
FUNDAÇÃO GETULIO VARGAS

EMAp - ESCOLA DE MATEMÁTICA APLICADA

ESPECIALIZAÇÃO EM IA APLICADA A SISTEMAS MILITARES

HELBER SOARES MOTA

ROBERT VICENTE LIBOTTI

RECONHECIMENTO DE IMAGENS:

 USO DE RECURSOS DE VISÃO COMPUTACIONAL

 NA DETECÇÃO DE ALVOS E VIGILÂNCIA NO ESPECTRO MILITAR

Rio de Janeiro - RJ

2024

HELBER SOARES MOTA

ROBERT VICENTE LIBOTTI

RECONHECIMENTO DE IMAGENS:

 USO DE RECURSOS DE VISÃO COMPUTACIONAL

 NA DETECÇÃO DE ALVOS E VIGILÂNCIA NO ESPECTRO MILITAR

Trabalho de conclusão de curso apresentado
à EMAp - Escola de Matemática Aplicada
da Fundação Getúlio Vargas como parte
dos requisitos necessários para a
conclusão do Curso de Especialização em
IA Aplicada a Sistemas Militares.

Orientador: Prof. Rafael de Pinho André

Rio de Janeiro

2024

SUMÁRIO

1. Introdução ...9

2. Objetivos..9

2.1. Objetivo Geral ...9

2.2. Objetivos Específicos ..9

3. Fundamentação Teórica .. 10

3.1. Conceitos Relacionados .. 10

3.2. Reconhecimento de Imagens ... 10

3.3. Redes Neurais Convolucionais... 11

3.4. Algoritmos de Detecção de Objetos .. 12

3.4.1 R-CNN (O Pioneiro) .. 12

3.4.2 Fast R-CNN.. 13

3.4.3 Faster R-CNN .. 13

3.4.4 YOLO .. 13

3.5. Comparando Prós e Contras .. 14

4. Metodologia.. 15

4.1. Coleta e Anotação de Dados ̀... 15

4.1.1 Labeling .. 16

4.1.2 Detalhes do processo de Anotação e Divisão do DataSet 18

4.2. Configuração do Modelo YOLO.. 18

4.2.1 Treinamento do Modelo ... 19

4.2.2 Métricas de Validação, Testes e Avaliação do Modelo 20

4.2.3 Otimizadores .. 22

4.3. Treinos .. 24

4.3.1 Treino de Teste Comparativo GPU x CPU ... 24

4.3.2 Otimizadores em Treinos Isolados... 31

4.4. Resultado Comparativo.. 44

4.4.1 Recall Confidence ... 44

4.4.2 Precision Recall... 45

4.4.3 Precision Confidence.. 45

4.4.4 F1-Confidence ... 46

4.4.5 Lr (Learning Rate) ... 46

4.4.6 Metrics/Recall .. 48

4.4.7 Metrics/precision ... 49

4.4.8 Metrics/mAP50-95 .. 50

4.4.9 Metrics/mAP50 .. 51

4.4.10 Model/speed(ms) .. 51

4.4.11 Model/parameters ... 52

4.4.12 Model/GFLOPs .. 52

4.4.13 Train/dfl_loss.. 53

4.4.14 Train/cls_loss ... 54

4.4.15 Train/box_loss ... 55

4.4.16 Val/dfl_loss ... 56

4.4.17 Val/cls_loss .. 57

4.4.18 Val/box_loss... 57

4.4.19 System/Gpu Power Usage .. 58

4.4.20 System/GPU Memory Allocated ... 58

4.4.21 System/GPU Time Spent Accessing Memory .. 59

4.4.22 System/GPU Temperature .. 59

4.4.23 System/GPU Utilization % ... 60

4.4.24 System/Process Memory Available (MB) .. 60

4.5. Resultados de Predições e Discussões .. 61

4.5.1 Exemplos de Detecções (Individualmente) .. 61

4.5.2 Classificações Combinadas .. 64

5. Considerações Finais ... 69

5.1. Sobre a Evolução do Yolo ... 69

5.2. Conclusão .. 69

5.3. Contribuições ... 70

5.4. Limitações .. 71

5.5. Trabalhos Futuros ... 71

5.6. Considerações Finais ... 73

6. Referências .. 74

Apêndice A - Treino de Modelos Customizados Yolo... 76

Apêndice B - Usando Modelos Customizados Para Classificar e Combinar Resultados

de Forma Personalizada .. 79

LISTA DE FIGURAS

Figura 1. Convolutional Neural Network (CNN) ... 12

Figura 2. Comparação da Evolução na Detecção de Objetos (R-CNN, Fast R-CNN,

Faster R-CNN e YOLO) ... 15

Figura 3. Arquitetura Utilizada Azure/OnPremise/Local ... 16

Figura 4. Exemplos de Labeling Gerados Pelo Label Studio .. 16

Figura 5. GPU Utilizada no Servidor de Pesquisa da FGV.. 18

Figura 6. Teste Pré-Treino com 120 Épocas - Sem GPU .. 24

Figura 7 - Teste Pré-Treino com 120 Épocas - Com GPU .. 25

Figura 8. Labels... 25

Figura 9. Matriz de Confusão Normalizada .. 25

Figura 10. Comparativo (GPUxCPU) – Curvas.. 26

Figura 11. Comparativo - Metricas (GPUxCPU) .. 26

Figura 12. Comparativo Modelo (GFLOPs, parameters e speed) 27

Figura 13. Comparativo Treino (dfl_loss, cls_loss e box_loss) 27

Figura 14. Comparativo Validação (dfl_loss, cls_loss e box_loss) 28

Figura 15. Uso do Sistema Durante Treino (memória, cpu, disco e gpu) 28

Figura 16. Exemplos de Predições de Teste Com o Modelo Treinado 29

Figura 17. Resumo (Adam) ... 32

Figura 18. Curvas (Adam) ... 32

Figura 19. Treino/Validação (Adam) .. 33

Figura 20. Predições (Adam) .. 33

Figura 21. Resumo (AdamW) ... 34

Figura 22. Curvas (AdamW).. 34

Figura 23. Treino/Validação (AdamW) .. 35

Figura 24. Predições (AdamW) .. 35

Figura 25. Resumo (Radam)... 36

Figura 26. Curvas (RAdam) .. 36

Figura 27. Treino/Validação (RAdam) ... 37

Figura 28. Predições (RAdam) ... 37

Figura 29. Resumo (RMSProp) .. 38

Figura 30. Curvas (RMSProp) .. 38

Figura 31. Treino/Validação (RMSProp) ... 39

Figura 32. Predição (RMSProp) ... 39

Figura 33 - Resumo Treino Otimizadores - NAdam .. 40

Figura 34. Curvas (NAdam) .. 40

Figura 35. Treino/Validação (NAdam) ... 41

Figura 36. Predições (NAdam) ... 41

Figura 37 - Resumo Treino Otimizadores - SGD... 42

Figura 38. Curvas (SGD) ... 42

Figura 39. Treino/Validação (SGD) .. 43

Figura 40. Predições (SGD) .. 43

Figura 41. Comparativo - Recall Confidence.. 44

Figura 42. Comparativo - Precision Recall ... 45

Figura 43. Comparativo - Precision Confidence .. 45

Figura 44. Comparativo - F1 Confidence .. 46

Figura 45. Comparativo - lr/pg2 .. 47

Figura 46. Comparativo - lr/pg1 .. 47

Figura 47. Comparativo - lr/pg0 .. 48

Figura 48. Comparativo - metrics/recall .. 48

Figura 49. Comparativo - metrics/precision .. 49

Figura 50. Comparativo - metrics/mAP50-95 ... 50

Figura 51. Comparativo - metrics/mAP50 ... 51

Figura 52. Comparativo - model/speed(ms) ... 51

Figura 53. Comparativo - model/parameters.. 52

Figura 54. Comparativo - model/GFLOPs .. 53

Figura 55. Comparativo - train/dfl_loss.. 54

Figura 56. Comparativo - train/cls_loss ... 55

Figura 57. Comparativo - train/box_loss ... 56

Figura 58. Comparativo - val/dfl_loss .. 56

Figura 59. Comparativo - val/cls_loss.. 57

Figura 60. Comparativo - val/box_loss .. 57

Figura 61. Comparativo - GPU Power Usage (W)... 58

Figura 62. Comparativo - GPU Memory Allocated (Bytes) .. 58

Figura 63. Comparativo - GPU Time Spent Accessing Memory(%)............................. 59

Figura 64. Comparativo - GPU Temperature (°C) ... 59

Figura 65. Comparativo - GPU Utilization (%).. 60

Figura 66. Comparativo - Process Memory Available (MB) ... 60

Figura 67. Comparativo Latência x mAP (média das precisões médias de todas as

classes no conjunto de dados) ... 69

LISTA DE TABELAS

Tabela 1. Estrutura Básica de uma CNN .. 11

Tabela 2. Prós e Contras: R-CNN, Fast R-CNN, Faster R-CNN e YOLO................... 14

Tabela 3. Principais Parâmetros Utilizados no PreTreino GPUxCPU 19

Tabela 4. Comparativo dos Otimizadores... 24

Tabela 5. Resumo do treino (entre otimizadores) ... 31

Tabela 6. Lista de Classes Pré-Treinadas no Modelo YoloV10n 61

Tabela 7. Predição de Veiculos Civis e Militares por Modelo Não Especializado 63

Tabela 8. Lista de Classes Exclusivamente Treinadas nos Modelos CFN 64

Tabela 9. Predição de Veiculos Civis e Militares Por Modelo Militar Especializado.. 64

Tabela 10. Predições Combinadas de Mais de um Modelo .. 65

8

Reconhecimento de Imagens: Uso de Recursos de Visão Computacional na

Detecção de Alvos e Vigilância no Espectro Militar

EMAp - Escola de Matemática Aplicada da Fundação Getúlio Vargas

Rio de Janeiro - Brasil

robert.libotti@gmail.com, helberjf@gmail.com

Resumo

A crescente complexidade dos conflitos modernos exige soluções tecnológicas

que possam identificar e classificar veículos militares de forma eficiente. Essa

identificação é fundamental em aplicações de reconhecimento aéreo e terrestre,

monitoramento de fronteiras, ações de sabotagem, tarefas de inteligência, contra-

ataque e no uso de drones em operações táticas. O emprego de inteligência artificial

(IA) nesse processo, mais especificamente através de modelos de redes neurais

convolucionais (CNNs), se mostra uma abordagem robusta e viável, oferecendo alta

acurácia e velocidade na detecção e classificação de objetos em imagens complexas.

O objetivo deste trabalho consiste em propor uma abordagem para detectar e

classificar algumas classes de veículos militares (a saber: ASTROS, CLANF, JLTV,

M113, PIRANHA e SK105) através de imagens que podem ser capturadas a partir de

drones, câmeras fixas ou móveis combinando o modelo YOLOv10 e uma CNN. Os

resultados experimentais mostram que o modelo alcançou um desempenho

considerável (com precisão acima de 90% em muitos casos) e mesmo que a

quantidade de imagens utilizadas no treino tenha sido pequena para uma aplicação

real, demonstra a viabilidade para utilização em dispositivos embarcadas ou em uma

arquitetura em nuvem com processamento remoto, por exemplo.

Palavras-chave

 YOLO; PyTORCH, CNN; Visão Computacional; IA; Veículos Militares.

9

1. Introdução

A inteligência artificial (IA) é definida como “a capacidade de um sistema

interpretar corretamente dados externos, aprender a partir desses dados e utilizar

esse conhecimento para atingir objetivos e tarefas específicas por meio de adaptação

flexível” (Kaplan; Haenlein, 2019). É um campo da ciência da computação voltado

para a criação de sistemas capazes de realizar tarefas que normalmente exigiriam

inteligência humana, como reconhecimento de padrões, aprendizado e tomada de

decisão. Baseada em técnicas como aprendizado de máquina e aprendizado

profundo, a IA é amplamente aplicada em soluções específicas de Visão

Computacional para detectar e classificar objetos em imagens. No contexto deste

trabalho, a IA é essencial para o desenvolvimento de tecnologias que permitam a

identificação rápida e precisa de veículos militares em cenários complexos diversos.

2. Objetivos

2.1. Objetivo Geral

A introdução da IA em sistemas de defesa representa uma evolução

significativa na forma como os dados são processados e utilizados em operações

críticas, reforçando a importância do tema em um mundo cada vez mais digitalizado

e interconectado.

2.2. Objetivos Específicos

Neste trabalho, propomos explorar o uso do YOLO para o reconhecimento de

veículos militares através de imagens para uso em sistemas embarcados em drones

(ou qualquer dispositivo que possa desempenhar processamento local) ou

remotamente através de uma arquitetura em nuvem, com foco na aplicação prática e

análise do desempenho do modelo. Para isso, serão abordadas etapas como a coleta

e anotação de dados específicos, incluindo a criação de caixas delimitadoras

(bounding boxes) para cada veículo presente nas imagens do banco de dados, o

treinamento do modelo em um dataset customizado e a validação de seu desempenho

em diferentes condições. Adicionalmente, serão verificados os desafios enfrentados,

como a presença de ruídos nas imagens, variações de iluminação, oclusões e a

10

diversidade visual dos veículos militares, que incluem tanques, carros blindados,

veículos anfíbios de assalto e outros meios militares de transporte especializados.

A relevância deste estudo reside no potencial de aprimorar sistemas

automatizados de detecção, contribuindo para o avanço tecnológico na área de defesa

e segurança. Além disso, os resultados podem servir como base para a

implementação de soluções práticas em diferentes contextos, como vigilância

autônoma por drones e câmeras, análise estratégica em tempo real, uso de sistemas

de inteligência artificial de reconhecimento de imagens em planejamentos por cartas

topográficas, como por exemplo a carta de trafegabilidade sendo feita de forma

automática e apoio à tomada de decisões táticas.

Assim, este trabalho está estruturado em capítulos que abordam, inicialmente,

os fundamentos teóricos do reconhecimento de imagens, das redes neurais

convolucionais e do YOLO, seguidos da metodologia adotada para o treinamento e

validação do modelo. Posteriormente, serão apresentados os resultados obtidos e

suas implicações práticas, culminando nas considerações finais e sugestões para

trabalhos futuros. O objetivo principal é demonstrar como o uso do YOLO pode ser

eficaz no reconhecimento de veículos militares, oferecendo uma contribuição

significativa para a área de visão computacional e suas aplicações no setor militar.

3. Fundamentação Teórica

3.1. Conceitos Relacionados

A fundamentação teórica deste trabalho aborda os conceitos-chave

relacionados ao reconhecimento de imagens, redes neurais convolucionais (CNNs) e

ao modelo YOLO (You Only Look Once). Esses tópicos são fundamentais para

compreender a aplicação de técnicas de visão computacional no reconhecimento de

veículos militares em imagens.

3.2. Reconhecimento de Imagens

O reconhecimento de imagens é uma subárea da visão computacional que visa

identificar e classificar objetos em imagens digitais. Essa tarefa envolve a análise de

11

características específicas, como formas, cores, texturas e padrões, que permitem

diferenciar objetos e atribuí-los a categorias definidas.

Com o avanço da tecnologia, os métodos tradicionais baseados em extração manual

de características deram lugar a abordagens baseadas em aprendizado de máquina,

especialmente aprendizado profundo (deep learning). Esses métodos utilizam redes

neurais artificiais capazes de aprender representações complexas diretamente a partir

dos dados, eliminando a necessidade de intervenção manual para a extração de

características.

A importância do reconhecimento de imagens está em sua ampla gama de

aplicações, que incluem sistemas de vigilância, diagnóstico médico, direção autônoma

e, no contexto militar, a identificação de veículos, tropas e equipamentos em

ambientes operacionais.

3.3. Redes Neurais Convolucionais

Redes Neurais Convolucionais (Convolutional Neural Networks, CovNets ou

CNNs) são um tipo específico de rede neural projetada para processar dados que

possuem uma estrutura em forma de grade, como imagens. Elas são amplamente

utilizadas em tarefas de visão computacional, como reconhecimento de objetos,

segmentação de imagens e detecção de padrões.

A estrutura básica de uma CNN é composta pelos seguintes elementos:

Tabela 1. Estrutura Básica de uma CNN

Camadas Convolucionais Aplicam f iltros (ou kernels) à imagem de entrada para extrair
características relevantes, como bordas, texturas e formas. Cada f iltro
aprende uma característica específ ica durante o treinamento. O
resultado dessa operação é um mapa de características (feature
map), que destaca as regiões onde os padrões foram detectados.

Camadas de Pooling (ou
Subamostragem)

Reduzem a dimensionalidade das características extraídas, mantendo
as informações mais importantes e aumentando a ef iciência
computacional. Exemplos incluem o max pooling (seleção do valor
máximo em uma região) e o average pooling (média dos valores).

Camadas Fully
Connected

Geralmente realizam a classif icação f inal com base nas
características extraídas.

12

Funções de Ativação Introduzem não linearidade ao modelo, permitindo a aprendizagem de
padrões complexos. Funções como ReLU (Rectif ied Linear Unit) e
sof tmax são amplamente utilizadas.

O uso de CNNs em tarefas de reconhecimento de imagens revolucionou a área,

proporcionando ganhos significativos em precisão e eficiência. CovNets são capazes

de extrair características relevantes de dados automaticamente e com alta precisão.

No entanto, para treinar redes neurais convolucionais com eficiência é necessário que

se tenha acesso a recursos computacionais significativos. O Treinamento necessita

de grande quantidade de volume de dados rotulados e GPUs poderosas para

obtenção de bons resultados.

 Figura 1. Convolutional Neural Network (CNN)

Fonte: https://www.ionos.com/pt-br/digitalguide/sites-de-internet/desenvolvimento-web/convolutional-

neural-network/

3.4. Algoritmos de Detecção de Objetos

3.4.1 R-CNN (O Pioneiro)

A R-CNN, ou Regiões com recursos da CNN, entrou em cena em 2014, marcando

uma mudança de paradigma na detecção de objetos. Como funciona:

• Gera propostas de região (~2000) usando pesquisa seletiva

• Extrai recursos da CNN de cada região

13

• Classifica regiões usando classificadores SVM

3.4.2 Fast R-CNN

A Fast R-CNN abordou as limitações de velocidade de seu antecessor, mantendo alta

precisão. Como funciona:

• Processa a imagem inteira através da CNN uma vez

• Usa o agrupamento de ROI para extrair recursos para cada proposta de região

• Usa camada softmax para classificação e regressão de caixa delimitadora

3.4.3 Faster R-CNN

A Faster R-CNN introduziu a Region Proposal Network (RPN), tornando todo o

pipeline de detecção de objetos treinável de ponta a ponta. Como funciona:

• Usa uma rede totalmente convolucional para gerar propostas de região

• Compartilha recursos convolucionais de imagem completa com a rede de

detecção

• Treina RPN e Fast R-CNN juntos

Exemplo de uso: Na condução autônoma, o Faster R-CNN pode detectar e classificar

veículos, pedestres e sinais de trânsito quase que em tempo real, o que é crucial para

tomada rápida de decisões.

3.4.4 YOLO

O YOLO (You Only Look Once) revolucionou a detecção de objetos ao enquadrá-la

como um único problema de regressão, direto dos pixels da imagem para as

coordenadas de caixas delimitadoras e probabilidades de classe. Como funciona:

• Divide a imagem em uma grade

• Para cada célula da grade, prevê caixas delimitadoras e probabilidades de

classe

• Aplica uma única passagem para frente em toda a imagem

14

3.5. Comparando Prós e Contras

De acordo com a literatura pesquisada, comparando os algoritmos de detecção e

reconhecimento de imagens R-CNN, Fast R-CNN, Faster R-CNN e YOLO, temos o

seguinte:

Tabela 2. Prós e Contras: R-CNN, Fast R-CNN, Faster R-CNN e YOLO

 PRÓS CONTRAS

R-CNN

(Regions with

Convolutional

Neural

Networks)

Alta precisão: R-CNN é conhecido por
sua alta precisão na detecção de objetos

Flexibilidade: Pode ser usado em uma
variedade de aplicações devido à sua
precisão.

Lento: O processo é relativamente
lento porque envolve várias etapas,
incluindo a geração de propostas de
região e a extração de
características.

Requer muitos recursos: Devido
ao seu processo complexo,
consome muitos recursos
computacionais.

Fast R-CNN

Mais rápido: Melhora signif icativamente
o tempo de processamento em
comparação com o R-CNN.

Maior eficiência: Processa a imagem
inteira uma vez e usa RoI pooling para
extrair características de cada região
proposta.

Ainda depende de propostas
externas: A geração de propostas
de região ainda é um gargalo.

Requer ajustes manuais: Precisa
de ajustes manuais para otimizar o
desempenho.

Faster R-CNN

Propostas rápidas: Introduz uma rede
de proposta de região (RPN) que gera
propostas de região rapidamente.

Mais rápido e eficiente: Melhora ainda
mais o tempo de processamento e a
ef iciência em comparação com Fast R-
CNN.

Complexidade: A introdução da
RPN aumenta a complexidade do
modelo.

Requer ajustes manuais: Assim
como Fast R-CNN, precisa de
ajustes manuais para otimizar o
desempenho.

YOLO

(You Only Look

Once)

Rápido: YOLO é muito mais rápido do
que R-CNN porque processa a imagem
inteira em uma única passagem.

Eficiente: Usa menos recursos
computacionais em comparação com R-
CNN.

Menor precisão: Embora seja
rápido, YOLO pode ser menos
preciso em comparação com R-
CNN, especialmente em imagens
complexas.

Dificuldade em detectar objetos
pequenos: YOLO pode ter
dif iculdade em detectar objetos
pequenos ou que estão próximos
uns dos outros.

fonte: https://datadance.ai/machine-learning/r-cnn-vs-r-cnn-fast-vs-r-cnn-faster-vs-yolo/

15

Figura 2. Comparação da Evolução na Detecção de Objetos (R-CNN, Fast R-CNN, Faster R-CNN e YOLO)

fonte: https://datadance.ai/machine-learning/r-cnn-vs-r-cnn-fast-vs-r-cnn-faster-vs-yolo/

4. Metodologia

Este capítulo apresenta a metodologia adotada para o desenvolvimento do

modelo de reconhecimento de veículos militares utilizando o YOLO. São descritas as

etapas práticas de coleta e anotação de dados, configuração do modelo, treinamento

e validação, detalhando os procedimentos técnicos e as ferramentas utilizadas. O

objetivo é garantir a reprodutibilidade e a clareza do processo.

4.1. Coleta e Anotação de Dados`

A primeira etapa da metodologia consiste na obtenção de um conjunto de

dados adequado para o treinamento do modelo. Para este trabalho, foram utilizadas

imagens de veículos militares provenientes de fontes públicas, como bancos de

imagens, vídeos de desfiles militares e registros de operações militares.

Critérios de seleção das imagens: diversidade visual, incluindo diferentes tipos

de veículos militares, como tanques, carros blindados de combate e veículos anfíbios

de assalto. Variações de cenário: ambientes urbanos, florestais, desérticos e outros.

Diferentes condições climáticas e de iluminação: imagens em alta e baixa iluminação,

presença de ruído e oclusões.

Após a coleta de 4361 imagens, foi realizada a classificação dos arquivos de

treino/validação que foram armazenados em um Data Lake privado em nuvem no

Microsoft Azure (Microsoft Azure Blob Storage) e que foi utilizado posteriormente

como repositório de dados para o Label Studio que é uma ferramenta de código aberto

para rotulagem de dados que permite a integração com diversos sistemas de

armazenamento em nuvem. Para rodar o Label Studio em estrutura própria, utilizamos

16

um servidor virtual Linux Ubuntu 24.04 em nuvem com 4vcpus, 16GiB RAM e HD

Premium SSD LRS de 30GiB de acordo com a arquitetura abaixo:

Figura 3. Arquitetura Utilizada Azure/OnPremise/Local

Na primeira fase, alimentamos um datalake com as imagens em nuvem e

fizemos o trabalho de labeling com auxílio do Label Studio. Na segunda fase, para

processamento e fins comparativos, lemos as anotações e as imagens a partir do

hardware local (processador Intel i7 de 10ª geração com 8 núcleos, 32Gb RAM e HD

SSD de 1TB mas sem GPU) e hardware on premise do ambiente do pesquisador da

FGV (GPU: Tesla V100-PCIE-32GB com 32768.0 MB Memória), treinamos nosso

modelo customizado e escrevemos os resultados para análise e inferência no Wandb

(wandb.io).

4.1.1 Labeling

No processo inicial de labeling, foram criadas caixas delimitadoras (bounding

boxes) nos dados de treino e validação a fim de identificar cada classe de veículo

desejado. Cada bounding box foi rotulada com a classe correspondente aos veículos

tratados no escopo deste trabalho.

Figura 4. Exemplos de Labeling Gerados Pelo Label Studio

17

18

4.1.2 Detalhes do processo de Anotação e Divisão do DataSet

 As caixas delimitadoras foram ajustadas para englobar totalmente o veículo,

evitando incluir áreas irrelevantes. Cada veículo foi rotulado com uma classe

específica: “SK105” (tanque leve), ”ASTROS” (sistema de lançadores múltiplos de

foguetes - MLRS), “CLAnf” (carro lagarta anfíbio), “JLTV” (veículo tático multifuncional

leve), ”M113” (veículo blindado de transporte de pessoal0 e “PIRANHA" (veículo

blindado de combate com rodas).

 Seguindo o Princípio de Pareto, o dataset foi dividido em treinamento (80%) e

validação (20%) para garantir a avaliação objetiva do modelo.

4.2. Configuração do Modelo YOLO

A configuração do YOLO foi realizada com base em sua versão YOLOv10,

devido à sua eficiência e facilidade de uso em frameworks modernos como PyTorch.

As etapas de configuração envolveram ajustes na arquitetura do modelo, parâmetros

de treinamento e preparação do ambiente computacional.

 Para implementação e treinamento utilizamos a linguagem de programação

Python na versão 3.10 pela compatibilidade com bibliotecas de aprendizado profundo.

Figura 5. GPU Utilizada no Servidor de Pesquisa da FGV

19

Tabela 3. Principais Parâmetros Utilizados no PreTreino GPUxCPU

mode: train Modo de treino
model: yolov10n.yaml Utilizamos o modelo n (nano) do YOLO v10 por ser a opção mais leve

e fácil de implementar posteriormente em um dispositivo embarcado

epochs: 300 Após alguns pre-testes foi possível verif icar convergência por volta da
época 200. Posteriormente, para os dados apresentados neste
trabalho, limitamos em 600 épocas e conf iguramos para parar
automaticamente caso passasse por 10 epocas sem efetiva evolução
do modelo.

workers: 8 Quantidade de processos paralelos
verbose: true Gerar informações detalhadas sobre o processo de treinamento

show_labels: true Exibir os rótulos dos objetos detectados
show_conf : true Exibir a pontuação de conf iança

show_boxes: true Exibir as caixas ao redor dos objetos detectados

4.2.1 Treinamento do Modelo

O treinamento do modelo foi realizado utilizando o conjunto de dados anotado

na etapa de labeling (dados de treino e validação). Durante esta etapa, o YOLO foi

exposto às imagens de treinamento, ajustando seus pesos para minimizar a perda e

aumentar a precisão na detecção dos tipos de veículos que definimos no escopo.

 A função de perda do YOLO considera três componentes principais:

o Erro de localização: Avalia a precisão das coordenadas das bounding

boxes previstas.

o Erro de classificação: Mede a correspondência entre a classe prevista

e a classe real do objeto.

o Erro de confiança: Avalia a certeza do modelo em relação à presença

de um objeto.

 Treinamento em múltiplas escalas: O YOLOv10 foi configurado para treinar

em imagens de tamanhos e iluminação variados em ângulos e ambientes diversos, e

pudemos verificar sua robustez em detectar objetos de diferentes dimensões em

cenários diversos.

 Validação durante o treinamento: A cada época, o modelo foi validado

utilizando o conjunto de validação, gerando métricas como precisão (mAP) e taxa de

erro.

20

4.2.2 Métricas de Validação, Testes e Avaliação do Modelo

Após o treinamento, o modelo foi avaliado utilizando o conjunto de teste,

composto por imagens inéditas que não foram vistas pelo modelo durante o

treinamento. Essa etapa garantiu uma avaliação objetiva do desempenho do YOLO.

Essas métricas são usadas para monitorar e ajustar o desempenho do modelo

durante o treinamento e a validação, garantindo que ele seja capaz de detectar e

classificar objetos com alta precisão.

1. Recall-Confidence(B): refere-se à capacidade de um modelo de identif icar corretamente

todas as instâncias relevantes de uma classe. É a proporção de verdadeiros positivos (TP)

sobre a soma de verdadeiros positivos e falsos negativos (FN). Em outras palavras, é a

capacidade do modelo de encontrar todos os exemplos positivos.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

2. Precision-Recall(B): combina a precisão e o recall para fornecer uma única medida de

desempenho. A precisão é a proporção de verdadeiros positivos sobre a soma de

verdadeiros positivos e falsos positivos (FP). O Precision-Recall é frequentemente usado

em gráficos para avaliar o desempenho de classificadores.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

3. Precision-Confidence(B): refere-se à confiança que temos na precisão do modelo. A

confiança pode ser interpretada como a probabilidade de que uma previsão positiva seja

correta. Isso é importante em contextos em que a precisão é crítica, como diagnósticos

médicos.

4. F1-Confidence(B): o F1-Score é a média harmônica da precisão e do recall,

proporcionando um equilíbrio entre os dois. É útil quando precisamos de um equilíbrio entre

precisão e recall. A confiança no F1-Score indica a robustez do modelo em termos de

equilíbrio entre precisão e recall.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

21

5. mAP50 (Mean Average Precision at IoU 0.50): a precisão média (AP) é calculada como

a área sob a curva de precisão-recall para uma classe específica. O mAP50 é a média

dessas precisões médias para todas as classes, considerando um limiar de IoU

(Intersection over Union) de 0.50. Isso significa que uma detecção é considerada correta

se a sobreposição entre a caixa predita e a caixa real for de pelo menos 50%.

6. mAP50-95: é uma média da precisão média calculada em diferentes limiares de IoU,

variando de 0.50 a 0.95 (em incrementos de 0.05). Ela fornece uma visão mais abrangente

do desempenho do modelo em diferentes níveis de dificuldade de detecção

7. val/dfl_loss: refere-se à perda de distribuição de deslocamento (Distribution Focal Loss)

durante a validação. A DFL é uma técnica usada para melhorar a precisão da localização

dos objetos, ajustando as previsões das caixas delimitadoras para que correspondam mais

precisamente aos objetos reais nas imagens.

8. val/cls_loss: refere-se à perda de classificação (Classification Loss) durante a validação. A

perda de classificação mede a precisão com que o modelo está atribuindo a classe correta

aos objetos detectados. É uma métrica crucial para avaliar a capacidade do modelo de

distinguir entre diferentes tipos de objetos.

9. val/box_loss: refere-se à perda de caixa delimitadora (Bounding Box Loss) durante a

validação. A perda de caixa delimitadora avalia a precisão das coordenadas das caixas

delimitadoras previstas pelo modelo em comparação com as caixas delimitadoras reais

dos objetos nas imagens.

10. GFLOPs (Giga Floating Point Operations per Second): é uma métrica que mede o

desempenho de um modelo de aprendizado de máquina em termos de operações de ponto

flutuante por segundo. Quando falamos em GFLOPs, estamos nos referindo a bilhões de

operações de ponto flutuante por segundo.

11. Model parameters: são variáveis internas de um modelo de aprendizado de máquina que

são ajustadas durante o processo de treinamento. Eles são essenciais para definir como

o modelo transforma os dados de entrada em previsões. São valores que o modelo

aprende diretamente dos dados durante o treinamento. Eles são ajustados para minimizar

a função de perda e melhorar a precisão do modelo.

22

4.2.3 Otimizadores

Os otimizadores ajudam a minimizar a função de perda durante o treinamento

da rede neural. A seguir uma visão geral de como os diferentes otimizadores podem

ser usados com YOLO.

4.2.3.1 SGD (Stochastic Gradient Descent)

É uma versão do gradiente descendente que atualiza os pesos da rede neural

usando apenas um único exemplo de treinamento por vez. Isso ajuda a encontrar o

mínimo global mais rápido, mas pode ser instável devido à alta variabilidade nas

atualizações. Características principais:

• Simplicidade e eficiência em termos de memória.

• Utilizado em muitas implementações básicas do YOLO devido à sua

simplicidade.

• Pode ser combinado com técnicas como momentum para melhorar a

convergência.

4.2.3.2 Adam (Adaptive Moment Estimation)

Combina as vantagens de dois outros algoritmos, o RMSProp e o Momentum.

Ele calcula médias móveis dos gradientes passados e das suas magnitudes

quadráticas, permitindo adaptações mais rápidas e precisas. Adam é amplamente

utilizado por sua eficiência e desempenho. Principais características:

• Adaptativo e eficiente, ajustando a taxa de aprendizado com base em

momentos passados.

• Amplamente utilizado em redes YOLO modernas por sua capacidade de

rápida convergência e estabilidade.

4.2.3.3 AdamW (Adam with Weight Decay)

É uma variação do Adam que incorpora a regularização por decaimento dos

pesos diretamente no algoritmo. Principais características:

• Variação do Adam com regularização por decaimento de peso.

• Ajuda a evitar overfitting, promovendo melhor generalização, o que é útil

em cenários com conjuntos de dados limitados.

23

4.2.3.4 RAdam (Rectified Adam)

É uma melhoria sobre o Adam que retifica o problema de variância nas etapas

iniciais do treinamento. Ao fazer isso, RAdam ajuda a estabilizar o processo de

otimização e melhora a precisão do modelo. Principais características:

• Estabiliza a variância no início do treinamento, melhorando a precisão.

• Pode ser benéfico em treinamentos de redes YOLO para garantir

convergência estável e precisa.

4.2.3.5 RMSProp (Root Mean Square Propagation)

Algoritmo adaptativo que ajusta a taxa de aprendizado para cada parâmetro.

Ele divide a taxa de aprendizado pelo valor médio dos gradientes recentes, permitindo

que o algoritmo se adapte dinamicamente às variações no dado. Principais

características:

• Ajusta a taxa de aprendizado com base na magnitude recente dos

gradientes.

• Pode ser usado para melhorar a adaptação em diferentes fases do

treinamento, especialmente em redes YOLO que lidam com dados

variados.

4.2.3.6 Nadam (Nesterov-accelerated Adaptive Moment Estimation)

É uma variante do Adam que combina Nesterov Momentum com Adam. Isso

acelera a convergência, especialmente em problemas com mínimos locais complexos.

Nadam é conhecido por ser mais rápido e eficiente em certos cenários. Principais

características:

• Combina as vantagens do Adam com Nesterov Momentum para

aceleração adicional.

• Ajuda a alcançar uma convergência mais rápida, o que é crucial para

treinar redes YOLO em grandes conjuntos de dados.

24

4.2.3.7 Resumo das Características dos Algoritmos Otimizadores

Cada um dos otimizadores apresentado tem suas próprias vantagens e é

escolhido com base nos requisitos específicos do problema e nas características do

conjunto de dados.

Tabela 4. Comparativo dos Otimizadores

Algoritmo Características Principais Vantagens Desvantagens

SGD Atualização por exemplo único Simples e rápido Instável, pode ser lento
Adam Combina RMSProp e Momentum Eficiente, bom

desempenho
Pode superestimar
gradientes

AdamW Adam com regularização por
decaimento de pesos

Melhor generalização Similar ao Adam

RAdam Retificação de variância no início Mais estável, melhora a
precisão

Pode ser mais complexo

RMSProp Ajuste dinâmico da taxa de
aprendizado

Adaptação rápida às
variações

Pode não convergir
sempre

NAdam Combina Nesterov Momentum com
Adam

Convergência mais rápida Complexidade adicional

4.3. Treinos

4.3.1 Treino de Teste Comparativo GPU x CPU

Inicialmente, fizemos um treino comparativo de 120 épocas com os mesmos

dados de treino/validação usando uma GPU Tesla V100-PCIE-32GB com 32768.0 MB

Memória (no Ambiente de Pesquisa On Premise da FGV) e uma CPU Intel i7 de 10ª

geração com 8 núcleos, 32Gb RAM e HD SSD de 1TB.

Apesar de resultados finais semelhantes, usar uma GPU diminuiu consideravelmente

o tempo necessário de processamento comparado a uma CPU (de 39h para apenas

49m) conforme imagens abaixo:

Figura 6. Teste Pré-Treino com 120 Épocas - Sem GPU

25

Figura 7 - Teste Pré-Treino com 120 Épocas - Com GPU

Figura 8. Labels

Figura 9. Matriz de Confusão Normalizada

26

Figura 10. Comparativo (GPUxCPU) – Curvas

Figura 11. Comparativo - Metricas (GPUxCPU)

27

Figura 12. Comparativo Modelo (GFLOPs, parameters e speed)

Figura 13. Comparativo Treino (dfl_loss, cls_loss e box_loss)

28

Figura 14. Comparativo Validação (dfl_loss, cls_loss e box_loss)

Figura 15. Uso do Sistema Durante Treino (memória, cpu, disco e gpu)

29

Figura 16. Exemplos de Predições de Teste Com o Modelo Treinado

30

31

4.3.2 Otimizadores em Treinos Isolados

Para o comparativo, fizemos treinos individuais substituindo o otimizador e

mantendo as demais configurações (limitando para o máximo de 600 épocas e

interrompendo o treino caso passe 10 épocas sem evolução do modelo).

Tabela 5. Resumo do treino (entre otimizadores)

Otimizador Convergiu? Tempo (horas) Epocas

processadas

Melhor

Resultado

(época)

Adam SIM 1,473 125 115

AdamW SIM 2,861 286 276

RAdam SIM 0,826 83 73

RMSProp SIM 0,205 20 10

NAdam SIM 3,060 290 280

SGD SIM 1,732 179 169

32

4.3.2.1 Adam

Treino: 1,473h/125 Épocas

Convergência: Época 115

Figura 17. Resumo (Adam)

Figura 18. Curvas (Adam)

33

Figura 19. Treino/Validação (Adam)

Figura 20. Predições (Adam)

34

4.3.2.2 AdamW

Treino: 2,861h/286 Épocas

Convergência: Época 276

Figura 21. Resumo (AdamW)

Figura 22. Curvas (AdamW)

35

Figura 23. Treino/Validação (AdamW)

Figura 24. Predições (AdamW)

36

4.3.2.3 RAdam

Treino: 0,826h/83 Épocas

Convergência: Época 73

Figura 25. Resumo (Radam)

Figura 26. Curvas (RAdam)

37

Figura 27. Treino/Validação (RAdam)

Figura 28. Predições (RAdam)

38

4.3.2.4 RMSProp

Treino: 0,697h/72 Épocas

Convergência: Época 42

Figura 29. Resumo (RMSProp)

Os números e as imagens a seguir confirmam que este foi o treino mais destoante.

Para essa situação especificamente, talvez essa não seja a melhor opção de

otimizador.

Figura 30. Curvas (RMSProp)

39

Figura 31. Treino/Validação (RMSProp)

Figura 32. Predição (RMSProp)

40

4.3.2.5 NAdam

Treino: 3,060h/290 Épocas

Convergência: Época 280

Figura 33 - Resumo Treino Otimizadores - NAdam

Figura 34. Curvas (NAdam)

41

Figura 35. Treino/Validação (NAdam)

Figura 36. Predições (NAdam)

42

4.3.2.6 SGD

Treino: 1,732h/179 Épocas

Convergência: Época 169

Figura 37 - Resumo Treino Otimizadores - SGD

Figura 38. Curvas (SGD)

43

Figura 39. Treino/Validação (SGD)

Figura 40. Predições (SGD)

44

4.4. Resultado Comparativo

Comparamos os resultados obtidos usando os otimizadores Adam, AdamW,

NAdam, RAdam, SGD e RMSProp (cada qual com suas particularidades). Os dados

dos treinos com RMSProp foram considerados os mais discrepantes e, para o cenário

proposto, mostrou-se insatisfatório conforme os dados a seguir e confirmados com os

dados de predição.

4.4.1 Recall Confidence

Combina o recall com a confiança associada às previsões. Isso pode ser útil

para avaliar não apenas a capacidade do modelo de identificar corretamente as

instâncias positivas, mas também a confiança com que faz essas previsões. Por

exemplo, um modelo pode ter um recall alto, mas se a confiança nas previsões for

baixa, pode não ser tão útil em aplicações práticas.

Figura 41. Comparativo - Recall Confidence

45

4.4.2 Precision Recall

É a proporção de verdadeiros positivos (TP) sobre a soma de verdadeiros

positivos e falsos negativos (FN). Ele mede a capacidade do modelo de encontrar

todos os exemplos positivos.

Figura 42. Comparativo - Precision Recall

4.4.3 Precision Confidence

Em muitos modelos de aprendizado de máquina, especialmente em detecção

de objetos, cada previsão vem com uma pontuação de confiança que indica a

probabilidade de a previsão estar correta.

Figura 43. Comparativo - Precision Confidence

46

4.4.4 F1-Confidence

Combina o F1-Score com a confiança associada às previsões. Isso pode ser

útil para avaliar não apenas o equilíbrio entre precisão e recall, mas também a

confiança com que o modelo faz essas previsões. Um alto F1-Score com alta

confiança indica que o modelo é não apenas equilibrado em termos de precisão e

recall, mas também confiante em suas previsões.

Figura 44. Comparativo - F1 Confidence

4.4.5 Lr (Learning Rate)

A taxa de aprendizado determina o tamanho dos passos que o algoritmo de

otimização dá ao mover-se em direção ao mínimo da função de perda.

• Taxa de Aprendizado Alta: Pode fazer com que o modelo converja rapidamente,

mas corre o risco de pular o mínimo global e não convergir adequadamente.

• Taxa de Aprendizado Baixa: Pode levar a uma convergência mais estável e

precisa, mas o treinamento pode ser muito lento e pode ficar preso em mínimos

locais.

Os algoritmos usados ajustam a taxa de aprendizado automaticamente com

base no histórico de gradientes.

47

4.4.5.1 lr/pg2

Este grupo geralmente inclui os vieses (biases) das camadas. Os vieses são

ajustados separadamente dos pesos e podem ter uma taxa de aprendizado diferente.

Figura 45. Comparativo - lr/pg2

4.4.5.2 lr/pg1

Este grupo inclui parâmetros que têm decaimento de peso, como os pesos das

camadas convolucionais. O decaimento de peso é uma técnica usada para evitar

overfitting, penalizando grandes pesos durante o treinamento.

Figura 46. Comparativo - lr/pg1

48

4.4.5.3 lr/pg0

Este grupo inclui parâmetros que não têm decaimento de peso, como os pesos

das camadas de normalização em lote (BatchNorm). A taxa de aprendizado aplicada

a este grupo é específica para esses parâmetros.

Figura 47. Comparativo - lr/pg0

4.4.6 Metrics/Recall

Recall, também conhecido como sensibilidade ou taxa de detecção, mede a

capacidade do modelo de identificar corretamente todas as instâncias relevantes de

uma classe. É a proporção de verdadeiros positivos (TP) sobre a soma de verdadeiros

positivos e falsos negativos (FN).

Figura 48. Comparativo - metrics/recall

49

4.4.7 Metrics/precision

Precision, ou precisão, mede a proporção de verdadeiros positivos (TP) sobre

o total de previsões positivas (verdadeiros positivos + falsos positivos, FP). Em outras

palavras, é a capacidade do modelo de prever corretamente as instâncias positivas.

Há um trade-off entre recall e precisão: aumentar o recall pode diminuir a

precisão e vice-versa. Por isso, métricas como o F1-Score são usadas para encontrar

um equilíbrio entre as duas.

Figura 49. Comparativo - metrics/precision

50

4.4.8 Metrics/mAP50-95

mAP50-95 é uma métrica mais robusta e informativa do que mAP50 (que

considera apenas um limiar de IoU de 0.50). Ela avalia o desempenho do modelo em

uma gama de cenários, desde detecções mais fáceis (IoU de 0.50) até detecções mais

difíceis (IoU de 0.95).

Figura 50. Comparativo - metrics/mAP50-95

51

4.4.9 Metrics/mAP50

é uma métrica comum usada para avaliar o desempenho de modelos de

detecção de objetos, fornecendo uma visão clara de como o modelo se comporta em

termos de precisão e recall com um limiar de IoU de 0.50.

Figura 51. Comparativo - metrics/mAP50

4.4.10 Model/speed(ms)

Tempo que um modelo de aprendizado de máquina leva para processar uma

única amostra de entrada, medido em milissegundos (ms). Crucial para avaliar a

eficiência e a adequação de um modelo para aplicações em tempo real.

Figura 52. Comparativo - model/speed(ms)

52

4.4.11 Model/parameters

São variáveis internas de um modelo de aprendizado de máquina que são

ajustadas durante o processo de treinamento. Eles são essenciais para definir como

o modelo transforma os dados de entrada em previsões. São valores que o modelo

aprende diretamente dos dados durante o treinamento. Eles são ajustados para

minimizar a função de perda e melhorar a precisão do modelo.

Figura 53. Comparativo - model/parameters

4.4.12 Model/GFLOPs

 GFLOPs representa bilhões de operações de ponto flutuante por segundo. É

uma medida de quantas operações matemáticas envolvendo números decimais um

modelo pode realizar em um segundo. Especialmente em redes neurais profundas, o

número de GFLOPs é uma medida importante de eficiência e desempenho. Modelos

com maior GFLOPs podem processar dados mais rapidamente, o que é crucial para

tarefas que exigem alta capacidade computacional, como visão computacional e

processamento de linguagem natural.

 Avaliar os GFLOPs de um modelo ajuda a entender sua complexidade e a

necessidade de recursos computacionais. Isso é especialmente útil ao comparar

diferentes modelos ou ao otimizar modelos para dispositivos com recursos limitados,

como smartphones.

53

Figura 54. Comparativo - model/GFLOPs

4.4.13 Train/dfl_loss

 A DFL refere-se a Distribution Focal Loss (uma variante da Focal Loss),

projetada para focar mais em exemplos difíceis de classificar. Durante o treinamento,

a DFL ajuda o modelo a diferenciar melhor entre objetos muito semelhantes ou

amostras difíceis, melhorando a capacidade do modelo de lidar com casos complexos.

A DFL é usada em modelos de detecção de objetos, como YOLO, para

melhorar a precisão e a robustez do modelo ao lidar com dados desafiadores.

É aplicada na regressão de caixas delimitadoras (bounding boxes), tratando as

bordas como distribuições em vez de valores fixos. Isso ajuda a corrigir erros de

previsão, melhorando a precisão em imagens com bordas desfocadas ou objetos

parcialmente visíveis.

54

Figura 55. Comparativo - train/dfl_loss

4.4.14 Train/cls_loss

Refere-se à (Perda de Classificação) durante o treinamento de um modelo. A

Classification Loss mede a diferença entre as previsões de classe do modelo e as

classes reais dos dados de treinamento. É usada para ajustar os pesos do modelo de

forma a melhorar a precisão da classificação.

A perda de classificação é calculada usando a Cross-Entropy Loss (Perda de

Entropia Cruzada), cuja fórmula é:

𝐻(𝑦, 𝑝) = − ∑ 𝑌𝑖 ∙ log (𝑝𝑖)

𝐶

𝑖=1

55

Figura 56. Comparativo - train/cls_loss

4.4.15 Train/box_loss

Refere-se à Box Regression Loss (Perda de Regressão de Caixa) durante o

treinamento de um modelo de detecção de objetos. A Box Regression Loss mede a

diferença entre as caixas delimitadoras preditas pelo modelo e as caixas delimitadoras

reais dos objetos nos dados de treinamento. Essa perda é usada para ajustar os

parâmetros do modelo de forma a melhorar a precisão das previsões das caixas

delimitadoras.

Em modelos como YOLO (You Only Look Once), a Box Regression Loss é crucial

para garantir que as caixas delimitadoras preditas estejam corretamente alinhadas

com os objetos detectados. Isso é essencial para a precisão geral do modelo.

56

Figura 57. Comparativo - train/box_loss

4.4.16 Val/dfl_loss

Idem train/dfl_loss mas durante a fase de validação de um modelo. DFL é

usada para melhorar a precisão e a robustez do modelo ao lidar com dados

desafiadores, especialmente em tarefas de detecção de objetos.

Figura 58. Comparativo - val/dfl_loss

57

4.4.17 Val/cls_loss

Idem train/cls_loss mas durante a fase de validação de um modelo. Usada para ajustar

as previsões de classe das caixas delimitadoras detectadas

Figura 59. Comparativo - val/cls_loss

4.4.18 Val/box_loss

Idem train/box_loss (Perda de Regressão de Caixa) mas durante a fase de

validação. É usada para ajustar os parâmetros do modelo de forma a melhorar a

precisão das previsões das caixas delimitadoras.

Figura 60. Comparativo - val/box_loss

58

4.4.19 System/Gpu Power Usage

O consumo de energia das GPUs (Unidades de Processamento Gráfico) é uma

métrica importante para avaliar a eficiência e o desempenho de um sistema.

Figura 61. Comparativo - GPU Power Usage (W)

4.4.20 System/GPU Memory Allocated

Refere-se à quantidade de memória da GPU que está sendo usada por um

modelo ou aplicação em um dado momento.

Figura 62. Comparativo - GPU Memory Allocated (Bytes)

59

4.4.21 System/GPU Time Spent Accessing Memory

Refere-se ao tempo que a GPU gasta acessando a memória durante a execução

de operações. É uma métrica crucial para entender a eficiência do uso da memória

pela GPU.

Figura 63. Comparativo - GPU Time Spent Accessing Memory(%)

4.4.22 System/GPU Temperature

Temperatura da GPU durante sua utilização.

Figura 64. Comparativo - GPU Temperature (°C)

60

4.4.23 System/GPU Utilization %

Utilização da GPU (em %).

Figura 65. Comparativo - GPU Utilization (%)

4.4.24 System/Process Memory Available (MB)

Durante o treinamento de modelos YOLO (You Only Look Once), é importante

monitorar a memória disponível do processo para garantir que o treinamento ocorra

sem problemas.

Figura 66. Comparativo - Process Memory Available (MB)

61

4.5. Resultados de Predições e Discussões

Os resultados são discutidos em termos de precisão, robustez e aplicabilidade,

destacando tanto os acertos quanto as limitações do modelo no reconhecimento de

veículos militares em imagens. De um modo geral, o único algoritmo experimentado

que se mostrou destoante dos demais em seus resultados e não conseguiu fazer

predições satisfatórias foi o RMSProp.

4.5.1 Exemplos de Detecções (Individualmente)

A seguir utilizamos mais de um modelo a fim de demonstrar que é possível

combinar o resultado preditivo de vários modelos (nossos modelos especializados

foram treinados para detectar as 5 classes de veículos militares inicialmente

planejadas) mas não identificariam veículos civis, por exemplo. Por outro lado, o

modelo básico identificaria os veículos civis mas não entenderia os veículos militares.

Então, adicionamos essa funcionalidade combinando os resultados de nosso treino

com o modelo básico yolov10n (preparada para distinguir 80 classes diferentes dos

nossos veículos) conforme a tabela a seguir:

Tabela 6. Lista de Classes Pré-Treinadas no Modelo YoloV10n

0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traf f ic light
10: f ire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow

20: elephant
21: bear
22: zebra
23: giraf fe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: f risbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle

40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed

60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: ref rigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush

62

Eventualmente, por falta de conhecimento, esse modelo “básico” classificaria,

nossos veículos militares originalmente como “Trens”, “Barcos” ou “Caminhões” (com

uma confiança não muito alta na maioria das vezes).

63

Tabela 7. Predição de Veiculos Civis e Militares por Modelo Não Especializado

64

Por outro lado, nossos modelos especializados se mostraram muito bons em

classificar os veículos militares mas ruins em classificar os veículos civis.

Tabela 8. Lista de Classes Exclusivamente Treinadas nos Modelos CFN

0: ASTROS 1: CLANF 2: JLTV 3: M113 4: PIRANHA 5: SK105

Tabela 9. Predição de Veiculos Civis e Militares Por Modelo Militar Especializado

4.5.2 Classificações Combinadas

Ao combinar o resultado de vários modelos, conseguimos extrair o melhor que

cada um tem a oferecer sem necessariamente precisar retreinar todos os dados.

 Detecções precisas de veículos militares e civis em ambientes diversos.

65

 Identificação de múltiplos objetos em uma única imagem, com bounding boxes

corretamente posicionadas e classificações exatas.

Tabela 10. Predições Combinadas de Mais de um Modelo

66

67

68

69

5. Considerações Finais

5.1. Sobre a Evolução do Yolo

Como vimos, a evolução da R-CNN até o YOLO representa uma jornada de

evolução na detecção de objetos onde cada algoritmo é evoluído a partir de seu

antecessor.

O YOLO, por tratar a detecção de objetos como um único problema de

regressão, processando toda a imagem em uma passagem para frente, torna-o

extremamente rápido e capaz de processamento em tempo real. Além disso, podemos

adaptá-lo para nossa necessidade em cada cenário levando em conta capacidade de

processamento, acurácia e velocidade de resposta.

Como visto no gráfico abaixo a cada versão o modelo tem evoluído apresentando

novos recursos e melhorias com aumento de desempenho e flexibilidade.

Figura 67. Comparativo Latência x mAP (média das precisões médias de todas as classes no conjunto de dados)

Fonte: https://github.com/ultralytics/ultralytics

A introdução da IA em sistemas de defesa representa uma evolução significativa na

forma como os dados são processados e utilizados em operações críticas, reforçando

a importância do tema em um mundo cada vez mais digitalizado e interconectado.

5.2. Conclusão

O presente trabalho investigou o uso do modelo YOLO para o reconhecimento

de veículos militares em imagens, com foco na aplicação prática e na análise de

desempenho do modelo. Foram realizadas etapas que incluíram a coleta e anotação

70

de um dataset customizado, o treinamento do modelo em diferentes condições e a

validação de sua eficiência em cenários variados.

Os resultados obtidos demonstraram que o YOLO é uma solução viável e eficaz

para a tarefa proposta, especialmente devido à sua capacidade de operar em tempo

real, processando imagens a uma velocidade de 8.2 GFLOPs, o modelo alcançou

seus melhores mAPs em 98.3%, 98.2% e 97.4% com IoU até 0.5 e mAPs 86.9%,

85.2% e 81.9% IoU de 0.5~0.95 (otimizadores AdamW, SGD e NAdam

respectivamente).

Adicionalmente, foi avaliado o potencial de implementação deste sistema em

drones. Os resultados indicam que o YOLO é particularmente adequado para sistemas

embarcados, pois sua alta velocidade e baixa latência permitem o reconhecimento de

veículos em tempo real durante o voo. Isso torna viável sua aplicação em missões

táticas, vigilância aérea e patrulhamento de fronteiras, onde a identificação precisa e

rápida é fundamental para a tomada de decisões em ambientes dinâmicos. Os

arquivos obtidos referentes aos treinos dos modelos com seus pesos não

ultrapassaram 5Mb).

A análise dos resultados mostrou que o modelo é robusto em cenários bem

iluminados e com objetos claramente visíveis, mas obtém bons resultados também

em condições adversas como baixa iluminação, oclusões e camuflagem desde que

seja treinado previamente para tal. Esses aspectos destacam a importância de

aprimorar o dataset e explorar técnicas que aumentem a capacidade do modelo de

lidar com situações mais complexas.

5.3. Contribuições

Este estudo trouxe contribuições relevantes para o campo da visão

computacional aplicada ao setor militar, como:

 Desenvolvimento de um fluxo completo de trabalho: Foram definidas todas as

etapas necessárias para o uso prático do YOLO, desde a coleta e anotação de dados

até o treinamento, validação e análise dos resultados do modelo.

71

 Criação de um dataset customizado: Incluindo imagens anotadas de diferentes

tipos de veículos militares em cenários variados, o que pode ser utilizado como base

para estudos futuros.

 Avaliação detalhada do desempenho: Foram realizadas análises quantitativas

e qualitativas do modelo, abrangendo métricas como precisão, velocidade e robustez

em condições adversas.

 Proposta de aplicações práticas: Os resultados obtidos reforçam o potencial do

YOLO para uso em sistemas de vigilância, drones e monitoramento em tempo real,

oferecendo suporte à tomada de decisões em ambientes críticos.

5.4. Limitações

Apesar das contribuições, algumas limitações foram identificadas:

 Diversidade do dataset: Embora o dataset tenha incluído diferentes cenários,

ele ainda não abrange todas as possíveis variações encontradas em operações reais,

como condições climáticas extremas ou veículos de designs menos comuns.

 Restrição ao YOLO: O estudo focou exclusivamente no YOLO, sem explorar

combinações ou modelos híbridos que poderiam oferecer melhor desempenho em

cenários específicos.

5.5. Trabalhos Futuros

Com base nos resultados obtidos e nas limitações identificadas, algumas

direções para trabalhos futuros são propostas:

 1. Expansão do Dataset:

o Incluir mais imagens com variações climáticas extremas, ângulos

inusitados e veículos menos comuns.

o Aumentar a quantidade de exemplos anotados em condições adversas,

como baixa iluminação e camuflagem intensa.

o Priorizar imagens aéreas para utilização com drones.

72

 2. Técnicas de Pré-processamento:

o Aplicar técnicas como aumento de contraste, redução de ruído e

balanceamento de cores para melhorar a qualidade das imagens de

entrada.

o Utilizar dados sintéticos gerados por simulações para complementar o

dataset.

 3. Treinamento Híbrido:

o Combinar o YOLO com outros modelos, como Faster R-CNN, para

aproveitar os pontos fortes de ambos.

o Implementar arquiteturas mais recentes, como YOLOv11 a fim de

explorar avanços tecnológicos mais recentes.

 4. Uso em Drones e Sistemas Embarcados:

• Testar o modelo diretamente em drones, avaliando sua capacidade de

operar em tempo real durante o voo.

• Desenvolver soluções de integração para adaptar o modelo ao hardware

de drones, levando em conta limitações como consumo de energia e

capacidade de processamento.

 5. Integração com Tecnologias Avançadas:

• Incorporar informações adicionais, como dados de sensores térmicos,

infravermelhos e gps para aumentar a precisão em cenários complexos.

73

5.6. Considerações Finais

A detecção e o reconhecimento de veículos militares por meio de inteligência

artificial representam um avanço significativo na área de defesa e segurança. Este

trabalho demonstrou que o YOLO pode ser uma ferramenta poderosa para aplicações

práticas, equilibrando precisão e eficiência em tempo real. Sua possível

implementação em drones amplia ainda mais o alcance e a aplicabilidade da

tecnologia, permitindo o monitoramento autônomo de áreas extensas e a coleta de

informações estratégicas em tempo hábil.

Entretanto, os desafios encontrados reforçam a necessidade de continuidade

nos estudos, com melhorias que visem ampliar a robustez do modelo em cenários

reais e complexos. Por fim, este estudo não apenas contribui para o campo da visão

computacional, mas também oferece uma base sólida para futuras pesquisas e

aplicações práticas, destacando o potencial da inteligência artificial na transformação

de sistemas de defesa modernos.

74

6. Referências

REDMON, J. et al. You only look once: Unified, real-time object detection. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). [S.l.: s.n.], 2016.

J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, In: 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 6517–

6525

Lindsay, G. Convolutional neural networks as a model of the visual system: past,

present, and future. Journal of Cognitive Neuroscience, v. 33, p. 2017-2031, 2020.

Disponível em: https://doi.org/10.1162/jocn_a_01544. Acesso em: 10 set. 2024.

BRAGA, A. de P.; CARVALHO, A. de L. F.; LUDERMIR, T. Redes neurais artificiais:

teoria e aplicações. Livros Técnicos e Científicos, 2000. ISBN 9788521612186.

Disponível em: https://books.google.com.br/books?id=cUgEaAEACAAJ.

HUANG, R.; PEDOEEM, J.; CHEN, C. Yolo-lite: a real-time object detection

algorithm optimized for non-gpu computers. In: IEEE. 2018 IEEE International

Conference on Big Data (Big Data). [S.l.], 2018. p. 2503–2510.

R-CNN vs R-CNN Fast vs R-CNN Faster vs YOLO. Datadance. 2024. 20 out. 2024.

Disponível em https://datadance.ai/machine-learning/r-cnn-vs-r-cnn-fast-vs-r-cnn-

faster-vs-yolo/. Acesso em 20 dez. 2024.

LECUN, Yann; BOTTOU, Léon; BENGIO, Yoshua; HAFFNER, Patrick. Gradient-

based learning applied to document recognition. Disponível em:

https://ieeexplore.ieee.org/document/726791. Acesso em: 15 dez. 2024.

Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, Guiguang Ding.

YOLOv10: Real-Time End-to-End Object Detection. Disponível em:

https://arxiv.org/abs/2405.14458. Acesso em: 30 out. 2024.

ULTRALYTICS. Ultralytics YOLO Source Codes and Examples on Github.

Disponível em https://github.com/ultralytics/ultralytics. Acesso em: 20 set. 2024.

75

ULTRALYTICS. YOLOv10: Real-Time End-to-End Object Detection. Disponível em

https://docs.ultralytics.com/models/yolov10. Acesso em: 20 set. 2024.

MICROSOFT. Azure Blob Storage. Disponível em https://azure.microsoft.com/en-

us/products/storage/blobs/. Acesso em: 10 ago. 2024.

Label Studio. Label Studio Quick Start. Disponível em

https://labelstud.io/guide/quick_start. Acesso em 10 out. 2024.

76

Apêndice A - Treino de Modelos Customizados Yolo

import subprocess

import sys

import os

path_inicio = '/home/robert.libotti/TCC-FGVCFN-YOLO'

path_saida = '/home/robert.libotti/OUTPUT'

path_yolo = path_saida + '/yolov10'

wandb_key = '<PRIVADO>'

project_id = 'FGVCFN_2025Nv01'

epochs = 600

patience = 10

versao_yolo = 'yolov10n'

optimizers = ['RMSProp', 'SGD','NAdam', 'RMSProp', 'RAdam', 'AdamW', 'Adam']

def install(package):

 subprocess.check_call([sys.executable, '-m', 'pip', 'install', package])

def checagem():

 print('Checando se o ambiente está correto...')

 import torch

 import torchvision

 import wandb

 import ultralytics

 import yolov10

 current_directory = os.getcwd()

 print('Ambiente OK')

 print('Versão do Pytorch:', torch.__version__)

 print('Versão do Torchvision:', torchvision.__version__)

 print('Versão do Wandb:', wandb.__version__)

 print('Versão do Ultralytics:', ultralytics.__version__)

 print(f 'YOLO ({versao_yolo}): ', yolov10.__version__)

 print(f"Diretorio corrente: {current_directory}")

 if torch.cuda.is_available():

 print("GPU is available.")

 else:

 print("GPU is not available.")

def verificar_gpu():

 import GPUtil

 gpus = GPUtil.getGPUs()

 for gpu in gpus:

 print(f"ID: {gpu.id}")

 print(f"Nome: {gpu.name}")

77

 print(f"Memória Total: {gpu.memoryTotal} MB")

 print(f"Memória Utilizada: {gpu.memoryUsed} MB")

 print(f"Memória Livre: {gpu.memoryFree} MB")

 print(f"Utilização: {gpu.load * 100}%")

 print(f"Temperatura: {gpu.temperature} °C")

 print("-" * 30)

def passo01_instala_bibliotecas():

 install('torch') # torchvision wandb ultralytics yolov10

 install('torchvision')

 install('wandb')

 install('ultralytics')

 install('yolov10')

 install('gitpython')

 install('gputil')

def passo02_gitclone_yolo():

 os.chdir(path_saida)

 if not os.path.exists(path_yolo):

 repo_url = 'https://github.com/THU-MIG/yolov10.git'

 try:

 # Clone the repository

 git.Repo.clone_from(repo_url, path_yolo)

 print("Repository cloned successfully!")

 except Exception as e:

 print(f"An error occurred: {e}")

 checagem()

def passo03_treino(optimizer):

 from ultralytics import YOLO, settings

 import wandb

 import random

 import os

 os.chdir(path_yolo)

 project_name = f '{epochs}epochs{optimizer}'

 checagem()

 settings.update({"wandb": True})

 # Initialize W&B run

 wandb.login(key=wandb_key) # userdata.get('WANDB_API_KEY_TCC')

 wandb.init(project=project_id, name=project_name)

 # opcao 1

 # model = YOLOv10.from_pretrained('jameslahm/yolov10n')

 # opcao 2

78

 # wget https://github.com/

THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt

 # model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')

 url_yolo = f 'https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt'

 local_path_yolo = os.path.join(path_yolo, f '{versao_yolo}.pt')

 try:

 import urllib.request

 print(f"Downloading {url_yolo} to {local_path_yolo}...")

 urllib.request.urlretrieve(url_yolo, local_path_yolo)

 print("Download complete.")

 except Exception as e:

 print(f"Error downloading {url_yolo}: {e}")

 model = YOLO(versao_yolo)

 config = f '{path_inicio}/config.yaml'

 model.train(project=project_id, data=config, epochs=epochs, patience=patience, verbose=True,

optimizer=optimizer)

Press the green button in the gutter to run the script.

if __name__ == '__main__':

 passo01_instala_bibliotecas()

 passo02_gitclone_yolo()

 checagem()

 for optimizer in optimizers:

 passo03_treino(optimizer)

79

Apêndice B - Usando Modelos Customizados Para Classificar e Combinar

Resultados de Forma Personalizada

import torch

from PIL import Image

import cv2

import os

import matplotlib.pyplot as plt

from ultralytics import YOLO

import json

Função para carregar o modelo

def load_yolo_model(model_path):

 model = YOLO(model_path)

 return model

Função para realizar a detecção de objetos

def detect_objects(model, image_path, idx_classes, min_confidence):

 results = model(image_path)

 if len(results) == 0:

 return results

 filtered_results = [result for result in results if result.boxes.cls.numel() > 0 and result.boxes.conf[0] >=

min_confidence and int(result.boxes.cls[0]) in idx_classes]

 return filtered_results

Função para desenhar as bounding boxes nas imagens

def draw_boxes(image_path, results, output_path):

 for i, r in enumerate(results):

 # Plot results image

 im_bgr = r.plot() # BGR-order numpy array

 im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image

 r.save(filename=f"{output_path}")

def draw_boxes_cv2(image, results1, results2, tickness, min_confidence_yolo, min_confidence_cfn):

 for result in results1:

 for box in result.boxes:

 x1, y1, x2, y2 = map(int, box.xyxy[0])

 indice = box.cls[0]

 label = result.names[int(indice)]

 confidence = box.conf[0]

 if label == 'car' and confidence > min_confidence_yolo:

 cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), tickness)

 cv2.putText(image, f '{label} {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 1,

cv2.LINE_AA)

80

 for result in results2:

 for box in result.boxes:

 x1, y1, x2, y2 = map(int, box.xyxy[0])

 indice = box.cls[0]

 label = result.names[int(indice)]

 confidence = box.conf[0]

 if confidence >= min_confidence_cfn:

 cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), tickness)

 cv2.putText(image, f '{label} {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 1,

cv2.LINE_AA)

 return image

Diretórios

current_dir = os.getcwd()

input_dir = f '{current_dir}\\input-files'

output_dir = f '{current_dir}\\output-files'

models = ['best-sgd', 'best-adamw', 'best-nadam'] #'best-rmsprop', 'best-radam', 'best-adam', 'yolov10n' 'best-

sgd', 'best-adam', 'best-adamw', 'best-nadam', 'best-radam', 'best-rmsprop',

models_dir = f '{current_dir}\\model-files'

model1 = load_yolo_model(f '{models_dir}\\yolov10n.pt')

para cada model

for modelo in models:

 model2 = load_yolo_model(f '{models_dir}\\{modelo}.pt')

 # Processar cada imagem no diretório de entrada

 for img_file in os.listdir(input_dir):

 img_path = os.path.join(input_dir, img_file)

 img = cv2.imread(img_path)

 min_confidence_yolo = 0.5

 min_confidence_cfn = 0.6

 # 0: person, 1: bicycle, 2: car, 3: motorcycle, 4: airplane, 5: bus, etc.

 results1 = detect_objects(model1, img_path, [2], min_confidence_yolo)

 # ASTROS, CLANF, JLTV, M113, PIRANHA, SK105

 results2 = detect_objects(model2, img_path, [0, 1, 2, 3, 4, 5], min_confidence_cfn)

 fname, fext = os.path.splitext(img_file)

 # resultados combinados (com filtros)

 combined_result = img.copy()

 combined_result = draw_boxes_cv2(combined_result, results1, results2, 2, min_confidence_yolo,

min_confidence_cfn)

81

 plt.figure(figsize=(10, 10))

 plt.imshow(cv2.cvtColor(combined_result, cv2.COLOR_BGR2RGB))

 plt.title(f 'Combined Results from yolov10n and CFN-{modelo}')

 plt.axis('off')

 #plt.show()

 plt.savefig(f '{output_dir}\\{fname}_combined_{min_confidence_yolo}-{min_confidence_cfn}_{modelo}.png')

print("Processamento concluído e arquivos salvos no diretório de saída.")

