
minimum number of sampling intervals that the system have to remain in the same state,
defined in Section 6.1.1 as a = 20 samples. Based on Figure 32, it is possible to verify that,
considering all 100,000 simulations, the NCS with the proposed countermeasure is stable,
the output of the plant converges to the set point (1rad/s) without stationary error,
and it does not present overshoots. In these aspects, from the control perspective, the
proposed countermeasure presents the same performance as the non-switching controller.
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Figure 32 – Response of the systems in the time domain – own figure published in (SA;
CARMO; MACHADO, 2017d).
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Figure 33 – Histogram of the settling time when using the proposed countermeasure –
own figure published in (SA; CARMO; MACHADO, 2017d).

On the other hand, due to the successive switchings, it is possible to verify
in Figure 32 that the settling time of the proposed countermeasure is higher than the
settling time provided by the non-switching controller. The deterministic settling time of
the NCS with the non-switching controller is 2.4s. The settling time ts provided by the
switching controller is stochastic and depends on the sequence of dwell times occurred
before achieving ts, which is random. The settling times of all 100,000 simulations
using the switching controller are represented in the histogram shown in Figure 33. The
minimum and maximum settling times are 3.90s and 6.96s, respectively, and the mean
is 4.555± 0.0088s, with a confidence interval of 95%.
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The performance of the proposed countermeasure, from the control perspective,
is satisfactory and indicates the feasibility of meeting Objective I and Objective II,
simultaneously. In these simulations, the control provided by the switching controller
presents a performance similar to the performance of the non-switching controller. The
primary requirement of Objective I – i.e. stability – is met, as well as the requirement
of not causing overshoots on the plant. However, the simulations indicate an increase
in the settling time of the system, which may not be an issue, but have to be analyzed
depending on the specific process being controlled. In this sense, the tradeoff between
hindering the identification attack and increasing the settling time must be taken into
account when deciding for using this countermeasure.

6.2 MITIGATION OF THE PASSIVE SYSTEM IDENTIFICATION ATTACK

This section evaluates the performance of the switching controller when
the Passive System Identification attack described in Section 3.1.1 is launched in an
NCS. As in Section 6.1, two NCSs are used for comparison: one with the proposed
countermeasure – i.e. using a switching controller; and another without the proposed
countermeasure – i.e. using a non-switching controller. The specifications of these NCSs
and the parameters of the attack are described in Section 6.2.1 Recall that, according to
Section 4.1.2, the design of the switching controller must follow two objectives: hinder
the identification process; and comply with the plant’s control requirements. The results
concerning these two objectives are presented in Sections 6.2.2 and 6.2.3, respectively, in
order to demonstrate the feasibility of the solution from both perspectives. Additionally,
Section 6.2.4 demonstrates the impact caused in the SD-Controlled Data Injection attack,
described in Section 3.2.1, when the Passive System Identification Attack is mitigated
by the proposed countermeasure.

6.2.1 Attacked NCSs and Parameters of the Attack

In Sections 6.2.2 and 6.2.3, the results obtained with the proposed coun-
termeasure are compared with the results obtained in an NCS without the proposed
countermeasure – i.e. endowed with a non-switching controller. As in Section 5.1, the
NCS with the non-switching controller consists of a Proportional-Integral (PI) controller
that controls the rotational speed of a DC motor. The PI control function C1(z) and the
DC motor transfer function G(z) are represented by (6.6) and (6.7), respectively:

C1(z) = c1,1z + c2,1

z − 1 (6.6)

G(z) = g1z + g2

z2 + g3z + g4
(6.7)
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wherein c1,1 = 0,1701, c2,1 = −0,1673, g1 = 0,3379, g2 = 0,2793, g3 = −1,5462 and
g4 = 0,5646. In both NCSs, the sample rate is 50 samples/s and the set point r(k) is a
unitary step function.

The NCS with the proposed countermeasure has the same architecture shown
in Figure 7 and controls a DC motor whose transfer function is also defined by (6.7)
– i.e. it controls the same plant that is controlled by the NCS with the non-switching
controller. The switching controller has two control functions: C1(z), that is the same
control function (6.6) of the non-switching controller; and C2(z) defined by (6.8),

C2(z) = c1,2z + c2,2

z − 1 . (6.8)

wherein c1,2 = 0.001 and c2,2 = 0.0002. So, the NCS with the switching controller is an
SLS with two subsystems. The control functions C1(z) and C2(z) are designed to make
each subsystem stable – when separately analyzed – and are randomly switched based on
the switching rule defined by the Markov chain and the PDF shown in Figures 8 and 9,
respectively. The parameters a and b of the PDF were empirically adjusted to a = 40 and
b = 60, in order to meet Objectives I and II defined in Section 4.1.2. Regarding Objective
I, it is worth mentioning that a and b were empirically adjusted aiming, primarily, the
global stability of the SLS. However, the settling time and the overshoot of the plant are
also evaluated in Section 6.2.3.

Regarding the Passive System Identification attack, the parameters of the
BSA are the same as those defined in Section 5.1. Also, the forward and feedback streams
are captured by the attacker during a period T = 2s (100 samples).

6.2.2 Performance as a Countermeasure

This section presents the results obtained by the Passive System Identification
attack, when attacking both switching and non-switching controllers. For each controller,
100 attack simulations were performed. To evaluate the proposed countermeasure, we
considered the scenario where the attacker obtained the best performance in Section 5.1
– i.e. without packet loss.

The coefficients estimated by all attack simulations (100 for each controller)
are presented in Figure 34. Recall that the non-switching controller just have one control
function C1(z), while the switching controller has two control functions C1(z) and
C2(z). Note that the actual values of the coefficients [c1,1,c2,1] and [c1,2,c2,2] of the two
control functions C1(z) and C2(z), respectively, are also depicted in Figure 34. Analyzing
Figures 34(a) and 34(b), it is possible to verify that the estimated coefficients of the
non-switching controller are precise and accurate. In this case, the estimated coefficients
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Figure 34 – Coefficients estimated by the Passive System Identification Attack – own
figure published in (SA; CARMO; MACHADO, 2018).

are concentrated close to the actual values of c1,1 and c2,1. This concentration indicates
that, with the non-switching controller, the Passive System Identification attack provides
the information and the confidence that the attacker needs to design a covert/model-
based attack – such as the SD-Controlled Data Injection attack described in Section
3.2.1. On the other hand, Figure 34 shows that the use of the switching controller causes
the dispersion of the estimated coefficients, reducing the precision and the accuracy
of the Passive System Identification attack. With the switchings, the set of estimated
values are spread and does not accurately indicate any of the coefficients of C1(z) and
C2(z). It is worth mentioning that this spreading has a dissuasive effect. It increases the
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uncertainty of the attacker regarding the model of the attacked controller, in such way
that the attacker may hesitate to proceed with his intention of a covert/model-based
attack that relies on an accurate knowledge about the controller.

The impact of the switching controller in the Passive System Identification
attack can also be verified through the analysis of the global minimum values obtained
for the fitness function (3.3). With the switching controller, the global minimum values of
all attack simulations are between 2.64×10−04 and 8.53×10−04 (the mean is 7.42×10−04,
and the standard deviation is 1.70× 10−04). On the other hand, with the non-switching
controller, all global minimum values are between 1.70×10−09 and 1.44×10−06 (the mean
is 1.84× 10−07, and the standard deviation is 2.70× 10−07). Recall that, as discussed in
Section 3.1.1, without sample loss, the minimum value of (3.9) is min fj = 0 when the
attacked device is perfectly identified. Therefore, the higher order of the global minimum
values obtained with the switching controller also demonstrates the effectiveness of the
proposed countermeasure. From the attacker perspective, these higher global minimum
values may indicate that the Passive System Identification attack was not effective in
obtaining the model of the attacked device. In this sense, with this analysis, the attacker
must hesitate to launch covert/model-based attacks based on the data provided by the
Passive System Identification attack.

Another way to evaluate the impact of the proposed countermeasure in the
Passive System Identification attack is through the zero-pole maps shown in Figure
35. Figure 35(a) shows the zeros estimated by the simulations using the non-switching
controller. Figure 35(b), in turn, shows the zeros estimated by the simulations using
the switching controller. Note that, when the non-switching controller is attacked, the
estimated zeros accurately meet the actual zero of C1(z). On the other hand, according
to Figure 35(b), when the proposed countermeasure is used the estimated zeros are
spread and do not accurately meet the actual zeros of C1(z) and C2(z) – i.e. the control
functions of the switching controller.

It must be considered the possibility that the attacker, after some time, detects
that the controller is changing its behavior over the time like a switching controller. In
this case, it is reasonable to think that the attacker would try to estimate the control
functions based on smaller monitoring periods T , to avoid measurements containing
switching events. Considering this hypothesis, the performance of the Passive System
Identification attack is also evaluated using the following monitoring periods T : 0.2s, 0.4s,
0.6s, 0.8s, 1.0s and 1.2s. Note that the maximum T in which the attacker can measure
a signal without switchings is Tb = 0.02b = 1.2s. Therefore, to evaluate this tactic (of
reducing T ), the Passive System Identification attack is performed firstly during the
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Figure 35 – Zeros and poles estimated by the Passive System Identification attack –
own figure published in (SA; CARMO; MACHADO, 2018).

execution of C1(z) and, after that, during the execution of C2(z). For the identification of
C1(z) all monitoring periods start at t = 0s. For the identification of C2(z) all monitoring
periods start at the first switching event (when C2(z) starts to be executed).

For each control function and each monitoring period, 33 attack simulations
were executed. Figure 36 shows the estimated zeros of C1(z) and C2(z) considering each
of the mentioned monitoring periods T . It is possible to verify that, for these monitoring
periods, the estimated zeros of C1(z) are quite close to the actual zero. However, although
C1(z) was satisfactorily identified with small T , Figure 36 shows that, for all T , the
estimated zeros of C2(z) are spread and do not accurately meet the actual zero of C2(z).
These results indicate that small monitoring periods T may not be enough to identify
some control functions, such as happened with C2(z). In this case, the switching controller
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(d) Identifying C2 with T = 0.4s.
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(e) Identifying C1 with T = 0.6s.
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(f) Identifying C2 with T = 0.6s.
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(g) Identifying C1 with T = 0.8s.
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Figure 36 – Zeros and poles estimated by the Passive System Identification attack for
smaller monitoring periods T (without a switching event during T ). Identifi-
cation of C1 starting at t = 0. Identification of C2 starting at the first swi-
tching event – own figure published in (SA; CARMO; MACHADO, 2018).

arises as a good strategy to limit the available monitoring period, which causes difficulties
for this metaheuristic-based Passive System Identification attack. Additionally, it is
worth mentioning that even if the attacker somehow identifies all control functions Ci(z),
the random switching rule still mitigates the launch of a subsequent covert/model-based
attack. As discussed in Section 4.1.2, this follows from the fact that it is more difficult to
synchronize the interference caused by a covert/model-based attack with the controller
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states, which are switched at random intervals. Moreover, it is not trivial to find a single
M(z) capable to produce the intended controlled behavior for all Ci(z) – in case the
attacker choose this tactic to overcome the need to synchronize the covert/model-based
attack.

The inaccuracy of the estimated coefficients shown in Figure 34, the spreading
of the estimated zeros shown in Figure 35(b), and the higher global minimum values
found by the BSA demonstrate the effectiveness of using switching control functions
to mitigate the Passive System Identification attack described in Section 3.1.1. With
this countermeasure, it is possible to state that the model obtained by the attacker
is imprecise/ambiguous such that the attacker may hesitate to launch a subsequent
covert/model-based attack that depends on the knowledge about the controller. Therefore,
Objective II established in Section 4.1.2 is met.

6.2.3 Complying the Control Requirements

This section analyzes the performance of the proposed countermeasure from
the control perspective. The aim of the simulations herein presented is to identify the
possible impacts that the countermeasure may produce in the behavior of the plant.
As in Section 6.1.3, this analysis encompasses the following control aspects: stability;
overshoot; and settling time. Based on these aspects, the present section compares
the performance of the switching controller with the performance of the non-switching
controller. Considering the stochastic nature of the proposed countermeasure, which
randomly switches between two control functions, the referred aspects are evaluated
through a set of 100,000 simulations.

Figure 37 shows the responses of the plant, in the time domain, with and
without the proposed countermeasure. The responses obtained with the proposed coun-
termeasure – i.e. using the switching controller – are represented by the highlighted
area. The bounds of this area are drawn based on the maximum and minimum values
of the output y(t) of the plant, taking into account all 100,000 simulations. In other
words, when using the proposed countermeasure, all output signals y(t) provided by
the simulations are inside this area. The deterministic response of the plant without
this countermeasure – i.e. when using the non-switching controller – is represented by
the red line depicted in Figure 37. Note that, for 0 ≤ t ≤ 0.8s the responses using the
switching controller and the response using the non-switching controller are identical.
This is caused by the minimum number of sampling intervals that the system has to
remain in the same state, which is set to a = 40 samples (or 0.8s, in the time domain).
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Based on Figure 37, considering all 100,000 simulations, it is possible to verify
that the NCS with the proposed countermeasure is stable and the output of the plant
does not present a stationary error – it always converges to the set point of 1rad/s.
Considering these aspects, from the control perspective, the proposed countermeasure
provides the same performance as the non-switching controller. Also, the highlighted
area indicates that the overshoots obtained with the countermeasure are not expressive,
not exceeding 2.93% of the set point.
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Figure 37 – Response of the plant in the time domain – own figure published in (SA;
CARMO; MACHADO, 2018).

However, due to the successive switchings, it is possible to see in Figure 37 that
the settling time obtained with the proposed countermeasure is higher than the settling
time obtained with the non-switching controller. With the non-switching controller, the
deterministic settling time of the plant is 2.4s. On the other hand, with the switching
controller, the settling time ts of the plant is stochastic and depends on the random
sequence of dwell times occurred before achieving ts. Figure 38 shows a histogram of
settling times that considers all 100,000 simulations using the switching controller. The
minimum and maximum settling times are 2.88s and 6.42s, respectively, and the mean
is 4.2827s ± 0.0146s, with a confidence interval of 95%. It indicates that, regarding
the settling time, the proposed countermeasure is less efficient than the non-switching
controller.
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Figure 38 – Histogram of settling times when using the proposed countermeasure – own
figure published in (SA; CARMO; MACHADO, 2018).

It is worth mentioning that Figure 37 exemplifies the behavior of the proposed
countermeasure and compare its performance with the performance of an NCS with a
non-switching controller. From this figure, it is possible to observe a behavioral profile
that allows the evaluation of characteristics such as overshoot, settling time and stability.
Regarding the latter, the stability of systems based on the average dwell time technique
can be verified by the theory proposed in (ZHAI et al., 2002), which demonstrates the
feasibility of the proposed countermeasure in terms of stability.

Note in Figure 37 that the random switching rule adds to the system a
variable (however, controlled and stable) behavior, which could reduce the ability of
a human observer to detect slight manipulations caused by a physically covert attack.
However, it is noteworthy that when an attacker designs a physically covert attack, as
a premise, he/she does not aim to explore or manipulate physical behaviors that are
easy to be noticed by a human observer. Instead of this, the attacker would manipulate
physical behaviors that are not accurately perceived by a human observer. In this case,
it is reasonable to consider that the variations caused by the switching controller will
not significantly contribute for the poor perception of malicious and covert interferences
that would naturally not be perceived by a human observer (even when a non-switching
controller is used).

From the control perspective, the performance of the proposed countermeasure
is satisfactory and, with the results presented in Section 6.2.2, indicates the feasibility of
meeting both Objectives I and II, simultaneously. According to the simulations of this
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section, the control provided by the switching controller presents a performance similar
to the performance of the non-switching controller. The primary requirement of Objective
I – i.e. stability – is met and the overshoots caused by the countermeasure, with the
specified configurations, are not expressive. However, the simulations indicate an increase
in the plant settling time, which may not be a drawback, but have to be analyzed in
the face of the specific process being controlled. In this sense, the results denote the
existence of a tradeoff between hindering the identification attack and increasing the
settling time of the system, which must be taken into account when deciding for using
this countermeasure.

6.2.4 Impact in the Controlled Data Injection Attack

Consider that the attacker was not dissuaded by the uncertainties caused by
the proposed countermeasure in the identification of the controller. Doing so, the aim of
this section is to evaluate the impact of the proposed countermeasure in the design of an
SD-Controlled Data injection attack.

The SD-Controlled Data Injection attack simulated in this section aims to
cause an overshoot of 50% in the rotational speed of the DC motor defined by (6.7),
such as the attack evaluated in Section 5.1. According to Section 3.2.1, to perform an
SD-Controlled Data Injection attack, the attack function M(z) must be designed based
on the models of the plant and its controller.

If an attacker, aiming to cause an overshoot of 50% in y(k) (for instance),
implements an attack function M(z) in the forward stream of an NCS, as shown in
Figure 5, then y(k) is defined by (6.9):

y(k) = Z−1
[

C(z)M(z)G(z)
1 + C(z)M(z)G(z)R(z)

]
. (6.9)

Similarly, if the attacker implements M(z) in the feedback stream, then y(k) is defined
by (6.10):

y(k) = Z−1
[

C(z)G(z)
1 + C(z)M(z)G(z)R(z)

]
. (6.10)

Note that in both cases, in the presence of an attack function M(z), the
dynamics of y(k) rely on C(z), G(z) and M(z). Therefore, if the attacker aims to cause
an overshoot of 50% in y(k), the design of M(z) will require the knowledge of C(z)
and G(z). Even if the attacker is still able to identify the plant model (which is not
mitigated by this countermeasure), he/she will not be able to design M(z) to cause
the 50% overshoot based only on the model of the plant, regardless of whether M(z) is
implemented in the forward or the feedback stream.
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The evaluation made in this section considers that M(z) is implemented in
the forward stream of the NCS. The identification of the plant’s transfer function G(z)
is not impacted by the use of the switching controller, as discussed in Section 4.1.2. So,
the same G(z) estimated in Section 5.1 (with a non-switching controller) is used in this
section to designM(z). Specifically, the coefficients used for G(z) are the mean estimated
coefficients shown in Table 2 for 0% of sample loss (which is the most accurate estimated
model of G(z)). Regarding the model of the controller, as done in Section 5.1, M(z)
is designed considering the mean of the coefficients estimated by the Passive System
Identification attack when launched against the switching controller. Then, performing a
root locus analysis, the attacker designs the attack function (6.11), to make the system
underdamped with a peak of rotational speed 50% higher than its steady state speed.

M(z) = 1.2815 (6.11)

In Figure 39, it is possible to compare the response that the attacker expects
to obtain (referred as expected response) with the responses that (6.11) actually produces
(referred as actual responses) when implemented in the real system. The expected response
represents what the attacker would obtain by simulating (6.11) in the forward stream
of an NCS built with the models provided by the Passive System Identification attack.
The actual responses are represented by the highlighted area, whose bounds are drawn
based on the maximum and minimum values of the output y(t) of the plant, considering
100,000 simulations with (6.11) in the forward stream of the actual NCS. It means that,
when (6.11) is implemented in the NCS all output signals y(t) provided by the actual
plant are inside this area.
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Figure 39 – Results of an SD-Controlled Data Injection attack in a system with the
proposed countermeasure.
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It is worth mentioning that the aim of Figure 39 is not to evaluate the stability
of the proposed system after the execution of the SD-Controlled Data Injection attack
(although in these simulations this system remained stable even after the execution of
M(z)). The aim of Figure 39 is to demonstrate that, with the proposed countermeasure,
the interference produced by the attacker is not what he/she intended with the mentioned
Data Injection attack. Note that, the actual responses of the plant are significantly
different from the response that the attacker expects to obtain with the SD-Controlled
Data Injection attack. These results are in contrast to the results achieved in the NCS with
the non-switching controller, where the attack was accurate and executed exactly what
was planned by the attacker, as shown in Section 5.1. With the proposed countermeasure,
the maximum overshoot achieved by the plant was 10.12% (instead of the desired 50%).
Notwithstanding, the highlight of these simulations is the fact that, with the proposed
countermeasure, the information provided by the Passive System Identification attack is
not useful to support the design covert/model-based attacks. This inaccurate information
may lead the attacker to cause unpredictable results in the system, which may either
be ineffective (not causing the desired degradation on the plant) or extreme (reducing
the physical or cybernetic covertness of the attack). This analysis is consistent with the
reasoning provided in Section 6.2.2. It demonstrates that when the NCS is endowed with
the proposed countermeasure, the attacker must hesitate to launch a covert/model-based
attack due to the inaccuracy of the Passive System Identification attack.

Note that the countermeasure proposed in this work aims to mitigate the
Passive System Identifications attacks when the attacker is trying to obtain information
about the control functions of the NCS. Consequently, it prevents the use of accurate
information about these control functions in the design of a covert/model-based attack
(such as a data injection attack in the forward stream of an NCS aiming to cause an
overshoot or a steady state error). For instance, in an SD-Controlled Data Injection
attack performed in the forward stream of the NCS, the attacker cannot cause a steady
state error by just adding a step signal to u(k), because the PI control functions will
adjust the control signal to bring y(k) back to 1rad/s. Adding a ramp signal to u(k) can
cause a steady error in y(k) for a while. However, it may not be a good strategy for the
attacker, because at some time the controller and u(k) will saturate, leading the plant to
extreme behaviors (which is not desired if the attacker aims a physically covert attack).
The alternative to cause a steady state error through the manipulation of the forward
stream is to implement the attack function M(z) exemplified in Section 5.1 which, to be
designed, requires the knowledge about the controller and plant. Without the knowledge
about the coefficients of the numerator of the PI control function, for example, the gain
of M(z) cannot be adjusted to cause the exact steady deviation of y(k) that the attacker
intends to cause. This makes the attack described in Section 5.1 model-based and, in this
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case, the countermeasure herein proposed is useful to hinder the attacker from obtaining
the knowledge about the control functions of the NCS. On the other hand, in a system
with an unitary feedback, it is possible to manipulate the steady state error of the plant
by injecting data in the feedback stream, even when the attacker does not know the
models of the plant and the controller. In this case, the manipulation of y(k) can be
interpreted as the direct manipulation of set point r(k), which determines the steady
state of the system. This attack, performed in the feedback stream is an example of data
injection attack that is not model-based and, thus, should be mitigated by an additional
countermeasure (complementary to the countermeasure proposed in this work).

6.3 IDENTIFICATION OF CONTROLLED DATA INJECTION ATTACKS

This section analyses the performance of the attack identification strategy pro-
posed in section 4.2 when identifying the Controlled Data Injection attack characterized
in Section 3.2.1. The evaluation on the accuracy of the countermeasure is based on results
obtained through simulations using MATLAB/SIMULINK. First, Section 6.3.1 describes
the attacked NCS and the attack parameters. Then, Section 6.3.2 presents the results
obtained by the proposed countermeasure in the scenario described in Section 6.3.1.

6.3.1 Attacked NCSs and Parameters of the Attack

In the simulations of this section, the attacked NCS has the same architecture
of the NCS shown in Figure 10. The system consists of Proportional-Integral (PI)
controller that controls the rotational speed of a DC motor. The control function C(z)
and the plant transfer function P (z) are the same as in Section 5.1, which are represented
by (6.12):

C(z) = 0.1701z − 0.1673
z − 1 P (z) = 0.3379z + 0.2793

z2 − 1.5462z + 0.5646 (6.12)

The sample rate of the system is 50 samples/s and the set point r(k) is a unitary step
function.

As discussed in Section 3.2.1, one way to degrade the service of a plant is
by causing overshoots during its transient response. Thus, an attack function M(z) is
designed to degrade the plant service by causing 50% of overshoot in the motor speed.
To achieve this goal, a MitM located in the feedback link runs the attack function
represented by (6.13), wherein α0 = 0.25 and β0 = −0.75:

M(z) = α0

z + β0
. (6.13)
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6.3.2 Performance of the Attack Identification

Section 4.2 proposes an attack identification process where the NII technique
is used to improve the accuracy of the estimation of LTI attack functions in NCSs. This
section analyzes the performance of the proposed attack identification method when
estimating the attack defined in Section 6.3.1. To statistically evaluate how the NII
technique improves the accuracy of the identification process, two set of simulations are
carried out:

1. 100 simulations using the identification process shown in Algorithm 1 – i.e. without
the NII technique; and

2. 100 simulations using the identification process shown in Algorithm 3 – i.e. with
the NII technique.

The noise w(k) ∼ N(µ,σ) injected in the system by the identification scheme
is configured with µ = 0 and σ = 0.005, which makes 95% of the noise amplitudes
within ±0.01 (these parameters are chosen to produce a small noise, considering the
magnitude of the plant output signal transmitted through the feedback link). Each of
the 100 simulations with Algorithms 1 and 3 uses a different (randomly generated) white
gaussian noise signal.

Figure 40 shows examples of the system output (the motor speed) with and
without the attack. Note that, when the attack is executed, the motor speed has an
overshoot of 50% and a small noise is present in the plant output. However, in a normal
condition – i.e., without attack – the noise is cancelled and does not appear in the plant
output (as expected, based on equation (4.1) when M(z) = 1).

As previously discussed, the attack identification scheme aims to estimate the
coefficients of M(z), which according to (6.13) are α0 and β0. The BSA settings in both
Algorithms 1 and 3 are the same as those used in Section 5.1.2: the lower and upper
limits of each search space dimension are −10 and 10, respectively; the BSA population
has 100 individuals; and η = 1. The BSA is executed for 600 iterations.
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Figure 40 – Motor speed with and without attack.

For the execution of Algorithm 1 the signals w(k) and y′′(k) are recorded
during 100 samples, starting when the system achieves its steady state regarding to r(k).
Thus, the size of signals w(k) and y′′1(k) used by the BSA in (4.9) and (4.11), respectively,
is N = 100 samples. For the execution of Algorithm 3 the signals w(k) and y′′(k) are
recorded during 0,5Msamples, also starting when the system achieves its steady state
regarding to r(k). Recall that in algorithm Algorithm 3, the recorded signals are not
directly applied to the BSA process. They are processed through the NII stage to result
in ω̄j(0)δ(k) and Υ(k). The signals ω̄j(0)δ(k) and Υ(k) used by the BSA in (4.28) and
(4.29), respectively, are sized with N = 100 samples. This way, the signals processed by
the BSA have the same size in both algorithms 1 and 3 (i.e. N = N). The amplitude
threshold of the NII is Ω = 0.01, which means that the condition defined in Algorithm 2
(i.e. w(k) ≥ Ω) is true in approximately 2.28% of the samples of w(k).

Figure 41 shows the 100 values of α0 and β0 estimated by the identification
processes with and without the NII stage (i.e., with Algorithms 3 and 1, respectively).
Additionally, Table 7 shows the statistics of the results presented in Figure 41. From
Figure 41 and Table 7, it is possible to verify that the accuracy of the attack identification
algorithm with the NII stage is better than the accuracy obtained without the proposed
technique. Figure 41 demonstrates that, with the NII stage, the estimated values of α0

and β0 are closer to their actual values – i.e., less spread – than without the NII stage.
Note that, the statistics shown in Table 7 ratifies the better performance provided by
the NII stage. In this case, the means of the estimated values are closer to the to the
real values of α0 and β0, with lower standard deviation.
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Figure 41 – Estimations of α0 and β0 with and without the NII stage.

Table 7 – Statistics of the attack identification proccess

Coefficient Algorithm Mean Standard Deviation
α0 with NII 0.2500 0.0011

without NII 0.2506 0.0147
β0 with NII -0.7502 0.0017

without NII -0.7485 0.0172

Figure 42 shows the input and output signals used by the BSA to estimate
M(z) in a simulation example performed with Algorithm 1 (without the NII stage).
Figure 42(a) shows the noise w(k) recorded in the actual system and used by the BSA as
input for the model defined by (4.8). Figure 42(b) shows in black dashed line the signal
y′′1(k) measured in the actual system and used by the BSA as the reference output for
the model defined by (4.8). Additionaly, Figure 42(b) shows in red line the signal y′′1(k)
produced by the estimated model – i.e. the model (4.8) containing the estimated attack
function – when excited by the noise input shown in Figure 42(a). In Figure 42(b), it
is possible to see that the output y′′1(k) obtained with the estimated model does not
completely match the output y′′1(k) measured in the actual system. It exemplifies, as
shown in Figure 41 and Table 7, the lower accuracy of Algorithm 1 when identifyingM(z).

Figure 43, in turn, shows the input and output signals used by the BSA to
estimate M(z) in a simulation example performed with Algorithm 3 (with the NII stage).
Figure 43(a) shows the weighted impulse ω̄j(0)δ(k) produced by the NII stage and used
by the BSA as input for the model defined in (4.27). Figure 43(b) shows:

• In black dashed line: the integrated signal Υ(k) produced by the NII stage (based
on measurements in the actual system) and used by the BSA as the reference
output for the model defined in (4.27);
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• In blue line: the impulse response produced when the weighted impulse ω̄j(0)δ(k),
shown Figure 43(a), is applied to the system defined in (4.27) containing the actual
attack function;

• In red line: the impulse response produced when the weighted impulse ω̄j(0)δ(k),
shown Figure 43(a), is applied to the system defined in (4.27) containing the
estimated attack function.
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Figure 42 – Input and output signals used by the BSA in Algorithm 1 to estimate M(z)
considering the model defined in (4.8).

0 20 40 60 80 100

samples

0

2

4

6

8

j(0
) 

(k
)

10
-3

(a) Weighted impulse input

0 20 40 60 80 100

samples

-1

-0.5

0

0.5

1

1.5

2

(k
)

10
-3

Integrated signal

obtained with the estimated model

obtained with the actual model

(b) Integrated signal and impulse response outputs

Figure 43 – Input and output signals used by the BSA in Algorithm 3 to estimate M(z)
considering the model defined in (4.27).

From Figure 43(b), it is possible to see that the integrated signal (provided by
the NII stage) accurately meets the impulse response of the actual system. It indicates that
the NII technique is able to accurately reveal the impulse response of the system based on
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the signals produced by the white gaussian noise injected in the NCS. Additionally, Figure
43(b) shows that the impulse response obtained with the estimated model accurately
meets the impulse response obtained with the actual system. It demonstrates that NII
stage effectively contributes to enhance the accuracy of the identification process, as
already shown in Figure 41 and Table 7.

The better performance obtained with the NII stage is mainly attributed to
the cancelation of the initial conditions produced by the noise in the actual system. Note
that, in Algorithm 1, the noise input was already present in the system since before y′′1(k)
was obtained, which makes w(k) affect the initial conditions of the system. Thus, the lack
of knowledge about the initial conditions of the system affects the estimation of the attack
function in Algorithm 1. On the other hand, in Algorithm 3, the impact of w(k) in the
system’s initial conditions is mitigated by the NII stage. This statement can be verified
in equation (4.23), where Υ1(k)→ 0 when all yj(k) are integrated among all j ∈ J , as
demonstrated in Section 4.2.2.2. Indeed, when the noise input w(k) is transformed into
a weighted impulse signal ω̄j(0)δ(k), it is not expected to exist any initial conditions
caused by w(k) in the system defined in (4.27), given that ω̄j(0)δ(k) = 0, ∀−∞ ≤ k < 0.

The results of this section indicates the effectiveness and accuracy of the
proposed countermeasure when identifying SD-Controlled Data Injection attacks in NCSs,
specially when the NII technique is used. In a normal conditions, when the system is
not under attack, the injected noise is cancelled and does not affect the NCS. When the
system is under attack, it is possible to see that noise is present in the plant output, but
it is small due the parameters chosen for w(k). It should be noted that such small noise
is not necessarily a drawback for the system, however, the possible impacts of this noise
in case of attack have to be evaluated for each specific system.

6.4 SUMMARY

This chapter evaluates the performance of the countermeasures presented in
Chapter 4, namely:

• The switching controller design to mitigate the System Identification attacks
presented in Section 3.1; and

• The link monitoring strategy to identify the SD-Controlled Data Injection attack
described in Section 3.2.1.

The simulations demonstrate that the proposed switching controller design is
able to mitigate both Passive and Active System Identification attacks, making the model
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obtained by the attacker imprecise and ambiguous. Also, the simulations demonstrate
that the performance of the proposed countermeasure is satisfactory from the control
perspective. Considering the control aspects, in general, the proposed countermeasure
presents a performance similar to the performance of a non-switching controller, with an
increase in the system’s settling time caused by the successive switchings among control
functions. Therefore, when deciding for using this countermeasure, it must be considered
the existence of a tradeoff between mitigating the identification attack and increasing the
system’s settling time – which, depending on the plant, is not necessarily a drawback.

Regarding the countermeasure to identify SD-Controlled Data Injection at-
tacks, the results indicate the effectiveness and accuracy of proposed identification scheme,
specially when the NII technique is used. The outcomes show that the NII technique
is able to accurately reveal the impulse response of the system based on the signals
produced by the white gaussian noise injected in the NCS, ratifying the theoretical
demonstration presented in Section 4.2.2.2. The better performance obtained with the
NII is mainly attributed to the cancelation of the initial conditions produced by the
noise injected in the system, which can also be verified in equation (4.23). Moreover, the
simulation results show that when the system is not under attack, the injected noise is
cancelled and does not affect the NCS (as expected based on the discussion presented
in Section 4.2.1). When the system is under attack, it is possible to see that the noise
is present in the plant output, which may not necessarily be drawback for the system.
However, the possible impacts of such noise (in case of attack) have to be evaluated for
each specific system.



124

7 CONCLUSIONS AND FUTURE WORKS

A brief summary of the contributions of this research and possible future
works are discussed in this Chapter. Section 7.1 brings the conclusions regarding the
results already obtained. Section 7.2 presents the publications and the award obtained
to date with this work. Section 7.3 indicates possible future works that may derive from
this research.

7.1 CONCLUSIONS

The present work proposes, in a first stage, two System Identification attacks
in NCSs: the Passive System Identification attack; and the Active System Identification
attack. These attacks are intended to estimate the LTI transfer functions of NCSs and are
implemented based on bio-inspired metaheuristics – specifically the BSA and PSO. The
referred System Identification attacks, which belong to the category of Cyber-physical
Intelligence attacks, are developed to support the design of covert/model-based attacks
in NCSs. The Passive System Identification attack does not interfere in the system
to perform the identification task. However, it requires the occurrence of events that
produce signals rich enough for the identification process. On the other hand, the Active
System Identification attack injects an attack signal in the NCS to produce the signals
necessary for the identification process.

In addition to the referred system identification attacks, this study covered
three different model-based offensives:

• the SD-Controlled Data Injection attack;

• the Covert Misappropriation attack proposed in (SMITH, 2011; SMITH, 2015);

• the novel SD-Controlled Data Loss attack.

The simulation results show that the information provided by the proposed System
Identification attacks allow the effective design of covert/model-based offensives against
NCSs (even if the captured data is impaired by data loss or noise). Moreover, the results
provide conclusive data on the effectiveness and potential impacts of the joint operation
of the aforementioned System Identification attacks and model-based offensives against
industrial devices – such as a DC motor – or critical infrastructure facilities – such as a
large PHWR.
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Regarding the SD-Controlled Data Loss attack, proposed in this work, the
outcomes demonstrate that it is able to produce the same accurate and harmful behaviors
of the SD-Controlled Data Injection attack, however, without the need to overcome
eventual security mechanisms for data integrity and authenticity that may hinder an
SD-Controlled Data Injection attack. Additionally, the results demonstrate that, based on
the models learned through the System Identification attack, this model-based offensive is
able to smartly decide which packets the NCS must lose – through malicious interferences
– in order to degrade plant service, taking special care to avoid the indiscriminate loss of
samples. This attack approach prevents the complete denial of communication, which
makes the attack more difficult to be noticed than an arbitrary DoS attacks.

To support the discussion about the relationship between System Identification
attacks and covert/model-based attacks in NCSs, the present work introduces a novel
taxonomy, which is another contribution of this research to the literature on cybersecurity
of NCSs. This taxonomy also sets the requirements for the attacks discussed in this work,
which helps on the development of layered defense strategies against System Identification
attacks and covert/model-based offensives.

In order to contribute to the security of NCSs, this thesis proposes two
countermeasures for situations where the NCS suffers from eventual failure or lack of
other conventional security mechanisms – such as encryption, authentication, and network
segmentation. The first countermeasure aims to hinder system identification attacks. The
second countermeasure aims to detect/identify SD-Controlled Data Injection attacks.

Towards the first countermeasure, the analysis of the system identification
processes as feasible attacks led to the development of a switching controller design
intended to hinder the identification task. This switching controller design take into
account the need to meet simultaneously two objectives: comply with the plant control
requirements; and hinder the identification process. The simulation results demonstrate
that this countermeasure is able to mitigate the proposed System Identification attacks,
making the model obtained by the attacker imprecise/ambiguous and, thus, discourage
the implementation of covert/model-based attacks. At the same time, the simulations
demonstrate that the performance of the proposed countermeasure is satisfactory from the
control perspective. Considering the control aspects, in general, the simulations indicate
that the proposed countermeasure presents a performance similar to the performance of
a non-switching controller, with an increase in the system settling time. Small overshoots
were also observed in simulations. Therefore, when deciding for using this countermeasure,
it must be considered the existence of a tradeoff between mitigate the identification
attack and increase the settling time of the system or even cause small overshoots –
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which, depending on the plant, are not necessarily drawbacks. Besides the satisfactory
performance obtained with this countermeasure, we encourage the development of a
heuristic or an analytical method capable of providing control functions and switching
rules that maximize the performance of the switching controller in both mentioned
objectives.

The second countermeasure consists of a link monitoring strategy that uses
white gaussian noise to detect/identify SD-Controlled Data Injection attacks. To increase
its accuracy, the countermeasure is endowed with the Noise Impulse Integration (NII)
technique, which was developed in this thesis using the radar pulse integration technique
as inspiration. The results demonstrate the effectiveness and accuracy of the proposed
countermeasure when identifying SD-Controlled Data Injection attacks in NCSs, specially
when the NII technique is used. It is possible to see that the NII technique is able
to accurately reveal the impulse response of the system with the attack, effectively
contributing to enhance the accuracy of the estimated the attack function. The better
performance obtained with the NII stage is mainly attributed to the mitigation of the
initial conditions produced by the injected noise, which are cancelled according to the
formulation of the NII technique. It is noteworthy that, when the system is not under
attack, the injected noise does not affect the NCS. When the system is under attack,
it is possible to see that a small noise is present in the plant output. Such small noise
may not necessarily be a drawback, however, the possible impacts of this noise in case of
attack have to be evaluated for each specific system.

7.2 PUBLICATIONS AND AWARD

To date, the contributions of this research resulted in the publication of the
following papers, which are attached to this work in Appendices A to I:

I de Sá, A. O., Carmo, L. F. R. C., e Machado, R. C. S. (2016). Ataques Furtivos em
Sistemas de Controle Físicos Cibernéticos. Anais do XVI Simpósio Brasileiro em
Segurança da Informação e de Sistemas Computacionais (SBSeg 2016), 128–141.
Sociedade Brasileira de Computação.

II de Sá, A. O., Carmo, L. F. R. C., e Machado, R. C. S. (2017). Covert Attacks
in Cyber-physical Control Systems. IEEE Transactions on Industrial Informatics,
13(4):1641–1651.(1)

1 Paper II is an extended version of paper I, presented at SBSeg 2016.
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III de Sá, A. O., Carmo, L. F. R. C., e Machado, R. C. S. (2017). Bio-inspired
Active Attack for Adentification of Networked Control Systems. In 10th EAI Int.
Conference on Bio-inspired Information and Communications Technologies (BICT
2017), 1–8. ACM.

IV de Sá, A. O., Carmo, L. F. R. C., e Machado, R. C. S. (2017). Bio-inspired Active
System Identification: a Cyber-physical Intelligence Attack in Networked Control
Systems. Mobile Networks and Applications, 1–14, Springer.(2)

V de Sá, A. O., Carmo, L. F. R. C., e Machado, R. C. S. (2017). Use of Switching
Controllers for Mitigation of Active Identification Attacks in Networked Control
Systems. In Proceedings of the IEEE Cyber Science and Technology Congress,
257–262. IEEE.

VI de Sá, A. O., Carmo, L. F. R. C., e Machado, R. C. S. (2018). A Controller Design
for Mitigation of Passive System Identification Attacks in Networked Control
Systems. Journal of Internet Services and Applications, 9(1):1–19, Springer.

VII de Sá, A. O., Carmo, L. F. R. C., e Machado, R. C. S. (2018). Evaluation on Passive
System Identification and Covert Misappropriation attacks in Large Pressurized
Heavy Water Reactors. In 2018 IEEE International Workshop on Metrology for
Industry 4.0 and IoT (MetroInd4.0&IoT 2018), 203–208. IEEE.

VIII de Sá, A. O. et al. (2019) Bio-inspired system identification attacks in noisy
networked control systems. In: 11th EAI International Conference on Bio-inspired
Information and Communications Technologies (BICT 2019), 1–11. Springer.

IX de Sá, A. O., Carmo, L. F. R. C., e Machado, R. C. S. (2019) Countermeasure for
Identification of Controlled Data Injection Attacks in Networked Control Systems.
In: 2019 IEEE International Workshop on Metrology for Industry 4.0 and IoT
(MetroInd4.0&IoT 2019), Accepted for publication.

The present research was also awarded with the first place in the Student
Contest of the 2018 IEEE International Workshop on Metrology for Industry 4.0 and
IoT (Brescia, Italy), with the poster: "Covert Attacks and Challenges for Metrology in
Industrial Control Systems".
2 Paper IV is an extended version of paper III, presented at BICT 2017.
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7.3 FUTURE WORKS

From the results obtained in this research, it is possible to identify some
opportunities for future works and research directions:

• Generalize the proposed System Identification attacks to LTI systems
of unknown order: In the System Identification attacks described in Section 3.1,
the system identification technique considers that the attacker knows the order
of the LTI function of the attacked devices – which is feasible when the attacker
knows what kind of plant and controller the attacked NCS has. We estimate that,
by analysing the magnitude of the residues of the estimated function, as well as the
global minimum value found by the metaheuristic, it is possible to infer the system’s
order and extend the already developed algorithms to LTI systems of unknown
order. This generalization would also benefit the countermeasure for identification
of controlled data injection attacks, presented in Section 4.2, in identifying LTI
attack functions of unknown order.

• Optimize the switching control strategy as countermeasure for mitigat-
ing System Identification attacks: as defined in Section 4.1, the strategy of
using a switching controller as countermeasure for System Identification attacks
take into account the need to meet simultaneously two objectives: comply with
the plant control requirements; and hinder the identification process. Despite the
satisfactory performance already obtained with this countermeasure, we believe
that the use of a multi-objective optimization metaheuristic – such as the multi-
objective particle swarm optimization (MOPSO) (COELLO; LECHUGA, 2002)
– may be a path to obtain control functions and switching rules that maximize
the performance of the switching controller in both mentioned (and potentially
conflicting) objectives.

• Optimize the SD-Controlled Data Loss attack: the results obtained in the
present work demonstrate that the SD-Controlled Data Loss attack is able to
accurately produce harmful behaviors in a plant by causing the loss of specific
packets transmitted in the NCS. In this work, the attack solution (i.e. attack
sequence) is found by optimizing a fitness function that specifies the desired
harmful behavior. Preliminary results indicate that it is possible add another
objective to this problem, in order to reduce (even more) the number of packets
to be dropped and still cause the same kind of harmful behavior to the plant. In
this case a multi-objective optimization metaheuristic – such as the multi-objective
particle swarm optimization (MOPSO) (COELLO; LECHUGA, 2002) – may be
used to obtain such optimized attack sequences.
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Figure 44 – NII with 98% of data loss.

• Use of the NII technique as an attack tool in scenarios with high data
loss: this work demonstrates that the NII technique is effective in revealing the
impulse response of attack functions executed by SD-Controlled Data Injection
attacks. The technique is used here in a countermeasure, aiming a scenario where
the monitored signals are not impaired by data loss. However, preliminary results
indicate that the NII technique may be a useful tool to rebuild and reveal the
impulse response functions of LTI systems in scenarios where the captured data
is impaired by high percentage of loss. Such ability can be used, for instance, to
enhance System Identifications attacks in scenarios with extreme data loss – as in
the case of an attacker far from the WNCS transmitters, with poor connectivity,
trying to identify the WNCS models. It is worth mentioning that, in this case,
the system must naturally have a source of white gaussian noise exciting its
devices. Figure 44 shows preliminary results were the NII technique is used in a
simulated scenario with 98% of data loss. The actual system H(z), to be identified,
is represented by (7.1). The estimated system He(z), after the identification process
using the NII technique, is represented by (7.2). The monitoring time to obtain
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these results corresponds to 3× 108 samples. It is possible to see from Figure 44(c)
that the NII was able to rebuild and reveal the impulse response of the actual
system, even with 98% of data loss, allowing an accurate identification of the
attacked system. Although preliminary results indicate the feasibility of using the
NII technique in scenarios with high data loss, it is still necessary to demonstrate
this property from the theoretical basis presented in Section 4.2.2.2 of this thesis,
which is planned to be done as future work.

H(z) = 2
z − 0.9 (7.1)

He(z) = 1.998
z − 0.902 (7.2)
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Covert Attacks in Cyber-Physical
Control Systems

Alan Oliveira de Sá, Luiz F. Rust da Costa Carmo, and Raphael C. S. Machado

Abstract—The advantages of using communication net-
works to interconnect controllers and physical plants
motivate the increasing number of networked control sys-
tems in industrial and critical infrastructure facilities. How-
ever, this integration also exposes such control systems to
new threats, typical of the cyber domain. In this context,
studies have been conducted, aiming to explore vulnera-
bilities and propose security solutions for cyber-physical
systems. In this paper, a covert attack for service degrada-
tion is proposed, which is planned based on the intelligence
gathered by another attack, herein proposed, referred as
system identification attack. The simulation results demon-
strate that the joint operation of the two attacks is capable
to affect, in a covert and accurate way, the physical behavior
of a system.

Index Terms—Cyber-physical systems, networked
control systems (NCSs), security.

I. INTRODUCTION

THE integration of the systems used to control physical pro-
cesses via communication networks aims to assign such

systems better operational and management capabilities, as well
as reduce its costs. Motivated by these advantages, there is a
trend to have an increasing number of industrial process and crit-
ical infrastructure systems driven by networked control systems
(NCS) [1]–[4], also referred to network-based control systems
[5], [6]. As detailed in Fig. 1, an NCS consists of a controller,
which runs a control function C(z), a physical plant, described
by its transfer function G(z), and a communication network
that interconnect both devices through a forward stream and a
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Fig. 1. Networked control system (NCS).

feedback stream. The forward stream connects the output of the
controller to the plant’s actuators. The feedback stream connects
the output of the plant’s sensors to the controller’s input.

At the same time it brings several advantages, the integration
of controllers and physical plants in a closed loop through a com-
munication network also exposes such control systems to new
threats, typical of the cyber domain. One possible way to attack
an NCS, for example, is by hacking its software, i.e., changing
the configuration or even the code executed by the controller,
following a strategy similar to that used by the Stuxnet worm
[7]. Another possible way for an attacker to negatively affect an
NCS is by interfering on its communication process. Basically,
an attacker may interfere in the forward and/or the feedback
streams by three different means: inducing a jitter, causing data
loss due to packet drop outs, or even injecting false data in the
communication process.

In this context, studies have been conducted aiming to char-
acterize vulnerabilities and to propose security solutions for the
NCSs. In this work, a covert attack for service degradation (SD)
is proposed, which consists of a novel joint operation of the
following two attacks.

1) A system identification attack: executed to provide the
attacker an accurate knowledge about the models of the
targeted system, i.e., the plant’s transfer function G(z)
and the controller’s control function C(z). This knowl-
edge is obtained based on the signals that are collected
from the input and output of the NCS’s devices.

2) A data injection attack: where the attacker, as a Man-
in-the-Middle (MitM), injects false data in the control
loop of the NCS. The injected false data are computed
based on the knowledge obtained by the attacker during
the system identification attack, in order to covertly and
accurately change the physical behavior of the plant.

1551-3203 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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It is demonstrated that this joint operation is capable to de-
grade the service performed by a plant, through interventions
that produce subtle changes on its physical behavior. Such in-
terventions aim to reduce the efficiency of the plant or even
cause damage in mid/long term. It is worth mentioning that an
uncontrolled intervention in an NCS may lead the plant to an
immediate breakdown, or even significantly change its behavior,
which may cause the disclosure of the attack and the eventual
failure of the operation. Thus, the changes driven by the attack
herein proposed are dimensioned so that the modifications in the
plant’s behavior are physically difficult to be perceived. That is
why the present attack is classified as physically covert.

To ensure that the attack to an NCS is physically covert, the
attacker must plan his offensive based on an accurate knowledge
about the system dynamics, otherwise the consequences of the
attack may be unpredictable. One possible way to obtain such
knowledge is through conventional intelligence operations, per-
formed to collect information regarding to the design and the
dynamics of the NCS. Another way to gather information about
the targeted system is through what we refer in this paper as a
cyber-physical intelligence attack. To this end, the mentioned
system identification attack is proposed, which is based on the
backtracking search optimization algorithm (BSA) [8]. As far as
we know, there is no other system identification attack reported
in the literature, which constitutes a novelty of this work. The
BSA is specifically chosen to demonstrate the feasibility of the
system identification attacks on NCSs. Although it is notewor-
thy that the use of the BSA to perform a system identification
process was not reported earlier in the literature, which consti-
tutes another novelty of this work. The attack herein proposed
aims NCSs constituted by impulse-response systems, defined by
linear time invariant (LTI) transfer functions, such as the NCSs
presented in [1], [3], [4], and [9]–[13]. Examples of potential
targets with this characteristic can range from noncritical indus-
trial plants controlled by wireless networked control systems
(WNCS) [14], [15] to large pressurized heavy water reactors
(PHWR) [11], [16] or water canal systems [12], [13] controlled
by wired NCSs. The well-known vulnerabilities of the cyber do-
main [17], [18], which may allow an attacker to have access to
the control loop of an NCS, and the typical model of the afore-
mentioned cyber-physical systems, which are consistent with
the attack herein proposed, evidence why this attack may actu-
ally happen. Note that it includes targets with potentially signif-
icant impacts, such as the PHWR and the water canal systems.

This work motivated the formalization of a number of
concepts related to covertness and intelligence in the context of
the cyber-physical security. Thus, an additional contribution of
this paper is the proposition of a terminology that encompasses
a whole new class of attacks on cyber-physical systems. The
proposed taxonomy establishes a new approach regarding to the
covertness of attacks on cyber-physical systems, which must
be analyzed from two aspects simultaneously: the physical and
the cybernetic aspects.

It is worth mentioning that the objective of this work is not
to facilitate covert attacks for SD in cyber-physical control sys-
tems. The purpose of this work is to demonstrate the degree of
accuracy that may be achieved in this kind of attack, especially

when supported by system identification attacks and, therefore,
encourage the research for countermeasures to such attacks.
The rest of this paper is organized as follows: first, in Section II,
some related works are presented. Later, in Section III,
a taxonomy regarding to the cyber-physical attacks that may
happen in the control loop of an NCS is proposed. The attack
herein proposed is then described in two parts, presented in
Sections IV and V. In Section IV, the underlying details of
the first part, consisting of a system identification attack are
proposed. Then, in Section V, the second part is described,
where data are injected into the NCS, based on the knowledge
obtained through the system identification attack, to covertly
degrade the plant’s service. In Section VI, the results obtained
through simulations of the attack, as well as a discussion for
possible countermeasures are reported. Finally, in Section VII,
some conclusions and possible future works are presented.

II. RELATED WORKS

The possibility of cyber-physical attacks became a reality
after the launch of the Stuxnet worm [7], [19] and has been
motivating research works concerning the security of NCSs. In
this section, some works related to this subject are presented.

In [6], Long et al. propose two queueing models to evaluate
the impact of delay jitter and packet loss in an NCS under
attack. The attack is not designed taking into account a previous
knowledge about the models of the controller and the physical
plant. Thus, to affect the plant’s behavior, the attacker arbitrarily
floods the network with an additional traffic, causing jitter and
packet loss. In this tactics, the excess of packets in the network
can reduce the covertness of the attack, allowing the adoption
of countermeasures, such as packet filtering [6] or blocking the
malicious traffic on its origin [20]. Additionally, the arbitrary
intervention in a system which the model is unknown may lead
the plant to an extreme physical behavior, which is not desired
if it is intended a covert attack.

In [4], Farooqui et al. present a supervisory control and
data acquisition testbed using TrueTime, a MATLAB/Simulink
based tool. They demonstrate an attack where a malicious agent
sends false signals to the controller and to the actuator of an
NCS. In that paper, the false signals are randomly generated
aiming to make a DC motor lose its stability. This kind of at-
tack does not require a previous knowledge about the plant and
controller of the NCS. On the other hand, the desired physical
effect and the covertness of the attack cannot be ensured due
to the unpredictable consequences of the application of random
false signals to a system which the model is unknown.

More recently, in [21], Teixeira et al. give a general frame-
work for the analysis of a wide variety of methods of attack in
NCSs. In their classification, it is stated that covert attacks in
NCSs require high level of knowledge about the targeted sys-
tem. Examples of covert attacks are provided in [9] and [13].
In these works the attacks are reformed by a MitM, where the
attacker needs to know the model of the plant under attack and
also inject false data into both the forward and the feedback
streams. The covertness of the attacks described in [9] and [13],
which depends on the difference between the actual model of

139
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TABLE I
SYNTHESIS OF THE RELATED ATTACKS

System How the knowledge
Attack Method knowledge is obtained

Stuxnet worm [7], [19] Modifications in Yes Experiments in
the PLC code a real system

Long et al. [6] Inducing jitter None N/A
and packet loss

Farooqui et al. [4] Data injection None N/A
Smith [9], [13] Data injection Yes Not described
Teixeira [21] Packet loss None N/A

Data injection Yes Not described

the plant and the model used by the attacker, is analyzed from
the perspective of the signals arriving to the controller, without
addressing if the physical effects on the plant are noticeable, or
if they are covert when faced by a human observer.

In [9], [21], and [13], where it is required a previous know-
ledge about the models of the NCS under attack, it is not des-
cribed how the knowledge about the system is obtained by the
attacker. It is just stated that a model is previously known to
subsidize the design of the attack. The joint operation, herein
proposed, of a covert attack for SD, supported by a system
identification attack, aims to fill this hiatus, demonstrating how
the data of an NCS can be obtained and how a covert attack
can take advantage from it. Table I presents a synthesis of the
characteristics of the attacks referred in this section.

III. TAXONOMY

In this section, it is presented a taxonomy concerning the pos-
sible attacks on cyber-physical control systems. In Section III-A,
the attacks are briefly described and classified according to the
way they act in the NCS. In Section III-B, a new approach for the
analysis of the covertness of attacks in cyber-physical systems
is proposed.

A. Classification of the Attacks

The attacks to cyber-physical control systems may take place
on its devices—i.e., the controller, and the plant’s sensors and
actuators—and/or on its communication system, affecting the
forward and the feedback streams. As a premise, we must con-
sider that the service intended to be attacked/protected in such
system is the work performed by the physical process, controlled
by the NCS.

Considering the aforementioned definition of service in an
NCS, the attacks may be classified within the following three
different categories, as shown in Fig. 2.

1) Denial-of-Service (DoS) [22]: In an NCS, the DoS at-
tacks comprehend all kind of cyber-physical attacks that
deny the operation of the physical process, interrupting
the execution of the work, or service, that the controlled
plant is intended to do. The attack results, for example, in
behaviors that may shut the plant down or even destroy it
in a short term.

Fig. 2. Classification and requirements of the cyber-physical attacks
that act in the control loop of an NCS.

2) Service degradation (SD): The SD attacks consist of ma-
licious interventions that are done in the control loop in
order to reduce the efficiency of the service, i.e., the effi-
ciency of the physical process, or even reduce the mean
time between failure (MTBF) of the plant in mid term or
long term.

3) Cyber-physical intelligence (CPI): The concept of CPI,
herein proposed, is different from the concept where
cyber-physical systems are integrated with intelligent sys-
tems [23]. In the present taxonomy, the CPI attacks com-
prehend actions that are performed in the control loop of
an NCS in order to gather information about the system’s
operation and/or its design. These attacks are intended
to acquire the intelligence necessary to plan covert and
controlled attacks, or even to subsidize data for replay
attacks [7].

In Fig. 2, six kinds of DoS attacks are presented, with their
respective requirements. From these six DoS attacks, the less
complex are the three arbitrary ones.

1) DoS-arbitrary jitter: In this kind of attack, the delay of the
forward and/or the feedback stream is arbitrarily changed,
without a previous knowledge about the models of the
NCS, in order to lead the system to an instability or to
a condition that causes the interruption of the physical
process. This attack only requires access to the control
loop, once it may be performed by just consuming the
resources of the system, such as the bandwidth of com-
munication links, or the computational resources of the
equipments that are in the control loop.

2) DoS-arbitrary data loss: In this kind of attack, the attacker
prevents the data from reaching the actuator and/or the
controller of the NCS. The communication channel
is jammed arbitrarily, without a previous knowledge
about the models of the NCS, leading the system to an
instability or to a condition that causes the interruption
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of the physical process. It is worth mentioning that some
DoS-arbitrary jitter attack may result in a DoS-arbitrary
data loss attack, if an eventual higher delay cause packet
drop outs. As the DoS-arbitrary jitter attack, this attack
only requires access to the control loop of the NCS.

3) DoS-arbitrary data injection: In such attacks, the attacker
sends arbitrary false data to the controller, as it was sent
by the sensors, and/or to the actuators, as it was sent by the
controller. The false data is injected into the NCS closed
loop without a previous knowledge about the models of
the NCS. This attack is more complex than the DoS-
arbitrary jitter and the DoS-arbitrary data loss attacks,
given that it requires access to the data that flows in the
control loop of the NCS.

The attacks classified as DoS-controlled—DoS-controlled
jitter, DoS-controlled data loss, and DoS-controlled data
injection—as shown in Fig. 2 interfere in the control loop of
an NCS by the same means that their respective DoS-arbitrary
attacks. The difference between a DoS-controlled attack and
a DoS-arbitrary attack is that, in the former, the interference
caused by the attacker is precisely planned and executed, in
order to achieve the exact desired behavior that leads the phy-
sical service to an interruption, in a more efficient way. Thus,
to achieve such efficiency, a DoS-controlled attack require an
accurate knowledge about the NCS models, i.e., the plant and
the controller transfer functions, which have to be analyzed to
plan the attack.

Regarding to the SD attacks, we must consider the three
different kinds of attack shown in Fig. 2: SD-controlled jit-
ter, SD-controlled data loss, and SD-controlled data injection.
The difference between an SD-controlled attack and a DoS-
controlled attack is that the former is not intended to interrupt
the physical process in a short term. It aims to keep the pro-
cess running with reduced efficiency, sometimes also targeting
a gradual physical deterioration of the controlled devices. To
succeed, the SD-controlled attacks need to be planned based on
an accurate knowledge about the dynamics and the design of the
NCS. Otherwise, the attack can eventually interrupt the physical
process, due to unpredicted reasons, evolving to a DoS attack.

The system knowledge required to both DoS-controlled and
SD-controlled attacks can be gathered through CPI attacks, as
shown in Fig. 2. The first, and simpler, CPI attack is the eaves-
dropping attack [24], [25], which consists of simply capturing
the data transmitted through the forward and feedback streams of
the NCS. The second CPI attack, herein proposed, is the system
identification attack, which aims to obtain information about the
control function of the controller and the transfer function of the
plant, by analyzing the signals that flow in the network between
the controller and the plant. The CPI attacks by themselves do
not impact on the NCS, but they are an useful tool to plan effi-
cient and accurate DoS-controlled and SD-controlled attacks.

B. Cybernetic Versus Physical Covertness

The covertness of an attack regards to its capacity to not be
perceived or detected. In the case of cyber-physical attacks on
NCSs, the covertness must be simultaneously analyzed in two

different domains: the cyber domain and the physical domain.
In this sense, it is presented in this section the definition of what
is a cybernetically covert attack and what is a physically covert
attack.

1) Cybernetically covert attacks: are the attacks that have
low probability to be detected by algorithms that monitor
the software, communications, and data of the NCS, or
by systems that monitor the dynamics of the plant.

2) Physically covert attacks: are attacks that cause physical
effects that cannot be easily noticed or identified by a
human observer. The attack slightly modifies some be-
haviors of the system in a way that it physically affects
the plant, but the effect is not easily perceptible or it can
eventually be understood as a consequence of another
root cause, other than an attack.

The taxonomy available in the literature does not clearly dis-
tinguish that an attack may have different degrees of covertness
regarding to the cybernetic and physical domains. However,
analyzing the cyber-physical attacks, it is possible to state that
the measures taken to make an attack cybernetically covert do
not necessarily guarantee a physically covert behavior, and vice
versa. Thus, in order to provide a clear comprehension about
these two aspects of the covertness of a cyber-physical attack,
the two aforementioned classifications for covertness are intro-
duced in this paper.

For instance, in [9] and [13], an attack architecture is pro-
posed, where the attacker eliminates from the feedback signal
the interference caused by him on a plant through data injec-
tion. That architecture hinders the system’s ability to detect the
attack through signal analysis, making the attack cybernetically
covert. However, such architecture does not guarantee that the
physical effects of the attack will not facilitate its disclosure.
Indeed, depending on the plant’s behavior, the attack can pro-
vide physical evidences that it is being manipulated, drawing
the attention for the possibility of a cyber-physical attack. Thus,
to be physically covert, the attacker’s control function proposed
in [9] and [13] has to be adjusted to meet the requirements of a
physically covert attack, as herein defined, independently of the
cybernetic covertness provided by the attack architecture.

IV. SYSTEM IDENTIFICATION ATTACK

The system identification attack, herein proposed, is intended
to assess the coefficients of the plant’s transfer function G(z)
and the controller’s control function C(z). Both functions are
LTI. The attack uses the BSA metaheuristic, proposed in [8]
and briefly described in [26], to minimize the fitness function
presented in this section.

The BSA is an evolutionary algorithm that uses the infor-
mation obtained by past generations—or iterations—to perform
the search for solutions for optimization problems. The algo-
rithm has two parameters that are empirically adjusted: the size
of its population P and η, described in [26], that establishes
the amplitude of the movements of the individuals of P . The
parameter η must be adjusted aiming to assign to the algorithm
both good exploration and exploitation capabilities.
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If the input i(k) and the output o(k) of a device of the NCS
is known, the model of such device can be assessed by applying
the known i(k) in an estimated model, which must be adjusted
until its estimated output ô(k) converges to o(k). In this sense,
the BSA is used to iteratively adjust the estimated model, by
minimizing a specific fitness function, until the estimated model
converge to the actual model of the real device, that can be a
controller or a plant of the NCS.

To establish the fitness function, first, it must be considered a
generic LTI system, whose transfer function Q(z) is represented
by the following equation:

Q(z) =
O(z)

I(z)
=

anzn + an−1z
n−1 + · · · + a1z

1 + a0

zm + bm−1zm−1 + · · · + b1z1 + b0
(1)

where I(z) is the input of the system, O(z) is the out-
put of the system, n and m are the order of the numera-
torand the denominator, respectively, and [an , an−1 , . . .a1 , a0 ]
and [bm−1 , bm−2 , . . .b1 , b0 ] are the coefficients of the numerator
and the denominator, respectively, that are intended to be found
by this system identification attack. Also, it must be considered
that i(k) and o(k) represent the sampled input and output of the
system, respectively, where I(z) = Z[i(k)], O(z) = Z[o(k)], k
is the number of the sample, and Z represents the Z-transform
operation.

In this system identification attack, i(k) and o(k) are first
captured by an eavesdropping attack [24], [25], for example,
during a monitoring period T . To deal with the eventual loss of
samples, that may not be received by the attacker during T , the
algorithm holds the value of the last received sample, according
to (2), wherein x(k) can either be i(k) or o(k)

x(k) =

{
x(k − 1), if the sample k is lost

x(k), otherwise.
(2)

Then, after acquiring i(k) and o(k), the captured i(k)
is applied to the input of an estimated model, that is des-
cribed by a transfer function whose coefficients [an,j , an−1,j ,
. . .a1,j , a0,j , bm−1,j , bm−2,j , . . .b1,j , b0,j ] are the coordinates of
an individual j of the BSA. The application of i(k) to the input
of the estimated model results in an output signal ôj (k). After
obtaining ôj (k), the fitness fj of the individual j is computed
comparing the output o(k), captured from the attacked device,
with the output ôj (k) of the estimated model, according to the
following equation:

fj =

∑N
k=0(o(k) − ôj (k))2

N
(3)

where N is the number of samples that exist during the
monitoring period T . Note that, if the attacker does not lose
any sample of i(k) and o(k) during T , then min fj = 0 when
[an,j , an−1,j , . . .a1,j , a0,j , bm−1,j , bm−2,j , .... . .b1,j , b0,j ] =
[an , an−1 , . . .a1 , a0 , bm−1 , bm−2 , . . .b1 , b0 ], i.e., when the
estimated model converges to the actual model of the attacked
device.

It is possible to establish an analogy between this system
identification attack and the known plaintext cryptanalytic at-
tack [27], where i(k) and o(k) correspond to the plaintext and

Fig. 3. MitM attack.

ciphertext, respectively, the form of the generic transfer function
Q(z) corresponds to the encryption algorithm, and the actual
coefficients of Q(z) correspond to the secret key.

V. COVERT ATTACK FOR SD

Based on the taxonomy presented in Section III-A, the attack
described in this section is classified as an SD-controlled data
injection attack. Its purpose is to reduce the MTBF of the plant
and/or to reduce the efficiency of the physical process that the
plant performs, by inserting false data into the control loop.
At the same time, the attacker desires that the attack meets
the requirement of being physically covert, as the definition
presented in Section III-B.

One way to degrade a physical service is through the induc-
tion of an overshoot during the transient response of a plant. The
overshoots, or peaks occurred when the system exceeds the tar-
geted value during the transient response, can cause stress and
possibly damage physical systems, such as mechanical, chem-
ical, and electromechanical systems [28], [29]. Additionally,
once they occur in a short period of time, the overshoots are
difficult to be noticed by a human observer. Another way to
degrade the service of a plant is causing a constant steady-state
error on it, i.e., producing a constant error when t → ∞. A low
proportion steady-state error, besides being difficult to be per-
ceived by a human observer, may reduce the efficiency of the
physical process or, occasionally, stress and damage the system
in mid/long term.

In the present attack, to achieve either of the two mentioned
effects, i.e., an overshoot or a constant steady-state error, the
attacker interfere in the NCS’s communication process by in-
jecting false data into the system in a controlled way. To do
so, the attacker act as a MitM that executes an attack func-
tion M(z), as presented in Fig. 3, where U ′(z) = M(z)U(z),
U(z) = Z[u(k)], and U ′(z) = Z[u′(k)]. The function M(z) is
designed based on the models of the plant and the controller,
both obtained through the system identification attack, described
in Section IV. The effectiveness of the attack, therefore, depends
on the design of M(z), which, in turn, depends on the accuracy
of the system identification attack. It is worth mentioning that,
in Fig. 3, although the MitM is placed in the forward stream, it
is possible to perform an attack by interfering in the feedback
stream of the NCS. The MitM may act in wired or wireless
networks, such as in [30].

142



1646 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

VI. RESULTS

In this section, the results obtained through simulations
that combine the system identification attack with physically
covert SD-controlled attacks are presented. First, in Section
VI-A, the model of the attacked system is described. Then, in
Section VI-B, the results obtained by the system identification
attack are presented. After that, in Section VI-C, the results
achieved by the simulations of physically covert SD-controlled
data injection attacks, planned based on the data gathered by the
system identification attack, are presented. Finally, in Section
VI-D, possible countermeasures for the complete attack, in face
of each requirement established in Fig. 2, are discussed.

A. Model of the Attacked System

The attacked NCS has the same architecture as of the NCS
shown in Fig. 1, and consists of a proportional-integral (PI)
controller that controls the rotational speed of a DC motor. The
PI control function C(z) and the DC motor transfer function
G(z) are the same as in [6]. The equations of this NCS are
represented as follows:

C(z) =
c1z − c2

z − 1
G(z) =

g1z + g2

z2 − g3z + g4
(4)

where c1 = 0, 1701, c2 = −0, 1673, g1 = 0, 3379, g2 =
0, 2793, g3 = −1, 5462, and g4 = 0, 5646. The sample rate of
the system is 50 samples/s and the set point r(k) is an unitary
step function. The network delay is not taken into account in the
simulations of this paper.

B. Results of the System Identification Attack

In this section, the performance of the system identification
attack is evaluated through a set of simulations performed in
MATLAB. The SIMULINK tool is used to compute the output
ôj of the estimated models, whose coefficients are the coordi-
nates of an individual j of the BSA.

The structure of the equations represented in (4) are previ-
ously known by the attacker once that, as a premise, it is known
that the target is an NCS that controls a DC motor using a PI
controller. In these simulations, the goal of the system identifi-
cation attack is to discover g1 , g2 , g3 , g4 , c1 , and c2 , also taking
into account scenarios in which the attacker occasionally loses
samples of the forward and feedback streams.

Each time that the DC motor is turned ON, the forward and the
feedback streams are captured by the attacker during a period
T = 2 s. All initial conditions are considered 0, by the time that
the motor is turned ON. The coefficients of G(z), [g1 , g2 , g3 , g4 ],
and the coefficients of C(z), [c1 , c2 ], are computed separately
considering that, albeit the closed loop, G(z) and C(z) are
independent transfer functions. To assess [g1 , g2 , g3 , g4 ], the at-
tacker considers the forward stream as the input and the feedback
stream as the output of the estimated plant. In the opposite way,
to assess [c1 , c2 ], the attacker considers the feedback stream as
the input and the forward stream as the output of the estimated
controller.

To simulate the loss of samples, four different rates l of sample
loss: 0, 0.05, 0.1 and 0.2 are considered. Thus, a sample is lost

by the attacker every time that l < P , where P ∼ U(0, 1) and U
is the uniform distribution. A total of 100 different simulations
for each rate of sample loss are executed.

In the BSA, the population is set to 100 individuals and η,
empirically adjusted, is 1. To assess the coefficients of the con-
troller [c1 , c2 ], the algorithm is executed for 600 iterations. To
assess the coefficients of the plant [g1 , g2 , g3 , g4 ], the number
of iterations is increased to 800, due to the higher number of
dimensions of the search space in this case. The limits of each
dimension of the search space are [−10, 10].

Fig. 4 shows the means of 100 estimated values of g1 , g2 ,
g3 , g4 , c1 , and c2 , with a confidence interval (CI) of 95%, con-
sidering different rates of sample loss. The actual values of the
coefficients of C(z) and G(z) are also depicted in Fig. 4. Note
that the scales of Fig. 4(a)–(d) are different from the scales of
Fig. 4(e) and (f), due to the smaller amplitude of the CI of c1

and c2 . In addition, some statistics of the obtained results are
presented in Table II.

According to Table II the distributions of g1 , g2 , g3 , and
g4 have a high skewness, while the distributions of c1 and c2

have a moderate skewness. Table II also provides the kurtosis
of all coefficients of G(z) and C(z). The kurtosis, computed in
accordance with [31], is a statistical information used to eval-
uate whether the distribution is tall and thin (leptokurtic) or
flat (platykurtic) when compared with the normal distribution.
Based on the criteria defined in [31], the distributions of all co-
efficients of G(z) and C(z) are leptokurtic, which means that
these distributions have more results closer to the mean than the
normal distribution. However, analyzing Table II, it is not pos-
sible to state a clear general pattern of an increasing/decreasing
skewness or kurtosis, in face of the growth of sample loss.

In Fig. 4, it is possible to verify that, in all cases, the CIs
tend to grow with the increase of the sample loss. The same
thing occurs with the standard deviations shown in Table II.
Regarding to the coefficients of G(z), Fig. 4 shows that the
difference between the mean and the actual value of g1 , g2 , g3 ,
and g4 also tends to raise with the increase of sample loss. It is
worth mentioning that the performance of the algorithm when
computing g3 and g4 is better than when computing g1 and g2 ,
regarding the means and their CIs. This behavior results from
the higher sensitivity that the output of G(z) has to the variation
of its poles than to the variations of its zeros. It means that, in
this problem, fj grows faster for errors in g3 and g4 than for
errors in g1 and g2 , making the BSA population converge more
accurately in dimensions g3 and g4 .

In Fig. 4, it is also possible to note that the accuracy obtained
with the coefficients of C(z) is better than the accuracy of the
coefficients of G(z), for all rates of sample loss. The means of
c1 and c2 are closer to their actual values, with a smaller CI. In
fact, the optimization process is more effective when computing
the coefficients of C(z) due to its smaller search space, that has
only two dimensions instead of the four dimensions of the G(z)
problem.

As an additional metric to evaluate the performance of the
algorithm, it is computed |Eg | = |Gr − Ge | and |Ec | =
|Cr − Ce |, that synthesize the error of the estimated coefficients
of G(z) and C(z), respectively, for each solution found. Gr and
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Fig. 4. Mean, with a CI of 95%, of the estimated coefficients of G(z) and C(z), in face of different rates of sample loss. (a) g1 of G(z), (b) g2 of
G(z), (c) g3 of G(z), (d) g4 of G(z), (e) c1 of C(z), and (f) c2 of C(z).

TABLE II
STATISTICS OF THE RESULTS OBTAINED WITH DIFFERENT RATES OF SAMPLE LOSS

Loss of samples Mean Standard deviation

g1 g2 g3 g4 c1 c2 g1 g2 g3 g4 c1 c2

0% 0.32793 0.29652 −1.54121 0.55983 0.16991 −0.16712 0.03097 0.04288 0.00986 0.00944 0.00167 0.00178
5% 0.31835 0.29689 −1.54251 0.56085 0.16997 −0.16719 0.07572 0.11523 0.03322 0.03194 0.00287 0.00287
10% 0.30473 0.30461 −1.54110 0.55925 0.16999 −0.16724 0.08781 0.13483 0.04076 0.03922 0.00397 0.00399
20% 0.26963 0.33352 −1.53119 0.54916 0.16989 −0.16716 0.14120 0.22378 0.08596 0.08313 0.00596 0.00598

Loss of samples Skewness(*) Kurtosis(**)

g1 g2 g3 g4 c1 c2 g1 g2 g3 g4 c1 c2

0% −1.21214 1.23278 1.75298 −1.73202 −0.64331 0.79458 0.18846 0.19433 0.21259 0.21218 0.15119 0.16472
5% −2.34607 1.64875 1.35284 −1.41346 −0.42288 0.36037 0.08094 0.10527 0.09412 0.09802 0.02540 0.03118
10% −2.52938 1.97711 1.18018 −1.26045 −0.23379 0.13377 0.16833 0.17123 0.25041 0.24811 0.24361 0.23429
20% −3.24122 1.75186 1.68335 −1.71055 −0.40055 0.37927 0.21292 0.21127 0.25054 0.24932 0.23883 0.24441

(*) Computed in accordance with Pearson’s second coefficient of skewness. (**) Computed in accordance with [31].

Ge are vectors that contain the actual and the estimated coeffi-
cients of G(z), respectively. Similarly, Cr and Ce are vectors that
contain the actual and the estimated coefficients of C(z), respec-
tively. The histograms of |Eg | and |Ec | are presented in Fig. 5,
considering the mentioned rates of sample loss. The histograms
graphically show that |Eg | and |Ec |, which correspond to the
modulus of the error of the estimated coefficients of G(z) and
C(z), respectively, tend to present higher values as the loss
of samples grows. It can also be confirmed by the increase of
the standard deviation of the coefficients of G(z) and C(z)
presented in Table II. However, according to Fig. 5, the mode
of this errors remains close to zero for all considered rates of
sample loss.

C. Results of the SD Attacks

In this section, the results obtained through simulations of SD-
controlled data injection attacks are presented, performed by a

MitM acting in the control link of the NCS, as shown in Fig. 3.
The attacks were simulated in MATLAB, aiming to evaluate
their accuracy when planned based on the results provided in
Section VI-B, obtained by the system identification attack. The
two sets of attack were performed. The first one, aims to cause
an overshoot of 50% in the rotational speed of the motor. The
second one, aims to cause a stationary error of −10% in the
rotational speed of the motor when it is on the steady state.

In the attack aiming the overshoot, the function executed
by the attacker is M(z) = Ko . Performing a root locus analy-
sis considering the obtained models, the attacker adjusts Ko to
make the system underdamped, with a peak of rotational speed
50% higher than its steady-state speed. The values of Ko are
adjusted considering the average of the coefficients estimated in
Section III-B. Table III shows the values of Ko , estimated con-
sidering different rates of sample loss during the system identifi-
cation attack, as well as the overshoots obtained with the respec-
tive Ko in the real model. In Fig. 6, it is possible to compare the
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Fig. 5. Histograms of |Eg | and |Ec | in face of different rates of sample loss. (a) Distribution of |Eg |. (b) Distribution of |Ec |.

TABLE III
VALUES OF Ko , KESS, AND THE RESULTS OBTAINED WITH THE ATTACKS

Sample loss in the system identification attack

0% 5% 10% 20%

Ko 4.0451 4.0745 4.0828 3.796
Overshoot in the real model 48.90% 49.43% 49.57% 45.94%
KEss 5.7471 5.7803 5.8140 5.8823
Stationary error in the real model −10% −10% −9.9% −9.8%

response of the system without attack with the response of the
system with an attack aiming the overshoot of 50%. The curves
referred to estimated attack, represent the results predicted by
the attacker when applying the designed attack function M(z)
on the estimated model—i.e., the model discovered by the at-
tacker through to the system identification attack. On the other
hand, the curves referred to actual attack represent the response
of the actual system in face of the same attack function M(z). In
another words, the curve estimated attack is the result achieved
in a first moment, during the design stage of the attack, and the
curve actual attack is the result obtained in a second moment,
when the designed attack is launched over the actual system. It
is noteworthy that the attack to the actual model—represented
by the actual attack curve—presents, in the time domain, a
response quite similar to the attack estimated with the model
obtained by the system identification attack—represented by
the estimated attack curve. This can be verified not only in the
case where the system is identified with 0% of sample loss, but
also in the worst considered case, i.e., with 20% of sample loss.
It is worth mentioning that all responses presented in Fig. 6
converge to 1 rad/s.

In the attack where objective is to cause a stationary error of
−10% on the rotational speed of the motor, the attacker executes
the following equation:

M(z) =
KEss(z − 1)

z − 0.94
(5)

Fig. 6. Response of the system to SD-controlled data injection attacks
planned to cause an overshoot of 50% in the rotational speed of the
motor. (a) Attack based on the data obtained without loss of samples.
(b) Attack based on the data obtained with 20% of sample loss.

where KEss is adjusted based on the data obtained with the
system identification attack. The pole of M(z) is added aiming
to allow a stationary error in the system. The zero of M(z)
is intended to format the root locus in order to guarantee the
existence of a stable KEss that leads the system to a stationary
error of −10%. Table III shows the KEss resultant from different
rates of sample loss during the system identification attack, as
well as the stationary errors obtained with the respective KEss

in the real model.
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According to the data presented in Table III, it is possible
to state that the SD-controlled data injection attack, designed
based on the data gathered by the system identification attack,
is capable to modify, in an accurate way, the response of the
physical system, considering all the evaluated rates of sample
loss. In the worst case, i.e., with 20% of sample loss, it is ob-
tained an overshoot of 45.94% and a stationary error of −9.8%,
quite close to the desired values of 50% and −10%, respectively.
Such accuracy allows the attacker to keep his offensive under
control, leading the system to a behavior that is predefined as
physically covert and capable to degrade the service performed
by the plant under attack.

These simulations provide conclusive data regarding to the
effectiveness and potential impacts of the joint operation of sys-
tem identification and SD-controlled data injection attacks on
cyber-physical systems. However, the following issues, not ex-
plored in this paper, should be considered in the case of actual
experiments or real attacks: the presence of noise, coming from
the physical process, actuator, and sensors, as well as possible
jitter on the network [32], which might influence both the sys-
tem identification and SD-controlled data injection attacks; the
delay unwittingly introduced by the MitM in the control loop
during the SD-controlled data injection, which, depending on
the magnitude, may influence the system dynamics; and last,
but not least, the existing techniques/systems for communica-
tion security that must be overcome to allow the attacker get
access to the NCS’s control loop and data.

D. Discussion for Countermeasures

An NCS owner might think being safe from covert and accu-
rate attacks, supposing that an eventual attacker does not know
the plant’s design and, thus, its models. Notwithstanding, this
work demonstrates how a physically covert, and accurate, attack
may be built starting from few information about the NCS—
here, the only starting information is the structure of the transfer
functions of both the plant and controller. Thus, the security of
the system must not be relaxed, and countermeasures have to be
adopted.

As shown in Fig. 2 the complete attack, herein proposed, is
composed of a sequence of three individual attacks—or stages—
namely eavesdropping, system identification, and SD-controlled
data injection. Note that the requirements specified in Fig. 2
help on the development of layered defense strategies [33] for
the proposed attack, where both information technology and
operational technology countermeasures may be involved. Thus,
a set of preventive countermeasures can be systematically
thought based on the requirements drawn in Fig. 2.

1) The first, and straightforward preventive countermeasure,
is to increase the difficulties for an attacker to have
access to the control loop which, according to Fig. 2, may
prevent the execution of the three mentioned stages of the
attack. According to [34] the most effective architectural
concept to protect an NCS is to segregate the control
network from other networks. However, sometimes, it is
not feasible or even wanted. Then, the possibility of an
undesirable access to the control loop can be reduced by

applying network segmentation, demilitarized zones, fire-
wall policies, and using specific network architectures,
such as established at the guidelines described in [34]. In
the case of WNCSs, techniques are designed to minimize
the transmitting power of the network devices [15] that
should be used in order to reduce the probability of an
attacker getting access to the control loop. Note that,
minimizing the transmitting power of the WNCS’s
devices also minimizes the area from where the control
loop can be accessed, which preventively reduce the
probability to have the proposed attack launched on the
WNCS.

2) In addition to the countermeasures aimed to prevent
access to the control loop, other countermeasures are
recommended to deny the access to the data that flows
through the NCS, in case the former fails. In [10], a coun-
termeasure that integrates a symmetric-key encryption
algorithm, a hash algorithm, and a timestamp strategy
is proposed to form a secure transmission mechanism
between the controller side and the plant side, which
is responsible for enforcing the data confidentiality and
checking the data integrity and authenticity. The use of
such countermeasure should hinder the access to the
NCS data, which, according to Fig. 2, is required for the
system identification attack and for the SD-controlled
data injection attack.

3) Another way to avoid the attack herein proposed is pre-
venting the attacker to obtain the required knowledge
about the system. If the attacker eventually get access
to the NCS’s control loop and data, then it is necessary
to make the system identification process harder and/or
less accurate. Thus, the third preventive countermeasure
lies on the use of control functions harder to be accu-
rately identified, such as switching controllers [35], for
instance. In this particular case, the accuracy/feasibility
of the identification process may be influenced by the
switching manner between the controller states [35], as
well as by its dwell time [36]—i.e., the time between two
consecutive switches. The pros and cons of this kind of
countermeasure still need to be investigated. However,
the present work suggests that the level of difficulty and
accuracy to identify a control function should be taken
into account during the design of the NCS.

Practical experimental results [10], [12], [37], [38] related
to the cyber-security of cyber-physical systems evince the
feasibility of launching actual attacks on such systems, as well
as demonstrate the efforts to propose effective countermeasures
for them. In [12] and [37], field-operational test attacks,
performed at the Gignac canal system—in Southern France—
where the attacker pilfers water from the canal, without being
noticed, by manipulating the data transmitted by a sensor
are reported. The authors indicate that, among all sensors
of the attacked canal, there is a set of sensors that are more
critical and should receive more investments on cyber-security
mechanisms aiming more resilience to tampering. Examples of
such cyber-security mechanisms are experimentally assessed
in [10], where Pang and Liu propose a recursive networked
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predictive control technique, combined with a symmetric-key
encryption algorithm, a timestamp, and a hash algorithm. The
authors demonstrate, using a real Internet-based control system
controlling a DC motor, that the solution is capable to make the
NCS immune to attacks where 20% of the data is affected, and
still effective if this percentage is raised to 80%. In [38], the use
of cyber-security mechanisms in devices endowed with limited
computational resources—such as the actuators and sensors of
an NCS—is quantitatively evaluated through experiments using
the communication module TS7250 (200-MHz ARM9 CPU
and 32-MB SD-RAM). The results given in [38] indicate that
a DES-CBC encryption requires 183.81 ms of processing time,
while a RSA encryption requires 228.18 ms to encrypt the same
amount of data from a solid-state transformer, using a 1024-bit
key. If a 2048-bit key is used, the processing time of the RSA,
for example, grows to 1457.14 ms. This may be an issue if it
is considered an NCS sensitive to delay. Such processing times
exemplify the tradeoff between security and performance,
possibly faced when dealing with NCSs, which must be taken
into account while deciding for a countermeasure.

VII. CONCLUSION

This work proposes a physically covert attack for SD, in
which the performance depends on the knowledge about the
model of the plant under attack and its controller. To obtain
such knowledge, a system identification attack, based on the
BSA algorithm, is proposed. The effectiveness of the system
identification attack is demonstrated and its performance is sta-
tistically analyzed in face of different rates of sample loss. The
results achieved by the physically covert attacks for SD, de-
signed based on the data gathered by the system identification
attack, demonstrate the high degree of accuracy that may be
achieved with the joint operation of the two attacks. In the worst
case, i.e., with 20% of sample loss during the system identifica-
tion attack, the attacker attained an overshoot of 45.94% and a
stationary error of −9.8%, quite close to the desired values of
50% and −10%, respectively. In both physically covert inter-
ventions, the accuracy of the attacks ensures that they will not
evolve to unwanted behaviors, physically perceivable.

As future work, the research of techniques capable to avoid,
or complicate, physically convert attacks planned with the data
obtained by system identification attacks is encouraged. In this
sense, we plan to further investigate countermeasures capable
to make it difficult to obtain information about cyber-physical
control systems, which is essential for planning covert and con-
trolled attacks.
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[36] M. Baştuğ, “Recursive modeling of switched linear systems: A behavioral
approach,” Master’s thesis, Istanbul Technical University, Istanbul, Turkey,
2012.

[37] S. Amin, X. Litrico, S. S. Sastry, and A. M. Bayen, “Cyber security of water
SCADA systems—Part II: Attack detection using enhanced hydrodynamic
models,” IEEE Trans. Control Syst. Technol., vol. 21, no. 5, pp. 1679–1693,
Sep. 2013.

[38] W. Wang and Z. Lu, “Cyber security in the smart grid: Survey and chal-
lenges,” Comput. Netw., vol. 57, no. 5, pp. 1344–1371, 2013.
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Abstract From the point of view of the control theory,
the literature indicates that stealthy and accurate cyber-
physical attacks on Networked Control System (NCS) must
be planned based on an accurate knowledge about the
model of the attacked system. However, most literature
about these attacks does not indicate how such knowl-
edge is obtained by the attacker. So, to fill this hiatus,
an Active System Identification attack is proposed in this
paper, where the attacker injects data on the NCS to learn
about its model. The attack is implemented based on two
bio-inspired metaheuristics: Backtracking Search Optimiza-
tion Algorithm (BSA) and Particle Swarm Optimization
(PSO). To improve the accuracy of the estimated mod-
els, a statistical refinement is proposed for the outcomes
of the two optimization algorithms. Additionally, a set of
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data injection attacks are shown in order to demonstrate the
capability of the proposed attack in supporting the design
of other sophisticated attacks. The results indicate a better
performance of the BSA-based attacks, especially when the
captured signals contain white Gaussian noise. The goal of
this paper is to demonstrate the degree of accuracy that this
System Identification attack may achieve, highlighting the
potential impacts and encouraging the research of possible
countermeasures.

Keywords Security · Cyber-physical systems · Networked
control systems · System identification · Backtracking
search algorithm · Particle swarm optimization

1 Introduction

System identification, i.e. the action of building mathemat-
ical models of dynamic systems, is often used to obtain the
model of physical processes aiming to support the design
of their respective control systems. However, it can also
be considered a key step for the execution of accurate
and stealth – or covert, as mentioned in [7, 20, 21, 24] –
attacks against Networked Control Systems (NCS). Indeed,
to reduce the probability to be detected by algorithms that
monitor the dynamics of the controlled plant, the attacker
must have an accurate model of the targeted system, such as
demonstrated in [21, 24].

A possible strategy to obtain information about the model
of the targeted system is through passive System Identi-
fication attacks, as reported in [7]. In that technique, the
attacker eavesdrops the communications between the con-
troller, actuators and sensors of the NCS until enough
information is collected to determine the parameters of the
plant and its control system. Such passive approach can
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make the system identification more time consuming, until
meaningful information transits at the eavesdropped com-
munication links. The situation is even worse if the system
is in steady state because no meaningful information may
transit through the NCS’s communication links for a long
time. The information content of the signals measured under
steady operating conditions is often insufficient for iden-
tification purposes [26]. This attacker’s constraint may be
overcome by the Active System Identification Attack herein
proposed, which, as far as we know, is not reported in the
literature.1

Our approach was inspired by the classic active crypt-
analytic attacks (chosen plaintext and chosen cyphertext),
where the attacker inserts messages in the crypto-engine
to deduce the secret key. Note that this is the opposite of
the passive attacks (cyphertext only and known plaintext),
where the attacker simply listens the communication channels
and passively collects information to recover the secret key [23].

In the attack presented in this work, a specially tailored
signal is inserted by the attacker in an NCS communication
channel. After that, by observing the behavior of the sys-
tem in closed-loop, the attacker determines the parameters
of its open-loop transfer function. To do so, the attacker only
needs to intercept one communication channel of the NCS,
where the attacker both inserts the attack signal and listens
the consequent system response.

If an attack signal a(k) and the consequent response
ya(k) of an NCS are known, the open-loop transfer function
can be assessed by applying a(k) in an estimated model,
which is adjusted until its estimated output ŷa(k) matches
ya(k). The Backtracking Search Optimization algorithm
(BSA) [4] and the Particle Swarm Optimization (PSO) [12]
are herein used to iteratively adjust the parameters of the
estimated model, by minimizing a specific fitness function
until the estimated model converges to the actual model of
the NCS. The BSA and the PSO are chosen to perform
this task due to their capability to converge to good solu-
tions, such as demonstrated in [10, 11, 16, 27] specifically
for control system problems. Given the stochastic nature
of the used algorithms (BSA and PSO), the results need to
be statistically analyzed in order to perform a refinement of
the estimated model. In this work, the statistical refinement
used in [6] is improved, leading to a more accurate estimated
model than the results obtained in [6].

The knowledge of the NCS’s open-loop transfer func-
tion obtained by the Active System Identification attack is
useful for the design of other sophisticated attacks [7, 21].

1A preliminary version of this work was presented in the 10th EAI
International Conference on Bio-inspired Information and Communi-
cations Technologies (BICT 2017) and published in the proceedings of
the event [6]. The present paper proposes a refinement for the system
identification method described in [6] and simulates a data injection
attack using the data obtained after this refinement.

To demonstrate this usefulness from the attacker point of
view, this paper includes the simulation of a set of data
injection attacks designed based on the data gathered by the
Active System Identification attack. In these simulations,
not presented in [6], the attacker accurately induces an over-
shoot on the attacked plant, which may cause stress and
possible damages [8, 25], reducing its mean time between
failure (MTBF).

It is worth mentioning that the Active System Identifi-
cation attack herein proposed is different from the active
attacks performed to identify vulnerabilities of protocols
and applications within the layers of the OSI model, such
as the active scanning process used to identify network ser-
vices [2]. The attack herein proposed aims to identify the
physical model of a plant that, in an NCS, lies above the
application layer of the OSI model.

Note that the applications of NCSs can range from coop-
erative control of vehicles using mobile networks [15, 17]
to large Pressurized Heavy Water Reactors (PHWR) [5] or
water canal systems [1, 21] controlled by wired NCSs. This
include a vast number of potential – sometimes critical –
targets for the attack herein proposed. In this sense, the goal
of this paper is to demonstrate the degree of accuracy that
the present attack may achieve, highlighting its potential
impacts and encouraging the research of countermeasures
capable to prevent or detect its execution.

In summary, the main contributions of this paper, with
regard to the preliminary version of this work [6], are:

– The review on the taxonomy presented in [7], in order
to encompass the Active System Identification attack
in the context of the Cyber-Physical Intelligence (CPI)
attacks. Also, it sets the role that the proposed attack
– as a CPI attack – plays in building model-dependent
attacks.

– The proposal of a new statistical refinement method
for the outcomes provided by the bio-inspired meta-
heuristics. The results demonstrate that this refinement
improves the quality of the information produced by the
identification attack.

– The novel joint operation of the Active System Identi-
fication Attack and a Controlled Data Injection Attack,
which allows the evaluation on how a model-dependent
attack can benefit from the intelligence obtained by the
Active System Identification Attack. The results indicate
that the referred model-dependent attack can achieve
high accuracy when supported by the Active System
Identification Attack, specially when the latter is statis-
tically refined by the method introduced in this paper.

The remainder of this paper is organized as follows. In
Section 2, we review the literature of NCS attacks, with
focus on the intelligence gathered to support their design.

150



Mobile Netw Appl

In Section 3, we discuss and review the taxonomy presented
in [7] in order to encompass the attack herein proposed. In
Sections 4 and 5, we provide brief descriptions of the BSA
and PSO, respectively. In Section 6, the Active System Iden-
tification attack, herein proposed, is described. Section 7
presents the results achieved by the proposed attack, com-
paring both metaheuristics in simulations where the NCS is
constituted by a DC motor and a proportional-integral (PI)
controller. Also, Section 7 quantitatively demonstrates the
accuracy that a data injection attack may achieve, when sup-
ported by the proposed Active System Identification attack.
Section 8 contains our final considerations.

2 Related works

The possibility of large impact cyber-physical attacks
became unprecedentedly concrete after the launch of the
Stuxnet worm [13] and has been motivating researches con-
cerning the security of NCSs. In this section, a review of the
literature related to this subject is presented.

In [14] the authors propose two queuing models that are
used to evaluate the impact of delay jitter and packet loss in
an NCS under attack. The attack is not designed taking into
account the models of the controller and the physical plant.
Such models are unknown by the attacker. Thus, to affect the
plant’s behavior, the attacker arbitrarily floods the network
with traffic, causing jitter and packet loss. In this method
of attack, the excess of packets in the network can reduce
the stealthiness of the attack, allowing the adoption of coun-
termeasures, such as packet filtering [14] or blocking the
malicious traffic on its origin [22]. Moreover, the arbitrary
intervention in a system which the models are unknown may
lead the plant to an extreme physical behavior, which is not
desired if a stealth attack is intended [7].

In [9], a testbed for Supervisory Control and Data Acqui-
sition (SCADA) using TrueTime (a MATLAB/ Simulink
based tool) is presented. The authors demonstrate an attack
where a malicious agent transmits false signals to the
controller and actuator of an NCS. The false signals are
randomly generated, aiming to make a DC motor lose its
stability. This kind of attack does not require a previous
knowledge about the plant and controller of the NCS. The
drawback is that the desired physical effect and the stealth-
iness of the attack cannot be ensured due to unpredictable
consequences from the application of random false signals
to a system which the model is not known.

A general framework for the analysis of a wide variety
of attacks over NCSs is provided in [24]. The authors clas-
sify and establish the requirements for the attacks in terms
of model knowledge, disclosure and disruption resources.
In their work, it is stated that covert attacks require high
level of knowledge about the model of the targeted system.

Examples of covert attacks that agree with this statement
are provided in [20, 21]. In these works, the attacks are per-
formed by a man-in-the-middle (MitM), where the attacker
needs to know the model of the plant under attack and
also inject false data in both forward and feedback streams.
The stealthiness of the attacks described in [20, 21] is ana-
lyzed from the perspective of the signals arriving to the
controller and depends on the difference between the actual
model of the plant and the model known by the attacker.
In [1], another stealth attack is demonstrated. The attacker,
aware of the system’s model, injects an attack signal in the
NCS to steal water from the Gignac canal system located in
Southern France.

In [1, 20, 21, 24], where a previous knowledge about
the models of the NCS under attack is required, it is not
described how this knowledge is obtained by the attacker. It
is just stated that a model is previously known to support the
design of the attack. More recently, in [7], the authors pro-
pose a System Identification attack to fill this hiatus. They
demonstrate how the data required for the design of Denial-
of-Service (DoS) or Service Degradation (SD) attacks may
be obtained through a passive System Identification attack.
The attack proposed in [7] does not need to inject signals on
the NCS to estimate its models. However, it depends on the
occurrence of events, that are not controlled by the attacker,
to produce signals that carry meaningful information for the
system identification algorithm. The Active System Identi-
fication attack, herein proposed, constitutes an alternative to
the passive System Identification attacks in situations where
the attacker may not wait so long for the occurrence of such
meaningful signals. A synthesis of the characteristics of the
attacks referred in this section is presented in Table 1.

3 Taxonomy

In [7], the authors propose a taxonomy that encompasses
three main classes of attack – Denial-of-Service (DoS),
Service Degradation (SD), and Cyber-Physical Intelligence
(CPI) – in which the service to be attacked/ protected is
the work performed by the physical process controlled by
an NCS. According to that taxonomy, the DoS attacks are
intended to interrupt the execution of the work performed by
the controlled plant, or even destroy the plant in a short term.
On the other hand, the SD attacks aims to reduce the effi-
ciency of the physical process, or even reduce the mean time
between failure (MTBF) of the plant in mid/long term. Yet,
according to that taxonomy, the CPI attacks are intended to
gather information of the NCS basically through two kinds of
attack – eavesdropping, and System Identification attacks –,
in order to provide the information necessary for planning
and designing DoS and SD controlled attacks. The referred
taxonomy establishes the requirements for each attack of
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Table 1 Synthesis of the
related attacks Attack Method System knowledge How the knowledge is obtained

Stuxnet worm [13] Modifications in the PLC code Yes Experiments in a real system

Long, et al. [14] Inducing jitter and packet loss None N/A

Farooqui, et al. [9] Data injection None N/A

Smith [20, 21] Data injection Yes Not described

Teixeira [24] Packet loss None N/A

Data injection Yes Not described

Amin [1] Data injection Yes Not described

SD-Controlled [7] Data injection Yes Passive system identification

these three main classes and, above all, explains how model-
dependent attacks, such as the DoS and SD controlled
attacks can benefit from the information provided by CPI
attacks.

The attacks belonging to the first two classes, i.e. DoS
and SD, are premised active, once they act through the
induction of jitter, data loss or data injection on the NCS.
On the other hand, according to that taxonomy, the attacks
belonging to the CPI class of attacks do not impact or
interfere on the NCS, once they only need to listen the con-
trol signals that flow through the NCS. The eavesdropping
attack simply capture the control signals that flow through
the network. The System Identification attack, according to
[7], collects the data that flows through the input and out-
put of the NCS devices, i.e. controllers and plants, and uses
the collected information to passively estimate the model of
such devices.

However, the results achieved by the present work lead
us to review the taxonomy proposed in [7], specifically with
regard to the System Identification attacks. Different from
the System Identification attack defined in [7], the attack
proposed in this paper requires the injection of an attack sig-
nal in the NCS, in order to estimate its model through the
analysis of its consequent response. Thus, it is necessary
to expand the taxonomy related to System Identification
attacks, that are now divided within two kinds, as shown in
Fig. 1:

– The Passive System Identification attacks: this kind of
attack estimates the model of an NCS based on the anal-
ysis of the signals collected from the input and output
of the system’s devices. This kind of attack analyzes
signals that typically flow through the NCS, as a result
of its normal operation. In this case, both input and

Fig. 1 Classification and
requirements of the
cyber-physical attacks that act in
the control loop of an NCS
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output signals must carry meaningful information – i.e.
information enough to estimate the transfer function of
the attacked system/device –, and it is not necessary to
inject signals into the attacked system.

– The Active System Identification attack: in this kind of
attack, aim of this work, the attacker injects a signal
into the system and estimates its model based on the
system’s response in face of the attack signal. From the
attacker point of view, this attack is useful, for example,
when the system is in steady state and the attacker can-
not wait for a signal carrying meaningful information
for the identification process.

It is noteworthy that an Active System Identification
attack is less stealthy than a Passive System Identification
attack, given that the former needs to interfere in the system
and the latter just needs to listen its signals. In this sense,
when performing an Active System Identification attack,
the attacker must choose signals that, when injected on the
NCS, are more difficult to be perceived by a defense system.
From the defender perspective, it is important to be aware
of this kind of attack and also learn about the stealthiness
of Active System Identification attacks, in order to develop
techniques to identify and avoid them.

4 Backtracking search algorithm

In this section, the basic concepts of the BSA are described
in order to provide a clear comprehension regarding to the
parameters of the algorithm that are adjusted for the attack.
The BSA is a bio-inspired metaheuristic that searches for
solutions of optimization problems using the information
obtained by past generations – or iterations. According to
[4], its search process is metaphorically analogous to the
behavior of a social group of animals that, at random inter-
vals, returns to hunting areas previously visited for food
foraging. The general evolutionary structure of the BSA is
shown in Algorithm 1.

Algorithm 1 BSA

begin
Initialization;
repeat

Selection-I;
Generate new population

Mutation;
Crossover;

end
Selection-II;

until Stopping Condition;

end

At the Initialization stage, the algorithm generates and
evaluates the initial population P0 and sets the historical
population Phist . The latter constitutes the BSA’s mem-
ory that, in Selection-I stage, is updated with historical
coordinates visited by the individuals.

During the first selection stage (Selection-I), the algo-
rithm randomly determines, based on an uniform distribu-
tion U , whether the current population P should be kept as
the new historical population and, therefore, replace Phist

(i.e. if a < b|a, b ∼ U(0, 1), then Phist = P ). Subse-
quently, at every iteration, it shuffles the individuals of Phist

– having Phist been replaced or not.
The mutation operator creates Pmod , which is the pre-

liminary version of the new population Pnew). It does so
according to Eq. 1:

Pmod = P + η · �(Phist − P), (1)

wherein η is empirically adjusted through simulations and
� ∼ N(0, 1), with N being a normal standard distribution.
Therefore, Pmod is the result of the movement of P’s indi-
viduals in the directions established by vector (Phist − P)

and η controls the displacements’ amplitude.
In order to create the final version of Pnew, the crossover

operator randomly combines, also following a uniform dis-
tribution, individuals from Pmod and others from P .

At the second selection stage (Selection-II), the algo-
rithm firstly evaluates the individuals of Pnew using a fitness
function f . After that, individuals of P (i.e. individuals
before applying the mutation and crossover operators) are
replaced by individuals of Pnew (i.e. individuals obtained
after mutation and crossover) with better fitness. Therefore,
P includes only new individuals that evolved. While the
stopping condition has not yet been reached, the algorithm
iterates. Otherwise, it returns the best solution found.

Note that the algorithm has two parameters that are
empirically adjusted: the size |P| of its population P; and η,
that establishes the amplitude of the movements of the indi-
viduals of P . The parameter η must be adjusted to assign
good exploration and exploitation capabilities to the algo-
rithm. With these parameters set, the BSA is used to search
for the global minimum of the fitness function described in
Section 6.

5 Particle swarm optimization

PSO has roots in the collective behavior of social models
such as bird flocking and fish schooling. A particle, i.e. the
basic element of the algorithm, represents a possible solu-
tion of a problem. Therefore, the swarm represents a set of
possible solutions. At each iterative cycle, the position of
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each particle is updated according to Eq. 2, where xj and vj

are the position and velocity of particle j , respectively.

xj (t + 1) = xj (t) + vj (t + 1) (2)

The computation of vj considers three terms: the parti-
cle’s inertia; the particle’s cognition, which is based on the
best solution found by the particle so far; and social term,
which is based on global best solution found by the swarm.
The velocity of particle j , at each dimension d, is defined in
Eq. 3:

vjd(t + 1) = ωvjd(t) + ϕ1r1d(t)(mjd − xjd(t))

+ϕ2r2d(t)(mgd − xjd(t)), (3)

wherein ω is a parameter that weighs the inertia of the par-
ticle, ϕ1 and ϕ2 are parameters that weigh the cognitive and
social terms, respectively, r1 and r2 are random numbers in
[0,1], mj is the best position visited by particle j so far, and
mg is the best position discovered by the swarm consider-
ing the experience of all the particles. To obtain mj and mg

the algorithm evaluates, at each iteration, the position xj of
each particle j using a fitness function f (x).

In order to better explore multi-dimensional search
spaces, a velocity limit is imposed for each dimension d, as
in Eq. 4:

0 ≤ vjd ≤ δ(maxd − mind), (4)

wherein maxd and mind are the maximum and minimum
limits of the search space at each dimension d and δ ∈
[0, 1]. The overall computation that the PSO performs to
minimize a fitness function f (x) is given in Algorithm 2,
where x is the particle position and S is the swarm size.

Algorithm 2 PSO algorithm

begin
for each particle , 1 do

Set randomly position and velocity ;
;

end
, 1 ;

repeat
for each particle , 1 do

Update velocity , as in Eqs. 3 and 4;
Update position , as in Eq. 2;

;
, whenever ;
, whenever ;

end
until Stopping condition;
return ;

end

6 The active system identification attack

The Active System Identification attack, herein proposed,
is intended to assess the coefficients of a transfer function
G(z) = C(z)P (z) of an NCS, wherein C(z) is the con-
troller’s control function and P(z) is the plant’s transfer
function, as shown in Fig. 2. The transfer functions are all
linear time-invariant (LTI). This attack is performed by a
MitM that may be located either in the forward or in the
feedback link. For the sake of clarity of the analysis presen-
tation, but without loss of generality, we focus on the case
where the MitM is in the feedback link, i.e. between the
plant’s sensors and the controller’s input. To estimate the
model of the attacked NCS, the attacker injects an attack
signal a(k) and measures the response of the system to such
signal.

The complete response of the generic NCS shown in
Fig. 2, considering only the inputs R(z) = Z[r(k)] and
A(z) = Z[a(k)], is expressed in the z domain by Eq. 5:

Y (z) = G(z)

1 + G(z)
R(z) − G(z)

1 + G(z)
A(z), (5)

wherein Y (z) = Z[y(k)]. Z represents the Z-transform
operation. As a premise, in a normal condition, it is con-
sidered that a(k) = 0 and the system is designed to make
y(k) → q, in such way that y(k) ≈ q∀k > ks , i.e. the out-
put y(k) of the NCS converges and stabilizes at a constant
value q after a certain amount of samples ks . Indeed, it is
usually one of the main aims of a control system. Now, con-
sidering a(k) �= 0, the output y(k), ∀k > ks , may be defined
approximately as Eq. 6:

y(k) = q − Z−1
[

G(z)

1 + G(z)
A(z)

]
, ∀k > ks. (6)

Thus, after ks , the portion of y(k) caused by r(k) can be
eliminated by just subtracting q from Eq. 6, which leads to
Eq. 7:

ya(k) = y(k)−q = −Z−1
[

G(z)

1 + G(z)
A(z)

]
, ∀k > ks. (7)
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Fig. 2 Active System Identification attack with a MitM in the feed-
back link
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wherein ya(k) represents the portion of y(k) caused by the
attack signal a(k). The value of q can be assessed by the
attacker through an eavesdropping attack in the feedback
stream, by just capturing y(k) after the stabilization of the
NCS. The subtraction of q after ks makes the system iden-
tification attack independent of r(k) ∀k > ks . The Active
System Identification attack now just relies on the attack
signal a(k), which can be chosen, and the response of the
system to the attack ya(k) can be obtained in accordance
with Eq. 7. The signal ya(k) starts with the injection of a(k)

and has the size of a monitoring period T .
If the attack input a(k) and its consequent output ya(k)

are known, the model of G(z) can be assessed by applying
the known a(k) in an estimated system, defined by Eq. 8:

ŷa(k) = −Z−1
[

Ge(z)

1 + Ge(z)

]
∗ a(k), (8)

wherein Ge(z) is the estimation of G(z) and ŷa(k) is the out-
put of the estimated system in face of Ge(z). By comparing
ŷa(k) with ya(k), the attacker is capable to evaluate whether
Ge(z) is equal/approximately G(z). Note that Ge(z) is a
generic transfer function represented by Eq. 9:

Ge(z) = αnz
n + αn−1z

n−1 + . . . + α1z
1 + α0

zm + βm−1zm−1 + . . . + β1z1 + β0
, (9)

wherein n and m are the order of the numerator and the
denominator, respectively, while [αn, αn−1, . . . α1, α0] and
[βm−1, βm−2, . . . β1, β0] are the coefficients of the numer-
ator and the denominator, respectively, that are intended to
be found by this Active System Identification attack. There-
fore, to find G(z), the coefficients of Ge(z) are adjusted
until the estimated output ŷa(k) converges to the known
ya(k).

In this sense, the BSA and the PSO are used to itera-
tively adjust the estimated model, by minimizing a specific
fitness function presented in this section until the estimated
model Ge(z) converges to the actual G(z) of the real NCS.
To compute the fitness of the individuals of the optimiza-
tion algorithm (i.e. the BSA or PSO), the same attack signal
a(k) that caused ya(k) is applied on the estimated system
defined by Eqs. 8 and 9, where the coefficients of Ge(z) are
the coordinates xj = [αn,j , αn−1,j , . . . α1,j , α0,j , βm−1,j ,
βm−2,j , . . . β1,j , β0,j ] of an individual j of the BSA/PSO.
The output ŷaj (k) is the response of the estimated model
(8, 9) in face of a(k), when the coefficients of Ge(z) are
xj . Then, the fitness fj of each individual j is obtained
comparing ŷaj (k) with ya(k), according to Eq. 10:

fj =

N∑
k=0

(ya(k) − ŷaj (k))2

N
, (10)

wherein N is the number of samples that exist dur-
ing the monitoring period T of ya(k). Note that,

if no other inputs – perturbation or noise – occur
in the NCS during T , then min fj = 0 when
[αn,j , αn−1,j , . . . α1,j , α0,j , βm−1,j , βm−2,j , . . . β1,j , β0,j ] =
[αn, αn−1, . . . α1, α0, βm−1, βm−2, . . . β1, β0], i.e. when the
estimated Ge(z) converges to G(z).

An analogy may be established between this Active
System Identification attack and the Chosen Plaintext
cryptanalytic attack [23], wherein a(k) corresponds to
the chosen plaintext, ya(k) represents the ciphertext, the
Eqs. 8 and 9 together correspond to the encryption algo-
rithm, and the actual coefficients [αn, αn−1, . . . α1, α0] and
[βm−1, βm−2, . . . β1, β0] of Ge(z) correspond to the secret
key.

It is worth mentioning that this attack requires the pre-
vious knowledge about the order of the numerator and
denominator of Eq. 9 (n and m, respectively). Using the
analogy with the Chosen Plaintext cryptanalytic attack, it is
equivalent to require the knowledge about the size of the
secret key of the encryption algorithm. In this Active System
Identification attack, the information of n and m is neces-
sary to define the number of dimensions of the search space
of the BSA – or the number of unknown coefficients of G(z)

– which must be set to n + m − 1. Although this is a con-
straint of the attack, this information may be inferred if the
attacker, at least, knows what the attacked plant is and what
type of controller is being used.

7 Results

In Section 7.1, the results obtained by both BSA-based and
PSO-based Active System Identification attacks are ana-
lyzed and statistically refined in order to provide a demon-
stration of the degree of accuracy that the attacker may
obtain with the proposed attack. Additionally, Section 7.2
presents a set of data injection attacks designed based on the
models estimated by the Active System Identification pro-
cess. The purpose of the simulations of these data injection
attacks is to demonstrate how an Active System Identi-
fication attack may contribute for the accuracy of other
sophisticated attacks.

7.1 Active system identification attack

The attacked system, shown in Fig. 3, consists of a
DC motor whose rotational speed is controlled by a
Proportional-Integral (PI) controller. This example is chosen
due to the use of DC motors in a vast number of real world
control systems. Moreover, DC motors has been widely
used in previous works about NCS [3, 7, 14, 18, 19]. It is
noteworthy that the model herein chosen as an example does
not exhaust the potential targets for this attack. NCSs com-
posed by another kinds of LTI devices may also be a target.
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Fig. 3 Attack on a noisy NCS

However, it must be taken into account that the computa-
tional cost of the attack, when launched over different LTI
systems, may vary with the number of their unknown coef-
ficients – i.e. the number of dimensions of the search space
explored by the optimization algorithms (BSA or PSO, in
this paper).

The PI control function C(z) and the DC motor trans-
fer function P(z), obtained from [14], are represented by
Eqs. 11 and 12, respectively:

C(z) = 0.1701z − 0.1673

z − 1
, (11)

P(z) = 0.3379z + 0.2793

z2 − 1.5462z + 0.5646
. (12)

Thereby, the transfer function to be identified G(z) –
which is also the open-loop transfer function of the NCS –
is defined by Eq. 13:

G(z) = C(z)P (z) = g1z
2 + g2z + g3

z3 + g4z2 + g5z + g6
, (13)

wherein g1 = 0.0575, g2 = −0.0090, g3 = −0.0467, g4 =
−2.5462, g5 = 2.1108 and g6 = −0.5646. The sample rate
of the system is 50 samples/s and the set point r(k) is an
unitary step function. Network delay and packet loss are not
taken into account in the simulations of this paper.

The structure of the Eqs. 11 and 12, and so the structure
of Eq. 13, are previously known by the attacker once that, as
a premise, it is known that the target is an NCS that controls
a DC motor using a PI controller. Thus, in these simula-
tions, the goal of the Active System Identification attack is
to discover g1, g2, g3, g4, g5 and g6.

The chosen attack signal a(k) is a discrete-time unit
impulse (14):

a(k) =
{

1 if k = ka;
0 otherwise,

(14)

wherein ka is the single sample in which the attacker inter-
fere in the system by adding 1 to the feedback stream. Note
that the discrete-time unit impulse is chosen to excite the

NCS due to its short active time – i.e. one sample –, which
increases the stealthiness of the attack in the time domain.
Moreover, the Fourier transform of an impulse function has
an uniform – flat – density in the frequency domain , which
is easily masked by the frequency distribution of a white
Gaussian noise. This fact also increases the stealthiness of
the attack signal in the frequency domain.

The effectiveness of the Active System Identification
attack is evaluated with and without noise. To simulate the
noise, w(k) ∼ N(μ, σ) is inserted in the NCS as indi-
cated in Fig. 3. Note that w(k) is a white Gaussian noise
wherein N is a normal distribution, μ is its mean and σ is
its standard deviation. In all simulations, the mean is μ = 0
rad/s. The standard deviation is adjusted in such manner
that 95% of the amplitudes of w(k) are within ±I (I = 2σ ).
The simulations consider four different noise intensities I :
0 (no noise), 0.0025 rad/s, 0.005 rad/s and 0.01 rad/s.
For each noise intensity I , 100 different simulations are exe-
cuted using each of the mentioned metaheuristics. In each
simulation, the feedback stream is captured by the attacker
during a period T = 2s (100 samples), starting at sample
ka + 1.

The attack model was implemented in MATLAB, where
the simulations were carried out. The SIMULINK tool was
used to compute ya(k) and ŷaj (k) – the latter, for each
individual j of the optimization algorithms. The parame-
ters of the BSA and PSO described in Sections 4 and 5,
respectively, were empirically adjusted through a set of sim-
ulations without noise (I = 0). These parameters are then
used for all noise conditions. In the BSA-based attacks, the
parameter η is set to 1. In the PSO-based attacks, the fol-
lowing parameters configuration is used: ω = 0.4, ϕ1 =
ϕ2 = 1.5 and δ = 0.1. In both algorithms, the population
is set to 100 individuals and the limits of each dimension of
the search space are [−10, 10]. In each simulation, the BSA
and the PSO are executed for 4500 iterations.

Let Su be the solution of an attack simulation u, and
gi,u the value estimated for the ith coefficient of G(z) in
the uth attack simulation. Each attack simulation provides
a solution Su = [g1,u, g2,u, g3,u, g4,u, g5,u, g6,u] contain-
ing estimated values for the six coefficients of G(z). In [6],
for a given coefficient gi of G(z), if an estimated value gi,u

is beyond two standard deviation from the mean, then gi,u

is considered an outlier and eliminated from the set of val-
ues found for gi . After that, the estimated value of each
gi is assumed to be the mean of the remaining gi,u. How-
ever, in the present work, to improve the accuracy of the
estimated model, this statistical refinement is modified. In
this paper, if an estimated value gi,u is beyond two standard
deviation from the mean, the whole solution Su (to which
gi,u belongs) is considered as an outlier and eliminated from
the set of solutions. Doing so, the estimated value of each
gi is assumed to be mean of all gi,u contained in the set of
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Table 2 Mean estimated coefficients of G(z) after the statistical refinement

Mean of the coefficients statistically refined in [6] Mean of the coefficients statistically refined in the present work

Noise ( ) )( )( )( )( )( )( )( )(1 10 2
2 10 3

3 10 2
4 5 6 10 3

1 10 2
2 10 3

3 10 2
4 5 6 10 1

BSA 0 5.7756 9.3337 4.6261 2.5431 2.1063 5.6319 5.7750 9.3128 4.6268 2.5431 2.1063 5.6319

0.0025 5.7736 9.2001 4.6301 2.5428 2.1058 5.6305 5.7714 9.2299 4.6294 2.5428 2.1059 5.6306

0.005 5.7826 9.0411 4.5528 2.5345 2.0937 5.5924 5.7628 8.6145 4.5870 2.5350 2.0944 5.5931

0.0075 5.8215 0.7908 3.4930 2.4023 1.8911 4.7857 5.7843 4.0346 4.1886 2.4578 1.9761 5.1824

0.01 5.8561 20.7982 2.5371 2.0906 1.3852 3.1095 5.8763 15.6817 2.6009 2.1322 1.4738 3.4164

PSO 0 5.8799 10.6784 4.4361 2.5341 2.0940 5.5989 5.8799 10.6784 4.4361 2.5341 2.0940 5.5989

0.0025 5.8987 19.7038 2.1653 2.0568 1.3567 2.9982 5.8987 19.7038 2.1653 2.0568 1.3567 2.9982

0.005 5.9148 28.7309 1.6431 1.9242 1.1493 2.2507 5.9148 28.7309 1.6431 1.9242 1.1493 2.2507

0.0075 5.9357 34.5026 1.2472 1.8347 1.0102 1.7552 5.9357 34.5026 1.2472 1.8347 1.0102 1.7552

0.01 5.9288 43.4950 0.6878 1.7036 0.8073 1.0370 5.9288 43.4950 0.6878 1.7036 0.8073 1.0370

remaining Su. Table 2 presents a summary that compares the
results achieved in this work with the results obtained in [6],
in both BSA-based and PSO-based attacks. The most accu-
rate results are highlighted. Note that in all cases the most
accurate results were achieved by the BSA-based attacks.
According to Table 2, the statistical refinement used in the
present work in general improves the accuracy of the results
obtained by the BSA-based attacks. This improvement is
more evident in Section 7.2, where the performance of
other attacks designed with the data presented in Table 2 is
analyzed. Note that the results shown in Table 2 for the PSO-
based attacks are the same as the results of [6]. This occurs
because in PSO-based attacks all outlier coefficients belong
to solutions wherein all other coefficients are also outliers –
i.e. beyond two standard deviations from their means. Thus,
in the PSO-based attacks, the whole solution Su which con-
tains an outlier is eliminated from the set of solutions even
when the statistical refinement of [6] is applied.

The mean estimated values of g1, g2, g3, g4, g5 and g6,
statistically refined as proposed in this work, are shown in
Fig. 4 with a Confidence Interval (CI) of 95%, for differ-
ent values of noise intensity I . Note that the actual values of
these coefficients are also depicted in Fig. 4. In this Figure,
it is possible to compare the results achieved by the BSA-
based and the PSO-based attacks. According with Fig. 4, it
is possible to verify that, for all coefficients of G(z), both
the BSA-based and PSO-based attacks present good accu-
racy when I = 0 (i.e. without noise, the mean values of
the estimated coefficients are close to their actual values).
Despite the similar and accurate performance of the two
metaheuristics without noise, it is possible to state that the
BSA presented a slightly better performance than the PSO
in this noise condition (I = 0), specially with regard to the
coefficients g1, g2 and g3. Note that the performance of the
PSO-based attack is degraded when noise is added to the
system. This performance degradation of the PSO occurs

for I ≥ 0.0025 and tends to be more expressive with the
increase of I . On the other hand, it is possible to verify in
Fig. 4 that the BSA-based attack still present good accuracy
for noise intensities up to 0.005. When I ≤ 0.005, all coef-
ficients estimated by the BSA-based attack present a mean
close to their actual values and with a small CI. When I ≥
0.0075, the performance of the BSA-based attack decreases
with the raise of noise in a more expressive way, being at its
worst when I = 0.01. In general, among the six coefficients
of G(z), the estimation of g2 presents the lowest accuracy
for both BSA-based and PSO-based attacks. This behavior
is attributed to a lower sensitivity that the output ŷa(k) of
the estimated system has to the variation of g2. This means
that, in this problem, fj grows faster for errors in g1, g3, g4,
g5 and g6 than for errors in g2, making the BSA population
converge less accurately in dimension g2.

The performance of the attacks can also be evaluated in
the k domain through the examples provided in Fig. 5, con-
sidering two different intensities of noise: without noise, in
Fig. 5a; and with I = 0.005, in Fig. 5b and c. Figure 5b
shows that, without noise, the response of the system esti-
mated by both BSA-based and PSO-based attacks matches
the response of the actual system with high accuracy. In
Fig. 5b, even with a noise intensity of I = 0.005, the
response of the system estimated by the BSA-based attack
still matches the response of the actual system, indicating
the convergence of Ge(z) to G(z) and ratifying the statistics
shown in Fig. 4 for the BSA with such noise intensity. On
the other hand, when applying the PSO-based attack with
the same noise, as exemplified in Fig. 5c, there is a slight
difference between the response of the estimated system
and the response of the actual system, produced by the mis-
match of the estimated coefficients in the presence of such
noise intensity. This exemplifies the worse performance of
the PSO-based attacks, when compared with the BSA-based
attacks, in face of the same noise intensities.
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Fig. 4 Mean of the estimated coefficients of G(z), with CI of 95%, in face of different noise intensities I

To synthesize the error of each solution found, |Eg| is
computed according to Eq. 15:

|Eg| =
√√√√ 6∑

i=1

(gi − gei)
2, (15)

wherein gi and gei are the actual and estimated coefficients
of the attacked system, respectively, and i is the index
number of each of the six coefficients of the model being
assessed. Note that |Eg| is the module of a vector composed
by the error of each coefficient found, which represents
another metric to evaluate the performance of each attack.

The histograms of |Eg| are presented in Fig. 6, consider-
ing the mentioned noise intensities. It graphically shows
that higher values of |Eg| tend to appear more frequently
as the noise intensity grows, in both BSA-based and PSO-
based attacks. However, based on these histograms it is
possible to verify that the mode of |Eg| is close to zero for
all noise intensities, using both metaheuristics. This indi-
cates that, even in the presence of noise, most solutions
present low deviations from the actual coefficients. Note
that, for all noise intensities, the BSA-based attacks pro-
vide more results in the modal class – where |Eg| is close
to zero – than the PSO-based attacks. Moreover, the worst
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Fig. 5 Response of actual and estimated systems produced by a(k), in face of different noise intensities
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Fig. 6 Histograms of |Eg | for different noise intensities

results of the BSA-based attacks have an |Eg| of about
4 when I ≥ 0.005, while the worst results of the PSO-
based attacks have an |Eg| > 20 when I ≥ 0.0025.

These results, together with the statistics shown in Fig. 4,
indicate that the performance of the Active System Identi-
fication attack is better when implemented with the BSA
than with the PSO. It is worth mentioning that, to achieve
these results, the BSA-based attacks consumed an average
processing time (6.68 ± 0.47)% higher than the PSO-based
attacks.

In general, the outcomes indicate that, for the same
amplitude of attack signal a(k), the performance of the
attack tends to decrease as the noise intensity increases (i.e.
when the attack signal-to-noise ratio decreases). The min-
imum length of the attack signal in terms of number of
manipulated samples (i.e. one single sample) improves the
stealthiness of the attack in the k domain. On the other hand,
a minimum attack signal-to-noise ratio required to guaran-
tee the performance of this attack is a drawback with respect
to its stealthiness, from the attacker’s point of view. This
issue makes more difficult for the attacker to approximate
the amplitude of a(k) to the noise amplitude or to noise val-
ues that have higher probability to occur, which should help
to increase the stealthiness of the attack signal in terms of
amplitude.

7.2 Data injection attack

The proposed Active System Identification attack is an use-
ful tool – from the attacker point of view – for the design
of other sophisticated and accurate attacks. To demonstrate
this capability, this section presents a set of data injec-
tion attacks, all designed based on the models estimated
in Section 7.1 by the Active System Identification attacks.
These data injection attacks aim to cause an overshoot of
50% on the rotational speed of the DC motor during its
transient response. As mentioned in Section 1, this physi-
cally covert interference [7] may cause stress and possibly
damages to the plant, reducing its MTBF.

Table 3 Values of a, b and the overshoot obtained with the data injection attacks

Noise (I ) during the system identification attack

0 0.0025 0.005 0.0075 0.01

(I) a 0.25316 0.25485 0.25523 0.58959 0.53297

b 0.74679 0.74515 0.74477 −0.07354 0.5911

Overshoot 49.53% 49.49% 49.65% (*) (*)

(II) a 0.25318 0.25286 0.2551 0.27652 0.31407

b 0.74682 0.74714 0.7449 0.72348 0.68593

Overshoot 49.52% 49.78% 49.67% 46.91% 42.42%

(III) a 0.26801 0.32328 0.32816 0.33074 0.33204

b 0.73199 0.67672 0.67184 0.66926 0.66796

Overshoot 47.43% 40.70% 40.37% 40.30% 40.38%

(*) The inaccuracy of the data injection attack caused a collateral effect: an expressive steady state error in the motor’s rotational speed
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Fig. 7 Data injection attack
using models estimated by a
BSA-based attack and refined as
in [6]
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Aware of the estimated model of the NCS, the attacker –
acting as an MitM – executes the attack function defined by
Eq. 16:

y′(k) = ay(k − 1) + by′(k − 1). (16)

wherein a and b are adjusted through a root locus analysis,
considering an estimated open-loop transfer function. Note
that the attacker is still on the NCS’s feedback stream once
that, according with Fig. 3, y(k) is the sensor’s output and
y′(k) is the controller’s input.

The models used to design these data injection attacks are
built with the mean estimated coefficients shown in Table 2.
Note that a and b have to be adjusted for each estimated
model which, in turn, vary with the noise condition, the used
optimization algorithm and the applied statistical refine-
ment, as shown in Table 2. The values of a and b used in
each data injection attack are shown in Table 3, as well as the
respective overshoots achieved with the attack. In Table 3,
the row (I) contains the data injection attacks designed
with the models estimated by the BSA-based attacks using
the statistical refinement of [6]. Row (II) contains the data
injection attacks designed with the models estimated by the
BSA-based attacks using the statistical refinement proposed
in this work. As described in Section 7.1, the models esti-
mated in this work and in [6] by the PSO-based attacks do
not change due to the statistical refinement method. Thus,

in Table 3, the attacks designed with the models estimated
by the PSO-based attacks – statistically refined by either of
the two methods – are contained in row (III).

Examples of the data injection attacks shown in Table 3
are depicted, in the time domain, in Figs. 7, 8 and 9. In these
figures, the curves named as estimated attack represent the
results predicted by the attacker when applying the designed
attack function (16) on the estimated model – i.e. the model
provided by the Active System Identification attack. On the
other hand, the curves referred as actual attack represent
the response of the actual system in face of the same attack
function (16). In other words, the curve estimated attack
is the result achieved in a first moment, during the design
stage of the attack, and the curve actual attack is the result
obtained in a second moment, when the designed attack is
launched over the actual system.

In rows (I) and (II) of Table 3, it is possible to see that,
when 0 ≤ I ≤ 0.005, the data provided by the BSA-based
Active System Identification attacks produce accurate data
injection attacks, either with the statistical refinement of [6]
or the statistical refinement proposed in the present work.
In these data injection attacks, all overshoots lie between
49.49 and 49.78% – i.e. close to the goal of 50%. However,
for 0.0075 ≤ I ≤ 0.01, the data injection attacks of row
(I) – i.e. using the models estimated by BSA-based attacks
and refined as in [6] – produce a collateral behavior on the
attacked system. They cause expressive steady state errors
in the motor’s rotational speed, as indicated, for instance,

Fig. 8 Data injection attack
using models estimated by a
BSA-based attack and refined as
herein proposed
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Fig. 9 Data injection attack
using models estimated by a
PSO-based attack and
statistically refined
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in Fig. 7b. On the other hand, for 0.0075 ≤ I ≤ 0.01,
when the statistical refinement proposed in the present work
is applied to the BSA-based Active System Identification
attacks, the estimated models eliminate the mentioned col-
lateral effects on the data injection attacks. This can be seen
in the example shown in Fig. 8b, for I = 0.0075, where
the response of the actual attack is close to the response
of the estimated attack, without a steady state error and
with an overshoot of 46.91%. The reason for these different
performances is explained by the impact of the statistical
refinement in the root locus analysis. When only an outlier
coefficient gi,u is eliminated – as in [6] –, instead of elim-
inating the whole solution Su from where it belongs – as
herein proposed –, the roots of the open-loop transfer func-
tion suffer a distortion. For instance, in these simulations,
when 0.0075 ≤ I ≤ 0.01, the statistical refinement of [6]
modifies a pole of G(z) that should be 1. This pole exists
due to the use of the PI controller – a premise known by the
attacker – and, when modified, influences the adjustment of
a and b of Eq. 16. On the other hand, by eliminating the
whole solution Su containing an outlier coefficient gi,u, the
mean estimated coefficients of G(z) preserve the interde-
pendencies necessary to produce less distorted roots. Note
that, as shown in row (III) of Table 3 and in Fig. 9, the PSO-
based attacks produce less accurate data injection attacks
than the BSA-based attacks statistically refined as proposed
in this work. It is worth mentioning that the data injection
attacks designed with the models estimated by the PSO-
based attacks do not present any collateral effects, using any
of the two statistical refinement methods. In both cases, as
explained in Section 7.1, the whole solution Su containing
an outlier is eliminated from the set of solutions, producing
less distortion in the roots of G(z).

Moreover, with the exception of the attacks of row (I)
for 0.0075 ≤ I ≤ 0.01, all data injection attacks achieved
satisfactory results. However, it is shown that the accuracy
of the data injection attack, in general, decreases as the noise
intensity increases during the Active System Identification
attack.

8 Conclusion

The present work defines and proposes an Active System
Identification attack that may be launched over NCSs. The
proposed attack is implemented based on two bio-inspired
algorithms: the BSA and the PSO. This work demonstrates
that the proposed Active System Identification attack is
capable to accurately support the design of other sophisti-
cated cyber-physical attacks in NCSs. The results show that
the best performance, in general, is achieved by the BSA-
based attacks when statistically refined with the method
proposed in this paper, specially in the presence of the
higher noise intensities.

The capability of the attack to achieve its goal is demon-
strated even when: no meaningful information is passing
through the NCS’s communication links (i.e. when the sys-
tem had achieved a steady state); the attacker intercepts the
communication of the NCS at a single point; and the NCS
is noisy.

For future work, we plan to investigate possible tech-
niques to improve the performance of the attack in face
of higher noise intensities. Also, we plan – and encour-
age other researchers – to investigate countermeasures to
identify and prevent Active System Identification attacks.

Last, but not least, we plan to improve proposed attack to
make it capable to identify systems with uncertain number
of unknown coefficients. Preliminary results indicate that,
when the number of coefficients is smaller than in the actual
system, the algorithm is not able to make the estimated out-
put ŷa(k) converge to the known ya(k). In this case, it is
not possible to have min fj = 0, and the global minimum
values found by the metaheuristics tends to be high. From
the point of view of the attacker, this may be an indicative
that the number of coefficients – or dimensions of the meta-
heuristic – have to be increased, in order to allow ŷa(k) to
match ya(k). On the other hand, when the number of coef-
ficients is higher than in the actual system, it is possible to
have min fj ≈ 0. However, simulations indicate that, even
when min fj ≈ 0, the exceeding coefficients does not tend
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to 0. In this case, the analysis to eliminate the unnecessary
coefficients is not straightforward and still has to be devel-
oped, in order to make the algorithm robust to uncertainty
with respect to the number of unknown coefficients.
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Abstract
The literature regarding attacks in Networked Control Systems (NCS) indicates that covert and accurate attacks must
be designed based on an accurate knowledge about the model of the attacked system. In this context, the literature
on NCS presents the Passive System Identification attack as a metaheuristic-based tool to provide the attacker with
the required system models. However, the scientific literature does not report countermeasures to mitigate the
identification process performed by such passive metaheuristic-based attack. In this sense, this work proposes the use
of a randomly switching controller as a countermeasure for the Passive System Identification attack, in case of failure
of other conventional security mechanisms – such as encryption, network segmentation and firewall policies. This
novel countermeasure aims to hinder the identification of the controller, so that the model obtained by the attacker is
imprecise or ambiguous, in such a way that the attacker hesitates to launch covert or model-dependent attacks
against the NCS. The simulation results indicate that this countermeasure is capable to mitigate the mentioned attack
at the same time that it performs a satisfactory plant control.

Keywords: Networked control system (NCS), Cyber-physical systems, Security, System identification attacks,
Switching controller

1 Introduction
A Networked Control System (NCS) is constituted by a
physical plant whose dynamics is controlled by a digi-
tal controller – i.e. a computational system – through
a communication network which, indeed, integrates the
cyberspace to the physical domain. The integration
of controllers and physical processes via communica-
tion networks aims to provide these systems with bet-
ter operational and management capabilities, as well
as reduce costs. By virtue of these advantages, the
number of NCSs applied to industrial processes and
critical infrastructure systems is increasing [1–10]. A
diagram of an NCS is depicted in Fig. 1, wherein
G(z) is the transfer function of the plant, C(z) is the
control function executed by the controller and both
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devices are interconnected through the forward and
a feedback streams. The forward stream carries the con-
trol signals from the controller to the plant’s actuators.
The feedback stream, in turn, carries the sensed data from
the plant to the controller.
Despite the advantages provided by the NCSs, the

integration of controllers and physical plants through
a communication network also exposes such control
systems to threats originated in the cyber domain.
In this context, there is a research effort to char-
acterize vulnerabilities and propose security solutions
for NCSs.
Recent researches on the security of NCSs demonstrate

the development of a set of sophisticated attacks [6, 11, 12]
that, to be covert and accurate, are designed based on the
models of the attacked system. For instance, in [12, 13]1,
the authors present an attack where false data is injected
in the communication process of an NCS to degrade the
service performed by a plant. The changes driven by this
attack are dimensioned so that the modifications in the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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Fig. 1 Networked control system (NCS) [12]

plant’s behavior are physically difficult to be perceived.
For this reason, this attack is classified as physically covert
[12]. To ensure that the attack proposed in [12] is phys-
ically covert, the authors indicate that the attacker must
plan the offensive based on an accurate knowledge about
the system dynamics – otherwise the consequences of
the attack may be unpredictable. In this case, the unpre-
dictable behavior of the plant can provide physical evi-
dence that it is being manipulated, drawing the attention
to the possibility of a cyber-physical attack.

One possible way to obtain such knowledge about the
NCS is through conventional intelligence operations, per-
formed to collect information regarding the design of
the system. Another way to gather information about the
targeted system is through a Cyber-Physical Intelligence
attacks [12]. To this end, the authors of [12] propose a
metaheuristic-based Passive System Identification attack,
which aims to collect information about the plant’s trans-
fer function G(z) and the controller’s control function
C(z) of an NCS. As shown in Fig. 2 (draw based on the

Fig. 2 Classification and requirements of cyber-physical attacks in NCSs
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taxonomy proposed in [12]), the Passive System Identi-
fication attack constitutes a path to build sophisticated
model-dependent attacks, once they are capable to pro-
vide the attacker with the required system knowledge.
Indeed, the results of [12] demonstrate the effectiveness of
the Passive System Identification attack in supporting the
design of covert/model-dependent attacks.
Although the authors of [12] encourage the develop-

ment of countermeasures for the Passive System Identi-
fication attack, the scientific literature – to the best of
our knowledge – does not report countermeasures to
mitigate the identification process performed by such pas-
sive metaheuristic-based attack. In this sense, this work
aims to discuss and propose a countermeasure for the
mentioned attack.
The straightforward countermeasure to prevent the suc-

cess of a System Identification attack in an NCS is to avoid
unauthorized access to the control loop using, for exam-
ple, network segmentation, demilitarized zones (DMZ),
firewall policies and implementing specific network archi-
tectures, such as recommended in [14]. A complemen-
tary countermeasure – in case the attacker is capable to
access the control loop – is to hinder the access to the
data flowing in the NCS using, for example, symmetric-
key encryption algorithms, hash algorithms and a times-
tamp strategy to form a secure transmission mechanism
between the controller and the plant, as proposed in [15].
However, when the mentioned countermeasures fail and
the attacker gain access to the data flowing in the NCS,
the alternative to prevent the attacker to obtain the model
of the system is to hinder the analysis of the captured data
– i.e. make the System Identification algorithm inaccu-
rate/ineffective.
One possible strategy to cause difficulties to the System

Identification algorithm is to have, in the NCS, specific
control functions that are, at the same time, harder to be
identified and capable to control the plant. Based on this
reasoning, the contribution of this work is the proposal of
a randomly switching controller design as a feasible coun-
termeasure to mitigate the Passive System Identification
attack proposed in [12]. As far as we know, there is no
other countermeasure reported in the literature that miti-
gates the Passive System Identification attack by hindering
the analysis of signals captured from the NCS.
The rest of this paper is organized as follows: First, in

Section 2, some related works are presented. Later, in
Section 3, the Passive System Identification attack and a
subsequent Data Injection attack are described, in order to
provide the underlying information necessary to compre-
hend the countermeasure proposed in this paper. Then,
in Section 4, the switching controller is presented and
discussed as a countermeasure for the Passive System
Identification attack. After that, Section 5 presents sim-
ulation results, where the performance of the switching

controller is analyzed from the countermeasure and con-
trol perspectives. Finally, in Section 6, some conclusions
and possible future works are presented.

2 Related works
The launch of cyber-physical attacks in real world sys-
tems, such as the case of the Stuxnet [16] worm, raised
the concern of governments and NCS owners, and is
motivating the research on cybersecurity of industrial
and critical infrastructure facilities. In this context, recent
studies demonstrate the development of a set of sophisti-
cated attacks that, to achieve a high level of covertness and
accuracy, rely on the knowledge about the model of the
attacked system. As recognized by the literature on NCS
[12, 17], System Identification attacks are considered a key
step in the development of those sophisticated attacks.
So, this section presents a review on attacks in NCSs,
giving special attention to the role that System Identifi-
cation attacks play in the context of the cybersecurity of
these control systems.
In [18], the authors evaluate the impact of delay jit-

ter and packet loss in an NCS under a Denial of Service
(DoS) attack. The conception of such DoS attack does not
take into account the models of the controller and phys-
ical plant of the attacked NCS (i.e. these models are not
known by the attacker). Therefore, to affect the physical
process, the attacker arbitrarily floods the network, caus-
ing jitter and packet loss in the communication links of
the NCS. In this tactic, the excess of packets in the net-
work may reveal the attack, allowing the implementation
of countermeasures such as packet filtering [18] or block-
ing the malicious traffic on its origin [19]. Additionally,
as stated in [12], the arbitrary intervention in a system
which the models are unknown may lead the plant to
an extreme physical behavior, which is not desired if a
physically covert [12] attack is intended.
In [4], the authors demonstrate an attack where false sig-

nals are transmitted to the controller and the actuator of
an NCS. The false signals are randomly generated by the
attacker, aiming to cause the instability of the plant (a DC
motor). To evaluate this arbitrary data injection attack,
the authors propose a testbed for Supervisory Control
and Data Acquisition (SCADA) system, using TrueTime (a
MATLAB/Simulink based tool). Such arbitrary data injec-
tion attack does not require a previous knowledge about
the models of the plant and its controller. Therefore, the
desired physical effect and the covertness of the attack
cannot be ensured due to the unpredictable consequences
of the injection of random false signals in a system which
the model is not known.
In [20], the authors analyze a wide variety of attacks

in NCSs and establish the requirements for the attacks
in terms of model knowledge, disclosure and disruption
resources. In their work, it is stated that the design of
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covert attacks requires a high level of knowledge about the
model of the attacked system. In [6, 11, 21], examples of
covert attacks that agree with the statement provided in
[20] are proposed and analyzed. In [11, 21], the attacker,
acting as a man-in-the-middle (MitM), injects false data
in the forward stream of the NCS to take control of
the plant. Then, to make the attack covert, the attacker
uses the model of the attacked plant to compute the data
injected in the feedback stream. The covertness of the
attack proposed in [21] is analyzed from the perspective
of the signals arriving at the controller and, as demon-
strated in [11], it depends on the difference between the
actual model of the plant and the model known by the
attacker. In [6], the attacker, aware of the model of the
NCS, injects data in its communication links to covertly
steal water from the Gignac canal system located in
Southern France.
In [6, 11, 20, 21], although the attacks are designed

based on the models of the NCS, the authors do not
describe how these models are obtained by the attacker. It
is just stated that the models, used for the design of the
covert/model-dependent attacks, are previously known by
the attacker. In order to fill this gap, [12] and [17] pro-
pose two new kinds of attack to estimate the models of the
attacked system: the Passive System Identification attack
[12]; and the Active System Identification attack [17]. As
shown in Fig. 2 – and, according to the taxonomy pro-
posed in [12] –, these attacks belong to the category of
Cyber-physical Intelligence attacks.
The Passive System Identification attack [12] – formerly

referred to as System Identification attack2 – does not
need to inject signals in the NCS to estimate its models.
However, the effectiveness of the Passive System Iden-
tification attack depends on the occurrence of events –
not controlled by the attacker – to produce signals that
carry meaningful information for the system identifica-
tion algorithm. This attack passively estimates the transfer
functions of both controller and plant by simply eaves-
dropping the forward and the feedback streams of the
system. On the other hand, the Active System Identifica-
tion attack constitutes an alternative to the Passive Sys-
tem Identification attack, in situations where the attacker
cannot wait so long for the occurrence of such meaning-
ful signals. In the Active System Identification attack, as
described in [17], the attacker estimates the open-loop
transfer function of the NCS by injecting an attack sig-
nal and eavesdropping its response at a single point of
interception.
A synthesis of the attacks referred in this section is pre-

sented in Table 1. Based on these works, it is possible to
verify how useful may be a System Identification attack for
the design of covert/model-dependent attacks in NCSs.
However, in the scientific literature, we still do not find
specific countermeasures to mitigate the identification

process performed by the attack proposed in [12]. In this
context, this work proposes a countermeasure to mitigate
such metaheuristic-based Passive System Identification
attack, even when the attacker gets access to the data that
is transmitted in the NCS.

3 Covert attack for service degradation
For the sake of completeness, this section describes the
attack proposed in [12], in order to provide the infor-
mation necessary to comprehend the countermeasure
proposed in the present work. The attack consists of
the joint operation of two attacks: the Passive System
Identification Attack, detailed in Section 3.1; and the
SD-Controlled Data Injection attack (model-dependent),
detailed in Section 3.2. Section 3.3 presents simulation
data that demonstrate the effectiveness of the Passive
System Identification attack when supporting the design
of SD-Controlled Data Injection attacks. These data,
obtained from [12], are used as a reference for the evalua-
tion of the proposed countermeasure.

3.1 Passive system identification attack
The Passive System Identification attack, proposed in [12],
is intended to assess the coefficients of the plant’s trans-
fer function G(z) and the controller’s control function
C(z) of an NCS. To do so, the attack is modeled as an
optimization problem, where the transfer function of the
attacked device – be it a controller or plant – is estimated
by minimizing a specific fitness function. This modeling
is explained in Section 3.1.1. To minimize the mentioned
fitness function, the attack uses the Backtracking Search
Optimization Algorithm (BSA) [22], briefly described in
Section 3.1.2.

3.1.1 Modeling the passive system identification attack as
an optimization problem

If the input i(k) and output o(k) signals of an attacked
device are known, the model of such device can be
assessed by applying the known i(k) in an estimated
model, which must be adjusted until its estimated output
ô(k) converges to o(k). In the present attack, the estimated
model of the attacked device is iteratively adjusted by the
BSA, thatminimizes the fitness function herein presented,
until the estimated model converges to the actual model
of the real device.
To establish the fitness function, firstly, it must be con-

sidered a generic LTI system, whose transfer functionQ(z)
is represented by (1):

Q(z) = O(z)
I(z) = anzn + an−1zn−1 + . . .+ a1z1 + a0

zm + bm−1zm−1 + . . .+ b1z1 + b0
,

(1)
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Table 1 Synthesis of the related attacks

Attack Method Knowledge about the system? How the knowledge is obtained?

Stuxnet worm [16] Modifications in the Yes Experiments in a real system

Long, et al. [18] Jitter and packet loss None N/A

Farooqui, et al. [4] Data injection None N/A

Smith [11, 21] Data injection Yes Not described

Teixeira [20] Packet loss None N/A

Data injection Yes Not described

Amin [6] Data injection Yes Not described

SD-Controlled [12] Data injection Yes Passive system identification attack

de Sá, et al. [17] Data injection a Yes Active system identification attack
aIn [17], the data injection is not used to cause the disruption or degradation of the plant. The data is injected in the NCS to support the Active System Identification attack

wherein I(z) is the input of the system, O(z) is the output
of the system, n andm are the order of the numerator and
the denominator, respectively, and [ an, an−1, . . . a1, a0]
and [ bm−1, bm−2, . . . b1, b0] are the coefficients of the
numerator and the denominator, respectively, that are
intended to be found by the Passive System Identifica-
tion attack. Also, it must be considered that i(k) and o(k)
represent the sampled input and output of the system,
respectively, where I(z) = Z[ i(k)], O(z) = Z[ o(k)],
k is the number of the sample and Z represents the
Z-transform operation.
In this Passive System Identification attack, i(k) and o(k)

are firstly captured by an eavesdropping [23, 24] attack,
during a monitoring period T. To deal with the eventual
loss of samples, that may not be received by the attacker
during T, the algorithm holds the value of the last received
sample, according with (2), wherein x(k) can either be i(k)
or o(k):

x(k) =
{
x(k − 1) if the sample k is lost;
x(k) otherwise. (2)

Then, after acquiring i(k) and o(k), the captured i(k)
is applied to the input of an estimated model, that
is described by a transfer function whose coefficients
[ an,j, an−1,j, . . . a1,j, a0,j, bm−1,j, bm−2,j, . . . b1,j, b0,j] are the
coordinates of an individual j of the BSA. The application
of i(k) to the input of the estimated model results in an
output signal ôj(k). After obtaining ôj(k), the fitness fj of
the individual j is computed comparing the output o(k) –
captured from the attacked device – with the output ôj(k)
of the estimated model, according with (3):

fj =

N∑

k=0
(o(k) − ôj(k))2

K
, (3)

wherein K is the number of samples that exist during the
monitoring period T. Note that, if the attacker does not
lose any sample of i(k) and o(k) during T, then min fj = 0
when [ an,j, an−1,j, . . . a1,j, a0,j, bm−1,j, bm−2,j, . . . b1,j, b0,j]=

[ an, an−1, . . . a1, a0, bm−1, bm−2, . . . b1, b0], i.e. when the
estimated model converges to the actual model of the
attacked device.
It is possible to establish an analogy between this System

Identification attack and the Known Plaintext cryptan-
alytic attack [25], wherein i(k) and o(k) correspond to
the plaintext and ciphertext, respectively, the form of
the generic transfer function Q(z) corresponds to the
encryption algorithm and the actual coefficients of Q(z)
corresponds to the secret key.

3.1.2 Backtracking search algorithm
In this section, the basic concepts of the BSA are
briefly described, in order to provide a clear compre-
hension regarding the parameters of the algorithm that
are adjusted for the attack. The BSA is a bio-inspired
metaheuristic that searches for solutions of optimization
problems using the information obtained by past genera-
tions – or iterations. According to [22], its search process
is metaphorically analogous to the behavior of a social
group of animals that, at random intervals returns to
hunting areas previously visited for food foraging. The
general, evolutionary like, structure of the BSA is shown
in Algorithm 1.

Algorithm 1: BSA
begin

Initialization;
repeat

Selection-I;
Generate new population

Mutation;
Crossover;

end
Selection-II;

until Stopping Condition;
end
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At the Initialization stage, the algorithm generates and
evaluates the initial population P0 and sets the historical
population Phist . The latter constitutes the BSA’s memory
that, in the Selection-I stage, is updated with historical
coordinates visited by the individuals.
During the first selection stage (Selection-I), the algo-

rithm randomly determines, based on a uniform distribu-
tion U, whether the current population P should be kept
as the new historical population, and thus replace Phist
(i.e. if a < b | a, b ∼ U(0, 1), then Phist = P). Sub-
sequently, at every iteration, it shuffles the individuals of
Phist (having Phist been replaced or not).
The mutation operator creates Pmod, which is the pre-

liminary version of the new population Pnew). It does so
according to (4):

Pmod = P + η · "(Phist − P), (4)

wherein η is empirically adjusted through simulations and
" ∼ N(0, 1), with N being a normal standard distribution.
Thus, Pmod is the result of the movement of P ’s individu-
als in the directions established by vector (Phist − P) and
η controls the displacements’ amplitude.
In order to create the final version ofPnew, the crossover

operator randomly combines, also following a uniform
distribution, individuals from Pmod and others from P .
At the second selection stage (Selection-II), the algo-

rithm firstly evaluates the individuals of Pnew using the
fitness function fj (3). After that, individuals of P (i.e.
individuals before applying the mutation and crossover
operators) are replaced by individuals of Pnew (i.e. indi-
viduals obtained after mutation and crossover) with bet-
ter fitness. Hence, P includes only new individuals that
evolved. While the stopping condition has not yet been
reached, the algorithm iterates. Otherwise, it returns the
best solution found.
Note that the algorithm has two parameters that are

empirically adjusted: the size |P| of its population P ; and
η, that establishes the amplitude of the movements of the
individuals of P . The parameter η must be adjusted to
assign to the algorithm good exploration and exploitation
capabilities. With these parameters adjusted, the BSA is
used to search for the global minimum of the fitness func-
tion described in Section 3.1.1 and, therefore, discover the
model of the attacked device.

3.2 SD-Controlled data injection attack
The SD-Controlled Data Injection attack is a model-
dependent attack, which the purpose is to reduce the
MTBF of the plant and/or reduce the efficiency of the
physical process that it performs, by inserting false data in
the control loop of the NCS. At the same time, this attack
is designed to be physically covert [12].
One way to degrade a physical service is through the

induction of an overshoot during the transient response

of a plant. The overshoots, or peaks occurred when the
system exceeds the targeted value during the transient
response, can cause stress and possibly damage physical
systems such asmechanical, chemical and electromechan-
ical systems [26, 27]. Additionally, once they occur in a
short period, the overshoots are difficult to be noticed by
a human observer. Another way to degrade the service of a
plant is causing a constant steady state error on it, i.e. pro-
ducing a constant error when t → ∞. A low proportion
steady state error, besides being difficult to be perceived
by a human observer, may reduce the efficiency of the
physical process or, occasionally, stress and damage the
system in the mid/long term.
In the SD-Controlled Data Injection attack, to achieve

either of the two mentioned effects, i.e. an overshoot
or a constant steady state error, the attacker interfere
in the NCS’s communication process by injecting false
data into the system in a controlled way. To do so, the
attacker act as a MitM that executes an attack function
M(z), as presented in Fig. 3, wherein U ′(z) = M(z)U(z),
U(z) = Z[u(k)] and U ′(z) = Z[u′(k)]. The function
M(z) is designed based on the models of the plant and
the controller, both obtained through the Passive System
Identification attack, described in Section 3.1. The effec-
tiveness of the attack, therefore, depends on the design of
M(z), which in turn depends on the accuracy of the Sys-
tem Identification attack. It is worth mentioning that, in
Fig. 3, although the MitM is placed in the forward stream,
it is also possible to perform an attack by interfering in the
feedback stream of the NCS.

3.3 Performance of the covert attack for service
degradation

This section presents the results of the joint operation
of the Passive System Identification attack and the SD-
Controlled Data Injection attack. These results, obtained
from [12], demonstrate the effectiveness of the Passive
System Identification attack when accomplishing its task
in an NCS without the countermeasure proposed in this
paper.
The attacked NCS has the same architecture of the

NCS shown in Fig. 1. It consists of a Proportional-Integral
(PI) controller that controls the rotational speed of a DC
motor. The PI control function C1(z) and the DC motor
transfer function G(z) are represented by (5) and (6),
respectively:

C1(z) =
c1,1z − c2,1

z − 1 (5)

G(z) = g1z+ g2
z2 − g3z+ g4

(6)

wherein c1,1 = 0, 1701, c2,1 = −0, 1673, g1 = 0, 3379,
g2 = 0, 2793, g3 = −1, 5462 and g4 = 0, 5646. The sample
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rate of the system is 50 samples/s and the set point r(k) is
a unitary step function.
It is considered that the structure of the Eqs. (5) and (6)

are previously known by the attacker given that, as a
premise, he/she knows that the target is an NCS that con-
trols a DC motor using a PI controller. Therefore, the goal
of the Passive System Identification attack is to discover
g1, g2, g3, g4, c1,1 and c2,1.
Each time that the DC motor is turned on, the forward

and the feedback streams are captured by the attacker
during a period T = 2s. All initial conditions are consid-
ered 0, by the time that the motor is turned on. To assess
[ g1, g2, g3, g4], the attacker considers the forward stream
as the input and the feedback stream as the output of the
estimated plant. In the opposite way, to assess [ c1,1, c2,1],
the attacker considers the feedback stream as the input
and the forward stream as the output of the estimated
controller.
According to [12], in these simulations, the BSA pop-

ulation has 100 individuals and η = 1. To assess the
coefficients of the controller [ c1,1, c2,1], the algorithm was
executed for 600 iterations. To assess the coefficients
of the plant [ g1, g2, g3, g4], the number of iterations was
increased to 800, due to the higher number of dimen-
sions of the search space in this case. The limits of each
dimension of the search space are [−10, 10].
In [12], the authors also demonstrate the robustness of

the Passive System Identification attack in the face of sam-
ple loss. To evaluate such robustness, they considered four
different rates l of sample loss: 0%, 5%, 10% and 20%. For
each rate of sample loss, 100 different simulations were
executed.
Figure 4 shows the mean estimated values of g1, g2, g3,

g4, c1,1 and c2,1, considering the four mentioned rates of
sample loss. All mean estimated values are represented
with a Confidence Interval (CI) of 95%. The actual val-
ues of the coefficients of C1(z) and G(z) are also depicted
in Fig. 4. Additionally, the statistics (mean and standard

deviation) of the estimated coefficients are presented
in Table 2.
Regarding to the coefficients of G(z), Fig. 4 shows that

the difference between the mean and the actual values of
g1, g2, g3 and g4 tends to raise with the increase of sam-
ple loss. It is also possible to note that the accuracy of
the coefficients of C1(z) is better than the accuracy of the
coefficients ofG(z), for all rates of sample loss. The means
of c1,1 and c2,1 are closer to their actual values, with a
smaller CI. In fact, the optimization process is more effec-
tive when computing the coefficients of C1(z) due to its
smaller search space (which that has only two dimensions
instead of the four dimensions of the G(z) problem). In
Fig. 4, it is possible to verify that, in all cases, the CIs
tend to grow with the increase of the sample loss. The
same thing occurs with the standard deviations shown in
Table 2.
Despite the relative loss of accuracy of the Passive Sys-

tem Identification attack due to the increase of sample
loss, such inaccuracy is not expressive even in the worst
case (i.e. when l = 20%). This behavior indicates the
robustness of the Passive System Identification attack in
the face of the loss of samples.
After estimating the models of the attacked plant and

its respective control function, the next step is to design
the data injection attack. In this sense, the authors of [12]
designed an SD-Controlled Data Injection attack aiming
to cause an overshoot of 50% in the rotational speed of the
motor. As shown in Fig. 3, this SD-Controlled Data Injec-
tion attack is performed by a MitM in the forward stream.
The attack was simulated in MATLAB, aiming to eval-
uate its accuracy when supported by the Passive System
Identification attack.
The attack function executed by the MitM is M(z) =

Ko. Performing a root locus analysis considering the
obtained models, the attacker adjusts Ko to make the
system underdamped, with a peak of rotational speed
50% higher than its steady state speed. The values of
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Fig. 4Mean estimated coefficients of G(z) and C1(z), in face of different rates of sample loss [12]. a g1 of G(z). b g2 of G(z). c g3 of G(z). d g4 of G(z).
e c1,1 of C1(z) . f c2,1 of C1(z)

Ko were adjusted considering the mean estimated coef-
ficients shown in Table 2. Table 3 shows the values
of Ko, estimated considering different rates of sample
loss during the Passive System Identification attack, as
well as the overshoots obtained with the respective Ko
in the real model. In Fig. 5 it is possible to com-
pare the response of the system without attack, with the
response of the system with an attack aiming the over-
shoot of 50%. The curves referred as estimated attack,

represent the results predicted by the attacker when the
designed attack function M(z) is applied to the esti-
mated model – i.e. the model discovered by the attacker
through to the Passive System Identification attack. On
the other hand, the curves referred as actual attack rep-
resent the response of the actual system in the face
of the same attack function M(z). In other words, the
curve estimated attack is the result achieved in a first
moment, during the design stage of the attack, and the

Table 2 Statistics of the results obtained with different rates of sample loss [12]

Loss of Mean Standard deviation

samples g1 g2 g3 g4 c1,1 c2,1 g1 g2 g3 g4 c1,1 c2,1

0% 0.32793 0.29652 -1.54121 0.55983 0.16991 -0.16712 0.03097 0.04288 0.00986 0.00944 0.00167 0.00178

5% 0.31835 0.29689 -1.54251 0.56085 0.16997 -0.16719 0.07572 0.11523 0.03322 0.03194 0.00287 0.00287

10% 0.30473 0.30461 -1.54110 0.55925 0.16999 -0.16724 0.08781 0.13483 0.04076 0.03922 0.00397 0.00399

20% 0.26963 0.33352 -1.53119 0.54916 0.16989 -0.16716 0.14120 0.22378 0.08596 0.08313 0.00596 0.00598
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Table 3 Values ofKo andovershoots obtainedwith the attacks [12]

Sample loss in the passive system
identification attack

0% 5% 10% 20%

Ko 4.0451 4.0745 4.0828 3.796

Overshoot in
48.90% 49.43% 49.57% 45.94%the real model

curve actual attack is the result obtained in a second
moment, when the designed attack is launched over
the actual system. It is noteworthy that the attack to
the actual model – represented by the actual attack
curve – presents, in the time domain, a response quite
similar to the attack estimated with the model obtained by
the Passive System Identification attack – represented by
the estimated attack curve. This can be verified not only
in the case where the system is identified with 0% of sam-
ple loss, but also in the worst considered case, i.e. with 20%
of sample loss. It is worth mentioning that all responses
presented in Fig. 5 converge to the setpoint (1 rad/s).

Fig. 5 Response of the plant to SD-Controlled Data Injection attacks
designed to cause an overshoot of 50% in the rotational speed of the
motor [12]. a Attack based on the data obtained without sample loss.
b Attack based on the data obtained with 20% of sample loss

According to Table 3, it is possible to state that the
SD-Controlled Data Injection attack, when supported by
the Passive System Identification attack, is capable to
accurately modify the physical response of the system,
considering all evaluated rates of sample loss. In the worst
case, i.e. with 20% of sample loss, it caused an over-
shoot of 45.94% (quite close to the desired 50%). Such
accuracy allows the attacker to keep his offensive under
control, leading the system to a behavior that is predefined
as physically covert and capable to degrade the service
performed by the plant under attack. These simulations
provide conclusive data regarding the effectiveness of the
Passive System Identification attack when it is used as a
tool to support the design of a covert/model-dependent
attack.
It is noteworthy that the manipulation of the rotational

speed of a DCmotor is used only to exemplify a physically
covert interference in an NCS. This example is chosen due
to the human difficulties to accurately estimate the rota-
tion speed of objects under certain conditions. It is known,
for instance, that under some conditions the apparent
rotation speed is affected by the stimulus configuration
(defined by the shape, size, and other characteristics of
the rotating object) [28, 29]. Intuitively, it can be consid-
ered that, under those conditions, the perception of 50%
of overshoot in the rotation speed may also be difficult
to be perceived, especially because of its short duration.
Although the authors of [12] use this example in their
paper, it is worth mentioning that the concept of a physi-
cally covert attack can be extended to other interferences
where, as defined in [12], the physical effects cannot be
easily noticed or identified by a human observer, or can
eventually be understood as a consequence of another
cause, other than an attack.

4 Mitigation using switching controllers
As discussed in Section 1, one possible strategy to mit-
igate the Passive System Identification attack is to build
the NCS with specific transfer functions that are harder
to be identified. Therefore, it is necessary to analyze the
two transfer functions C(z) and G(z), shown in Fig. 1, to
verify what can be done to hinder the identification of the
NCS. Regarding the plant, it is not desired or even feasible
to modify its transfer function G(z) just to make it harder
to be identified. This follows from the simple fact that the
plant’s transfer function is a consequence of the physical
structure of the controlled system. In other words, modify
G(z) means to modify the physical process being con-
trolled, which is not convenient. However, it is reasonable
to think about the design of controllers that are capable to
meet, simultaneously, two objectives:

Objective I - Comply with the control requirements of
the plant. In general, the primary
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requirement is to preserve the stability of
the system. However, additional
requirements – such as low settling time,
low overshoot, etc. – may be considered
depending on the process being controlled.

Objective II - Hinder the identification of the controller,
so that the model obtained by the attacker
is imprecise or ambiguous, in such a way
that the attacker hesitates to launch covert
or model-dependent attacks against the
NCS.

Considering these two objectives, this work proposes
the use of randomly switching controllers to mitigate Pas-
sive System Identification Attacks and, thus, prevent the
design of covert/model-dependent attacks. Note that, the
use of a switching controller does not avoid the identi-
fication of the plant’s transfer function G(z) by the Pas-
sive System Identification attack described in Section 3.1.
Regardless of the controller switchings, the plant’s trans-
fer function is still an LTI system that can be identified by
the mentioned System Identification attack, based on the
analysis of the plant’s input and output signals.
A Switching Controller, shown in Fig. 6, is composed by

a set of N control functions Ci(z), i ∈ I = {1, . . . ,N}, that
are switched by a switching rule S, to perform the con-
trol of a plant G(z). If all control functions Ci(z) and the
plant’s transfer functionG(z) are linear, as the NCS herein
discussed, then the system is referred as a switched linear
system (SLS). For the sake of clarity, but without loss of
generality, in the present work, the switching controller is
represented and discussed with only two control functions
C1(z) and C2(z) – i.e. N = 2.
In a conventional switching controller [30–33], whose

sole objective is to control the plant, the switching rule S,
in general, orchestrates the switching events based on the
plant and/or network behaviors. However, in the solution

proposed in this work, the switching rule is not driven by
the plant and/or network behaviors.
To achieve both Objectives I and II, the switching rule

herein proposed operates as the Markov chain shown in
Fig. 7. In this scheme, the control functions are switched
at random intervals, in accordance with the probabilities
p11(l), p12(l). p21(l) and p12(l), wherein l is the number
of sampling intervals occurred since the last switch. The
probabilities, p12(l) and p21(l) are taken from the prob-
ability density function (PDF) shown in Fig. 8, wherein
a is the minimum number of sampling intervals that the
system have to remain in the same state and b is the max-
imum number of sampling intervals that the system can
remain in the same state. Note that p11(l) = 1−p12(l) and
p22(l) = 1 − p21(l).
The reason to switch at random intervals is that, accord-

ing to [34], if the switching times are known, the iden-
tification of the SLS is straightforward. However, when
the switching times are not available, the identification
of the SLS turns into a nontrivial task. Moreover, even
if the attacker obtain the plant’s transfer function G(z)
and – somehow – discovers the control functions Ci(z),
the random switching rule still hinders the covert/model-
dependent attack described in Section 3.2. This follows
from the simple fact that it is more difficult to synchronize
the interference caused by the covert/model-dependent
attacks with the controller states, which are switched at
random intervals.
However, despite the benefits that the switchings can

bring from the point of view of a countermeasure, it can
affect the stability of the NCS. Even if all subsystems of an
SLS are stable, there are situations in which the switching
events can make the SLS unstable. According to [7, 35], to
be stable under arbitrary and unrestricted switchings, the
SLS must meet two conditions:

1. All its subsystems must be asymptotically stable; and
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Fig. 6 NCS with a switching controller
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Fig. 7Markov chain switching rule

2. There must exist a common Lyapunov function for
all of its subsystems.

Note that, in the case of the NCS shown in Fig. 6, each
subsystem is constituted by the plant transfer function
G(z) arranged in a closed loop with one control func-
tion Ci(z). So, to make the NCS stable under arbitrary
and unrestricted switching, all control functions Ci(z),
i ∈ I = {1, 2}, have to be designed in order to meet the
two aforementioned conditions.
Another valid strategy to obtain stability in an SLS with

stable subsystems is by restricting the switching events.
This can be done, for example, by establishing a mini-
mum dwell time – i.e. the time between two consecutive
switches. In an SLS, the instability generated when switch-
ing among two – or more – stable subsystems is caused
by the failure to absorb the energy increase, caused by
the switchings [35]. Intuitively, it is reasonable to think
that if the SLS stays at stable subsystems long enough –
using a slow switching rule – it becomes able to avoid the
energy increase caused by the switchings, maintaining the
desired stability. As proved in [36], it is always possible to
preserve the stability of an SLS when all the subsystems
are stable and the dwell time is sufficiently large. Actually,
it is not critical if the SLS occasionally have a smaller

dwell time, provided this does not occur too frequently.
As demonstrated in [37], if all the subsystems are expo-
nentially stable, then the SLS remains exponentially stable
provided that the average dwell time is sufficiently large.
In [38], this concept of average dwell-time is extended to
the discrete-time switched systems – which is the case of
an NCS endowed with the proposed countermeasure.
In the present work, instead of designing C1(z) and

C2(z) to make the SLS stable under arbitrary and unre-
stricted switchings – i.e. meeting both conditions 1 and 2
– the restricted switching strategy is used. Thus,C1(z) and
C2(z) are firstly designed based on the root-locus analysis,
in order to make each subsystem stable. Then, the overall
stability of the SLS is obtained by adjusting the parame-
ters a and b of the PDF shown in Fig. 8, aiming an average
dwell-time that makes the NCS stable.
Besides being adjusted for stability, parameters a and b

also have to be adjusted to hinder the system identifica-
tion attack. So, concerning Objective I, specifically for the
sake of stability, a and b are increased as much as possi-
ble to ensure the minimum average dwell-time required
for stability. On the other hand, concerning Objective
II, a and b are adjusted to make the Passive System
Identification Attack as much imprecise/ambiguous as
possible, which not necessarily occur with high dwell

p(l)

a b

1/(b-a)

l
Fig. 8 PDF of p12 and p21
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times. In this sense, in this work, a and b are empirically
adjusted in order to satisfy the two potentially conflicting
objectives.

5 Results
As mentioned in Section 4, the design of the switch-
ing controller must meet simultaneously two objectives:
hinder the identification process; and comply with the
plant’s control requirements. The results concerning these
two objectives are presented in Sections 5.1 and 5.2,
respectively, in order to demonstrate the feasibility of the
solution from both perspectives. Additionally, Section 5.3
demonstrates the impact caused in the SD-Controlled
Data Injection attack, described in Section 3.2, when the
Passive System Identification Attack is mitigated by the
proposed countermeasure.
In Sections 5.1 and 5.2, the results obtained with the

proposed countermeasure are compared with the results
obtained in an NCS without the proposed countermea-
sure – i.e. endowed with a non-switching controller. For
this comparison, the NCS specified in Section 3.3 (with a
non-switching controller) is used as reference.
The NCS with the proposed countermeasure has the

same architecture shown in Fig. 6 and controls a DC
motor whose transfer function is also defined by (6) – i.e.
it controls the same plant that is controlled by the NCS
with a non-switching controller described in Section 3.3.
The sample rate of this system is also 50 samples/s and
the set point r(k) is a unitary step function. The switch-
ing controller has two control functions: C1(z), that is the
same control function (5) of the non-switching controller;
and C2(z) defined by (7),

C2(z) =
c1,2z+ c2,2

z − 1 . (7)

wherein c1,2 = 0.001 and c2,2 = 0.0002. So, the NCS
with the switching controller is an SLS with two subsys-
tems. The control functions C1(z) and C2(z) are designed
tomake each subsystem stable – when separately analyzed
– and are randomly switched based on the switching rule
defined by theMarkov chain and the PDF shown in Figs. 7
and 8, respectively. The parameters a and b of the PDF
were empirically adjusted to a = 40 and b = 60, in order
to meet Objectives I and II defined in Section 4. Regard-
ing Objective I, it is worth mentioning that a and b were
empirically adjusted aiming, primarily, the global stability
of the SLS. However, the settling time and the overshoot
of the plant are also evaluated in Section 5.2.

5.1 Mitigating the passive system identification attack
This section presents the results obtained by the Passive
System Identification attack, when attacking both switch-
ing and non-switching controllers. For each controller,
100 attack simulations were performed. The parameters

of the BSA are the same as those defined in Section 3.3,
and the forward and feedback streams are also captured
by the attacker during a period T = 2s (100 samples).
To evaluate the proposed countermeasure, we consid-
ered the scenario where the attacker obtained the best
performance in Section 3.3 – i.e. without packet loss.
The coefficients estimated by all attack simulations

(100 for each controller) are presented in Fig. 9. Recall
that the non-switching controller just have one control
function C1(z), while the switching controller has two
control functions C1(z) and C2(z). Note that the actual
values of the coefficients [ c1,1, c2,1] and [ c1,2, c2,2] of the
two control functions C1(z) and C2(z), respectively, are
also depicted in Fig. 9. By observing Fig. 9a and b, it
is possible to state that the estimated coefficients of the
non-switching controller are precise and accurate. In this
case, the estimated coefficients are concentrated close
to the actual values of c1,1 and c2,1. This concentration
indicates that, with the non-switching controller, the

Fig. 9 Coefficients estimated by the passive system identification
attack. a c1,1 of C1(z) and c1,2 of C2(z). b c2,1 of C1(z) and c2,2 of C2(z)
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Passive System Identification attack provides the infor-
mation and the confidence that the attacker needs to
design a covert/model-dependent attack – such as the
SD-Controlled Data Injection attack demonstrated in
Section 3.3. On the other hand, Fig. 9 shows that the
use of the switching controller causes the dispersion of
the estimated coefficients, reducing the precision and the
accuracy of the Passive System Identification attack. With
the switchings, the set of estimated values are spread and
does not accurately indicate any of the coefficients of
C1(z) andC2(z). It is worthmentioning that this spreading
has a dissuasive effect. It increases the uncertainty of the
attacker regarding the model of the attacked controller, in
such way that the attacker may hesitate to proceed with
his intention of a covert/model-dependent attack.
The impact of the switching controller in the attack

performance can also be verified through the analysis
of the global minimum values obtained for the fitness
function (3). With the switching controller, the global
minimum values of all attack simulations are between
2.64 × 10−04 and 8.53 × 10−04 (the mean is 7.42 ×
10−04, and the standard deviation is 1.70 × 10−04). On
the other hand, with the non-switching controller, all
global minimum values are between 1.70 × 10−09 and
1.44 × 10−06 (the mean is 1.84 × 10−07, and the stan-
dard deviation is 2.70×10−07). Recall that, as discussed in
Section 3.1.1, without sample loss, the minimum value of
(3) is min fj = 0 when the attacked device is perfectly iden-
tified. So, the higher order of the global minimum values
obtained with the switching controller also demonstrates
the effectiveness of the proposed countermeasure. From
the attacker point of view, these higher global minimum
values may indicate that the Passive System Identifica-
tion attack was not effective in obtaining the model of the
attacked device. In this sense, the attacker must hesitate
to launch covert/model-dependent attacks based on the
information gathered by the Passive System Identification
attack.
Another way to evaluate the impact of the proposed

countermeasure in the Passive System Identification
attack is through the zero-pole maps shown in Fig. 10.
Figure 10a shows the zeros estimated by the simulations
using the non-switching controller. Figure 10b, in turn,
shows the zeros estimated by the simulations using the
switching controller. Note that, in the simulations with the
non-switching controller, the estimated zeros accurately
meet the actual zero of C1(z). On the other hand, Fig. 10b
shows that when the proposed countermeasure is used,
the estimated zeros are spread and do not concur for the
actual zeros of C1(z) and C2(z) – i.e. the control functions
of the switching controller.
It must be considered the possibility that the attacker,

after some time, detects that the controller is changing
its behavior over the time like a switching controller.

Fig. 10 Zeros and poles estimated by the Passive System
Identification attack. a Using the non-switching controller. b Using
the switching controller

In this case, it is reasonable to think that the attacker
would try to estimate the control functions based on
smaller monitoring periods T, to avoid measurements
containing switching events. Considering this hypothesis,
the performance of the Passive System Identification
attack is evaluated using the following monitoring periods
T : 0.2s, 0.4s, 0.6s, 0.8s, 1.0s and 1.2s. Note that the maxi-
mumT in which the attacker canmeasure a signal without
switchings is Tb = 0.02b = 1.2s. Therefore, to evaluate
this tactic (of reducing T), the Passive System Identifica-
tion attack is performed firstly during the execution of
C1(z) and, after that, during the execution of C2(z). For
the identification of C1(z) all monitoring periods start at
t = 0s. For the identification of C2(z) all monitoring peri-
ods start at the first switching event (when C2(z) starts to
be executed).
For each control function and each monitoring period,

33 attack simulations were executed. Figure 11 shows the
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Fig. 11 Zeros and poles estimated by the Passive System Identification attack for smaller monitoring periods T (without a switching event during T ).
a Identifying C1 with T = 0.2s starting at t = 0. b Identifying C2 with T = 0.2s starting at the first switching event. c Identifying C1 with T = 0.4s
starting at t = 0. d Identifying C2 with T = 0.4s starting at the first switching event. e Identifying C1 with T = 0.6s starting at t = 0. f Identifying C2
with T = 0.6s starting at the first switching event. g Identifying C1 with T = 0.8s starting at t = 0. h Identifying C2 with T = 0.8s starting at the first
switching event. i Identifying C1 with T = 1.0s starting at t = 0. j Identifying C2 with T = 1.0s starting at the first switching event. k Identifying C1
with T = 1.2s starting at t = 0. l Identifying C2 with T = 1.2s starting at the first switching event

estimated zeros of C1(z) and C2(z) considering each of
the mentioned monitoring periods T. It is possible to
verify that, for these monitoring periods, the estimated
zeros of C1(z) are quite close to the actual zero. However,
although C1(z) was satisfactorily identified with small T,
Fig. 11 shows that, for all T, the estimated zeros of C2(z)
are spread and do not accurately meet the actual zero
of C2(z). These results indicate that small monitoring

periods T may not be enough to identify some control
functions, such as happened with C2(z). In this case, the
switching controller arises as a good strategy to limit
the available monitoring period, which causes difficul-
ties for this metaheuristic-based Passive System Identi-
fication attack. Additionally, it is worth mentioning that
even if the attacker somehow identifies all control func-
tions Ci(z), the random switching rule still mitigates the
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launch of a subsequent covert/model-dependent attack.
As discussed in Section 4, this follows from the fact that
it is more difficult to synchronize the interference caused
by a covert/model-dependent attack with the controller
states, which are switched at random intervals. Moreover,
it is not trivial to find a single M(z) capable to produce
the intended controlled behavior for all Ci(z) – in case
the attacker choose this tactic to overcome the need to
synchronize the covert/model-based attack.
The spreading of the estimated zeros in Fig. 10b, the

inaccuracy of the estimated coefficients shown in Fig. 9,
and the higher global minimum values found by the
BSA demonstrate the effectiveness of the switching con-
trollers in mitigating the Passive System Identification
attack. With the proposed countermeasure, it is possi-
ble to state that the model obtained by the attacker is
imprecise/ambiguous in such a way that the attacker may
hesitate to launch a subsequent covert/model-dependent
attack. Therefore, Objective II defined in Section 4 is met.
If an attacker, aiming to cause an overshoot of 50% in

y(k) (for example), implements an attack functionM(z) in
the forward stream of an NCS, as shown in Fig. 3, then
y(k) is defined by (8):

y(k) = Z−1
[ C(z)M(z)G(z)
1+ C(z)M(z)G(z)R(z)

]
. (8)

Similarly, if the attacker implements M(z) in the feed-
back stream, then y(k) is defined by (9):

y(k) = Z−1
[ C(z)G(z)
1+ C(z)M(z)G(z)R(z)

]
. (9)

Note that in both cases, in the presence of an attack,
the dynamics of y(k) rely on C(z), G(z) andM(z), consid-
ering that R(z) = Z [u(k)] is a step function. Therefore,
if the attacker aims to cause an overshoot of 50% in y(k),
the design ofM(z) will require the knowledge of C(z) and
G(z). The results shown in this section indicate that, with
the proposed countermeasure, the attacker cannot accu-
rately estimate the control functions of the NCS using the
Passive System Identification attack. Therefore, even if the
attacker is still able to identify the plant model (which is
not mitigated by this countermeasure), he/she will not be
able to designM(z) to cause the 50% overshoot based only
on the model of the plant, regardless of whether M(z) is
implemented in the forward or the feedback stream.

5.2 Complying the control requirements
In this section, the performance of the proposed coun-
termeasure is analyzed from the control perspective. The
aim of the simulations herein presented is to identify
the possible impacts that the countermeasure may pro-
duce in the behavior of the plant. This analysis encom-
passes the following control aspects: stability; overshoot;

and settling time. Considering these aspects, the per-
formance of the switching controller is compared with
the performance of the non-switching controller. Given
the stochastic nature of the proposed countermeasure,
which randomly switches among two control functions,
the mentioned aspects are evaluated through a set of
100,000 simulations.
Figure 12 shows the responses of the plant, in the time

domain, with and without the proposed countermeasure.
The responses obtained with the proposed countermea-
sure – i.e. using the switching controller – are represented
by the highlighted area. The bounds of this area are drawn
based on the maximum and minimum values of the out-
put y(t) of the plant, considering all 100,000 simulations.
In other words, when using the proposed countermea-
sure, all output signals y(t) provided by the simulations
are inside this area. The deterministic response of the
plant without this countermeasure – i.e. when using the
non-switching controller – is represented by the red line
depicted in Fig. 12. Note that, for 0 ≤ t ≤ 0.8s the
responses using the switching controller are the same as
the response using the non-switching controller. This is
caused by theminimumnumber of sampling intervals that
the system has to remain in the same state, which is set to
a = 40 samples (or 0.8s, in the time domain).
Based on Fig. 12, considering all 100,000 simulations,

it is possible to verify that the NCS with the proposed
countermeasure is stable and the output of the plant does
not present a stationary error – it always converges to
the set point of 1 rad/s. In these aspects, from the con-
trol perspective, the proposed countermeasure presents
the same performance as the non-switching controller.
Also, the highlighted area indicates that the overshoots
obtained with the countermeasure are not expressive, not
exceeding 2.93% of the set point.
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Fig. 12 Response of the plant in the time domain
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However, due to the successive switchings, it is possible
to verify in Fig. 12 that the settling time obtained with the
proposed countermeasure is higher than the settling time
obtained with the non-switching controller.With the non-
switching controller, the deterministic settling time of the
plant is 2.4s. On the other hand, with the switching con-
troller, the settling time ts of the plant is stochastic and
depends on the random sequence of dwell times occurred
before achieving ts. The settling times of all 100,000 sim-
ulations using the switching controller are represented in
the histogram shown in Fig. 13. The minimum and max-
imum settling times are 2.88s and 6.42s, respectively, and
the mean is 4.2827s ± 0.0146s, with a confidence inter-
val of 95%. It indicates that, regarding the settling time,
the proposed countermeasure is less efficient than the
non-switching controller.
It is worth mentioning that Fig. 12 exemplifies the

behavior of the proposed countermeasure and compare
its performance with the performance of an NCS with a
non-switching controller. From this figure, it is possible
to observe a behavioral profile that allows the evalua-
tion of characteristics such as overshoot, settling time
and stability. Regarding the latter, the stability of systems
based on the average dwell time technique can be veri-
fied by the theory proposed in [38], which demonstrates
the feasibility of the proposed countermeasure in terms of
stability.
Note in Fig. 12 that the random switching rule adds

to the system a variable (however, controlled and sta-
ble) behavior, which could reduce the ability of a human
observer to detect slight manipulations caused by a phys-
ically covert attack. However, it is noteworthy that when
an attacker designs a physically covert attack, as a premise,
he/she does not aim to explore or manipulate physical
behaviors that are easy to be noticed by a human observer.
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Fig. 13 Histogram of the settling time when using the proposed
countermeasure

Instead of this, the attacker would manipulate physical
behaviors that are not accurately perceived by a human
observer. In this case, it is reasonable to consider that the
variations caused by the switching controller will not sig-
nificantly contribute for the poor perception of malicious
and covert interferences that would naturally not be per-
ceived by a human observer (even when a non-switching
controller is used).
From the control perspective, the performance of the

proposed countermeasure is satisfactory and, with the
results presented in Section 5.1, indicates the feasibility
of meeting both Objectives I and II, simultaneously. In
the simulations of this section, the control provided by
the switching controller presents a performance similar to
the performance of the non-switching controller. The pri-
mary requirement of Objective I – i.e. stability – is met
and the overshoots caused by the countermeasure, with
the specified configurations, are not expressive. However,
the simulations indicate an increase of the settling time of
the plant, which may not be an issue, but have to be ana-
lyzed in the face of the specific process being controlled.
In this sense, the results denote the existence of a tradeoff
between hindering the identification attack and increasing
the settling time of the system, which must be taken into
account when deciding for using this countermeasure.

5.3 Impact in the controlled data injection attack
Consider that the attacker was not dissuaded by the uncer-
tainties caused by the proposed countermeasure in the
identification of the controller. Doing so, the aim of this
section is to evaluate the impact of the proposed counter-
measure in the design of an SD-Controlled Data injection
attack.
The SD-Controlled Data Injection attack simulated in

this section also aims to cause an overshoot of 50% in
the rotational speed of the DC motor defined by (6),
such as the attack described in Section 3.3. According to
Section 3.2, to perform an SD-Controlled Data Injection
attack, the attack function M(z) must be designed based
on the models of the plant and its controller.
As discussed in Section 4, the identification of the

plant’s transfer function G(z) is not impacted by the use
of the switching controller. So, the same G(z) estimated
in Section 3.3 (with a non-switching controller) is used in
this section to design M(z). Specifically, the coefficients
used for G(z) are the mean estimated coefficients shown
in Table 2 for 0% of sample loss (which is the most accu-
rate estimated model of G(z)). Regarding the model of
the controller, as described in [12], M(z) is designed con-
sidering the mean of the coefficients estimated for the
switching controller. Then, performing a root locus anal-
ysis, the attacker designs the attack function (10), to make
the system underdamped with a peak of rotational speed
50% higher than its steady state speed.
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M(z) = 1.2815 (10)
In Fig. 14, it is possible to compare the response that the

attacker expects to obtain (referred as Expected response)
with the responses that (10) actually produces (referred
as Actual responses) when implemented in the real sys-
tem. The Expected response represents what the attacker
would obtain by simulating (10) in the forward stream
of an NCS built with the models provided by the Pas-
sive System Identification attack. TheActual responses are
represented by the highlighted area, whose bounds are
drawn based on the maximum and minimum values of
the output y(t) of the plant, considering 100,000 simula-
tions with (10) in the forward stream of the actual NCS.
It means that, when (10) is implemented in the NCS all
output signals y(t) provided by the actual plant are inside
this area.
It is worth mentioning that the aim of Fig. 14 is not

to evaluate the stability of the proposed system after
the execution of the SD-Controlled Data Injection attack
(although in these simulations this system remained stable
even after the execution of M(z)). The aim of Fig. 14 is to
demonstrate that, with the proposed countermeasure, the
interference produced by the attacker is not what he/she
intended with the mentioned Data Injection attack. Note
that, the actual responses of the plant are significantly
different from the response that the attacker expects
to obtain with the SD-Controlled Data Injection attack.
These results are in contrast to the results achieved in the
NCS with the non-switching controller, where the attack
was accurate and executed exactly what was planned by
the attacker, as shown in Section 3.3. With the proposed
countermeasure, the maximum overshoot achieved by the
plant was 10.12% (instead of the desired 50%). Notwith-
standing, the highlight of these simulations is the fact
that, with the proposed countermeasure, the information
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Fig. 14 Results of an SD-Controlled Data Injection attack in a system
with the proposed countermeasure

provided by the Passive System Identification attack is
not useful to support the design covert/model-dependent
attacks. This inaccurate information may lead the attacker
to cause unpredictable results in the system, which may
either be ineffective (not causing the desired degradation
on the plant) or extreme (reducing the physical or cyber-
netic covertness of the attack). This analysis is consistent
with the reasoning provided in Section 5.1. It demon-
strates that when the NCS is endowed with the proposed
countermeasure, the attacker must hesitate to launch a
covert/model-dependent attack due to the inaccuracy of
the Passive System Identification attack.
Note that the countermeasure proposed in this paper

aims to mitigate the Passive System Identifications attacks
when the attacker is trying to obtain information about
the control functions of the NCS. Consequently, it pre-
vents the use of accurate information about these con-
trol functions in the design of a covert/model-dependent
attack (such as a data injection attack in the forward
stream of an NCS aiming to cause an overshoot or a
steady state error). For instance, in an SD-Controlled Data
Injection attack performed in the forward stream of the
NCS, the attacker cannot cause a steady state error by
just adding a step signal to u(k), because the PI con-
trol functions will adjust the control signal to bring y(k)
back to 1 rad/s. Adding a ramp signal to u(k) can cause
a steady error in y(k) for a while. However, it may not
be a good strategy for the attacker, because at some time
the controller and u(k) will saturate, leading the plant to
extreme behaviors (which is not desired if the attacker
aims a physically covert attack). The alternative to cause
a steady state error through the manipulation of the for-
ward stream is to implement the attack function M(z)
exemplified in [12] which, to be designed, requires the
knowledge about the controller and plant. Without the
knowledge about the coefficients of the numerator of the
PI control function, for example, the gain of M(z) can-
not be adjusted to cause the exact steady deviation of y(k)
that the attacker intends to cause. This makes the attack
described in [12] model-dependent and, in this case, the
countermeasure herein proposed is useful to hinder the
attacker from obtaining the knowledge about the control
functions of the NCS. On the other hand, in a system with
an unitary feedback, it is possible to manipulate the steady
state error of the plant by injecting data in the feedback
stream, even when the attacker does not know the models
of the plant and the controller. In this case, the manipula-
tion of y(k) can be interpreted as the direct manipulation
of set point r(k), which determines the steady state of
the system. This attack, performed in the feedback stream
is an example of data injection attack that is not model-
dependent and, thus, should be mitigated by an additional
countermeasure (complementary to the countermeasure
proposed in this paper).
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6 Conclusion
In this work, a randomly switching controller is proposed
as a countermeasure for the Passive System Identification
attack [12], in case of failure of other conventional security
mechanisms – such as encryption, network segmenta-
tion and firewall policies. The simulations demonstrate
that this countermeasure is capable to mitigate the men-
tioned attack, making the model obtained by the attacker
imprecise and ambiguous. At the same time, the sim-
ulations demonstrate that the performance of the pro-
posed countermeasure is satisfactory from the control
perspective. Considering the control aspects, in general,
the proposed countermeasure presents a performance
similar to the performance of a non-switching controller,
with an increase in the system’s settling time. Therefore,
when deciding for using this countermeasure, it must be
considered the existence of a tradeoff between mitigate
the identification attack and increase the settling time
of the system – which, depending on the plant, is not
necessarily a drawback.
As future work, we plan to evaluate the performance

of this countermeasure when mitigating other system
identification attacks/algorithms. Also, we encourage the
development of a heuristic or an analytical method capa-
ble to provide control functions and switching rules that
maximize the performance of the countermeasure in both
mentioned objectives: comply with the plant’s control
requirements; and hinder the identification process.

Endnotes
1 de Sa et al. [12] is an extended version of [13].
2 The Passive System Identification attack was originally

referred, in [12], as System Identification attack. However,
with the introduction of the Active System Identification
attack in [17], its designation was reviewed to Passive
System Identification attack, in order to evince the differ-
ences between the two attacks.
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Abstract. The advantages of using communication networks to interconnect
controllers and physical plants motivate the increasing number of Networked
Control Systems, in industrial and critical infrastructure facilities. However,
this integration also exposes such control systems to new threats, typical of the
cyber domain. In this context, studies have been conduced, aiming to explore
vulnerabilities and propose security solutions for cyber-physical systems. In this
paper, it is proposed a covert attack for system degradation, which is planned
based on the intelligence gathered by another attack, herein proposed, referred
as System Identification attack. The simulation results demonstrate that the joint
operation of the two attacks is capable to affect, in a covert and accurate way,
the physical behavior of a system.

Resumo. As vantagens do uso de redes de comunicação para interconectar con-
troladores e plantas fı́sicas tem motivado o crescente número de Sistemas de
Controle em Rede, na indústria e em infraestruturas crı́ticas. Entretanto, esta
integração expõe tais sistemas a novas ameaças, tı́picas do domı́nio cibernético.
Neste contexto, estudos têm sido realizados com o objetivo de explorar as vul-
nerabilidades e propor soluções de segurança para sistemas fı́sico-cibernéticos.
Neste artigo é proposto um ataque furtivo de degradação de serviço o qual é
planejado com base nos dados colhidos por um outro ataque, ora proposto, de-
nominado de System Identification. Os resultados de simulação demonstram
que a operação conjunta dos dois ataques é capaz de afetar de forma furtiva e
acurada o comportamento fı́sico de um sistema.

1. Introdução
A integração de sistemas usados para controlar processos fı́sicos por meio de redes de
comunicação visa atribuir a tais sistemas melhores capacidades operacionais e gerenciais,
bem como reduzir custos. Em face destas vantagens, existe a tendência de um crescente
número de processos industriais e sistemas de infraestruturas crı́ticas controlados por Sis-
temas de Controle em Rede, ou Networked Control Systems (NCS) [Farooqui et al. 2014],
também referidos como Network-Based Control Systems (NBCS) [Long et al. 2005]. Um
NCS, conforme apresentado na Figura 1, consiste de uma planta fı́sica, descrita por uma
função de transferência G(z), um controlador, o qual executa uma função de controle
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C(z), e uma rede de comunicação que interconecta ambos os dispositivos para a trans-
missão de sinais de controle e de realimentação. Os sinais de controle são transmitidos
do controlador para os atuadores da planta. Os sinais de realimentação são transmitidos
dos sensores da planta para o controlador.

Processo 
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tu
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Controlador
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Sinais de controle

Sinais de realimentação

Figura 1. Sistema de Controle em Rede (ou NCS)

Ao mesmo tempo em que traz uma série de vantagens, a integração de controlado-
res e plantas fı́sicas em malha fechada por meio de redes de comunicação também expõe
tais sistemas a novas ameaças, tı́picas do domı́nio cibernético. Neste contexto, estudos
vêm sendo realizados, com o objetivo de caracterizar vulnerabilidades e propor soluções
de segurança em NCSs.

Uma possı́vel forma de atacar um NCS se dá pela intervenção em seu software, i.e.
por meio de alterações na configuração ou mesmo no código executado pelo controlador,
seguindo estratégia similar àquela utilizada pelo worm Stuxnet [Langner 2011]. Outra
maneira possı́vel para um atacante afetar um NCS é por meio de interferências no seu
processo de comunicação. Basicamente, um atacante pode interferir nos sinais de con-
trole e/ou de realimentação de três diferentes modos: induzindo jitter (atrasos variáveis),
causando a perda de pacotes de dados, ou mesmo injetando dados falsos na comunicação.

No presente trabalho, desenvolvemos um ataque onde são injetados dados falsos
no processo de comunicação de um NCS, demonstrando a possibilidade de degradação
do serviço realizado por uma planta por meio de alterações sutis em seu comportamento
fı́sico. Esta intervenção tem por objetivo reduzir a eficiência da planta ou mesmo lhe cau-
sar danos em médio/longo prazo. Cabe ressaltar que uma intervenção descontrolada no
NCS pode levar a uma avaria imediata da planta, ou mesmo causar alterações de grande
proporção em seu funcionamento, o que pode resultar na descoberta do ataque e no even-
tual insucesso da operação. Sendo assim, as alterações impelidas pelo ataque ora proposto
são dimensionadas para que a mudança de comportamento da planta seja fisicamente de
difı́cil percepção, motivo pelo qual classificamos o ataque como fisicamente furtivo.

Para garantir que o ataque a um NCS seja fisicamente furtivo, o atacante deve
planejar sua ofensiva com base em um conhecimento acurado sobre a dinâmica do sis-
tema, caso contrário, as consequências do ataque podem ser imprevisı́veis. Uma forma de
adquirir tal conhecimento é por meio de operações de inteligência convencionais, desem-
penhadas para colher informações sobre o projeto e a dinâmica do NCS. Outra forma de
obter informações sobre o sistema a ser atacado é por meio de o que classificamos neste
trabalho como ataques de Cyber-Physical Intelligence. Neste sentido, também propomos
no presente artigo um ataque de identificação de sistemas, ou System Identification, que
visa obter informações sobre a função de transferência G(z) da planta e da função de
controle C(z) do controlador. Este ataque é baseado no Algoritmo de Busca por Retro-
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cesso, ou Backtracking Search Optimization algorithm (BSA) [Civicioglu 2013]. Note
que, tanto o ataque de degradação de serviço por meio da injeção de dados, quanto o
ataque System Identification requerem acesso aos sinais transmitidos no NCS, o que pode
ser dificultado por técnicas de criptografia. Entretanto, não se pode negligenciar a possi-
bilidade de acesso a tais dados por meio de ataques de criptoanálise ou mesmo de força
bruta.

O presente trabalho motivou a formalização de uma série de conceitos relacio-
nados a furtividade e inteligência no contexto da segurança fı́sico-cibernética. Sendo
assim, uma contribuição complementar do artigo é a proposição de uma nomenclatura
que abarque toda uma nova classe de ataques aos sistemas fı́sico-cibernéticos. A taxono-
mia proposta estabelece uma nova abordagem quanto à furtividade de ataques a sistemas
fı́sico-cibernéticos, os quais devem ser analisados sob dois aspectos simultaneamente: o
aspecto fı́sico e o aspecto cibernético.

É digno de nota que o objetivo deste trabalho não é facilitar ataques furtivos de
degradação de serviço em sistemas de controle fı́sico-cibernéticos. O objetivo deste tra-
balho é demonstrar o grau de acurácia que pode ser obtido neste tipo de ataque, sobretudo
quando apoiado por ataques de System Identification, e, portanto, encorajar a pesquisa de
contramedidas para tais ataques. O restante do artigo é organizado da seguinte forma: Pri-
meiramente, na Seção 2, são apresentados alguns trabalhos relacionados. Em seguida, na
Seção 3, é proposta uma taxonomia referente aos ataques fı́sico-cibernéticos em malhas
de controle de NCSs. Na Seção 4, é feita a descrição de um ataque do tipo System Identi-
fication. Na Seção 5, é definido um ataque furtivo de degradação de serviço. Na Seção 6,
são apresentados os resultados obtidos em simulações de ataques furtivos de degradação
de serviço, apoiados por ataques System Identification. Finalmente, na Seção 7, são apre-
sentadas algumas conclusões e possibilidades de trabalhos futuros.

2. Trabalhos Relacionados
A possibilidade de ataques fı́sico-cibernéticos se tornou uma realidade após o lançamento
do worm Stuxnet [Langner 2011] e tem motivado pesquisas concernentes à segurança de
NCSs. Nesta seção são apresentados alguns trabalhos relacionados ao assunto.

Em [Long et al. 2005] os autores propõem dois modelos de fila para avaliar o
impacto do jitter e da perda de pacotes em um NCS sob ataque. O ataque não é plane-
jado com base em um conhecimento prévio sobre os modelos do controlador e da planta.
Sendo assim, para afetar o comportamento fı́sico dos sistema, o atacante inunda a rede
com um tráfego adicional, causando jitter e perda de pacotes de forma arbitrária. Nesta
tática, o excesso de pacotes na rede pode reduzir a furtividade do ataque, permitindo a
adoção de contramedidas tais como a filtragem de pacotes ou o bloqueio do tráfego ma-
licioso na sua origem [Long et al. 2005]. Adicionalmente, a ação arbitrária sobre um
modelo desconhecido pode levar o sistema a comportamentos fı́sicos extremos, o que não
é desejável se for almejado um ataque furtivo.

Em [Farooqui et al. 2014], os autores apresentam uma plataforma de testes para
sistemas SCADA (Supervisory Control and Data Acquisition). Os mesmos demonstram
um ataque onde são enviados dados falsos para o controlador e para o atuador do NCS. No
artigo, os dados falsos injetados durante a comunicação têm valores randômicos e visam
fazer com que um motor DC perca a sua estabilidade. Este tipo de ataque não demanda
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um conhecimento prévio sobre o NCS. Em contrapartida, o efeito fı́sico desejado e a furti-
vidade não podem ser garantidos em virtude das consequências imprevisı́veis que podem
surgir da aplicação de sinais aleatórios em um sistema cujo modelo é desconhecido.

Mais recentemente, em [Teixeira et al. 2015], os autores fornecem um quadro
geral contendo a análise de uma grande variedade de métodos de ataque em NCSs. Em
sua classificação, os mesmos estabelecem que ataques furtivos em NCSs requerem um
alto nı́vel de conhecimento sobre o sistema atacado. Exemplos de ataques furtivos são
apresentados em [Smith 2011,Smith 2015]. Nestes trabalhos os ataques são desempenha-
dos por um man-in-the-middle (MitM), onde o atacante necessita injetar dados tanto no
enlace de controle quanto no de realimentação, bem como conhecer o modelo da planta
que está sendo controlada. A furtividade destes ataques, que depende da diferença entre
o modelo real da planta e o modelo utilizado pelo atacante, é analisada do ponto de vista
dos sinais que chegam para o controlador, sem abordar se os efeitos fı́sicos causados na
planta são perceptı́veis, ou se são furtivos perante um observador humano.

Nos trabalhos [Teixeira et al. 2015, Smith 2011, Smith 2015], onde é requerido
um conhecimento sobre o modelo do NCS atacado, não é descrito como este este co-
nhecimento é obtido pelo atacante. Considera-se apenas que o modelo é previamente
conhecido para subsidiar o planejamento do ataque. A ação conjunta, ora proposta, de
um ataque furtivo de degradação de serviço, apoiado por um ataque System Identifica-
tion, visa preencher este hiato, demonstrando como os dados do NCS podem ser obtidos
e como um ataque furtivo pode se beneficiar disto. A Tabela 1 apresenta uma sı́ntese das
caracterı́sticas dos ataques apresentados nesta seção.

Tabela 1. Sı́ntese dos ataques mencionados
Método Conhecimento Como o modelo

Ataque de ataque sobre o modelo é obtido
Long, et al. [Long et al. 2005] Indução de jitter Nenhum N/A

e perda de pacotes
Stuxnet worm [Langner 2011] Modificações no Sim Experimentos

código do PLC em um sistema real
Farooqui, et al. [Farooqui et al. 2014] Injeção de dados Nenhum N/A
Smith [Smith 2011, Smith 2015] Injeção de dados Sim Não descrito
Teixeira [Teixeira et al. 2015] Perda de pacotes Nenhum N/A

Injeção de dados Sim Não descrito

3. Taxonomia

Nesta Seção é apresentada uma taxonomia relativa aos possı́veis ataques a sistemas de
controle fı́sico-cibernéticos. Na Seção 3.1, os ataques são brevemente descritos e classi-
ficados de acordo com a forma como agem no NCS. Na Seção 3.2, é proposta uma nova
abordagem para a análise da furtividade de ataques à sistemas fı́sico-cibernéticos.

3.1. Classificação dos ataques
Ataques a sistemas fı́sico-cibernéticos podem atuar tanto nos seus dispositivos – i.e. no
controlador, atuadores e sensores da planta – quanto em seus sistemas de comunicação,
afetando os sinais de controle e de realimentação. Como premissa, devemos considerar
que o serviço que se pretende atacar/proteger em tal sistema é o trabalho executado pelo
processo fı́sico, controlado por um NCS.
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Considerando a definição supracitada de serviço em NCSs, os ataques podem ser
classificados em três categorias distintas, como apresentado na Figura 2:

• Denial-of-Service (DoS) [Hussain et al. 2003]: em um NCS, os ataques DoS
compreendem todos os tipos de ataques fı́sico-cibernéticos que neguem a operação
do processo fı́sico, interrompendo a execução do serviço que a planta controlada
se propõe a fazer. O ataque resulta, por exemplo, em comportamentos que podem
desligar a planta ou mesmo destruı́-la em um curto prazo.

• Service Degradation (SD): os ataques do tipo SD consistem em intervenções ma-
liciosas que são executadas na malha de controle visando reduzir a eficiência do
serviço, i.e. a eficiência do processo fı́sico, ou mesmo reduzir o tempo médio entre
falhas, ou mean time between failure (MTBF), da planta em médio/longo prazo.

• Cyber-physical Intelligence (CPI): o conceito de Cyber-physical Intelligence, aqui
proposto, é diferente do conceito onde sistemas fı́sico-cibernéticos são integrados
com sistemas inteligentes [Ramos et al. 2011]. Na presente taxonomia, os ataques
do tipo CPI compreendem as ações que são desempenhadas na malha de controle
do NCS com o objetivo de colher informações sobre a operação do sistema e/ou
sobre o seu projeto. Estes ataques têm por objetivo adquirir as informações ne-
cessárias para o planejamento de ataques furtivos e controlados, ou mesmo para
subsidiar ações de replay [Langner 2011].
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Figura 2. Classificação e requisitos dos ataques fı́sico-cibernéticos atuantes na
malha de controle de um NCS.

Na Figura 2, são apresentados seis tipos de ataques DoS, bem como os seus res-
pectivos requisitos. Destes seis tipos de ataque, os menos complexos são os arbitrários:

• DoS-Arbitrary Jitter: neste tipo de ataque, o atraso dos sinais de controle e /ou
realimentação é alterado arbitrariamente, sem um conhecimento prévio do modelo
do NCS, com o objetivo de levar o sistema a uma instabilidade ou a uma condição
que cause a interrupção do processo fı́sico. Este ataque requer somente o acesso
à malha de controle, uma vez que o mesmo pode se dar pelo simples consumo
de recursos do sistema, tal como a banda dos enlaces de comunicação, ou mesmo
recursos computacionais dos equipamentos que fazem parte da malha de controle.
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• DoS-Arbitrary Data Loss: neste tipo de ataque, o atacante impede que os dados
cheguem aos atuadores e/ou controladores. O atacante efetua um jamming ar-
bitrário nos sinais de comunicação, sem um conhecimento prévio do modelo do
NCS, levando o sistema à instabilidade ou a uma condição que cause a interrupção
do processo fı́sico. Cabe ressaltar que alguns ataques do tipo DoS-Arbitrary Jitter
podem evoluir para um ataque DoS-Arbitrary Data Loss, caso atrasos de maior
proporção venham a causar a perda de pacotes. Assim como no ataque DoS-
Arbitrary Jitter, este ataque só requer o acesso à malha de controle do NCS.

• DoS-Arbitrary Data Injection: nestes ataques, o atacante envia dados falsos e
arbitrários ao controlador, como se estes tivessem sido enviados pelos sensores,
e/ou para os atuadores, como se tivessem sido enviados pelo controlador. Os dados
são injetados na malha de controle do NCS sem o conhecimento prévio de seu
modelo. Este ataque é mais complexo que os ataques DoS-Arbitrary Jitter e DoS-
Arbitrary Data Loss, uma vez que requer o acesso aos dados que fluem na malha
de controle do NCS.
Os ataques do tipo DoS-Controlled – DoS-Controlled Jitter, DoS-Controlled Data

Loss e DoS-Controlled Data Injection – apresentados na Figura 2, interferem na ma-
lha de controle do NCS da mesma forma que seus respectivos ataques DoS-Arbitrary.
A diferença entre um ataque DoS-Controlled e um ataque DoS-Arbitrary é que, no pri-
meiro, a interferência causada pelo atacante é precisamente planejada e executada, vi-
sando alcançar com exatidão o comportamento desejado que leva o sistema à interrupção
do serviço fı́sico, de uma forma mais eficiente. Assim, para alcançar tal eficiência, um
ataque DoS-Controlled requer um conhecimento acurado do modelo do NCS, i.e. das
funções de transferência da planta e do controlador, as quais devem ser analisadas para o
planejamento do ataque.

Referente aos ataques SD, devemos considerar três diferentes tipos de ataque –
SD-Controlled Jitter, SD-Controlled Data Loss e SD-Controlled Data Injection – con-
forme apresentado na Figura 2. A diferença entre um ataque SD-Controlled e um ataque
DoS-Controlled é que o primeiro não tem a intenção de interromper o processo fı́sico em
um curto prazo. O ataque visa manter o processo funcionando com a eficiência reduzida
ou, por vezes, causar a deterioração fı́sica e gradual dos dispositivos controlados. Para
que isto ocorra, os ataques SD-Controlled requerem um conhecimento prévio e acurado
sobre o NCS. Caso contrário o ataque pode, por razões não previstas, evoluir para um
ataque DoS, causando a interrupção do processo fı́sico.

O conhecimento sobre o sistema, requerido tanto nos ataques DoS-Controlled e
SD-Controlled, pode ser obtido por meio de ataques CPI, conforme apresentado na Fi-
gura 2. O primeiro, e mais simples, ataque CPI é o eavesdropping [Khatri et al. 2015],
que consiste em simplesmente capturar os sinais de controle e de realimentação trans-
mitidos. O segundo ataque CPI, proposto neste artigo, é o System Identification, o qual
visa obter informações sobre a função de transferência da planta e a função de controle
do controlador por meio da análise dos sinais que trafegam na rede. Os ataques CPI por
si só não impactam no funcionamento do NCS, mas são uma poderosa ferramenta para
planejar ataques DoS-Controlled e SD-Controlled eficientes.

3.2. Furtividade Cibernética vs. Fı́sica
A furtividade de um ataque corresponde à sua capacidade de não ser percebido ou detec-
tado. No caso de ataques fı́sico-cibernéticos em NCSs, a furtividade deve ser analisada
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simultaneamente em dois domı́nios diferentes: o domı́nio cibernético; e o domı́nio fı́sico.
Neste sentido, é apresentada nesta seção a definição de o que é um ataque cibernetica-
mente furtivo e o que é um ataque fisicamente furtivo:

• Ataques ciberneticamente furtivos: são ataques que têm baixa probabilidade de
serem detectados por algoritmos que monitoram os softwares, a comunicação e os
dados do sistema, ou por sistemas que monitoram a dinâmica da planta.

• Ataques fisicamente furtivos: são ataques que causam efeitos fı́sicos que não são
facilmente percebidos ou identificados por um observador humano. O ataque mo-
difica sutilmente alguns comportamentos do sistema de forma a afetar fisicamente
a planta, mas o efeito não é facilmente percebido ou, eventualmente, pode ser
entendido como uma consequência cuja causa seja outra, diferente de um ataque.

4. Ataque de Identificação de Sistema
O ataque de Identificação de Sistemas, ou System identification, aqui apresentado visa
estimar os coeficientes da função de transferência da planta G(z) e da função de controle
C(z) do controlador. Ambas as funções são de sistemas Lineares e Invariantes no Tempo
(LIT). O ataque usa o Algoritmo de Busca por Retrocesso, ou Backtracking Search Algo-
rithm (BSA), proposto em [Civicioglu 2013] e resumidamente descrito em [de Sá et al.
2016], como metaheurı́stica para minimizar a função de aptidão apresentada nesta Seção.

O BSA é um algoritmo evolucionário que utiliza informações obtidas por
gerações – ou iterações – passadas para buscar soluções em problemas de otimização.
O algoritmo possui dois parâmetros que são empiricamente ajustados: o tamanho da sua
população P ; e ⌘, descrito em [de Sá et al. 2016], que estabelece a amplitude do desloca-
mento dos indivı́duos de P . O parâmetro ⌘ deve ser ajustado visando atribuir ao algoritmo
tanto uma boa capacidade exploração, quanto de refinamento da busca.

Se a entrada i(k) e a saı́da o(k) de um dispositivo real do NCS são conhecidas, seu
modelo interno pode ser inferido aplicando a entrada conhecida i(k) em um modelo esti-
mado, que deve ser ajustado até que a sua saı́da estimada ô(k) convirja para o(k). Neste
sentido, o BSA é usado para ajustar iterativamente o modelo estimado, minimizando uma
função de aptidão especı́fica, até que o modelo estimado convirja para o modelo real do
dispositivo do NCS, o qual pode ser um controlador ou uma planta.

Para estabelecer a função de aptidão, devemos primeiramente considerar o sistema
LIT genérico, cuja função de transferência Q(z) pode ser representada por (1):

Q(z) =
O(z)

I(z)
=

anz
n + an�1z

n�1 + ... + a1z
1 + a0

zm + bm�1zm�1 + ... + b1z1 + b0

, (1)

onde I(z) é a entrada do sistema, O(z) é a sua saı́da, n e m correspondem a ordem do nu-
merador e do denominador, respectivamente, e [an, an�1, ...a1, a0] e [bm�1, bm�2, ...b1, b0]
são os coeficientes do numerador e do denominador, respectivamente, os quais pretende-
se estimar com o presente algoritmo de Identificação de Sistemas. Consideremos ainda
que i(k) e o(k) representam as amostras da entrada e da saı́da do sistema, respectiva-
mente, onde I(z) = Z[i(k)], O(z) = Z[o(k)], k é o número da amostra e Z representa a
operação da transformada Z.

Neste ataque de identificação de sistemas, i(k) e o(k) são primeiramente captura-
dos por um ataque do tipo eavesdropping [Khatri et al. 2015], por exemplo, durante um
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perı́odo T . Para lidar com eventuais perdas de amostras, que podem não ser recebidas
pelo atacante durante T , o algoritmo retém o valor da última amostra recebida, conforme
(2), onde x(k) pode ser tanto i(k) quanto o(k).

x(k) =

8
<
:

x(k � 1) se a amostra k é perdida;

x(k) senão.
(2)

Em seguida, após capturar i(k) e o(k), o sinal i(k) é aplicado à entrada
de um modelo estimado, descrito por função de transferência cujos coeficientes
[an,j, an�1,j, ...a1,j, a0,j, bm�1,j , bm�2,j, ...b1,j, b0,j] são as coordenadas de um indivı́duo j
do BSA. A aplicação de i(k) ao modelo estimado resulta em um sinal de saı́da ôj(k).
Após obter ôj(k), a função de aptidão fj do indivı́duo j é calculada comparando a saı́da
o(k), capturada no dispositivo atacado, com a saı́da do modelo estimado ôj(k), de acordo
com (3):

fj =

NP
k=0

(o(k)� ôj(k))2

N
, (3)

onde N é o número de amostras que existem durante o perı́odo de monitoração
T . Note que, se o atacante não perder nenhuma amostra de i(k) e o(k) durante
T , então min fj = 0 quando [an,j, an�1,j, ...a1,j, a0,j, bm�1,j, bm�2,j, ...b1,j, b0,j] =
[an, an�1, ...a1, a0, bm�1, bm�2, ...b1, b0], i.e. quando o modelo estimado converge para o
modelo real.

É possı́vel estabelecer uma analogia entre este ataque de identificação de sistemas
e o ataque de criptoanálise do tipo known plaintext, onde i(k) e o(k) correspondem aos
textos simples e cifrado, respectivamente, o formato da função de transferência genérica
Q(z) corresponde ao algoritmo de criptografia e os coeficientes reais de Q(z) corres-
pondem à chave criptográfica.

5. Ataque Furtivo para Degradação do Serviço
Com base na taxonomia apresentada na Seção 3.1, o ataque descrito nesta Seção é clas-
sificado como do tipo SD-Controlled Data Injection. Seu propósito é reduzir o MTBF
da planta e/ou reduzir a eficiência do processo fı́sico que a mesma executa, através da
inserção de dados falsos na malha de controle. Ao mesmo tempo, o atacante deseja que o
ataque atenda ao requisito de ser fisicamente furtivo, i.e. com um efeito fı́sico de difı́cil
percepção por um observador humano, ou entendido como uma consequência cuja causa
não seja um ataque – conforme definido na seção Seção 3.2.

Uma das maneiras de degradar um serviço fı́sico é por meio da indução de um
overshoot durante o regime transitório da planta. Overshoots, ou picos no regime tran-
sitório, podem causar estresse e, eventualmente, danos à sistemas fı́sicos como por exem-
plo sistemas mecânicos, quı́micos e eletromecânicos [El-Sharkawi and Huang 1989,Tran
et al. 2007]. Adicionalmente, por ocorrerem em curto espaço de tempo, os overshoots
são de difı́cil percepção pelo observador humano. Outra forma de degradar o serviço é
causar um erro estacionário constante na planta, ou seja, fazer com que a saı́da da mesma
tenha um erro constante quando t!1. Erros estacionários de pequena proporção, além
de serem de difı́cil percepção pelo observador humano, podem reduzir a eficiência do
processo fı́sico e, eventualmente, estressar e danificar o sistema em médio/longo prazo.
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Neste ataque, para alcançar qualquer um dos dois efeitos citados, i.e. um
overshoot ou um erro estacionário constante, o atacante intervém no processo de
comunicação do NCS a fim de injetar, de forma controlada, dados falsos no sistema. Para
tal, o atacante atua como um MitM que executa uma função de ataque M(z), conforme
apresentado na Figura 3, onde U 0(z) = M(z)U(z), U(z) = Z[u(k)] e U 0(z) = Z[u0(k)].
A função M(z) é projetada com base nos dados da planta e do controlador, obtidos no
ataque do tipo System Identification descrito na Seção 4. A eficácia do ataque, portanto,
depende do projeto de M(z), que por sua vez depende da acurácia do ataque de System
Identification. Cabe ressaltar que, apesar de na Figura 3 o MitM atuar nos sinais de con-
trole, é possı́vel, também, que o mesmo atue nos sinais de realimentação do NCS. O MitM
pode ser estabelecido tanto em redes cabeadas quanto, eventualmente, em redes sem fio
conforme em [Hwang et al. 2008].

Processo 

Físico

G(z)

Função 

de 

Controle

C(z)

Rede

r(k)

y(k)

A
tu

at
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re
s
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+
_
e(k) u(k) u’(k)

y’(k)

Controlador

Planta
Sinais de controle

Sinais de realimentação

M(z)

MitM

Figura 3. Ataque MitM

6. Resultados

Nesta seção são apresentados os resultados obtidos em simulações que combinam ataques
do tipo System Identification com ataques SD-Controlled fisicamente furtivos. Na Seção
6.1, é apresentado o modelo do sistema atacado. Na Seção 6.2 são apresentados os resul-
tados obtidos pelo ataque do tipo System Identification. Na Seção 6.3 são apresentados
os resultados obtidos com simulações de ataques do tipo SD-Controlled Data Injection,
fisicamente furtivos, planejados com base nos dados do ataque de System Identification.

6.1. Modelo do Sistema

O NCS atacado tem a mesma arquitetura do NCS apresentado na Figura 1, e consiste em
um controlador Proporcional-Integral (PI) que controla a velocidade de rotação de um
motor DC. A função de controle C(z) e a função de transferência G(z) do motor DC
foram extraı́das de [Long et al. 2005]. Tais equações são representadas por (4):

C(z) =
c1z � c2

z � 1
G(z) =

g1z + g2

z2 � g3z + g4

(4)

onde c1 = 0, 1701, c2 = �0, 1673, g1 = 0, 3379, g2 = 0, 2793, g3 = �1, 5462 e g4 =
0, 5646. A taxa de amostragem do sistema é 50 amostras/s e o set point r(k) é uma função
degrau unitário. O atraso na rede não é considerado nestas simulações.

6.2. Resultados da Identificação do Sistema

Nesta Seção, o desempenho do algoritmo de Identificação de Sistemas é avaliado por
meio um conjunto de simulações realizadas no MATLAB. A ferramenta SIMULINK foi
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utilizada para calcular a saı́da ôj dos modelos estimados, cujos coeficientes são as coor-
denadas de um indivı́duo j do BSA.

A estrutura das equações representadas por (4) são previamente conhecidas pelo
atacante, uma vez que, como premissa, este sabe que o alvo é um NCS que controla um
motor DC por meio de um controlador PI. Nestas simulações, o objetivo do ataque de
System Identification é descobrir g1, g2, g3, g4, c1 e c2, levando em consideração cenários
em que o atacante eventualmente perde amostras durante a coleta dos sinais de controle e
de realimentação.

Toda vez que o motor DC é ligado, os sinais de controle e de realimentação
são capturados pelo atacante durante um perı́odo T = 2s. no momento em que o mo-
tor é ligado, todas as condições iniciais são consideradas 0. Os coeficientes de G(z),
[g1, g2, g3, g4], e os coeficientes de C(z), [c1, c2], são calculados separadamente consi-
derando que, apesar da malha fechada, G(z) e C(z) são funções independentes. Para
estimar [g1, g2, g3, g4], o atacante considera que o sinal de controle é a entrada e que o
sinal de realimentação é a saı́da da planta. Já para estimar [c1, c2], o atacante considera
que o sinal e realimentação é a entrada e que o sinal de controle é a saı́da do controlador.

Para simular a perda de amostras, são consideradas quatro taxas de perda l di-
ferentes: 0, 0,05, 0,1 e 0,2. Assim, uma amostra é perdida pelo atacante toda vez que
l < P , onde P ⇠ U(0, 1) e U é uma distribuição uniforme. Para cada taxa de perda são
executadas 100 simulações diferentes.

No BSA, a população utilizada contém 100 indivı́duos e ⌘, empiricamente ajus-
tado, é 1. Para estimar os coeficientes do controlador [c1, c2], são executadas 600 iterações
do algoritmo. Já para estimar os coeficientes da planta [g1, g2, g3, g4], o número de
iterações é aumentado para 800, devido ao maior número de dimensões do espaço de
busca neste caso. Os limites de cada dimensão do espaço de busca são [�10, 10].

A Figura 4 apresenta a média de 100 valores estimados para g1, g2, g3, g4, c1 e c2,
com um Intervalo de Confiança (IC) de 95%, considerando diferentes taxas de perda de
amostras. Os valores reais dos coeficientes de C(z) e G(z) também são representados na
Figura 4. Note que a amplitude das escalas das Figuras 4(a), 4(b), 4(c) e 4(d) é diferente
da amplitude das escalas das Figuras 4(e) e 4(f), em virtude dos menores IC de c1 e c2.
Adicionalmente, algumas estatı́sticas referentes aos resultados obtidos são apresentadas
na Tabela 2.

Tabela 2. Estatı́sticas dos resultados com diferentes perdas de amostras
Perda de Média Desvio Padrão
amostras g1 g2 g3 g4 c1 c2 g1 g2 g3 g4 c1 c2

0% 0.32793 0.29652 -1.54121 0.55983 0.16991 -0.16712 0.03097 0.04288 0.00986 0.00944 0.00167 0.00178
5% 0.31835 0.29689 -1.54251 0.56085 0.16997 -0.16719 0.07572 0.11523 0.03322 0.03194 0.00287 0.00287
10% 0.30473 0.30461 -1.54110 0.55925 0.16999 -0.16724 0.08781 0.13483 0.04076 0.03922 0.00397 0.00399
20% 0.26963 0.33352 -1.53119 0.54916 0.16989 -0.16716 0.14120 0.22378 0.08596 0.08313 0.00596 0.00598
Perda de Assimetria(*) Curtose
amostras g1 g2 g3 g4 c1 c2 g1 g2 g3 g4 c1 c2

0% -1.21214 1.23278 1.75298 -1.73202 -0.64331 0.79458 0.18846 0.19433 0.21259 0.21218 0.15119 0.16472
5% -2.34607 1.64875 1.35284 -1.41346 -0.42288 0.36037 0.08094 0.10527 0.09412 0.09802 0.02540 0.03118
10% -2.52938 1.97711 1.18018 -1.26045 -0.23379 0.13377 0.16833 0.17123 0.25041 0.24811 0.24361 0.23429
20% -3.24122 1.75186 1.68335 -1.71055 -0.40055 0.37927 0.21292 0.21127 0.25054 0.24932 0.23883 0.24441
(*) Calculado de acordo com o 2o coeficiente de assimetria de Pearson.

De acordo com a Tabela 2 as distribuições de g1, g2, g3 e g4 possuem forte as-
simetria, enquanto as distribuições de c1 e c2 têm assimetria moderada. Em relação a
curtose, as distribuições de todos os coeficientes de G(z) e C(z) são leptocúrticas. En-
tretanto, analisando a Tabela 2, não é possı́vel identificar uma clara tendência de aumento
ou diminuição de assimetria e curtose em face do aumento da perda de amostras.
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Na Figura 4, é possı́vel constatar que em todos os casos os ICs tendem a crescer
com o aumento da perda de amostras. O mesmo ocorre com os desvios padrão apresen-
tados na Tabela 2. Referente aos coeficientes de G(z), a Figura 4 mostra que a diferença
entre a média e o valor real de g1, g2, g3 e g4 também tende a crescer com o aumento
da perda de amostras. Cabe ressaltar que o desempenho do algoritmo no cálculo de g3

e g4 é melhor do que no cálculo de g1 e g2, tanto no que diz respeito a média quanto a
amplitude do IC. Atribuı́mos este comportamento à maior sensibilidade que a saı́da de
G(z) tem às variações de seus polos do que às variações de seus zeros. Isto significa que,
neste problema, fj cresce mais com os erros de g3 e g4 do que com os erros de g1 e g2,
fazendo com que a população do BSA convirja de forma mais acurada em g3 e g4.
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Figura 4. Média, com IC de 95%, dos coeficientes estimados de G(z) e C(z), em
face de diferentes taxas de perda de amostras.

Na Figura 4 é possı́vel também verificar que a acurácia obtida no cálculo dos
coeficientes de C(z) é melhor do que a acurácia dos coeficientes de G(z), para todas as
taxas de perda de amostras. As médias de c1 e c2 são mais próximas dos seus valores
reais, com um menor IC. De fato, o processo de otimização é mais eficiente no cálculo
dos coeficientes de C(z) devido ao menor tamanho do espaço de busca, que possui apenas
duas dimensões ao invés das quatro existentes no problema de G(z).

Como uma forma adicional de avaliar o desempenho do algoritmo, foram cal-
culados |Eg| = |Gr � Ge| e |Ec| = |Cr � Ce| que sintetizam o erro de estimativa dos
coeficientes de G(z) e C(z), respectivamente, para cada solução encontrada. Gr e Ge são
vetores contendo os coeficientes reais e estimados de G(z), respectivamente. Já Cr e Ce

são vetores contendo os coeficientes reais e estimados de C(z), respectivamente. Os his-
togramas de |Eg| e |Ec| são apresentados na Figura 5, considerando as diferentes taxas
de perda de amostras mencionadas. Os histogramas mostram graficamente que |Eg| e
|Ec|, que correspondem ao módulo do erro dos coeficientes estimados de G(z) e C(z),
respectivamente, tendem a apresentar valores maiores à medida que a perda de amostras
aumenta. Isto também pode ser confirmado pelo aumento do desvio padrão dos coefici-
entes de G(z) e C(z) apresentados na Tabela 2. Entretanto, de acordo com a Figura 5, a
moda destes erros permanecem próximas de zero em todos os casos de perda avaliados.
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(a) Distribuição dos |Eg| (b) Distribuição dos |Ec|
Figura 5. Histogramas de |Eg| e |Ec| em face das diferentes perdas de amostras

6.3. Resultados do Ataque de Degradação do Serviço

Nesta seção são apresentados os resultados obtidos em simulações de ataque do tipo SD-
Controlled Data Injection, realizados por um MitM atuando no enlace de controle do
NCS, conforme na Figura (3). Os ataques foram simulados no MATLAB, com o objetivo
de avaliar a acurácia de ataques planejados com base nos resultados da Seção 6.2, obtidos
pelo ataque de System Identification. Foram realizados dois conjuntos de ataques. O pri-
meiro, visa causar um overshoot de 50% na velocidade de rotação do motor. O segundo,
visa causar um erro estacionário de �10% na velocidade de rotação do motor em regime
permanente.
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Figura 6. Resposta do sistema a ataques planejados com o propósito de causar
um overshoot de 50% da velocidade de rotação do motor.

No ataque visando o overshoot, a função executada pelo atacante é M(z) = Ko.
Por meio da análise do lugar das raı́zes, traçado com base nos modelos levantados, o ata-
cante ajusta o valor de Ko para que o sistema se torne subamortecido com um pico de
velocidade de rotação 50% maior do que a velocidade em regime permanente. Os valores
de Ko foram ajustados com base nas médias dos coeficientes levantados na Seção 3.2. A
Tabela 3 apresenta os valores de Ko, estimados considerando as diferentes situações de
perda de amostras no ataque de System Identification, bem como os overshoots obtidos
com os respectivos Ko no modelo real. Na Figura 6 é possı́vel comparar a resposta do
sistema sem ataque com a resposta ao ataque visando o overshoot de 50%. É possı́vel
verificar, ainda, que o ataque ao modelo real apresenta, no domı́nio do tempo, uma res-
posta bem próxima ao ataque projetado com base no modelo obtido pelo ataque de System
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Identification, tanto no caso em que o sistema foi identificado com 0% de perdas, quanto
no pior caso considerado, com 20% de perdas. Cabe ressaltar que todas as respostas
apresentadas na Figura 6 convergem para 1 rad/s.

No ataque cujo propósito é causar um erro estacionário de �10% na velocidade
de rotação do motor, o atacante executa a função (5):

M(z) =
KEss(z � 1)

z � 0, 94
, (5)

onde KEss é ajustado com base nos dados de identificação do sistema, considerando cada
condição de perda de amostras. O pólo de M(z) é adicionado com o objetivo de permi-
tir que ocorra um erro estacionário no sistema. O zero de M(z) visa formatar o lugar
das raı́zes a fim de que haja um KEss estável que leve o sistema a um erro estacionário
de �10%. A Tabela 3 apresenta os valores de KEss adotados considerando as diferentes
situações de perda de amostras no ataque de System Identification, bem como os respec-
tivos erros estacionários alcançados no modelo real.

Tabela 3. Valores de Ko, KEss e resultados obtidos com os ataques
Perda de amostras no ataque System Identification

0 % 5 % 10 % 20 %
Ko 4,0451 4,0745 4,0828 3,796
Overshoot no modelo real 48,90 % 49,43 % 49,57 % 45,94 %
KEss 5,7471 5,7803 5,8140 5,8823
Erro estacionário no modelo real �10% �10% �9, 9% �9, 8%

De acordo com os dados na Tabela 3, é possı́vel afirmar que os ataques SD-
Controlled Data Injection, projetados com base nos dados colhidos pelo ataque System
Identification, foram capazes de modificar de forma acurada a resposta do sistema fı́sico,
considerando todas as condições de perda avaliadas. No pior caso, i.e. com 20% de perda
de amostras, o overshoot foi de 45, 94% e o erro estacionário foi de�9, 8%, bem próximos
dos valores desejados de 50% e �10%, respectivamente. Tal acurácia, permite que a res-
posta do sistema se mantenha controlada e próxima a um comportamento pré-definido
como fisicamente furtivo para o sistema em questão.

7. Conclusões

Este trabalho propõe um ataque fisicamente furtivo de degradação de serviço, cujo desem-
penho depende do conhecimento sobre a planta atacada e seu controlador. Para adquirir
tal conhecimento, é proposto um ataque de System Identification, baseado no algoritmo
BSA. A eficácia do ataque de System Identification é demonstrada e o seu desempenho é
estatisticamente analisado em face de diferentes taxas de perda de amostra. Os resulta-
dos alcançados nos ataques fisicamente furtivos de degradação de serviço, dimensionados
com base nos dados levantados pelo System Identification, demonstram o elevado grau
de acurácia que pode ser obtido com a combinação dos ataques. No pior caso, i.e. com
20% de perda de amostras durante a identificação do sistema, o atacante foi capaz de cau-
sar na planta um overshoot de 45, 94% e um erro estacionário de �9, 8%, bem próximos
dos valores desejados de 50% e �10%, respectivamente. Em ambas as ações fisicamente
furtivas, a acurácia do ataque garante que estas não evoluam para alterações de compor-
tamento fisicamente mais perceptı́veis.
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Como trabalho futuro, encorajamos a pesquisa de técnicas capazes de evitar, ou
dificultar, ataques fisicamente furtivos planejados com dados obtidos por ataques System
Identification. Neste sentido, planejamos investigar contramedidas que possam dificultar
a obtenção de informações sobre os sistemas de controle fı́sico-cibernéticos, as quais são
essenciais para o planejamento de ataques furtivos e controlados.
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ABSTRACT
The use of communication networks to interconnect con-
trollers and physical plants in industrial and critical infras-
tructure facilities exposes such control systems to threats
typical of the cyber domain. In this sense, studies have
been done to explore vulnerabilities and propose security
solutions for Networked Control System (NCS). From the
point of view of the control theory, the literature indicates
that stealthy and accurate cyber-physical attacks must be
planned based on an accurate knowledge about the model
of the NCS. However, most literature about these attacks
does not indicate how such knowledge is obtained by the
attacker. So, to fill this hiatus, it is proposed and eval-
uated in this paper an Active System Identification attack,
where the attacker injects data on the NCS to learn about its
model. The attack is implemented based on two bio-inspired
metaheuristics, namely: Backtracking Search Optimization
Algorithm (BSA); and Particle Swarm Optimization (PSO).
The results indicate a better performance of the BSA-based
attack, especially when the captured signals contain white
Gaussian noise. The goal of this paper is to demonstrate
the degree of accuracy that this attack may achieve, high-
lighting the potential impacts and encouraging the research
of possible countermeasures.

CCS Concepts
•Security and privacy → Formal security models;
Cryptanalysis and other attacks; •Computing method-
ologies→ Search methodologies; Computational con-
trol theory;

Keywords
Security, Cyber-Physical Systems, Networked Control Sys-
tems, System Identification, Backtracking Search Algorithm,
Particle Swarm Optimization
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1. INTRODUCTION
System identification, i.e. the action of building mathemat-
ical models of dynamic systems, is often used to obtain the
model of physical processes aiming to subsidize the design of
their respective control systems. However, it can also be con-
sidered a key step for the execution of stealth – or covert, as
mentioned in [16, 17, 20] – attacks against Networked Con-
trol Systems (NCS). Indeed, to reduce the probability to be
detected by algorithms that monitor the dynamics of the
controlled plant, the attacker must have an accurate model
of the targeted system, such as demonstrated in [16, 17, 20].

A possible strategy to obtain information about the model of
the targeted system is through passive System Identification
attacks, as reported in [5]. In this technique, the attacker
eavesdrops the communications between the controller, ac-
tuators and sensors of the NCS until enough information is
collected to determine the parameters of the plant and its
control system. Such passive approach can make the system
identification to last for a long time, until meaningful in-
formation transits at the eavesdropped communication line.
The situation is even worse if the system is on steady state,
because no meaningful information may transit through the
NCS’s communication links for a long time – indeed, the
information content of the signals measured under steady
operating conditions is often insufficient for identification
purposes [22]. This attacker’s constraint may be overcome
by Active System Identification attacks, which, as far as we
know, is not reported in the literature.

In this sense, in the present work, we propose an active
attack for the identification of NCSs. Our approach was
inspired by the classic active cryptanalytic attacks – cho-
sen plaintext and chosen cypher text –, where the attacker
inserts messages in the crypto-engine, in opposition to pas-
sive attacks – cyphertext-only, known plaintext –, where the
attacker simply listen the communication channels and pas-
sively collects information [19].

In the attack herein proposed, a specially tailored signal is
inserted by the attacker in an NCS communication chan-
nel and, by observing the behavior of the system in closed-
loop, the attacker determines the parameters of its open-loop
transfer function. To do so, the attacker just needs to in-
tercept one communication channel of the NCS, where the
attacker both insert the attack signal and listen the conse-
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quent system response. The knowledge of the NCS’s open-
loop transfer function, obtained through this attack, is useful
for the design of other sophisticated attacks. For instance,
if an attacker learns the open-loop transfer function of an
NCS, it is possible to further design attacks capable to ac-
curately change the transient response and/or steady state
response of the plant, such as demonstrated in [5], causing,
for example, stationary errors or overshoots on the plant.
A stationary error may reduce the efficiency of the physi-
cal process, while overshoots may cause stress and possibly
damages [6, 21] to the plant, reducing its mean time between
failure (MTBF).

The present Active System Identification attack is developed
based on two bio-inspired metaheuristics, whose results are
analyzed and compared, namely: the Backtracking Search
Optimization algorithm (BSA) [4]; and the Particle Swarm
Optimization (PSO) [10]. If the attack signal a(k) and the
consequent response ya(k) of an NCS is known, its open-
loop transfer function can be assessed by applying a(k) in
an estimated model, which is adjusted until its estimated
output ŷa(k) matches ya(k). In this sense, the BSA and
the PSO are used to iteratively adjust the parameters of an
estimated model, by minimizing a specific fitness function,
until the estimated model converges to the actual model of
the NCS. The BSA and the PSO are chosen to perform this
task due to their capability to converge to good solutions,
such as demonstrated in [9, 13, 23, 24, 8] specifically for
control system problems.

It is worth mentioning that the Active System Identification
attack herein proposed is different from the active attacks
performed to identify vulnerabilities of protocols and appli-
cations within the layers of the OSI model, such as the active
scanning process used to identify network services [2].The
attack herein proposed aims to identify the physical model
of a plant that, in an NCS, lies above the application layer
of the OSI model.

The goal of this paper is to demonstrate the degree of accu-
racy that such attack may achieve, highlighting its potential
impacts and encouraging the research of countermeasures
capable to prevent or detect the execution of this kind of
attack. The remainder of this paper is organized as follows.
In Section 2, we review the literature on NCS attacks, with
focus on the intelligence gathered to subsidize their design.
In Sections 3 and 4, there are provided brief descriptions of
the BSA and PSO, respectively. In Section 5, it is described
the Active System Identification attack, herein proposed.
In Section 6, there are presented and compared the results
achieved by the proposed attack, using both metaheuristics,
in simulations where the NCS is constituted by a DC mo-
tor and a proportional-integral (PI) controller. Section 7
contains our final considerations.

2. RELATED WORKS
The possibility of large impact cyber-physical attacks be-
came unprecedentedly concrete after the launch of the Stuxnet
worm [11] and has been motivating researches concerning the
security of NCSs. In this section, it is presented a review of
the literature related to this subject.

In [12] the authors propose two queueing models that are
used to evaluate the impact of delay jitter and packet loss

in an NCS under attack. The attack is not designed taking
into account the models of the controller and the physical
plant. Such models are unknown by the attacker. Thus, to
affect the plant’s behavior, the attacker arbitrarily floods the
network with traffic, causing jitter and packet loss. In this
method of attack, the excess of packets in the network can
reduce the stealthiness of the attack, allowing the adoption
of countermeasures, such as packet filtering [12] or block-
ing the malicious traffic on its origin [18]. Moreover, the
arbitrary intervention in a system which the models are un-
known may lead the plant to an extreme physical behavior,
which is not desired if a stealth attack is intended.

In [7], it is presented a testbed for Supervisory Control
and Data Acquisition (SCADA) using TrueTime – a MAT-
LAB/Simulink based tool. The authors demonstrate an at-
tack where a malicious agent transmits false signals to the
controller and actuator of an NCS. The false signals are ran-
domly generated, aiming to make a DC motor lose its stabil-
ity. This kind of attack does not require a previous knowl-
edge about the plant and controller of the NCS. The draw-
back is that the desired physical effect and the stealthiness
of the attack can not be ensured due to the unpredictable
consequences of the application of random false signals to a
system which the model is not known.

A general framework for the analysis of a wide variety of
attacks over NCSs is provided in [20]. The authors classify
and establish the requirements for the attacks in terms of
the model knowledge, disclosure and disruption resources.
In their work, it is stated that covert attacks require high
level of knowledge about the model of the targeted system.
Exemples of covert attacks that agree with this statement
are provided in [16, 17]. In these works the attacks are
performed by a man-in-the-middle (MitM), where the at-
tacker needs to know the model of the plant under attack
and also inject false data in both the forward and the feed-
back streams. The stealthiness of the attacks described in
[16, 17] is analyzed from the perspective of the signals arri-
ving to the controller, and depends on the difference between
the actual model of the plant and the model known by the
attacker. In [1], it is demonstrated another stealth attack
where the attacker, aware of the system’s model, injects an
attack signal in the NCS to steal water from the Gignac
canal system located in Southern France.

Table 1: Synthesis of the related attacks

How the
System knowledge

Attack Method knowledge is obtained

Stuxnet worm [11] Modifications Yes Experiments
in the PLC in a real

code system
Long, et al. [12] Inducing jitter None N/A

and packet loss
Farooqui, et al. [7] Data injection None N/A
Smith [16, 17] Data injection Yes Not described
Teixeira [20] Packet loss None N/A

Data injection Yes Not described
Amin [1] Data injection Yes Not described
SD-Controlled [5] Data injection Yes Passive

system
identification

In [1, 16, 17, 20], where it is required a previous knowledge
about the models of the NCS under attack, it is not des-
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cribed how this knowledge is obtained by the attacker. It is
just stated that a model is previously known to subsidize the
design of the attack. More recently, in [5], the authors pro-
pose a System Identification attack to fill this hiatus. They
demonstrate how the data required for the design of Denial-
of-Service (DoS) or Service Degradation (SD) attacks may
be obtained through a passive System Identification attack.
The attack proposed in [5] does not need to inject signals on
the NCS to estimate its models. However, it depends on the
occurrence of events, that are not controlled by the attacker,
to produce signals that carry meaningful information for the
system identification algorithm. The Active System Identi-
fication attack herein proposed, constitutes an alternative to
the passive System Identification attacks in situations where
the attacker may not wait so long for the occurrence o such
meaningful signals. A synthesis of the characteristics of the
attacks referred in this section is presented in Table 1.

3. BACKTRACKING SEARCH
ALGORITHM

In this section, there are described the basic concepts of the
BSA, in order to provide a clear comprehension regarding to
the parameters of the algorithm that are adjusted for the at-
tack. The BSA is a bio-inspired metaheuristic that searches
for solutions of optimization problems using the information
obtained by past generations – or iterations. According with
[4], its search process is metaphorically analogous to the be-
havior of a social group of animals that, at random intervals
returns to hunting areas previously visited for food forag-
ing. The general, evolutionary like, structure of the BSA is
shown in Algorithm 1.

Algorithm 1 BSA

begin
Initialization;
repeat

Selection-I;
Generate new population

Mutation;
Crossover;

end
Selection-II;

until Stopping Condition;

end

At the initialization stage, the algorithm generates and eva-
luates the initial population P0 and sets the historical pop-
ulation Phist. The latter composes the BSA’s memory.

During the first selection stage (Selection-I), the algorithm
randomly determines, based on an uniform distribution U ,
whether the current population P should be kept as the
new historical population, and thus replace Phist (i.e. if
a < b | a, b ∼ U(0, 1), then Phist = P ). Subsequently, it
shuffles the individuals of this population.

The mutation operator creates Pmod, which is the preli-
minary version of the new population Pnew). It does so
according to (1):

Pmod = P + η · Γ(Phist − P), (1)

wherein η is empirically adjusted through simulations and
Γ ∼ N(0, 1), with N being a normal standard distribution.
Thus, Pmod is the result of the movement of P’s individuals
in the directions established by vector (Phist − P).

In order to create the final version of Pnew, the crossover
operator combines randomly, also following a uniform dis-
tribution, individuals from Pmod and others from P.

At the second selection stage (Selection-II), the algorithm
evaluates, selects elements of Pnew (i.e. individuals obtained
after mutation and crossover), which should have better fit-
ness than those in P (i.e. individuals before applying both
the operators of crossover and mutation) and replaces them
in P. Hence, P includes only new individuals that should
have evolved. While the stopping condition has not yet been
reached, the algorithm iterates. Otherwise, it returns the
best solution found.

Note that the algorithm has two parameters that are empir-
ically adjusted: the size |P| of its population P; and η, that
establishes the amplitude of the movements of the indivi-
duals of P. The parameter η must be adjusted to assign to
the algorithm both good exploration and exploitation capa-
bilities. With this parameters set, the BSA is used to search
for the global minimum of the fitness function described in
Section 5.

4. PARTICLE SWARM OPTIMIZATION
PSO has roots in the collective behavior of social models
such as bird flocking and fish schooling. A particle, i.e. the
basic element of the algorithm, represents a possible solution
of a problem. Thus, the swarm represents a set of possible
solutions. At each iterative cycle, the position of each par-
ticle is updated according to (2), where xj and vj are the
position and velocity of particle j, respectively.

xj(t+ 1) = xj(t) + vj(t+ 1) (2)

The computation of vj considers three terms: the particle’s
inertia; the particle’s cognition, which is based on the best
solution found by the particle so far; and social term, which
is based on global best solution found by the swarm. The
velocity of particle j, at each dimension d, is defined in (3):

vjd(t+ 1) = ωvjd(t) + ϕ1r1d(t)(mjd − xjd(t))

+ϕ2r2d(t)(mgd − xjd(t)),
(3)

wherein ω is a parameter that weighs the inertia of the par-
ticle, ϕ1 and ϕ2 are parameters that weigh the cognitive and
social terms, respectively, r1 and r2 are random numbers in
[0,1], mj is the best position visited by particle j so far, and
mg is the best position discovered by the swarm considering
the experience of all the particles.

In order to better explore multi-dimensional search spaces,
a velocity limit is imposed for each dimension d, as in (4):

0 ≤ vjd ≤ δ(maxd −mind), (4)

wherein maxd and mind are the maximum and minimum
limits of the search space at each dimension d and δ ∈ [0, 1].

The overall computation that the PSO performs to minimize
a fitness function f(x) is given in Algorithm 2, where x is
the particle position and S is the swarm size.
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Algorithm 2 PSO Algorithm

begin
for each particle j, 1 ≤ j ≤ S do

Set randomly position xj and velocity vj ;
mj ← xj ;

end
mg ← smallest mj , 1 ≤ j ≤ S;
repeat

for each particle j, 1 ≤ j ≤ S do
Update velocity vj , as in (3) and (4);
Update position xj , as in (2);
fitness← f(xj);
mk ← xj , whenever fitness < f(mj);
mg ← xj , whenever fitness < f(mg);

end
until Stopping condition;
return mg;

end

5. THE ACTIVE SYSTEM
IDENTIFICATION ATTACK

The Active System Identification attack, herein proposed,
is intended to assess the coefficients of a transfer function
G(z) = C(z)P (z) of an NCS, wherein C(z) is the controller’s
control function and P (z) is the plant’s transfer function as
shown in Figure 1. The transfer functions are all linear
time-invariant (LTI). This attack is performed by a MitM
that may be located either in the forward or in the feedback
link. For the sake of clarity of the analysis presentation,
but without loss of generality, we focus on the case where
the MitM is in the feedback link, i.e. between the plant’s
sensors and the controller’s input. To estimate the model of
the attacked NCS, the attacker injects an attack signal a(k),
and measure the response of the system to such signal.
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Figure 1: Active System Identification attack with a MitM
in the feedback link.

The complete response of the generic NCS shown in Fi-
gure 1, considering only the inputs R(z) = Z[r(k)] and
A(z) = Z[a(k)], is expressed in the z domain by (5):

Y (z) =
G(z)

1 +G(z)
R(z)− G(z)

1 +G(z)
A(z), (5)

wherein Y (z) = Z[y(k)]. Z represents the Z-transform op-
eration. As a premise, in a normal condition, it is considered

that a(k) = 0 and the system is designed to make y(k)→ q,
in such way that y(k) ≈ q ∀k > ks, i .e. the output y(k)
of the NCS converges and stabilizes at a constant value q
after a certain amount of samples ks. Indeed, it is usually
one of the main aims of a control system. Now, considering
a(k) 6= 0, the output y(k), ∀k > ks, may be defined approx-
imately as (6):

y(k) = q −Z−1

[
G(z)

1 +G(z)
A(z)

]
, ∀k > ks. (6)

Thus, after ks, the portion of y(k) caused by r(k) can be
eliminated by just subtracting q from (6), which leads to (7):

ya(k) = y(k)− q = −Z−1

[
G(z)

1 +G(z)
A(z)

]
, ∀k > ks. (7)

wherein ya(k) represents the portion of y(k) caused by the
attack signal a(k). The value of q can be assessed by the
attacker through an eavesdropping attack in the feedback
stream, by just capturing y(k) after the stabilization of the
NCS. The subtraction of q after ks makes the system iden-
tification attack independent of r(k) ∀k > ks. The Active
System Identification attack now just relies on the attack
signal a(k), which can be chosen, and the response of the
system to the attack ya(k) can be obtained in accordance
with (7). The signal ya(k) starts with a(k) and has the size
of a monitoring period T .

If the attack input a(k) and its consequent output ya(k) are
known, the model of G(z) can be assessed by applying the
known a(k) in an estimated system, defined by (8):

ŷa(k) = −Z−1

[
Ge(z)

1 +Ge(z)

]
∗ a(k), (8)

wherein Ge(z) is the estimation of G(z) and ŷa(k) is the out-
put of the estimated system in face of Ge(z). By comparing
ŷa(k) with ya(k), the attacker is capable to evaluate whe-
ther Ge(z) is equal/approximately G(z). Note that Ge(z) is
a generic transfer function represented by (9):

Ge(z) =
αnz

n + αn−1z
n−1 + ...+ α1z

1 + α0

zm + βm−1zm−1 + ...+ β1z1 + β0
, (9)

wherein n and m are the order of the numerator and the de-
nominator, respectively, and [αn, αn−1, ...α1, α0] and [βm−1,
βm−2, ...β1, β0] are the coefficients of the numerator and the
denominator, respectively, that are intended to be found by
this Active System Identification attack. Thus, to find G(z),
the coefficients ofGe(z) are adjusted until the estimated out-
put ŷa(k) converges to the known ya(k).

In this sense, the BSA and the PSO are used to iteratively
adjust the estimated model, by minimizing a specific fitness
function presented in this section, until the estimated model
Ge(z) converges to the actual G(z) of the real NCS. To com-
pute the fitness of the individuals of the optimization algo-
rithm, i.e. the BSA or PSO, the same attack signal a(k)
that provided ya(k), according with (7), is applied on the
estimated system defined by (8) and (9), where the coeffi-
cients of Ge(z) are the coordinates xj = [αn,j , αn−1,j , ...α1,j ,
α0,j , βm−1,j , βm−2,j , ...β1,j , β0,j ] of an individual j of the
BSA/PSO. The output ŷaj(k) is the response of the esti-
mated model (8) (9), in face of a(k), when the coefficients
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of Ge(z) are xj . So, the fitness fj of each individual j is
obtained comparing ŷaj(k) with ya(k), according with (10):

fj =

N∑
k=0

(ya(k)− ŷaj(k))2

N
, (10)

wherein N is the number of samples that exist during the
monitoring period T of ya(k). Note that, if no other inputs
– perturbation or noise – occur in the NCS during T , then
min fj = 0 when [αn,j , αn−1,j , ...α1,j , α0,j , βm−1,j , βm−2,j , ...
β1,j , β0,j ] = [αn, αn−1, ...α1, α0, βm−1, βm−2, ...β1, β0], i.e.
when the estimated Ge(z) converges to G(z).

An analogy may be established between this Active Sys-
tem Identification attack and the Chosen Plaintext crypt-
analytic attack [19], wherein a(k) corresponds to the cho-
sen plaintext, ya(k) represents the ciphertext, the equa-
tions (8) and (9) together correspond to the encryption al-
gorithm and the actual coefficients [αn, αn−1, ...α1, α0] and
[βm−1, βm−2, ...β1, β0] of Ge(z) correspond to the secret key.

6. RESULTS
In this section, there are presented and analyzed the results
obtained with simulations of the proposed Active System
Identification attack. The attacked system, shown in Fi-
gure 2, consists of a DC motor whose rotational speed is
controlled by a Proportional-Integral (PI) controller. This
example is chosen due to the use of DC motors in a vast num-
ber of real world control systems. Moreover, DC motors has
been widely used in previous works about NCS [3, 12, 14,
15]. It is noteworthy that the model herein chosen as an ex-
ample does not exhaust the potential targets for this attack.
NCSs composed by another kinds of LTI devices may also
be a target. However, it must be taken into account that
the computational cost of the attack, when launched over
different LTI systems, may vary with the number of their
unknown coefficients – i.e. the number of dimensions of the
search space explored by the optimization algorithms (BSA
or PSO, in this paper).
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Figure 2: Active System Identification attack on noisy NCS.

The PI control function C(z) and the DC motor transfer
function P (z), obtained from [12], are represented by (11):

C(z) =
0.1701z − 0.1673

z − 1
, P (z) =

0.3379z + 0.2793

z2 − 1.5462z + 0.5646
.

(11)

Thereby, the transfer function to be identified G(z) – that is
also the open-loop transfer function of the NCS – is defined
by (12):

G(z) = C(z)P (z) =
g1z

2 + g2z + g3
z3 + g4z2 + g5z + g6

, (12)

wherein g1 = 0.0575, g2 = −0.0090, g3 = −0.0467, g4 =
−2.5462, g5 = 2.1108 and g6 = −0.5646. The sample rate
of the system is 50 samples/s and the set point r(k) is an
unitary step function. Network delay and packet loss are
not taken into account in the simulations of this paper.

The structure of the equations (11), and so the structure of
(12), are previously known by the attacker once that, as a
premise, it is known that the target is an NCS that controls a
DC motor using a PI controller. Thus, in these simulations,
the goal of the Active System Identification attack is to dis-
cover g1, g2, g3, g4, g5 and g6.

The chosen attack signal a(k) is a discrete-time unit im-
pulse (13):

a(k) =

{
1 if k = ka;
0 otherwise,

(13)

wherein ka is the single sample in which the attacker inter-
fere in the system by adding 1 to the feedback stream. Note
that the discrete-time unit impulse is chosen to excite the
NCS due to its short active time – i.e. one sample –, which
increases the stealthiness of the attack in the time domain.

The effectiveness of the Active System Identification attacks
are evaluated in both conditions with and without noise. To
simulate the noise, it is inserted w(k) ∼ N(µ, σ), indicated
in Figure 2, which is a white Gaussian noise wherein N is
a normal distribution, µ is its mean and σ is its standard
deviation. In all simulations the mean is µ = 0 rad/s. The
standard deviation is adjusted such that 95% of the ampli-
tudes of w(k) are within ±I (I = 2σ). There are consid-
ered four different noise intensities I: 0 (no noise), 0.0025
rad/s, 0.005 rad/s and 0.01 rad/s. For each noise inten-
sity I, there are executed 100 different simulations, for each
of the mentioned metaheuristics. In each simulation, the
feedback stream is captured by the attacker during a period
T = 2s (100 samples), starting at sample ka + 1.

The attack model was implemented in MATLAB, where the
simulations were carried out. The SIMULINK tool was used
to compute ya(k) and ŷaj(k) – the latter, for each individ-
ual j of the optimization algorithms. The parameters of the
BSA and PSO described in Sections 3 and 4, respectively,
were empirically adjusted through a set of simulations with-
out noise (I = 0). These parameters are then used for all
noise conditions. In the BSA-based attacks, the parameter
η is set to 1. In the PSO-based attacks, it is used the follow-
ing parameters configuration: ω = 0.4, ϕ1 = ϕ2 = 1.5 and
δ = 0.1. In both algorithms, the population is set to 100
individuals and the limits of each dimension of the search
space are [−10, 10]. In each simulation, the BSA and the
PSO are executed for 4500 iterations.

Figure 3 presents the mean estimated values of g1, g2, g3,
g4, g5 and g6, with a Confidence Interval (CI) of 95%, for
different values of noise intensity I. Note that the actual
values of these coefficients are also depicted in Figure 3. In
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Figure 3: Mean of the estimated coefficients of G(z), with CI of 95%, in face of different noise intensities I.
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Figure 4: Response of actual and estimated systems produced by a(k), in face of different noise intensities.

this Figure, it is possible to compare the results achieved by
the BSA-based and the PSO-based attacks. For the compu-
tation of each outcome presented in Figure 3, there were not
taken into account the results beyond two standard devia-
tion from the mean of each set of 100 simulations. According
with Figure 3, it is possible to verify that, for all coefficients
of G(z), both the BSA-based and PSO-based attacks present
good accuracy when I = 0 (i.e. without noise, the mean
values of the estimated coefficients are close to their actual
values). Despite the similar and accurate performance of
the two metaheuristics without noise, it is possible to state
that the BSA presented a performance slightly better than
the PSO in this noise condition (I = 0), specially with re-
gard to the coefficients g1, g2 and g3. Note that, the per-
formance of the PSO-based attack is degraded when noise
is added to the system. This performance degradation of
the PSO occurs for I ≥ 0.0025, and tends to be more ex-

pressive with the increase of I. On the other hand, from
Figure 3, it is possible to verify that the BSA-based attack
still present good accuracy for noise intensities up to 0.005.
When I ≤ 0.005, all coefficients estimated by the BSA-based
attack present a mean close to its actual value, with a small
CI. When I ≥ 0.0075, the performance of the BSA-based
attack decreases with the raise of noise in a more expressive
way, being worst when I = 0.01. Among the six coefficients
of G(z), in general, the estimation of g2 presents the lowest
accuracy for both BSA-based and PSO-based attacks. We
attribute this behavior to a lower sensitivity that the out-
put ŷa(k) of the estimated system has to the variation of g2.
This means that, in this problem, fj grows faster for errors
in g1, g3, g4, g5 and g6 than for errors in g2, making the
BSA population converge less accurately in dimension g2.

The performance of the attacks can also be evaluated in
the k domain through the exemples provided in Figure 4,
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considering two different intensities of noise: without noise,
in Figure 4(a); and with I = 0.005, in Figures 4(b) and
4(c). In Figure 4(a), its is shown that, without noise, the
response of the system estimated by both BSA-based and
PSO-based attacks matches the response of the actual sys-
tem, with high accuracy. In Figure 4(b), even with a noise
intensity of I = 0.005, the response of the system estimated
by the BSA-based attack still matches the response of the
actual system, indicating the convergence of Ge(z) to G(z)
and ratifying the statistics shown in Figure 3 for the BSA
with such noise intensity. On the other hand, when apply-
ing the PSO-based attack with the same noise, as exempli-
fied in Figure 4(c), there is a slight difference between the
response of the estimated system and the response of the
actual system, produced by the mismatch of the estimated
coefficients in the presence of such noise intensity. This ex-
emplifies the worst performance of the PSO-based attacks
when compared with the BSA-based attacks in face of the
same noise intensities.

To synthesize the error of each solution found, it is computed
|Eg| according with (14):

|Eg| =

√√√√
6∑

i=1

(gi − gei)2, (14)

wherein gi and gei are the actual and estimated coefficients
of the attacked system, respectively, and i is the index num-
ber of each of the six coefficients of the model being assessed.
Note that |Eg| is the module of a vector composed by the er-
ror of each coefficient found, which represents another metric
to evaluate the performance of each attack. The histograms
of |Eg| are presented in Figure 5, considering the mentioned
noise intensities. It graphically shows that higher values of
|Eg| tend to appear more frequently as the noise intensity
grows, in both BSA-based and PSO-based attacks. How-
ever, based on these histograms it is possible to verify that
the mode of |Eg| is close to zero for all noise intensities, using
both metaheuristics. This indicates that, even in the pres-
ence of noise, most solutions present low deviations from the
actual coefficients. Note that, for all noise intensities, the
BSA-based attacks provide more results in the modal class
– where |Eg| is close to zero – than the PSO-based attacks.
Moreover, the worst results of the BSA-based attacks have
an |Eg| about 4, when I ≥ 0.005, while the worst results of
the PSO-based attacks have an |Eg| > 20, when I ≥ 0.0025.
These results, together with the statistics shown in Figure 3,
indicate that the performance of the Active System Identi-
fication attack is better when implemented with the BSA
than with the PSO. It is worth mentioning that, to achieve
these results, the BSA-based attacks consumed an average
processing time (6.68 ± 0.47)% higher than the PSO-based
attacks.

In general, the outcomes indicate that, for the same ampli-
tude of attack signal a(k), the performance of the attack
tends do decrease as the noise intensity increases, i.e. when
the attack signal-to-noise ratio decreases. The minimum
length of the attack signal in terms of number of manipu-
lated samples, i.e. one single sample, improves the stealth-
iness of the attack in the k domain. On the other hand, a
minimum attack signal-to-noise ratio required to guarantee
the performance of this attack is a drawback with respect

(a) BSA

(b) PSO

Figure 5: Histograms of |Eg| for different noise intensities.

to its stealthiness, from the attacker’s point of view. This
issue makes more difficult for the attacker to approximate
the amplitude of a(k) from the noise amplitude, or to noise
values that have higher probability to occur, which should
help to increase the stealthiness of the attack signal in terms
of amplitude.

7. CONCLUSION
The present work defines and propose an Active System
Identification attack that may be launched over NCSs, in
order to gather the data required for the design of other so-
phisticated cyber-physical attacks. The attack herein pro-
posed is implemented based on two bio-inspired algorithms:
the BSA and the PSO. It is shown that, in this problem,
the BSA-based attacks provide better performance than the
PSO-based attacks, specially in the presence of noise.

In general, the results indicate that the attack is capable to
estimate the coefficients of the open-loop transfer function
of an NCS, which is known to be enough for further manip-
ulation of the system’s behavior through conventional root
locus analysis/modification. It is demonstrated the capabil-
ity of the attack to achieve its goal even when:

• no meaningful information is passing through its com-
munication links, i.e. when the system had achieved
its steady state;

• the attacker intercepts the communication of the NCS
at only one point, i.e. the attacker does not need to in-
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tercept both forward and feedback streams to estimate
the open-loop transfer function of the system;

• the NCS is noisy (particularly the BSA-based attack,
for 0 ≤ I ≤ 0.0075).

For future work we plan to investigate possible techniques
that guarantee the performance of the attack even with small
attack signal-to-noise ratio. Also, we plan – and encourage
other researches – to investigate countermeasures to identify
and prevent Active System Identification attacks.

8. ACKNOWLEDGMENT
This research was partially supported by the Brazilian re-
search agencies CNPq and FAPERJ.

9. REFERENCES
[1] S. Amin, X. Litrico, S. Sastry, and A. M. Bayen.

Cyber security of water scada systems part i: analysis
and experimentation of stealthy deception attacks.
IEEE Transactions on Control Systems Technology,
21(5):1963–1970, 2013.

[2] E. Bou-Harb, M. Debbabi, and C. Assi. Cyber
scanning: a comprehensive survey. IEEE
Communications Surveys & Tutorials,
16(3):1496–1519, 2014.

[3] X. Chen, Y. Song, and J. Yu. Network-in-the-loop
simulation platform for control system. In AsiaSim
2012, pages 54–62. Springer, 2012.

[4] P. Civicioglu. Backtracking search optimization
algorithm for numerical optimization problems.
Applied Mathematics and Computation,
219(15):8121–8144, 2013.
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Abstract—The literature regarding to cyber-physical attacks
in Networked Control Systems (NCS) indicates that covert
and accurate attacks must be planned based on an accurate
knowledge about the model of the attacked system. In this
sense, the literature on NCS recognizes the Active System
Identification attack as a tool to provide the attacker with
the required system models. However, there is still a lack
of discussion about countermeasures for this specific attack.
In this sense, this work proposes the use of a randomly
switching controller as a countermeasure for the Active System
Identification attack. The simulation results indicate that this
countermeasure is capable to mitigate the mentioned attack at
the same time that it performs a satisfactory plant control.

1. Introduction
A Networked Control System (NCS) consists of physical

plant controlled by a digital controller – i.e. a computational
system – through a communication network, which, indeed,
integrates the cyberspace to the physical domain. Motivated
by the increasing use of NCSs in industrial plants and
critical infrastructures, and considering the cyber threats that
can affect these systems, studies have been conduced to
characterize vulnerabilities and propose security solutions
for NCSs. In this context, the literature [1], [2], [3], [4], [5]
demonstrates that a number of sophisticated – covert and
accurate – attacks need to be built based on an accurate
knowledge about the model of the attacked system.

Recent works [5], [6] introduced a set of System Iden-
tification attacks that may be launched against NCSs to
provide the attacker with the required system models and,
therefore, support the design of other sophisticated attacks.
For instance, in [5], the joint operation of a Passive System
Identification attack and a Data Injection attack is used to de-
grade, in a physically covert fashion, the service performed
by a plant. It is shown that the performance of this covert
data injection attack is directly affected by the accuracy of
the data obtained by the Passive System Identification attack.

In [6], the authors introduce the Active System Iden-
tification Attack as a tool to provide the attacker with the
required system models. Although the authors of [6] encour-
age the development of countermeasures for the mentioned
attack, there is a lack of discussion about countermeasures
for this specific attack. In this sense, this work aims to
discuss and propose a countermeasure for the Active System

Identification Attack. The straightforward countermeasure to
prevent the success of a System Identification attack in an
NCS is to avoid unauthorized access to the control loop
using, for example, network segmentation, demilitarized
zones (DMZ), firewall policies and implementing specific
network architectures, such as established in [7]. A com-
plementary countermeasure – in case the attacker is capable
to access the control loop – is to hinder the access to the
data flowing in the NCS using, for example, symmetric-
key encryption algorithms, hash algorithms and a timestamp
strategy to form a secure transmission mechanism between
the controller and the plant, as proposed in [8]. However,
when the mentioned countermeasures fail and the attacker
gain access to the data flowing in the NCS, the alternative
to prevent the attacker to obtain the model of the system is
to hinder the analysis of the captured data – i.e. make the
System Identification algorithm inaccurate/ineffective.

One possible strategy to cause difficulties to the System
Identification algorithm is to have, in the NCS, specific
control functions that are, at the same time, harder to be
identified and capable to control the plant. Considering this
strategy, it is proposed in this work the use of randomly
switching controllers as a feasible countermeasure for the
Active System Identification attack proposed in [6].

The remainder of this paper is organized as follows.
Section 2, presents some related works. Section 3, describes
the Active System Identification attack proposed in [6]. In
Section 4, the switching controller is presented and dis-
cussed as a countermeasure for the Active System Identifica-
tion attack. Section 5, presents simulation results, where the
performance of the switching controller is analyzed from the
countermeasure and control perspectives. Finally, Section 6
presents some conclusions and possible future works.

2. Related Works
This section presents a review on the literature encom-

passing covert/model-dependent attacks and System Identi-
fication attacks in NCSs. In [3], the authors analyze a wide
variety of attacks in NCSs and establish the requirements
for the attacks in terms of the model knowledge, disclosure
and disruption resources. In their work, it is stated that high
level of knowledge about the model of the attacked system
is required to build covert attacks.

In [1], [2], [4], there are proposed and analyzed examples
of covert attacks that agree with the statement provided in
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[3]. In [1], [4], the attacker, acting as a man-in-the-middle
(MitM), injects false data in the forward stream of the NCS
to take control of the plant. The attacker, then, uses the
model of the attacked plant to compute the data that is
injected in the feedback stream to make the attack covert.
The covertness of the attack proposed in [1] is analyzed
from the perspective of the signals arriving to the controller
and, as demonstrated in [4], it depends on the difference
between the actual model of the plant and the model known
by the attacker. In [2] the attacker, based on the model of
the system, injects data in the NCS to covertly steal water
from the Gignac canal system located in Southern France.

In [1], [2], [3], [4], where the attacks are designed and
built based on the models of the targeted systems, it is not
described how these models are obtained by the attacker. It is
just stated that the models are previously known to subsidize
the design of these covert/model-dependent attacks.

To fill this gap, in [5] and [6], the authors propose two
new kinds of attack: the Passive System Identification attack
[5]; and the Active System Identification attack [6]. These
attacks, which belong to the category of Cyber-physical
Intelligence attacks [5], are intended to estimate the models
of the attacked system. The Passive System Identification
attack [5] does not need to inject signals on the NCS to
estimate its models. However, it depends on the occurrence
of events, that are not controlled by the attacker, to produce
signals that carry meaningful information for the system
identification algorithm. On the other hand, the Active Sys-
tem Identification attack [6], constitutes an alternative to the
passive System Identification attacks in situations where the
attacker may not wait so long for the occurrence o such
meaningful signals. To do so, as described in Section 3,
the attacker estimates the open-loop transfer function of
the system by injecting an attack signal in the NCS and
eavesdropping its response at only one point of interception.
In this work it is proposed a countermeasure to hinder the
Active System Identification attack, even if the attacker gets
access to the data flowing in the NCS.

3. The Active System Identification Attack
In this section, the Active System Identification attack

[6] is briefly described, in order to provide the information
necessary to comprehend the proposed countermeasure. The
referred attack aims to estimate the coefficients of the open
loop transfer function G(z) = C(z)P (z) of an NCS, shown
in Figure 1.To do so, the attack is performed in three stages:

• STAGE-I: As a Man in the Middle (MitM), the at-
tacker injects a(k) in the NCS, as shown in Figure 1.

• STAGE-II: The attacker eavesdrops the output y(k)
of the plant, during a monitoring period T , in order
to obtain the response ya(k) caused by a(k).

• STAGE-III: Knowing a(k) and ya(k), the attacker
estimates the open-loop transfer function of the sys-
tem G(z) by applying a(k) in an estimated model
Ge(z), which is adjusted until its estimated output
ŷa(k) matches ya(k). In [6], this adjustment is per-
formed by bio-inspired optimization algorithms.
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Figure 1: Active System Identification attack in an NCS.

Note that ya(k), obtained in STAGE-II, is only a por-
tion of y(k). The complete response of the system is
y(k) = yr(k) + ya(k), wherein yr(k) is the response of the
system caused by r(k). Considering that the system is stable,
the output yr(k) caused by r(k) converges and stabilizes at
a constant value q after a certain amount of samples ks.
Thus, in STAGE-II, to obtain ya(k), ∀k > ks, the attacker
must compute ya(k) = y(k)−q. This eliminates the portion
of y(k) caused by r(k), making the identification problem
dependent of only A(z) = Z[a(k)], as shown in (1):

ya(k) = y(k)− q = −Z−1

[
G(z)

1 +G(z)
A(z)

]
,∀k > ks.

(1)
wherein Z represents the Z-transform operation. The value
of q is obtained by the attacker by capturing y(k) after the
stabilization of the NCS, before the injection of a(k).

In STAGE-III, the attacker assess G(z) by applying a(k)
in an estimated system, defined by (2) and (3):

ŷa(k) = −Z−1

[
Ge(z)

1 +Ge(z)

]
∗ a(k), (2)

Ge(z) =
αnz

n + αn−1z
n−1 + ...+ α1z

1 + α0

zm + βm−1zm−1 + ...+ β1z1 + β0
, (3)

wherein Ge(z) is the estimation of G(z) and ŷa(k) is the
output of the estimated system. [αn, αn−1, ...α1, α0] and
[βm−1, βm−2, ...β1, β0] are the coefficients of the numerator
and denominator of Ge(z), respectively, that are intended
to be found by the Active System Identification attack. The
order of the numerator and denominator are expressed by
n and m, respectively. Thus, to find G(z), the coefficients
of Ge(z) are adjusted until the estimated output ŷa(k)
converges to the known ya(k).

In [6], the Backtracking Search Optimization algorithm
(BSA) [9] and the Particle Swarm Optimization (PSO) [10]
are used to iteratively adjust the parameters of Ge(z), by
minimizing a specific fitness function, until Ge(z) converges
to G(z). The coefficients of Ge(z) are the coordinates xj =
[αn,j , αn−1,j , ...α1,j , α0,j , βm−1,j , βm−2,j , ...β1,j , β0,j ] of
an individual j of the BSA/PSO. The fitness fj of each
individual j of the BSA/PSO is computed as (4):

fj =

N∑
k=0

(ya(k)− ŷaj(k))2

N
, (4)

wherein N is the number of samples during T and
ŷaj(k) is the response of the estimated model (2)
(3) caused by a(k), when the coefficients of Ge(z)
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are xj . Note that min fj = 0 when [αn,j , αn−1,j , ...
α1,j , α0,j , βm−1,j , βm−2,j , ...β1,j , β0,j ] = [αn, αn−1, ...
α1, α0, βm−1, βm−2, ...β1, β0], i.e. when Ge(z) = G(z).

4. Switching Controllers: a Countermeasure
As discussed in Section 1, one possible way to cause

difficulties to the System Identification algorithm is to have,
in the NCS, specific transfer functions that are harder to be
identified. So, it is necessary to lean over C(z) and P (z)
(see Figure 1) to verify what can be done to hinder the
identification of the NCS. In the case of the plant, it is
not desired or even feasible to modify P (z) just to make
it harder to be identified. Modify P (z) means modify the
physical process being controlled, which is not convenient.
However, it is possible to design a controller so that it
simultaneously meet two objectives:

O.I - Comply with the plant’s control requirements con-
sidering, firstly, its stability and, secondly, other
requirements such as: settling time, overshoot, etc.

O.II - Hinder the identification process, so that the model
obtained by the attacker is imprecise or ambiguous,
in such a way that the attacker hesitates to launch
covert or model-dependent attacks against the NCS.

Note that, in the case of the Active System Identification
Attack proposed in [6], the attacker does not identify C(z)
and P (z) separately. The attacker intercepts the control
loop at a single point and, from that point of intercep-
tion, estimates the system’s open-loop transfer function
G(z) = C(z)P (z), as shown in Figure 1. Assuming that it
is not convenient to modify P (z), as previously discussed,
C(z) must be designed to hinder the identification of the
open-loop transfer function of the NCS. So, considering O.I
and O.II, we propose the use of switching controllers as a
countermeasure for the Active System Identification attack.

A Switching Controller consists of a set of control
functions Ci(z), i ∈ I = {1, ..., N}, that are switched
among N states by a switching rule S, to perform the
control of a plant P (z), as in Figure 2. When all Ci(z) and
P (z) are linear, as the NCS herein discussed, the system
is a switched linear system (SLS). For the sake of clarity,
in this work, the switching controller is discussed with
only two control functions C1(z) and C2(z). In general S
considers the behavior of the plant to switch among the
control functions, such as in [11]. However, in the present
this work, the switching rule does not take into account the
plant’s behavior, to command the switchings. To make de
identification more difficult, the proposed switching rule is
described as a Markov chain, shown in Figure 3, where the
control functions are switched at random intervals, following
the probabilities p11(l), p12(l). p21(l) and p12(l), wherein l
is the number of sampling intervals occurred since the last
switch. The reason to switch the control functions at random
intervals is that, according to [12], if the switching time
is known, the identification of an SLS is straightforward.
However, when the switching time is not available the
identification of SLSs becomes a nontrivial task. The prob-
abilities, p12(l) and p21(l) are taken from the probability

density function (PDF) shown in Figure 4, wherein a is the
minimum number of sampling intervals that the system have
to remain in the same state and b is the maximum number
of sampling intervals that the system can remain in the same
state. Note that p11(l) = 1−p12(l) and p22(l) = 1−p21(l).

A valid strategy to achieve the stability on an SLS is
by restricting the switching events, for example, by estab-
lishing a minimum dwell time – i.e. the time between two
consecutive switches. In an SLS, the instability generated
when switching among two stable subsystems is caused by
the failure to absorb the energy increase, caused by the
switchings [13]. Intuitively, it is reasonable to think that
if the system stays at stable subsystems long enough, the
system becomes able to avoid the energy increase caused
by the switchings, maintaining its stability. In [14], it is
proven that it is always possible to preserve the stability
when all the subsystems are stable and the dwell time is
sufficiently large. Actually, it is not an issue if the SLS
occasionally have a smaller dwell time, provided it does
not occur too frequently. It was shown in [15], [16] that
if all the subsystems are exponentially stable then the SLS
remains exponentially stable provided that the average dwell
time is sufficiently large.

In the present work, C1(z) and C2(z) are separately
designed based on the root-locus analysis, in order to make
each subsystem stable. Then, the overall stability is achieved
by adjusting the parameters a and b of the PDF shown in
Figure 4, aiming an average dwell-time that makes the NCS
stable. Besides being adjusted aiming the stability of the
system, a and b are also adjusted to mitigate the system
identification attack. So, concerning O.I, specifically for the
sake of stability, a and b are increased as much as possible
to ensure the minimum average dwell-time required for
stability. On the other hand, regarding O.II, a and b are
adjusted to make the identification attack as much imprecise
as possible, which is not necessarily obtained with high
dwell times. In this sense, a and b are empirically adjusted
to meet both potentially conflicting objectives.

5. Results
In this section, the performance of the proposed coun-

termeasure is analyzed in face of the Active System Iden-
tification attack proposed in [6]. Two NCSs are used for
comparison: one with the proposed countermeasure (us-
ing a switching controller); and another without the pro-
posed countermeasure (using a non-switching controller).
The model of both NCSs, as well as the attack parameters,
are described in Section 5.1. Section 5.2 presents the results
of the switching controller as a countermeasure for the
Active System Identification attack. Section 5.3 presents
the performance of this countermeasure from the control
perspective, in order to identify possible trade-offs that may
exist between O.I and O.II (see Section 4). The simulations
of Sections 5.2 and 5.3 were performed in MATLAB.

5.1. Attacked NCSs and Parameters of the Attack
The NCS without the proposed countermeasure – also

referred here as a system with vulnerable model – is the

206



Physical

process

P(z)
Network

r(k)

y(k)

A
ct

u
at

o
rs

S
en

so
rs+

_

y’(k)

Controller

Plant
forward stream

feedback stream

C1(z)

C2(z)

S

Figure 2: Switching controller in an NCS.

C1(z) C1(z)

p12(l)

p21(l)

p11(l) p22(l)

Figure 3: Markov chain
switching rule.

p(l)

a b

1/(b-a)

l

Figure 4: Probability density
function of p12 and p21.

same NCS attacked in [6], endowed with a non-switching
controller. It consists of a DC motor whose rotational speed
is controlled by a Proportional-Integral (PI) controller. The
DC motor’s transfer function P (z) and the PI control func-
tion C1(z) are represented by (5) and (6), respectively:

P (z) =
0.3379z + 0.2793

z2 − 1.5462z + 0.5646
, (5)

C1(z) =
0.1701z − 0.1673

z − 1
. (6)

Thereby, the open-loop transfer function of the system with
vulnerable model G1(z) – to be identified – is defined as (7):

G1(z) = C1(z)P (z) =
g1,1z

2 + g2,1z + g3,1
z3 + g4,1z2 + g5,1z + g6,1

, (7)

wherein g1,1 = 0.0575, g2,1 = −0.0090, g3,1 = −0.0467,
g4,1 = −2.5462, g5,1 = 2.1108 and g6,1 = −0.5646.

The NCS endowed with the proposed countermeasure –
i.e. the switching controller – also controls a DC motor
defined by the transfer function (5). The switching controller
switches among two control functions: C1(z), that is the
same control function (6) of the system with vulnerable
model; and C2(z) defined as (8).

C2(z) =
0.1208z − 0, 1167

z − 1
. (8)

Therefore, the NCS with the switching controller is an
SLS composed by two subsystems, each having an open-
loop transfer function. The open-loop transfer functions are:
G1(z), that is the same open-loop transfer function (7) of
the system with vulnerable model; and G2(z) defined by (9),

G2(z) = C2(z)P (z) =
g1,2z

2 + g2,2z + g3,2
z3 + g4,2z2 + g5,2z + g6,2

, (9)

wherein g1,2 = 0.0408, g2,2 = −0.0057, g3,2 = −0.0326,
g4,2 = −2.5462, g5,2 = 2.1108 and g6,2 = −0.5646. Note
that the denominators of G1(z) and G2(z) are equal, given
that just the numerators of C1(z) and C2(z) are different.
Thus, g4,1 = g4,2, g5,1 = g5,2 and g6,1 = g6,2.

The control functions C1(z) and C2(z) are designed
to make both subsystems of this SLS stable. As described
in Section 4, the control functions are randomly switched
based on the Markov chain shown in Figure 3, under a
restricted switching policy, whose restrictions are bounded
by the PDF shown in Figure 4. The parameters of the PDF

were empirically adjusted to a = 20 and b = 40, in order
to meet O.I and O.II, as discussed in Section 4. It is worth
mentioning that, regarding O.I, the parameters a and b were
empirically adjusted aiming, primarily, the overall stability
of the system. However, the settling time and the overshoot
of the system are also evaluated in these simulations.

The attack is implemented using the BSA, given that this
metaheuristic presented the best performance in the attack
simulations of [6]. The parameters of the BSA are the same
as in [6]: the population has 100 individuals; the limits of
each dimension of the search space are [−10, 10]; and η
– that establishes the amplitude of the movements of the
individuals of the BSA – is set to 1. In each simulation, the
BSA is executed for 4500 iterations. As in [6], the attack
signal shown in Figure 1 is a discrete-time unitary impulse,
i.e. a(k) = δ(k − ka),wherein ka is the single sample in
which the attacker interfere in the system by adding 1 to the
feedback stream. In each simulation, the feedback stream
is captured by the attacker during a period T = 2s (100
samples), starting at sample ka+1. In both NCSs, the sample
rate is 50 samples/s and the set point r(k) is an unitary step
function. Network delay and packet loss are not taken into
account in the simulations of this paper.

5.2. Performance as a Countermeasure
This section presents the results obtained by the Active

System Identification attack, when launched in the NCSs
described in Section 5.1 – one NCS using the switching
controller and other using the non-switching controller. In
each NCS, there were executed 100 attack simulations.

All coefficients estimated by the 100 attack simula-
tions in each NCS are presented in Figure 5. Recall that
the NCS with the non-switching controller just have one
open-loop transfer function G1(z), while the NCS with the
switching controller has two open-loop transfer functions
G1(z) and G2(z). Note that the actual values of the co-
efficients [g1,1, g2,1, g3,1, g4,1, g5,1, g6,1] and [g1,2, g2,2, g3,2,
g4,2, g5,2, g6,2] of G1(z) and G2(z), respectively, are also
depicted in Figure 5. By observing Figures 5(a) to 5(f), it is
possible to state that the coefficients estimated in the NCS
with the non-switching controller are precise and accurate.
In the NCS with non-switching controller, the Active Sys-
tem Identification attack provides the information and the
confidence that the attacker needs to design other model-
dependent attacks. On the other hand, in the NCS endowed
with the proposed countermeasure, the use of the switching
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Figure 5: Coefficients estimated by the attack in NCSs
with and without the proposed countermeasure.

controller causes the dispersion of the estimated values,
reducing the precision and the accuracy of the coefficients
obtained by the attacker. As shown in Figure 5, the set of
estimated values in this SLS are spread and does not accu-
rately indicate any of the coefficients of G1(z) and G2(z).

The impact of the switching controller in the attack per-
formance can also be verified by comparing the global min-
imum values found for the fitness function (4). In the NCS
endowed with the switching controller, the global minimum
values of all attack simulations are within 1.81×10−06 and
1.96×10−04 (the mean is 2.50×10−05). On the other hand,
in the NCS with the non-switching controller, all global
minimum values are within 7.82× 10−09 and 4.46× 10−08

(the mean is 8.75 × 10−09). Recall that, as discussed in
Section 3 the minimum value of (4) is min fj = 0 when the
attacked system is perfectly identified. So, the higher order
of the global minimum values caused by the switching con-
troller also demonstrates the effectiveness of the proposed
countermeasure. From the attacker point o view, these higher
global minimum values may be an indicative that the Active
System Identification attack was not effective in obtaining
the system model. In this sense, the attacker must hesitate
to launch a model-dependent attack with the information
gathered by the Active System Identification attack.

The impact of the proposed countermeasure in the attack
can also be verified in the pole-zero maps shown in Figure 6.
Figure 6(a) shows the zeros and poles of the open-loop

transfer functions estimated by 100 simulations with the
non-switching controller. Figure 6(b) shows the zeros and
poles of the open-loop transfer functions estimated by the
simulations using the switching controller. Note that, in the
simulations with the non-switching controller, the estimated
zeros and poles accurately meet the actual zeros and poles
of G1(z). On the other hand, Figure 6(b) shows that when
the proposed countermeasure is used, the estimated zeros
and poles are spread and do not concur for the actual zeros
and poles of G1(z) and G2(z) – i.e. the open-loop transfer
functions of the two subsystems of the SLS.

The spreading of the estimated poles and zeros in Fi-
gure 6(b), the inaccuracy of the estimated coefficients shown
in Figure 5, and the higher global minimum values found
by the BSA demonstrate the effectiveness of the switching
controllers as a countermeasure for the Active System Iden-
tification attack of [6]. With the proposed countermeasure,
it is possible to state that the model obtained by the at-
tacker is imprecise/ambiguous in such a way that, with the
obtained information, the attacker may hesitate to launch a
covert/model-dependent attack. So, O.II (Section 4) is met.

5.3. Performance as a Controller
In this section, the performance of the proposed counter-

measure is analyzed from the control perspective, in order
to identify the possible impacts that it may produce in the
control of the plant. To do so, the following aspects are eva-
luated: stability; overshoot; and settling time. Considering
these aspects, the performance of the switching controller
is compared with the performance of the non-switching
controller. Given the stochastic nature of the switching
controller described in Section 5.1, the mentioned aspects
are evaluated through a set of 100,000 simulations.

In Figure 7, there are shown the responses of both NCSs
in the time domain. The responses of the NCS with the
proposed countermeasure are represented by the highlighted
area. The bounds of this area are drawn based on the maxi-
mum and minimum values of the output of the plant, consid-
ering all 100,000 simulations. The non-stochastic response
of the NCS using the non-switching controller is represented
in Figure 7 by the red line. Note that, up to t = 0.4s the
responses using the switching controller are the same as the
response with the non-switching controller. This is caused
by the minimum dwell time of 0.4s, set by the minimum
number of sampling intervals that the system have to remain
in the same state, defined as a = 20 samples. Based on
Figure 7, it is possible to verify that the NCS with the
proposed countermeasure is stable, the output of the plant
converges to the set point (1rad/s) without stationary error,
and it does not present overshoots. In these aspects, from the
control perspective, the proposed countermeasure presents
the same performance as the non-switching controller.

On the other hand, due to the successive switchings, it
is possible to verify in Figure 7 that the settling time of the
proposed countermeasure is higher than the settling time
provided by the non-switching controller. The deterministic
settling time of the NCS with the non-switching controller
is 2.4s. The settling time ts provided by the switching
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the proposed countermeasure.

controller is stochastic and depends on the random sequence
of dwell times occurred before ts. The settling times of
all 100,000 simulations using the switching controller are
represented in the histogram of Figure 8. The minimum and
maximum settling times are 3.90s and 6.96s, respectively,
and the mean is 4.555±0.009s (confidence interval of 95%).

The performance of the proposed countermeasure, from
the control perspective, is satisfactory and indicates the
feasibility of meeting O.I and O.II, simultaneously. In these
simulations, the control provided by the switching controller
presents a performance similar to the performance of the
non-switching controller. The primary requirement of O.I
– i.e. stability – is met, as well as the requirement of not
causing overshoots on the plant. However, the simulations
indicate an increase in the settling time of the system, which
may not be an issue, but have to be analyzed depending on
the specific process being controlled.

6. Conclusion
We propose the use of a randomly switching controller

as a countermeasure for the Active System Identification
attack, in case of other conventional countermeasures –
such as encryption and network security policies – fail.
It is demonstrated that this countermeasure is capable to
mitigate the mentioned attack, making the model obtained
by the attacker imprecise and ambiguous. At the same time,
the simulations demonstrate that the performance of this
countermeasure is satisfactory from the control perspective.
Considering the control aspects, in general, the countermea-
sure presents a performance similar to the performance of
a non-switching controller, with an increase in the system’s
settling time. Therefore, the tradeoff between hindering the
identification attack and increasing the settling time – which,
depending on the plant, is not necessarily a drawback –
must be taken into account when deciding for using this
countermeasure. As future work, we plan to assess the
performance of this countermeasure against other system
identification attacks/algorithms. Also, we encourage the
development of an heuristic or an analytical method capa-
ble to provide control functions and switching rules that
maximize the performance of the countermeasure in both
mentioned objectives – i.e. comply with the plant’s control
requirements; and hinder the identification process.
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Abstract—The recent literature on nuclear science demon-
strates the feasibility and the benefits of controlling large Pres-
surized Heavy Water Reactors (PHWR) through Networked
Control Systems (NCS). However, the use of NCSs in PHWRs
may also expose such critical systems to threats launched from
the cyber domain. In the present paper, we propose a novel
combination of two cyber-physical attacks (Passive System
Identification attack and Covert Misappropriation attack) and
evaluate their impact in a PHWR. The results indicate that,
with this two attacks, the attacker is able to manipulate the
power of the PHWR achieving, at the same time, a high degree
of covertness. Moreover, the outcomes suggest the sensitivity
and accuracy required for a monitoring system to detect this
kind of attack, which may be considered in the development of
standards and requirements for PHWR monitoring systems.

Index Terms—Security, Pressurized Heavy Water Reactor, Net-
worked Control Systems, System Identification, Covert Attack.

1. Introduction

The use of communication networks to integrate con-
trollers and physical plants in industry aims to reduce costs
as well as improve management and operational capabilities
[1]. For the same reasons, there is a research effort regarding
the use of Networked Control Systems (NCS) in large
Pressurized Heavy Water Reactors (PHWR) [2], [3], [4].
According to [2], the main benefits of using NCS tech-
nologies in a PHWR are: reduced wiring between sensors
and controllers; greater instrumentation flexibility; better
diagnostics provided by the digital connectivity, which is
useful to identify erros in the system.

However, at the same time that the use of NCSs brings
several advantages, the use of communication networks to
integrate controllers and physical plants can also expose
these systems to cyber threats [1], [5]. The most emblematic
example of these cyber-physical threats is the Stuxnet worm
[6], which targeted the uranium enrichment centrifuges of
the Iranian nuclear program. In this context, there is a

research effort to characterize vulnerabilities and solve se-
curity issues in NCSs [1], [5], [7], [8], [9], [10], [11]. In
[7], [10], it is proposed a Covert Misappropriation attack,
where the malicious agent uses the knowledge about the
plant model to inject false data in the NCS without being
noticed by the control system. Although the covertness of
this attack is necessarily model dependent, the author does
not describe how the attacker obtains the model of the
plant. As a premise, it is just assumed that the attacker
knows the plant model to design the attack. A more recent
work [1] proposed the Passive System Identification attack.
The aim of this attack – also classified as a Cyber-physical
Intelligence attack [1] – is to estimate the NCS models
and should be used to support the Covert Misappropriation
attack. However, a complete attack resulting from the combi-
nation of these two attacks was not yet evaluated. Therefore,
in this work, we propose and evaluate the new joint action of
the two aforementioned attacks in a PHWR. The complete
offensive is performed in two steps:

S-I The Passive System Identification (PSI) attack: which is
performed to obtain an accurate model of the attacked
system – in this case, the model to be obtained is the
transfer function of a PHWR zone;

S-II The Covert Misappropriation attack: where a Man-in-
the-Middle (MitM) intercepts the NCS communication
links and injects false information in both forward
and feedback streams. The falsa data injected in the
network is computed based on the model estimated by
the PSI attack, in order to make the attacker as covert as
possible during the manipulation of the PHWR power.

It is worth mentioning that the purpose of this work is
not to facilitate cyber attacks in PHWRs. The aim of the
present paper is to show how stealth a Covert Misappropri-
ation attack can be when designed based on the information
provided by a PSI attack. With this study, we aim to en-
courage the research for techniques capable of effectively
measuring and identifying this kind of attack in PHWRs –
and other critical cyber-physical systems. From the PHWR
owner perspective, it is worth knowing the possible impacts
and what should be expected as evidence if such complete
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  and sophisticated attack occurs. This information may con-
tribute with the development of standards and requirements
for PHWR monitoring systems.

The next sections of this work are organized as follows.
Section 2 provides a brief explanation on the attacked
PHWR. Section 3 describes the PSI attack. Section 4 ex-
plains the Covert Misappropriation attack. Section 5 shows
the results of a set of simulations performed to evaluate the
impact of the complete attack in a PHWR zone. Finally,
Section 6 brings the conclusions of this work.

2. Networked PHWR

A PHWR is a type of nuclear reactor whose fuel is
natural Uranium and, therefore, uses Heavy Water (D2O,
or 2H2O) as coolant and moderator. It is known that, in
nuclear power plants, the power produced by the reactor is
controlled through adjustments in its reactivity. Depending
on the type of the reactor, such reactivity adjustment may be
implemented, for instance, using light water, control rods or
liquid poisons. In the PHWR considered in this work, the
reactivity input is controlled using light water. According
to [12], in a nuclear reactor, the control system computes
the signals that drive the reactivity control devices – i.e.
the actuators – used to change the reactivity input to the
reactor. When the reactivity is increased, the neutron flux
also increases and so does the burn-up of fissile material.
On the other hand, when the reactivity input is reduced, the
burn-up of fissile material also reduces.

The literature on nuclear science [2], [3], [4] demon-
strates the feasibility of controlling a large PHWR through
an NCS. In [2], the satisfactory control of an example of
large PHWR is achieved using a state-feedback controller
and a 100 Mbps Ethernet LAN, using UDP/IP. More re-
cently, in [3], [4], the authors demonstrate the feasibility of
using PID algorithms to control a large PHWR through an
UDP/IP Ethernet communication.

As in [2], [3], [4], the model of the reactor considered
in this work belongs to an Indian PHWR of 540 MWe.
According to the analysis provided in [2] this 540 MWe
PHWR is constituted by 14 zones which can be modeled as
14 independent Single-Input-Single-Output (SISO) Systems.
For the sake of simplicity, we choose one of these 14 zones
to assess the performance and impact of the joint operation
of the PSI attack and the Covert Misappropriation attack.
The model of the attacked zone and its PID controller, both
obtained from [4], are defined by (1) and (2), respectively:

G(z) =
0.0001889z

z2 − 1.289z + 0.2891
, (1)

C(z) = kp + Tski

(
z

z − 1

)
+
kd

Ts

(
z − 1

z

)
, (2)

wherein the sample time is Ts = 500ms, kp = 348.52,
ki = 17.25 and kd = 10.79. The transfer function (1) of this
PHWR zone is obtained based on practical plant data [3],
[4]. In a PHWR, the power of a specific zone is controlled
through a control valve that is used to fill and drain water

from a compartment. Therefore, the transfer function (1)
describes the relationship that exists between the power P
and the valve input v in zone 6 of the PHWR reported in
[3], [4], which has a full power of 132.75MWt. As in [4],
the signal applied to the controller’s set point is a ramp
increased by 0.66MWt/s – i.e. 0.5% of the full power –
for 10s and held constant after that. The ramp increase rate
herein used is the maximum permitted for this PHWR class.
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Figure 1: Networked Control System [1]

3. Passive System Identification Attack

This section describes the PSI attack [1], in order to
present the basic concepts necessary to study the potential
impacts of the joint operation of this attack and the Covert
Misappropriation attack in a large PHWR. The goal of
the PSI attack is to obtain an accurate estimate of the
coefficients of the PHWR model, G(z), using the data
gathered from both forward and feedback streams of the
NCS presented in Figure 1. To this end, the attacker executes
two steps:
• STEP-I: The plant’s input u′(k) as well as its output
y(k) are eavesdropped during a monitoring period T .

• STEP-II: Knowing y(k) and u′(k), the plant model G(z)
is estimated. The attacker applies u′(k) to the input of an
estimated model Ge(z) and adjusts its coefficients until
the output ŷ(k) of Ge(z) converges to y(k). In [1], the
coefficients of Ge(z) are adjusted using a bio-inspired
metaheuristic, namely: Backtracking Search Algorithm
(BSA) [13].
Therefore, to estimate G(z) in STEP-II, the attacker

applies u′(k) into the estimated transfer function represented
by (3):

Ge(z) =
Z[ŷ(k)]

Z[u′(k)]
=
αnz

n + αn−1z
n−1 + ...+ α1z

1 + α0

zm + βm−1zm−1 + ...+ β1z1 + β0
,

(3)
wherein ŷ(k) is the output provided by the estimated
model Ge(z), and Z represents the Z-transform operation.
Note that, [αn, αn−1, ..., α1, α0, βm−1, βm−2, ...β1, β0] is
the set of coefficients of G(z) that the PSI attack aims
to discover, wherein n defines the numerator’s order
and m the denominator’s order. Therefore, to obtain
the model of the actual plant G(z), the parameters of
Ge(z) are modified and adapted until ŷ(k) converges
to y(k). To do so, the numerical optimization process
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  performed by the BSA iteratively adjusts the parameters
of Ge(z) in order to minimize a fitness function
f , until Ge(z) meets G(z). The coordinates xj =
[αn,j , αn−1,j , ...α1,j , α0,j , βm−1,j , βm−2,j , ...β1,j , β0,j ] of
each individual j of the BSA are assigned as the coefficients
of an estimated model Ge(z). Each individual j is, therefore,
evaluated by computing its fitness fj according to (4):

fj =

S∑
k=0

[y(k)− ŷj(k)]
2

S
, (4)

wherein S is the total amount of samples captured
by the attacker during the monitoring period T
of STEP-I. The signal ŷj(k) is the output of
Ge(z) (3) when its coefficients are defined as xj .
From (4) it is possible to see that min fj = 0
if y(k) = ŷj(k). This result is achieved whenever
[αn,j , αn−1,j , . . . , α1,j , α0,j , βm−1,j , βm−2,j , . . . , β1,j , β0,j ]
= [αn, αn−1, . . . , α1, α0, βm−1, βm−2, . . . , β1, β0] or, in
other words, when Ge(z) = G(z).

4. Covert Misappropriation attack

The attack for covert misappropriation of NCSs is pre-
sented in [10]. The aim of this attack is to allow a Man-in-
the-Middle (MitM) to perform malicious control actions in
a plant without being perceived from the perspective of the
signals arriving at the original networked controller. Figure 2
shows an implementation of such covert misappropriation
attack, based on the attack architecture proposed in [10],
wherein A(z) is the covert controller and G′(z) is an
estimated model of the plant, which the attacker is supposed
to know. The input δ(k) drives the attacker’s feedback loop
and allows the MitM to lead the actual plant output to the
desired offset.

Note in Figure 2 that, in the forward stream, the MitM
performs a data injection attack in which the input of the
plant is given by (5):

u′(k) = ψ(k) + u(k), (5)

wherein ψ(k), referred to as attack signal, is defined by (6):

ψ(k) = δ(k) ∗ Z−1

[
A(z)

G′(z)A(z) + 1

]
, (6)

wherein Z represents the Z-transform operation. Therefore,
considering this data injection, the output of the plant
Y (z) = Z [y(k)] is given by (7):

Y (z) = Z [ψ(k) + u(k)]G(z). (7)

Yet, from Figure 2, it is possible to see that in the feedback
stream the MitM also implements a data injection attack
in order to manipulate the controller’s input signal Y ′(z) =
Z [y′(k)]. With this manipulation, considering (7), the signal
that arrives at the controller is defined as (8):

Y ′(z) = Y (z)−Z [ψ(k)]G′(z)
= Z [u(k) + ψ(k)]G(z)−Z [ψ(k)]G′(z). (8)

In this sense, if the attacker perfectly knows the model of
the actual plant – i.e. if G′(z) = G(z) –, then (8) can be
rewritten as (9):

Y ′(z) = G(z)Z [u(k) + ψ(k)]−G(z)Z [ψ(k)]
= G(z)Z [u(k) + ψ(k)− ψ(k)]
= G(z)Z [u(k)]

(9)

which, from the perspective of the controller, means that
the plant is behaving as in a normal operation, where
Y (z) = Z [u(k)]G(z). In other words, by analyzing y′(k),
one should assume that y′(k) = y(k), u′(k) = u(k) and,
therefore, there is no data injection attack in the NCS.

5. Results

This section presents an evaluation on the performance
of the attacks described in Sections 3 and 4, when launched
together against the PHWR zone specified in Section 2.
The results of both attacks are obtained through simula-
tions using MATLAB/SIMULINK. First, the PSI attack is
performed, in order provide the attacker with an estimate
of the model G′(z) of the attacked PHWR zone. After that,
the Covert Misappropriation attack is carried out using the
data that the PSI attack provided.
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Figure 2: Covert Misappropriation attack.

As previously discussed, the PSI attack aims to estimate
the coefficients of the attacked plant which, according to (1),
are: α1 = 1.889 × 10−4, β1 = −1.289 and β0 = 0.2891.
The monitoring time of the attack is T = 200s, starting
when the power P of the attacked zone begins to increase –
i.e. when the ramp setpoint specified in Section 2 starts. The
BSA configurations used in the simulations of this work are
the same as those used in [1]: the lower and upper limits of
each search space dimension are −10 and 10, respectively;
the number of individuals in the BSA population is 100;
and η = 1 (in the BSA, η is used to define the amplitude
of the displacement of the individuals). The accuracy of the
PSI attack is analyzed considering three different numbers
of iterations of the BSA: 200, 400 and 600. For each number
of iterations, there were executed 100 attack simulations.

Figure 3 shows the values of α0, β1 and β0 estimated by
100 attack simulations for each of the mentioned numbers
of BSA iterations. It is possible to verify that the accuracy
achieved by the PSI attack increases as the BSA iterations
rises. It is noticeable that, with more BSA iterations the
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  estimated values of α0, β1 and β0 become more concen-
trated and close to their actual values. Additionally, Table 1
shows the statistics of this PSI attack in the PHWR zone.
From this table, it is also possible to see that, when the
attacker increases the number of BSA iterations, he/she
improves the performance of the attack – the mean estimated
coefficients become closer to their actual values and the
standard deviation decreases. Note that, a high level of
accuracy is achieved when the attacker runs the BSA for
600 iterations.

TABLE 1: Statistics of the PSI attack in the PHWR zone

Mean Standard Deviation
BSA α1 β1 β0 α1 β1 β0

Iterations (×10−4) (×10−6) (×10−2) (×10−2)
200 4.331 -0.383 -0.617 87.64 31.18 31.18
400 2.013 -1.242 0.242 19.55 7.51 7.51
600 1.890 -1.289 0.288 0.40 0.15 0.15

To evaluate how the accuracy provided by the PSI attack
may contribute for the covertness of the misappropriation
attack, G′(z) is configured using the mean coefficients pre-
sented in Table 1. The aim of this covert misappropriation
attack is to reduce 1MWt of attacked zone power, modifying
as less as possible the controller input signal y′(k) (com-
paring with a normal operation scenario). The input δ(k) of
the MitM is a ramp signal that starts at 30s, decreases at the
rate of −0.2 during 5s and then is kept steady. The covert
controller A(z) computes the same PID function defined in
(2), however, using the following configuration: kp = 310,
ki = 40 and kd = 10.

Figure 4 shows the responses of the PHWR zone with
and without the influence of the Covert Misappropriation
attack, considering the worst estimated model – i.e. when
G′(z) is estimated through 200 BSA iterations. The time
when the covert misappropriation begins is indicated by the
dotted line, placed at 30s. It is possible to see that the MitM
is capable of making the output of the plant y(k) converges
to a power 1MWt lower than in its normal operation (i.e.
without the misappropriation attack). Additionally, by com-
paring the controller input signals y′(k) with and without
the attack, it is possible to verify that both are quite similar.
It indicates the high degree of covertness achieved using
the model estimated by the PSI attack – even executing only
200 BSA iterations. When G′(z) is estimated using 400 and
600 iterations, the covertness of the misappropriation attack
is better than the covertness obtained with 200 iterations.
The difference between y′(k) with attack and y′(k) without
attack decreases as the number of BSA iterations increases.
It is difficult to perceive the differences of covertness if
the three cases (using 200, 400 and 600 iterations) are
represented as in Figure 4. Thus, to compare the covertness
of these three attack conditions, we compute ξ(k) (10):

ξ(k) = y′A(k)− y′N (k). (10)

wherein y′A(k) and y′N (k) are the controller input signal
y′(k) with and without the misappropriation attack, respec-
tively. Figure 5 shows the differences ξ(k) in the controller
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Figure 3: Estimations of α0, β1 and β0 with different
numbers of BSA iterations.
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Figure 4: PHWR responses with and without the Covert
Misappropriation attack (G′(z) estimated in 200 iterations).

input, considering misappropriation attacks where G′(z) is
estimated through 200, 400 and 600 BSA iterations.

Note in Figure 5 that the highest amplitude of ξ(k) is
obtained when G′(z) is estimated with 200 iterations. With
200 iterations max |ξ(k)| = 3.9 × 10−2MWt (during the
transient regime of the attack), while with 400 iterations
max |ξ(k)| = 3.8× 10−3MWt. From the attacker perspec-
tive, the best covertness occurs when G′(z) is estimated with
600 iterations. In this case, max |ξ(k)| = 2.9× 10−5MWt,
which is a quite small deviation in the controller input,
considering the magnitude of the zone power.
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Figure 5: Differences in the controller’s input signal.

These results provide an idea on how covert and harmful
may be this joint attack in a PHWR. The attacker is able
to achieve his/her goal, reducing 1MWt of attacked zone
power, while causing low levels of ξ(k) – especially when

the PSI attack is performed with 600 iterations. These low
levels of ξ(k) may be considered in the development of
standards and requirements for PHWR monitoring systems.

6. Conclusion

This paper brings the novel joint operation of the PSI
attack and the Covert Misappropriation attack against a
PHWR. The results show that the PSI attack can be consid-
ered a powerful tool for the design of such covert misap-
propriation attack. A high degree of covertness is achieved
when the PSI attack is performed with 600 iterations. In this
case, the results demonstrate that the attacker is able to re-
duce 1MWt of attacked zone power, causing an interference
≤ 2.9 × 10−5MWt in the controller input. Moreover, the
outcomes of ξ(k) provide a quantitative assessment on the
accuracy and sensitivity required for a monitoring system to
detect such covert and harmful attack in a PHWR. As future
work, we encourage the evaluation of techniques to measure
and identify the occurrence of this kind of attack, as well as
develop countermeasures to mitigate it in situations where
the attacker has access to the information that is transmitted
through the NCS links.
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Abstract. The possibility of cyberattacks in Networked Control Sys-
tems (NCS), along with the growing use of networked controllers in in-
dustry and critical infrastructures, is motivating studies about the cy-
bersecurity of these systems. The literature on cybersecurity of NCSs in-
dicates that accurate and covert model-based attacks require high level
of knowledge about the models of the attacked system. In this sense,
recent works recognize that Bio-inspired System Identification (BiSI) at-
tacks can be considered an effective tool to provide the attacker with the
required system models. However, while BiSI attacks have obtained suf-
ficiently accurate models to support the design of model-based attacks,
they have demonstrated loss of accuracy in the presence of noisy signals.
In this work, a noise processing technique is proposed to improve the
accuracy of BiSI attacks in noisy NCSs. The technique is implemented
along with a bio-inspired metaheuristic that was previously used in other
BiSI attacks: the Backtracking Search Optimization Algorithm (BSA).
The results indicate that, with the proposed approach, the accuracy of
the estimated models improves. With the proposed noise processing tech-
nique, the attacker is able to obtain the model of an NCS by exploiting
the noise as a useful information, instead of having it as a negative factor
for the performance of the identification process.

Keywords: Security· Networked Control Systems· Cyber-Physical Sys-
tems· System Identification· Backtracking Search Algorithm· Bio-inspired
Algorithm

1 Introduction

The use of communication networks to integrate controllers and physical pro-
cesses in a Networked Control Systems (NCS), such as shown in Figure 1, aims
to improve management and operational capabilities, as well as reduce costs [10].
However, this integration also exposes the physical plants to new threats origi-
nated in the cyber domain.

216

APPENDIX H



2 de Sá et al.
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Fig. 1. Networked Control System.

The possibility of sophisticated and large impact attacks in Networked Con-
trol Systems (NCS) became unprecedentedly concrete after the launch of the
Stuxnet worm [6]. The example of such cyber-physical attack – which is not
unique –, along with the growing use of networked controllers in industry and
critical infrastructures, has been motivating studies about the cybersecurity of
NCSs. In this context, there is a research effort to characterize vulnerabilities,
understand attack strategies, and propose security solutions for NCS [1, 3, 7–14].

The literature on cybersecurity of NCSs [1, 9–12, 14] indicates that accurate
and covert offensives require high level of knowledge about the models of the
attacked system. Exemples of covert attacks that agree with this statement are
provided in [11, 12]. In these works the attacks are performed by a man-in-the-
middle (MitM), where the attacker needs to know the model of the attacked
plant to covertly manipulate the system by injecting false data in both forward
and feedback streams. The covertness of the attacks shown in [11, 12] is analyzed
from the perspective of the signals arriving to the controller, and depends on
the difference between the actual model of the plant and the model known by
the attacker. In [1], the authors demonstrate another covert offensive where the
attacker, aware of the system’s model, injects an attack signal in the NCS to
steal water from a canal system located in Southern France.

However, in [1, 11, 12, 14], where the attacks intrinsically require knowledge
about the NCS models, it is not described how such knowledge is obtained by
the attacker. It is just stated that a model is previously known to subsidize the
design of those attacks. More recently, in [9, 10], the authors propose two Bio-
inspired System Identification (BiSI) attacks to fill this gap. They demonstrate
how the data required to design Denial-of-Service (DoS) or Service Degradation
(SD) attacks may be obtained using bio-inspired metaheuristics. Specifically,
the attacks proposed in [9, 10] are used to obtain the linear time-invariant (LTI)
transfer functions of NCS devices – be it a controller [10], a plant [10], or both
in a open loop transfer function [9].

While BiSI attacks have obtained sufficiently accurate models to support the
design of model-based attacks, they have demonstrated loss of accuracy in the
presence of noisy signals [9]. To overcome this constraint, this work proposes
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a noise processing technique to improve the accuracy of BiSI attacks in noisy
NCSs. With the proposed strategy, an attacker is able to obtain the model
of an NCS by exploiting the noise as a useful information, instead of having
it as a negative factor for the performance of the identification process. In this
paper, the BiSI attack is implemented using the bio-inspired metaheuristic called
Backtracking Search Optimization Algorithm (BSA) [2]. It is worth mentioning
that the purpose of this work is not to facilitate cyber-attacks in NCSs. With
this study, we aim to encourage the research for techniques capable to enhance
the security of NCSs against advanced attacks. Moreover, from the NCS owner
perspective, it is worth knowing how an attacker can obtain valuable information
about the NCS in case of a lack of confidentiality.

The next sections of this work are organized as follows. Section 2 provides a
brief description about the BSA. Section 3 explains the novel noise processing
strategy for BiSI attacks. Section 4 shows the results obtained when the noise
processing strategy herein proposed is used to support a BiSI attack. Finally,
Section 5 brings the conclusions of this work.

2 Backtracking Search Algorithm

This section describes the basic concepts of the BSA, in order to provide a clear
understanding about the algorithm parameters that are adjusted when imple-
menting a BSA-based BiSI attack. The BSA is a bio-inspired metaheuristic that
searches for solutions of optimization problems using the information obtained
by past generations [2] – or iterations. According to [2], its search process is
metaphorically analogous to the behavior of a social group of animals that, at
random intervals returns to hunting areas previously visited for food foraging.
The general, evolutionary like, concept of the BSA is shown in Algorithm 1.

Algorithm 1: BSA

begin
Initialization;
repeat

Selection-I;
Generate new population

Mutation;
Crossover;

end
Selection-II;

until Stopping Condition;

end

At the Initialization stage, the algorithm generates and evaluates the initial
population P0 and sets the historical population Phist. The latter acts as the
memory of the BSA.
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In the first selection stage (Selection-I), the algorithm randomly determines,
based on an uniform distribution U , whether the current population P should
be kept as the new historical population and, thus, replace Phist (i.e. if a <
b | a, b ∼ U(0, 1), then Phist = P ). After that, it shuffles the individuals of Phist.

The mutation operator creates Pmod, which is the preliminary version of the
new population Pnew. The computation of Pmod is performed according to (1):

Pmod = P + η · Γ (Phist − P), (1)

wherein η is empirically adjusted through simulations and Γ ∼ N(0, 1), with N
being a normal standard distribution. Thus, Pmod is the result of the movement
of P’s individuals in the directions established by vector (Phist − P). In order
to create the final version of Pnew, the crossover operator randomly combines
individuals from Pmod and P, also following a uniform distribution.

In the second selection stage (Selection-II), the algorithm evaluates the el-
ements of Pnew using a fitness function f , selects the elements of Pnew with
better fitness than the ones in P, and replaces them in P. Hence, P includes
only new individuals that have evolved. The algorithm iterates until the stopping
condition is met. When it occurs, the BSA returns the best solution found.

Note that the algorithm has two parameters that are empirically adjusted:
the size |P| of its population P; and η, that establishes the amplitude of the
movements of the individuals of P. The parameter η must be adjusted to assign
to the algorithm both good exploration and exploitation capabilities. With this
parameters set, the BSA is used to search for the global minimum of the fitness
function f described in Section 3.

3 Noise Processing Technique for BiSI attacks

The purpose of the technique presented in this section is to use the white gaussian
noise that may be present in an NCS – such as in [9] – in favor of a BiSI attack.
With this technique, an attacker is able to accurately estimate the models of
an NCS by exploiting the noise as a useful information, instead of having it
as a negative factor for the performance of the identification process – which
happened in previous implementations of BiSI attacks [9].

The first step of the attack is to eavesdrop the input i(k) and output o(k)
signals of the device to be identified, represented in Figure 2. The device can
be a controller or a plant. The signals are captured during a monitoring period
containing T samples.

i(k) o(k)G(z)

Fig. 2. Device to be identified.
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After that, the attacker selects every sample of the eavesdropped input signal
i(k) that exceeds a predefined threshold Ω, i.e. if (2) is satisfied:

i(k) > Ω, (2)

Each sample selected from i(k) according to (2) is referred to as in, wherein
n ∈ Z∗+ is a sequential index number for each selected sample, as exemplified in
Figure 3. Additionally, every time that (2) is satisfied, the attacker also stores a
portion on(k) of the output signal o(k). As represented in Figure 3, each portion
on(k) selected from o(k) starts when its respective in occurs. Each portion on(k)
encompasses a sequence of τ samples.
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Fig. 3. Selection of noise portions.

After selecting all in and on(k) from the eavesdropped signals, the attacker
computes I and O(k) according to (3) and (4), respectively:

I =

N∑
n=1

in

N , (3)

O(k) =

N∑
n=1

on(k)

N , (4)

wherein N is the index number of the last sample in obtained from i(k) based
on (2). In the present approach, I corresponds to the amplitude of an impulse
signal I(k) (5) that, when applied to G(z), produces O(k) – the impulse response
function of G(z).

I(k) = Iδ(k). (5)
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Now, to estimate G(z), the attacker applies I(k) to the input of an estimated
model Ge(z) defined by (6):

Ge(z) =
Z[Ô(k)]

Z[I(k)]
=
αpz

p + αp−1zp−1 + ...+ α1z
1 + α0

zq + βq−1zq−1 + ...+ β1z1 + β0
, (6)

wherein Ô(k) is the output provided by the estimated model Ge(z), and Z repre-
sents the Z-transform operation. See that, [αp, αp−1, ..., α1, α0, βq−1, βq−2, ...β1,
β0] is the set of coefficients of G(z) that the BiSI attack aims to discover, wherein
p and q represent the order of the numerator and denominator, respectively.
Therefore, to obtain the model of the actual device G(z), the parameters of
the estimated model Ge(z) are modified and adapted until the output Ô(k) of
Ge(z) converges to O(k). To do so, the BSA iteratively adjusts the parameters
of Ge(z) by minimizing a fitness function f , until Ge(z) meets G(z). The coordi-
nates xj = [αp,j , αp−1,j , ...α1,j , α0,j , βq−1,j , βq−2,j , ...β1,j , β0,j ] of each individual
j of the BSA are assigned as the coefficients of an estimated model Ge(z). The
fitness fj of each individual j of the BSA is computed according to (7):

fj =

τ∑
k=1

[
O(k)− Ôj(k)

]2

τ
. (7)

Recall, from Figure 3, that τ is the number of samples contained in each portion
on(k) of o(k), and, therefore, is also the number of samples contained in O(k) and
Ôj(k). The signal Ôj(k) is the output of Ge(z) (6) when its coefficients are de-

fined as xj . From (7) it is possible to see that min fj = 0 ifO(k) = Ôj(k). This re-
sult is achieved whenever [αp,j , αp−1,j , . . . , α1,j , α0,j , βq−1,j , βq−2,j , . . . , β1,j , β0,j ]
= [αp, αp−1, . . . , α1, α0, βq−1, βq−2, . . . , β1, β0] or, in other words, when Ge(z) =
G(z).

Algorithm 2: BiSI attack with the noise processing strategy

begin
Eavesdrop i(k) and o(k) during T samples;
Noise Processing

Select all in and the respective on(k), ∀i(k) > Ω;
Compute I(k) and O(k) according to (3), (4) and (5);

end
Execute BSA, using I(k) and O(k) to find G(z).

end

The Algorithm 2 briefly describes the complete BiSI attack with the pro-
posed noise processing strategy. Albeit the BiSI attack herein proposed uses the
same bio-inspired metaheuristic used in [9] (i.e., the BSA, concisely described
in Section 2 as in [9]), its is worth mentioning the differences from the present
attack and the BiSI attack of [9]:

– In [9] the attacker injects an attack signal in the system to identify its transfer
function. In that approach, the presence of noise affects the ability of the
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attack to learn the system model from the outputs caused by the attack
signal. On the other hand, in the present work, the attacker does not injects
an attack signal in the system. Conversely, the attacker passively collects the
noisy signals and use them to estimate the system transfer function.

– The approach presented in [9] does not use the Noise Processing technique
herein proposed.

4 Results

This section presents an evaluation on the performance of the BiSI attack with
the noise processing strategy presented in Section 3. The model of the attacked
device – i.e., the device to be identified – is represented by (8). In practice, such
second order transfer function can represent, for instance, a DC motor [4] or a
lighting system [5] (among other systems). However, it is worth mentioning that,
depending on the system characteristics, the coefficients of such plants can be
different from the example defined by (8).

G(z) =
Z[o(k)]

Z[i(k)]
=

2

z − 0.9
. (8)

The sample rate is 50 samples/s, and the noise measured in the input of G(z) is
a white gaussian noise w(k) ∼ N(µ, σ), wherein N is a normal distribution with
mean µ = 0 and standard deviation σ = 0.005. This way, 95% of the amplitudes
of w(k) are within ±0.01 (2σ).

The results of this section were obtained through simulations using MAT-
LAB/SIMULINK. The evaluate the benefits – in terms of accuracy – provided
by the noise processing technique described in Section 3, two BiSI attacks are
implemented for comparison:

(I) a BiSI attack using the noise processing technique along with the BSA op-
timization process, such as described in Section 3;

(II) a BiSI attack using only the BSA optimization process (i.e., without the noise
processing stage). In this case, the eavesdropped signals i(k) and o(k) are
directly used – without treatment – by the BSA to estimate the parameters
of Ge(z). To do so, equations (6) and (7) – used to compute the fitness
of BSA individuals – are rewritten as (9) and (10), and the BiSI attack is
simply represented by Algorithm 3.

Ge(z) =
Z[ô(k)]

Z[i(k)]
=
αpz

p + αp−1zp−1 + ...+ α1z
1 + α0

zq + βq−1zq−1 + ...+ β1z1 + β0
, (9)

fj =

τ∑
k=1

[o(k)− ôj(k)]
2

τ
. (10)

Algorithm 3: BiSI attack without the noise processing strategy

begin
Eavesdrop i(k) and o(k) during τ samples;
Execute BSA, using i(k) and o(k) to find G(z).

end
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As previously discussed, the BiSI attack aims to estimate the coefficients of
the LTI transfer function of an NCS device. Therefore, in the present simulations,
the parameters to be identified – according to (8) – are α0 = 2 and β0 = 0.9. The
BSA configurations in this paper are the same as those used in [9, 10]: the lower
and upper limits of each search space dimension are −10 and 10, respectively;
the number of individuals in the BSA population is 100; η = 1; and the stopping
criteria is 600 iterations. Moreover, T = 0, 5Msamples, τ = 100samples and
Ω = 0.01.

Each of the BiSI attack implementations – (I) and (II) – are evaluated
through 31 different simulations. Each simulation uses a different white gaus-
sian noise signal, randomly generated. Figure 4 shows the 31 values of α0 and β0
estimated by the two BiSI attack implementations (i.e., with and without the
noise processing stage). Additionally, Table 1 shows the statistics of the results
presented in Figure 4. From Figure 4 and Table 1, it is possible to verify that
the accuracy of the BiSI attack with the noise processing stage is better than
the accuracy of the BiSI attack without the proposed technique. Figure 4(b) in-
dicates that the two implementations have similar performance when estimating
β0. In both implementations, all estimated β0 are close to the actual β0 and,
according to Table 1, the standard deviations are similarly low. On the other
hand, Figure 4(a) demonstrates that implementation (I) has better performance
than implementation (II) when estimating α0. With the noise processing stage,
the estimated values of α0 are closer to the actual α0 – i.e., less spread than
without the noise processing stage. The statistics shown in Table 1 ratifies the
better performance provided by the noise processing stage when the BiSI attack
estimates α0. In this case, the mean of the estimated values is closer to the actual
α0, with lower standard deviation.

Com Sem

α
0

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

estimated with the noise processing stage
estimated without the noise processing stage
actual value

(a) Estimations of α0

Com Sem

β
0

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

estimated with the noise processing stage
estimated without the noise processing stage
actual value

(b) Estimations of β0

Fig. 4. Estimations of α0 and β0 with and without the noise processing stage.
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Table 1. Statistics of the BiSI attacks

Coefficient BiSI attack Mean Standard
Implementation Deviation

α0 (I) 1.9997 0.0189
(II) 2.0119 0.0911

β0 (I) -0.8999 0.0034
(II) -0.8998 0.0024

Figure 5, obtained from one example of BiSI attack using implementation (I),
compares the impulse response function O(k) of G(z) – computed by the noise
processing stage – with the impulse response function Ô(k) of the estimated
model Ge(z). Note that, this figure demonstrates the product of the work done
by the noise processing stage: a clear impulse response function, extracted from
a white gaussian noise, that is better handled by the bio-inspired identification
process performed by the BSA. It is possible to see how close Ô(k) is from
O(k), which demonstrates the high accuracy of the estimated model Ge(z) when
the BSA-based identification uses the signals provided by the proposed noise
processing stage.

k

0 20 40 60 80 100
-0.005

0

0.005

0.01

0.015

0.02

0.025

O(k)

Ô(k)

Fig. 5. Evaluation of the performance of the identification process – comparison be-
tween O(k) and Ô(k).

5 Conclusion

In this work we propose a noise processing technique to improve the accuracy
of bio-inspired system identification algorithms. The simulation results indicate
that when the proposed technique is performed prior to the BSA-based system
identification process, the accuracy of the estimated model increases. Therefore,
the present technique represent a useful tool to make BiSI attacks effective in
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noisy NCSs. The proposed technique overcomes the constraint presented in other
implementations of BiSI attacks, where the accuracy of estimated models used
to be degraded by noise. The outcomes indicates that, with this approach, noise
may not be a problem for a BiSI attack. Instead, noise can represent a meaningful
and useful information for an attacker if he/she uses the approach described in
this paper.

For future work, we plan to investigate techniques to mitigate BiSI attacks,
by hindering the identification process in situations where an attacker has access
to the data flowing in the NCS. Moreover, we plan to investigate the use of the
proposed algorithm as a defense tool to identify possible model-based attacks in
noisy NCSs. In this sense, we believe that this algorithm can be used to provide
the NCS with information regarding the model of an eventual attack, in order
to allow the autonomous reconfiguration of the control function to compensate
the presence of the attack.
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Abstract—Networked Control Systems (NCS) are widely used
in Industry 4.0 to obtain better management and operational
capabilities, as well as to reduce costs. However, despite the
benefits provided by NCSs, the integration of communication
networks with physical plants can also expose these systems to
cyber threats. This work proposes a link monitoring strategy to
identify linear time-invariant transfer functions performed by a
Man-in-the-Middle during controlled data injection attacks in
NCSs. The results demonstrate that the proposed identification
scheme provides adequate accuracy when estimating the attack
function, and does not interfere in the plant behavior when the
system is not under attack.

Index Terms—Security, Networked Control System, Data In-
jection Attack, Countermeasure, System Identification.

1. Introduction
The concept of the fourth industrial revolution – the

Industry 4.0 – arises with the development and use of
cyber-physical systems, which promote the computerization
of manufacturing and integrate communication networks
to physical processes. In this scenario, Networked Control
Systems (NCS) – i.e., controllers and physical plants con-
nected through communication networks – are widely used
to obtain better management and operational capabilities, as
well as cost reductions [1]. The possible applications for
NCSs are broad and can range from non-critical industrial
plants controlled by wireless networked control systems
(WNCS) [2], to critical infrastructures controlled by wired
NCSs, such as nuclear reactors [3] and water canal systems
[4]. However, despite the several benefits provided by NCSs,
the use of communication networks to integrate controllers
and physical plants can also expose these systems to cyber
threats [1], [4], [5], [6], [7], [8]. In this context, the literature
on NCSs shows a research effort to characterize vulnerabil-
ities and promote security solutions for this kind of system
[1], [4], [5], [7], [8], [9].

In [4], [7], it is proposed a covert misappropriation
attack, where a malicious agent uses the knowledge about
the plant model to inject false data in the NCS. The au-
thor assumes that the attacker knows the plant model, but
does not describe how the model is obtained. More recent
works [1], [5] demonstrate that Service Degradation (SD)-
Controlled Data Injection attacks, produced to cause harmful
effects on physical plants, can be accurately built based on
data gathered by system identification attacks. In [9] the
authors discuss countermeasures that can be used to prevent

data injection attacks in NCSs. These countermeasures can
be systematically thought in a layered defense strategy [9]
to avoid access to the control loop and data.

Non authorized access to the NCS control loop can be
obtained, for instance, by using network segmentation, de-
militarized zones (DMZ), firewall policies and implementing
specific network architectures, such as described in [10].
Additionally, non authorized access to data flowing in the
NCS can be obtained by using security mechanisms for data
confidentiality, integrity and authenticity. Such a solution is
presented in [11], where the authors propose a countermea-
sure that integrates a symmetric-key encryption algorithm,
a hash algorithm and a timestamp strategy to form a secure
transmission mechanism between the controller side and the
plant side. However, despite the security solutions that the
literature offers to protect NCSs, it is necessary to consider
that an attacker can still overcome security mechanisms for
data confidentiality, integrity and authenticity. Indeed, it is
possible to use alternative methods, such as social engineer-
ing, to obtain the security keys necessary to manipulate the
data transmitted in the NCS links. In this case, as shown in
[1], [5], an attacker can have the conditions required to im-
plement an SD-Controlled Data Injection attack. Therefore,
it is important to develop countermeasures able to detect
and identify SD-Controlled Data Injection attacks in NCSs.

In this sense, this work proposes a link monitoring
strategy to identify the linear time-invariant (LTI) transfer
function performed by a Man-in-the-Middle (MitM) during
an SD-Controlled Data Injection attack [1]. From the NCS
owner perspective, the knowledge about the attack function
may be useful, for instance, to:

• provide information for an autonomous process in-
tended to redesign the NCS control function, in order
to mitigate the attack effects in the plant behavior;

• reveal the attacker intentions, for forensic purposes,
helping to estimate the possible impacts of the attack
on the plant and its services.

The reminder of this work is organized as follows:
Section 2 briefly presents the concepts of the SD-Controlled
Data Injection attack [1]. Section 3 describes the proposed
attack identification strategy – a link monitoring technique –,
which uses white gaussian noise to excite the attack function
and obtain the information necessary to identify the attack.
Section 4 shows simulation results that evaluate the ability of
the proposed strategy in identifying an SD-Controlled Data
Injection attack. Finally, Section 5 brings our conclusions.
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2. SD-Controlled Data Injection attack
For the sake of completeness, this section briefly de-

scribes the SD-Controlled Data Injection attack character-
ized in [1]. Its purpose is to reduce the mean time between
failure (MTBF) of the plant and/or reduce the efficiency of
the physical process that the plant performs, by inserting
false data in the NCS communication links.

In the SD-Controlled Data Injection attack, to cause
a harmful behavior on the plant, the attacker interfere in
the NCS’s links by injecting false data into the system in
a controlled way. To do so, the attacker act as a MitM
that executes an LTI attack function M(z), presented in
Figure 1, wherein Y ′′(z) = M(z)Y ′(z), Y ′(z) = Z[y′(k)]
and Y ′′(z) = Z[y′′(k)]. The function M(z) is designed
based on the models of the plant and the controller, both
obtained through a System Identification attack [1], [5].

3. Attack Identification Strategy
This section describes a link monitoring strategy to

identify the LTI attack functions used by a MitM during the
SD-Controlled Data Injection attack described in Section 2.
Consider, for instance, the SD-Controlled Data Injection
attack shown in Figure 1, where the attacker only has access
to the data flowing in the feedback stream.
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Figure 1: Attack identification strategy.

To identify the attack function, M(z) has to be excited
by an input signal in order to produce meaningful informa-
tion for the identification process. If the system is in steady
operating conditions, for instance, the information content
of measured signals is often insufficient for identification
purposes [12]. Considering this, one possible strategy to
identify an attack function is to use typical variations in the
NCS signals – such as a variation caused by a change in the
setpoint r(k) – to estimate M(z). However, depending on
the system, this variations may not occur often, which can
make the identification of M(z) time consuming. Further-
more, causing arbitrary variations in such signals in order
to identify M(z) may not be convenient as it may affect the
behavior of the plant.

The architecture shown in Figure 1 is proposed as a
solution that can be used to excite M(z) at any time, without
affecting the plant behavior when the system is working in
normal conditions – i.e., without attack. To do so, as shown
in Figure 1, a white gaussian noise w(k) is injected (added)
in the signal to be transmitted to through the monitored link.

To avoid interfering in the controlled plant when the system
in not under attack, the same noise signal w(k) is subtracted
from the monitored NCS signal at the other end of the
link. In Figure 1, where the feedback link is the one being
monitored, w(k) is injected at the sensor’s network interface,
and subtracted at the controller input. In this system, the
NCS output Y (z) = Z[y(k)] is defined as (1):

Y (z) =
C(z)P (z)

1 + C(z)P (z)M(z)
[R(z) +W (z) (1−M(z))] ,

(1)
wherein R(z) = Z[r(k)] and W (z) = Z[w(k)]. Note that, if
w(k) is exactly the same signal at both ends of the monitored
link and the system is not under attack (i.e., M(z) = 1), then
the injection of w(k) is cancelled and does not influence in
y(k). In this case, based on (1), the plant output Y (z) is
defined as (2):

Y (z) =
C(z)P (z)

1 + C(z)P (z)
R(z). (2)

The white gaussian noise w(k) is chosen to excite the
attack function due to its unpredictability, which makes it
harder for an attacker to estimate the noise that will be
added to the link at any given moment. The white gaussian
noise w(k) is obtained from a normal distribution, such that
w(k) ∼ N(µ, σ), wherein µ = 0 is the mean and σ is the
standard deviation. To have the same noise signal w(k) at
both ends of the monitored link, it is considered that these
two sources of noise are synchronized and both signals are
produced based on the same seed. Moreover, to avoid an
attacker to predict the noise values, the seed is exchanged
among both devices – i.e., the transmitter and receiver –
using a secure key exchange method, such as the Diffie-
Hellman algorithm [13].

Now, if the system is under attack (i.e., M(z) 6= 1),
then, according to (1), the noise is not cancelled. In this
case, the the signal observed at the controller input y′′(k)
is given by (3):

y′′(k) = w(k) ∗ Z−1

[
M(z)

(
1 + C(z)P (z)

1 + C(z)P (z)M(z)

)]

︸ ︷︷ ︸
y′′1 (k)

+

r(k) ∗ Z−1

[
C(z)P (z)M(z)

1 + C(z)P (z)M(z)

]

︸ ︷︷ ︸
y′′2 (k)

.

(3)

In the present countermeasure, the identification of
M(z) is performed by observing the variations produced by
w(k) in y′′(k) when M(z) 6= 1. Note, in Figure 1, that both
w(k) and y′′(k) are provided to the Attack Identification
process. The effect of w(k) in y′′(k) is specifically indicated
in (3) as y′′1 (k). To have the identification relying on y′′1 (k),
and independent from variations in y′′2 (k), it is executed
when the system is in steady state with regard to r(k). In
other words, the identification occurs when y′′2 (k) – driven
by the setpoint r(k) – converges to a constant value ρ. In this
case, considering the time window defined by ks < k < ku
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in which y′′2 (k) is in its steady state, (3) can be rewritten as
(4) without initial conditons:

y′′(k) = w(k) ∗ Z−1

[
M(z)

(
1 + C(z)P (z)

1 + C(z)P (z)M(z)

)]

︸ ︷︷ ︸
y′′1 (k)

+ ρ︸︷︷︸
y′′2 (k)

, ∀ks < k < ku,

(4)
wherein ρ can be estimated by computing the average ȳ′′
of y′′(k) during a certain amount of samples τ ≤ (ku− ks)
starting at ks, as indicated in (5):

ȳ′′ =

ks+τ∑

ks

y′′(k)

τ

=

ks+τ∑

ks

w(k) ∗ Z−1
[
M(z)

(
1+C(z)P (z)

1+C(z)P (z)M(z)

)]

τ
︸ ︷︷ ︸

ȳ′′1 (k)

+

ks+τ∑

ks

ρ

τ
︸ ︷︷ ︸
ȳ′′2 (k)

,

(5)
Considering that w(k) ∼ N(µ, σ), wherein µ = 0, as
previously stated, then ȳ′′1 (k) → 0 when τ → ∞. In this
case, for a sufficiently large τ , (5) can be simplified to (6):

ȳ′′ ≈ ρ, (6)
Thus, by applying (6) in (4), we may define (7):

y′′1 (k) ≈ y′′(k)− ȳ′′, ∀ks < k < ku, (7)
wherein y′′1 (k) – obtained through measurements of y′′(k)
– is the output of the model defined by (8) when the noise
w(k) is applied to its input:

y′′1 (k) = w(k) ∗ Z−1

[
M(z)

(
1 + C(z)P (z)

1 + C(z)P (z)M(z)

)]
.

(8)
Based on (8), if C(z) and P (z) are known, the Attack

Identification process can estimate M(z) by applying w(k)
in an estimated system, defined by (9):

ŷ′′1 (k) = w(k) ∗ Z−1

[
Me(z)

(
1 + C(z)P (z)

1 + C(z)P (z)Me(z)

)]
,

(9)
wherein Me(z) is the estimation of M(z) and ŷ′′1 (k) is the
output of the estimated system in face of Me(z). By com-
paring ŷ′′1 (k) with y′′1 (k), the Attack Identification process
is able to evaluate whether Me(z) is equal/approximately
M(z). Note that Me(z) is a generic LTI attack function
represented by (10):

Me(z) =
αnz

n + αn−1z
n−1 + ...+ α1z

1 + α0

zm + βm−1zm−1 + ...+ β1z1 + β0
, (10)

wherein n and m are the order of the numerator and denom-
inator, respectively, while [αn, αn−1, ...α1, α0] and [βm−1,
βm−2, ...β1, β0] are the coefficients of the numerator and
denominator, respectively, that are intended to be found by
Attack Identification algorithm. Therefore, to find M(z), the
coefficients of Me(z) are adjusted until the estimated output
ŷ′′1 (k) converges to y′′1 (k) – obtained from measurements of
y′′(k) in the real NCS.

In this work, the Backtracking Search Optimization algo-
rithm (BSA) [14], is used to iteratively adjust the coefficients

of Me(z), by minimizing a specific fitness function until
Me(z) converges to the actual M(z). To compute the fitness
of the BSA individuals, the noise w(k) – recorded while
y′′(k) was being captured – is applied on the estimated
system defined by (9) and (10), where the coefficients
of Me(z) are the coordinates xj = [αn,j , αn−1,j , ...α1,j ,
α0,j , βm−1,j , βm−2,j , ...β1,j , β0,j ] of an individual j of the
BSA. Let ŷ′′1j(k) be the output of the estimated model (9)
(10) in face of w(k), when the coefficients of Me(z) are
xj . Then, the fitness fj of each individual j is obtained
comparing ŷ′′1j(k) with y′′1 (k), according to (11):

fj =

N∑
k=0

(y′′1 (k)− ŷ′′1j(k))2

N
, (11)

wherein N is the number of samples that exist during a mon-
itoring period T of y′′1 (k). Note that, min fj occurs when
[αn,j , αn−1,j , ...α1,j , α0,j , βm−1,j , βm−2,j , ... β1,j , β0,j ] →
[αn, αn−1, ...α1, α0, βm−1, βm−2, ...β1, β0], i.e. when the
estimated Me(z) converges to M(z).

4. Results
This section evaluates the performance of the counter-

measure proposed in Section 3 when identifying an SD-
Controlled Data Injection attack (characterized in Section 2).
The results of the attack identification are obtained through
simulations using MATLAB/SIMULINK. The attacked sys-
tem consists of a DC motor controlled by a proportional-
integral (PI) controller. The plant transfer function P (z) and
the control function C(z) are represented by (12):

P (z) =
0.3379z + 0.2793

z2 − 1.5462z + 0.5646
C(z) =

0.1701z − 0.1673

z − 1
(12)

The sample rate of the system is 50 samples/s and the set
point r(k) is a unitary step function.

As discussed in [1], one way to degrade a physical
service of a plant is by causing overshoots during its tran-
sient response, which, indeed, can cause stress and possibly
damage in a variety of physical systems [15]. Additionally,
once the overshoot occur in a short period of time, they
are difficult to be noticed by a human observer. Thus, in
this work, an attack function M(z) is designed to degrade
the plant service by causing 50% of overshoot in the motor
speed. The attack function implemented in the present SD-
Controlled Data Injection attack is represented by (13):

M(z) =
α0

z + β0
, (13)

wherein α0 = 0.25 and β0 = −0.75. In the present
simulations, the parameters of the noise w(k) ∼ N(µ, σ)
are µ = 0 and σ = 0.005.

Figure 2 shows the system output – i.e. the motor speed
– with and without the attack. Note that, when the attack
is executed, the motor speed has an overshoot of 50%,
and a portion of noise is present in the system output.
However, in a normal condition – i.e., without attack – the
noise is cancelled and does not appear in the plant output,
as expected.

As previously discussed, the present attack identification
strategy aims to estimate the coefficients of M(z), which
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according to (13) are α0 and β0. The signals w(k) and
y′′(k), used by the identification algorithm, are recorded
during is T = 2s (100 samples), starting when the system
achieves it steady state regarding to r(k). The BSA config-
urations used in the simulations of this work are the same
as those used in [1]: the lower and upper limits of each
search space dimension are −10 and 10, respectively; the
number of individuals in the BSA population is 100; and
η = 1 (in the BSA, η is used to define the amplitude of the
displacement of the individuals).
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Figure 2: Motor speed with and without attack.

Figure 3 shows the values of α0 and β0 estimated in 100
attack simulations. Additionally, Table 1 shows the statistics
of these results. In both Figure 3 and Table 1, it is possible
to verify the accuracy achieved by the attack identification
strategy proposed in this work. Note that, in Figure 3, all
estimated values of α0 and β0 converge to their actual
values. Moreover, in Table 1, the mean of the estimated
coefficients are close to their real values with small standard
deviation, which ratifies the accuracy verified in Figure 3
and indicates the effectiveness of the proposed countermea-
sure when identifying SD-Controlled Data Injection attacks.

TABLE 1: Statistics of the attack identification.
Coefficient Mean Standard Deviation

α0 0.2506 0.0147
β0 −0.7485 0.0172
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Figure 3: Estimations of α0 and β0.

5. Conclusion
This paper proposes an attack identification mechanism

to estimate LTI transfer functions that are implemented
during SD-Controlled Data Injection attacks. The identifi-
cation is performed by injecting white gaussian noise in
the monitored NCS link. The results demonstrate that the

proposed identification scheme provides adequate accuracy
when estimating the attack function. Also, the results testify
that the identification scheme does not interfere in the
plant behavior when the system is not under attack. The
problem formulation does not take into account residual
initial conditions that may exist when signals are collected
in the NCS. We consider that the use of the BSA opti-
mization – which is able to find near optimum solutions –
provides satisfactory accuracy in the attack identification,
even not taking into account such initial conditions. In a
future work, we plan to include the NCS initial conditions
in the problem formulation, in order to evaluate how does it
affect the attack identification process in terms of accuracy
and computational cost.
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