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Resumo 

 

A crescente complexidade dos conflitos modernos exige soluções tecnológicas 

que possam identificar e classificar veículos militares de forma eficiente. Essa 

identificação é fundamental em aplicações de reconhecimento aéreo e terrestre, 

monitoramento de fronteiras, ações de sabotagem, tarefas de inteligência, contra-

ataque e no uso de drones em operações táticas. O emprego de inteligência artificial 

(IA) nesse processo, mais especificamente através de modelos de redes neurais 

convolucionais (CNNs), se mostra uma abordagem robusta e viável, oferecendo alta 

acurácia e velocidade na detecção e classificação de objetos em imagens complexas. 

O objetivo deste trabalho consiste em propor uma abordagem para detectar e 

classificar algumas classes de veículos militares (a saber: ASTROS, CLANF, JLTV, 

M113, PIRANHA e SK105) através de imagens que podem ser capturadas a partir de 

drones, câmeras fixas ou móveis combinando o modelo YOLOv10 e uma CNN. Os 

resultados experimentais mostram que o modelo alcançou um desempenho 

considerável (com precisão acima de 90% em muitos casos) e mesmo que a 

quantidade de imagens utilizadas no treino tenha sido pequena para uma aplicação 

real, demonstra a viabilidade para utilização em dispositivos embarcadas ou em uma 

arquitetura em nuvem com processamento remoto, por exemplo. 

 

Palavras-chave 

 YOLO; PyTORCH, CNN; Visão Computacional; IA; Veículos Militares. 
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1. Introdução 

A inteligência artificial (IA) é definida como “a capacidade de um sistema 

interpretar corretamente dados externos, aprender a partir desses dados e utilizar 

esse conhecimento para atingir objetivos e tarefas específicas por meio de adaptação 

flexível” (Kaplan; Haenlein, 2019). É um campo da ciência da computação voltado 

para a criação de sistemas capazes de realizar tarefas que normalmente exigiriam 

inteligência humana, como reconhecimento de padrões, aprendizado e tomada de 

decisão. Baseada em técnicas como aprendizado de máquina e aprendizado 

profundo, a IA é amplamente aplicada em soluções específicas de Visão 

Computacional para detectar e classificar objetos em imagens. No contexto deste 

trabalho, a IA é essencial para o desenvolvimento de tecnologias que permitam a 

identificação rápida e precisa de veículos militares em cenários complexos diversos. 

2. Objetivos 

2.1. Objetivo Geral 

A introdução da IA em sistemas de defesa representa uma evolução 

significativa na forma como os dados são processados e utilizados em operações 

críticas, reforçando a importância do tema em um mundo cada vez mais digitalizado 

e interconectado. 

2.2. Objetivos Específicos 

Neste trabalho, propomos explorar o uso do YOLO para o reconhecimento de 

veículos militares através de imagens para uso em sistemas embarcados em drones 

(ou qualquer dispositivo que possa desempenhar processamento local) ou 

remotamente através de uma arquitetura em nuvem, com foco na aplicação prática e 

análise do desempenho do modelo. Para isso, serão abordadas etapas como a coleta 

e anotação de dados específicos, incluindo a criação de caixas delimitadoras 

(bounding boxes) para cada veículo presente nas imagens do banco de dados, o 

treinamento do modelo em um dataset customizado e a validação de seu desempenho 

em diferentes condições. Adicionalmente, serão verificados os desafios enfrentados, 

como a presença de ruídos nas imagens, variações de iluminação, oclusões e a 
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diversidade visual dos veículos militares, que incluem tanques, carros blindados, 

veículos anfíbios de assalto e outros meios militares de transporte especializados. 

A relevância deste estudo reside no potencial de aprimorar sistemas 

automatizados de detecção, contribuindo para o avanço tecnológico na área de defesa 

e segurança. Além disso, os resultados podem servir como base para a 

implementação de soluções práticas em diferentes contextos, como vigilância 

autônoma por drones e câmeras, análise estratégica em tempo real, uso de sistemas 

de inteligência artificial de reconhecimento de imagens em planejamentos por cartas 

topográficas, como por exemplo a carta de trafegabilidade sendo feita de forma 

automática e apoio à tomada de decisões táticas.  

Assim, este trabalho está estruturado em capítulos que abordam, inicialmente, 

os fundamentos teóricos do reconhecimento de imagens, das redes neurais 

convolucionais e do YOLO, seguidos da metodologia adotada para o treinamento e 

validação do modelo. Posteriormente, serão apresentados os resultados obtidos e 

suas implicações práticas, culminando nas considerações finais e sugestões para 

trabalhos futuros. O objetivo principal é demonstrar como o uso do YOLO pode ser 

eficaz no reconhecimento de veículos militares, oferecendo uma contribuição 

significativa para a área de visão computacional e suas aplicações no setor militar. 

3. Fundamentação Teórica 

3.1. Conceitos Relacionados 

A fundamentação teórica deste trabalho aborda os conceitos-chave 

relacionados ao reconhecimento de imagens, redes neurais convolucionais (CNNs) e 

ao modelo YOLO (You Only Look Once). Esses tópicos são fundamentais para 

compreender a aplicação de técnicas de visão computacional no reconhecimento de 

veículos militares em imagens. 

 

3.2. Reconhecimento de Imagens 

O reconhecimento de imagens é uma subárea da visão computacional que visa 

identificar e classificar objetos em imagens digitais. Essa tarefa envolve a análise de 
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características específicas, como formas, cores, texturas e padrões, que permitem 

diferenciar objetos e atribuí-los a categorias definidas. 

Com o avanço da tecnologia, os métodos tradicionais baseados em extração manual 

de características deram lugar a abordagens baseadas em aprendizado de máquina, 

especialmente aprendizado profundo (deep learning). Esses métodos utilizam redes 

neurais artificiais capazes de aprender representações complexas diretamente a partir 

dos dados, eliminando a necessidade de intervenção manual para a extração de 

características. 

A importância do reconhecimento de imagens está em sua ampla gama de 

aplicações, que incluem sistemas de vigilância, diagnóstico médico, direção autônoma 

e, no contexto militar, a identificação de veículos, tropas e equipamentos em 

ambientes operacionais. 

3.3. Redes Neurais Convolucionais 

Redes Neurais Convolucionais (Convolutional Neural Networks, CovNets ou 

CNNs) são um tipo específico de rede neural projetada para processar dados que 

possuem uma estrutura em forma de grade, como imagens. Elas são amplamente 

utilizadas em tarefas de visão computacional, como reconhecimento de objetos, 

segmentação de imagens e detecção de padrões. 

A estrutura básica de uma CNN é composta pelos seguintes elementos: 

Tabela 1. Estrutura Básica de uma CNN 

Camadas Convolucionais Aplicam f iltros (ou kernels) à imagem de entrada para extrair 
características relevantes, como bordas, texturas e formas. Cada f iltro 
aprende uma característica específ ica durante o treinamento. O 
resultado dessa operação é um mapa de características (feature 
map), que destaca as regiões onde os padrões foram detectados. 

Camadas de Pooling (ou 
Subamostragem) 

Reduzem a dimensionalidade das características extraídas, mantendo 
as informações mais importantes e aumentando a ef iciência 
computacional. Exemplos incluem o max pooling (seleção do valor 
máximo em uma região) e o average pooling (média dos valores).  

Camadas Fully 
Connected 

Geralmente realizam a classif icação f inal com base nas 
características extraídas. 
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Funções de Ativação Introduzem não linearidade ao modelo, permitindo a aprendizagem de 
padrões complexos. Funções como ReLU (Rectif ied Linear Unit) e 
sof tmax são amplamente utilizadas. 

O uso de CNNs em tarefas de reconhecimento de imagens revolucionou a área, 

proporcionando ganhos significativos em precisão e eficiência. CovNets são capazes 

de extrair características relevantes de dados automaticamente e com alta precisão. 

No entanto, para treinar redes neurais convolucionais com eficiência é necessário que 

se tenha acesso a recursos computacionais significativos. O Treinamento necessita 

de grande quantidade de volume de dados rotulados e GPUs poderosas para 

obtenção de bons resultados. 

 
 Figura 1. Convolutional Neural Network (CNN) 

 

Fonte: https://www.ionos.com/pt-br/digitalguide/sites-de-internet/desenvolvimento-web/convolutional-

neural-network/ 

 

3.4. Algoritmos de Detecção de Objetos  

3.4.1 R-CNN (O Pioneiro) 

A R-CNN, ou Regiões com recursos da CNN, entrou em cena em 2014, marcando 

uma mudança de paradigma na detecção de objetos. Como funciona: 

• Gera propostas de região (~2000) usando pesquisa seletiva 

• Extrai recursos da CNN de cada região 
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• Classifica regiões usando classificadores SVM 

 

3.4.2 Fast R-CNN 

A Fast R-CNN abordou as limitações de velocidade de seu antecessor, mantendo alta 

precisão. Como funciona: 

• Processa a imagem inteira através da CNN uma vez 

• Usa o agrupamento de ROI para extrair recursos para cada proposta de região 

• Usa camada softmax para classificação e regressão de caixa delimitadora 

 

3.4.3 Faster R-CNN 

A Faster R-CNN introduziu a Region Proposal Network (RPN), tornando todo o 

pipeline de detecção de objetos treinável de ponta a ponta. Como funciona: 

• Usa uma rede totalmente convolucional para gerar propostas de região 

• Compartilha recursos convolucionais de imagem completa com a rede de 

detecção 

• Treina RPN e Fast R-CNN juntos 

 

Exemplo de uso: Na condução autônoma, o Faster R-CNN pode detectar e classificar 

veículos, pedestres e sinais de trânsito quase que em tempo real, o que é crucial para 

tomada rápida de decisões. 

 

3.4.4 YOLO 

O YOLO (You Only Look Once) revolucionou a detecção de objetos ao enquadrá-la 

como um único problema de regressão, direto dos pixels da imagem para as 

coordenadas de caixas delimitadoras e probabilidades de classe. Como funciona: 

• Divide a imagem em uma grade 

• Para cada célula da grade, prevê caixas delimitadoras e probabilidades de 

classe 

• Aplica uma única passagem para frente em toda a imagem 
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3.5. Comparando Prós e Contras  

De acordo com a literatura pesquisada, comparando os algoritmos de detecção e 

reconhecimento de imagens R-CNN, Fast R-CNN, Faster R-CNN e YOLO, temos o 

seguinte: 

 

Tabela 2. Prós e Contras: R-CNN, Fast R-CNN, Faster R-CNN e YOLO 

 PRÓS CONTRAS 

R-CNN  

(Regions with 

Convolutional 

Neural 

Networks) 

Alta precisão: R-CNN é conhecido por 
sua alta precisão na detecção de objetos 
 
 
 
 
Flexibilidade: Pode ser usado em uma 
variedade de aplicações devido à sua 
precisão. 

Lento: O processo é relativamente 
lento porque envolve várias etapas, 
incluindo a geração de propostas de 
região e a extração de 
características. 
 
Requer muitos recursos: Devido 
ao seu processo complexo, 
consome muitos recursos 
computacionais. 

Fast R-CNN 

Mais rápido: Melhora signif icativamente 
o tempo de processamento em 
comparação com o R-CNN. 
 
Maior eficiência: Processa a imagem 
inteira uma vez e usa RoI pooling para 
extrair características de cada região 
proposta. 

Ainda depende de propostas 
externas: A geração de propostas 
de região ainda é um gargalo. 
 
 
Requer ajustes manuais: Precisa 
de ajustes manuais para otimizar o 
desempenho. 

Faster R-CNN 

Propostas rápidas: Introduz uma rede 
de proposta de região (RPN) que gera 
propostas de região rapidamente. 
 
Mais rápido e eficiente: Melhora ainda 
mais o tempo de processamento e a 
ef iciência em comparação com Fast R-
CNN. 

Complexidade: A introdução da 
RPN aumenta a complexidade do 
modelo. 
 
Requer ajustes manuais: Assim 
como Fast R-CNN, precisa de 
ajustes manuais para otimizar o 
desempenho. 
 

YOLO  

(You Only Look 

Once) 

Rápido: YOLO é muito mais rápido do 
que R-CNN porque processa a imagem 
inteira em uma única passagem. 
 
 
 
Eficiente: Usa menos recursos 
computacionais em comparação com R-
CNN. 

Menor precisão: Embora seja 
rápido, YOLO pode ser menos 
preciso em comparação com R-
CNN, especialmente em imagens 
complexas. 
 
Dificuldade em detectar objetos 
pequenos: YOLO pode ter 
dif iculdade em detectar objetos 
pequenos ou que estão próximos 
uns dos outros. 

fonte: https://datadance.ai/machine-learning/r-cnn-vs-r-cnn-fast-vs-r-cnn-faster-vs-yolo/ 
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Figura 2. Comparação da Evolução na Detecção de Objetos (R-CNN, Fast R-CNN, Faster R-CNN e YOLO) 

 

fonte: https://datadance.ai/machine-learning/r-cnn-vs-r-cnn-fast-vs-r-cnn-faster-vs-yolo/ 

 

 

4. Metodologia 

Este capítulo apresenta a metodologia adotada para o desenvolvimento do 

modelo de reconhecimento de veículos militares utilizando o YOLO. São descritas as 

etapas práticas de coleta e anotação de dados, configuração do modelo, treinamento 

e validação, detalhando os procedimentos técnicos e as ferramentas utilizadas. O 

objetivo é garantir a reprodutibilidade e a clareza do processo. 

4.1. Coleta e Anotação de Dados` 

A primeira etapa da metodologia consiste na obtenção de um conjunto de 

dados adequado para o treinamento do modelo. Para este trabalho, foram utilizadas 

imagens de veículos militares provenientes de fontes públicas, como bancos de 

imagens, vídeos de desfiles militares e registros de operações militares. 

Critérios de seleção das imagens: diversidade visual, incluindo diferentes tipos 

de veículos militares, como tanques, carros blindados de combate e veículos anfíbios 

de assalto. Variações de cenário: ambientes urbanos, florestais, desérticos e outros. 

Diferentes condições climáticas e de iluminação: imagens em alta e baixa iluminação, 

presença de ruído e oclusões. 

Após a coleta de 4361 imagens, foi realizada a classificação dos arquivos de 

treino/validação que foram armazenados em um Data Lake privado em nuvem no 

Microsoft Azure (Microsoft Azure Blob Storage) e que foi utilizado posteriormente 

como repositório de dados para o Label Studio que é uma ferramenta de código aberto 

para rotulagem de dados que permite a integração com diversos sistemas de 

armazenamento em nuvem. Para rodar o Label Studio em estrutura própria, utilizamos 
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um servidor virtual Linux Ubuntu 24.04 em nuvem com 4vcpus, 16GiB RAM e HD 

Premium SSD LRS de 30GiB de acordo com a arquitetura abaixo: 

 

Figura 3. Arquitetura Utilizada Azure/OnPremise/Local 

 

Na primeira fase, alimentamos um datalake com as imagens em nuvem e 

fizemos o trabalho de labeling com auxílio do Label Studio. Na segunda fase, para 

processamento e fins comparativos, lemos as anotações e as imagens a partir do 

hardware local (processador Intel i7 de 10ª geração com 8 núcleos, 32Gb RAM e HD 

SSD de 1TB mas sem GPU) e hardware on premise do ambiente do pesquisador da 

FGV (GPU: Tesla V100-PCIE-32GB com 32768.0 MB Memória), treinamos nosso 

modelo customizado e escrevemos os resultados para análise e inferência no Wandb 

(wandb.io).   

4.1.1 Labeling 

No processo inicial de labeling, foram criadas caixas delimitadoras (bounding 

boxes) nos dados de treino e validação a fim de identificar cada classe de veículo 

desejado. Cada bounding box foi rotulada com a classe correspondente aos veículos 

tratados no escopo deste trabalho. 

Figura 4. Exemplos de Labeling Gerados Pelo Label Studio 
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4.1.2 Detalhes do processo de Anotação e Divisão do DataSet 

 As caixas delimitadoras foram ajustadas para englobar totalmente o veículo, 

evitando incluir áreas irrelevantes. Cada veículo foi rotulado com uma classe 

específica: “SK105” (tanque leve), ”ASTROS” (sistema de lançadores múltiplos de 

foguetes -  MLRS), “CLAnf” (carro lagarta anfíbio), “JLTV” (veículo tático multifuncional 

leve), ”M113” (veículo blindado de transporte de pessoal0 e “PIRANHA" (veículo 

blindado de combate com rodas). 

 Seguindo o Princípio de Pareto, o dataset foi dividido em treinamento (80%) e 

validação (20%) para garantir a avaliação objetiva do modelo. 

4.2. Configuração do Modelo YOLO 

A configuração do YOLO foi realizada com base em sua versão YOLOv10, 

devido à sua eficiência e facilidade de uso em frameworks modernos como PyTorch. 

As etapas de configuração envolveram ajustes na arquitetura do modelo, parâmetros 

de treinamento e preparação do ambiente computacional. 

 Para implementação e treinamento utilizamos a linguagem de programação 

Python na versão 3.10 pela compatibilidade com bibliotecas de aprendizado profundo. 

 

Figura 5. GPU Utilizada no Servidor de Pesquisa da FGV 
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Tabela 3. Principais Parâmetros Utilizados no PreTreino GPUxCPU 

mode: train Modo de treino 
model: yolov10n.yaml Utilizamos o modelo n (nano) do YOLO v10 por ser a opção mais leve 

e fácil de implementar posteriormente em um dispositivo embarcado  

epochs: 300 Após alguns pre-testes foi possível verif icar convergência por volta da 
época 200. Posteriormente, para os dados apresentados neste 
trabalho, limitamos em 600 épocas e conf iguramos para  parar 
automaticamente caso passasse por 10 epocas sem efetiva evolução 
do modelo.  

workers: 8 Quantidade de processos paralelos 
verbose: true Gerar informações detalhadas sobre o processo de treinamento  

show_labels: true Exibir os rótulos dos objetos detectados 
show_conf : true Exibir a pontuação de conf iança  

show_boxes: true Exibir as caixas ao redor dos objetos detectados 

4.2.1 Treinamento do Modelo 

O treinamento do modelo foi realizado utilizando o conjunto de dados anotado 

na etapa de labeling (dados de treino e validação). Durante esta etapa, o YOLO foi 

exposto às imagens de treinamento, ajustando seus pesos para minimizar a perda e 

aumentar a precisão na detecção dos tipos de veículos que definimos no escopo. 

 A função de perda do YOLO considera três componentes principais: 

o Erro de localização: Avalia a precisão das coordenadas das bounding 

boxes previstas. 

o Erro de classificação: Mede a correspondência entre a classe prevista 

e a classe real do objeto. 

o Erro de confiança: Avalia a certeza do modelo em relação à presença 

de um objeto. 

 Treinamento em múltiplas escalas: O YOLOv10 foi configurado para treinar 

em imagens de tamanhos e iluminação variados em ângulos e ambientes diversos, e 

pudemos verificar sua robustez em detectar objetos de diferentes dimensões em 

cenários diversos. 

 Validação durante o treinamento: A cada época, o modelo foi validado 

utilizando o conjunto de validação, gerando métricas como precisão (mAP) e taxa de 

erro.  
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4.2.2 Métricas de Validação, Testes e Avaliação do Modelo 

Após o treinamento, o modelo foi avaliado utilizando o conjunto de teste, 

composto por imagens inéditas que não foram vistas pelo modelo durante o 

treinamento. Essa etapa garantiu uma avaliação objetiva do desempenho do YOLO. 

Essas métricas são usadas para monitorar e ajustar o desempenho do modelo 

durante o treinamento e a validação, garantindo que ele seja capaz de detectar e 

classificar objetos com alta precisão.  

 

1. Recall-Confidence(B): refere-se à capacidade de um modelo de identif icar corretamente 

todas as instâncias relevantes de uma classe. É a proporção de verdadeiros positivos (TP) 

sobre a soma de verdadeiros positivos e falsos negativos (FN). Em outras palavras, é a 

capacidade do modelo de encontrar todos os exemplos positivos. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

2. Precision-Recall(B): combina a precisão e o recall para fornecer uma única medida de 

desempenho. A precisão é a proporção de verdadeiros positivos sobre a soma de 

verdadeiros positivos e falsos positivos (FP). O Precision-Recall é frequentemente usado 

em gráficos para avaliar o desempenho de classificadores. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

3. Precision-Confidence(B): refere-se à confiança que temos na precisão do modelo. A 

confiança pode ser interpretada como a probabilidade de que uma previsão positiva seja 

correta. Isso é importante em contextos em que a precisão é crítica, como diagnósticos 

médicos. 

 

4. F1-Confidence(B): o F1-Score é a média harmônica da precisão e do recall, 

proporcionando um equilíbrio entre os dois. É útil quando precisamos de um equilíbrio entre 

precisão e recall. A confiança no F1-Score indica a robustez do modelo em termos de 

equilíbrio entre precisão e recall. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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5. mAP50 (Mean Average Precision at IoU 0.50): a precisão média (AP) é calculada como 

a área sob a curva de precisão-recall para uma classe específica. O mAP50 é a média 

dessas precisões médias para todas as classes, considerando um limiar de IoU 

(Intersection over Union) de 0.50. Isso significa que uma detecção é considerada correta 

se a sobreposição entre a caixa predita e a caixa real for de pelo menos 50%. 

 
6. mAP50-95: é uma média da precisão média calculada em diferentes limiares de IoU, 

variando de 0.50 a 0.95 (em incrementos de 0.05). Ela fornece uma visão mais abrangente 

do desempenho do modelo em diferentes níveis de dificuldade de detecção  

 

7. val/dfl_loss: refere-se à perda de distribuição de deslocamento (Distribution Focal Loss) 

durante a validação. A DFL é uma técnica usada para melhorar a precisão da localização 

dos objetos, ajustando as previsões das caixas delimitadoras para que correspondam mais 

precisamente aos objetos reais nas imagens. 

 

8. val/cls_loss: refere-se à perda de classificação (Classification Loss) durante a validação. A 

perda de classificação mede a precisão com que o modelo está atribuindo a classe correta 

aos objetos detectados. É uma métrica crucial para avaliar a capacidade do modelo de 

distinguir entre diferentes tipos de objetos. 

 

9. val/box_loss: refere-se à perda de caixa delimitadora (Bounding Box Loss) durante a 

validação. A perda de caixa delimitadora avalia a precisão das coordenadas das caixas 

delimitadoras previstas pelo modelo em comparação com as caixas delimitadoras reais 

dos objetos nas imagens. 

 

10. GFLOPs (Giga Floating Point Operations per Second): é uma métrica que mede o 

desempenho de um modelo de aprendizado de máquina em termos de operações de ponto 

flutuante por segundo. Quando falamos em GFLOPs, estamos nos referindo a bilhões de 

operações de ponto flutuante por segundo. 

 

11. Model parameters: são variáveis internas de um modelo de aprendizado de máquina que 

são ajustadas durante o processo de treinamento. Eles são essenciais para definir como 

o modelo transforma os dados de entrada em previsões. São valores que o modelo 

aprende diretamente dos dados durante o treinamento. Eles são ajustados para minimizar 

a função de perda e melhorar a precisão do modelo. 
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4.2.3 Otimizadores 

Os otimizadores ajudam a minimizar a função de perda durante o treinamento 

da rede neural. A seguir uma visão geral de como os diferentes otimizadores podem 

ser usados com YOLO. 

4.2.3.1 SGD (Stochastic Gradient Descent) 

É uma versão do gradiente descendente que atualiza os pesos da rede neural 

usando apenas um único exemplo de treinamento por vez. Isso ajuda a encontrar o 

mínimo global mais rápido, mas pode ser instável devido à alta variabilidade nas 

atualizações. Características principais: 

• Simplicidade e eficiência em termos de memória. 

• Utilizado em muitas implementações básicas do YOLO devido à sua 

simplicidade. 

• Pode ser combinado com técnicas como momentum para melhorar a 

convergência. 

4.2.3.2 Adam (Adaptive Moment Estimation) 

Combina as vantagens de dois outros algoritmos, o RMSProp e o Momentum. 

Ele calcula médias móveis dos gradientes passados e das suas magnitudes 

quadráticas, permitindo adaptações mais rápidas e precisas. Adam é amplamente 

utilizado por sua eficiência e desempenho. Principais características: 

• Adaptativo e eficiente, ajustando a taxa de aprendizado com base em 

momentos passados. 

• Amplamente utilizado em redes YOLO modernas por sua capacidade de 

rápida convergência e estabilidade. 

4.2.3.3 AdamW (Adam with Weight Decay) 

É uma variação do Adam que incorpora a regularização por decaimento dos 

pesos diretamente no algoritmo. Principais características: 

• Variação do Adam com regularização por decaimento de peso. 

• Ajuda a evitar overfitting, promovendo melhor generalização, o que é útil 

em cenários com conjuntos de dados limitados. 



23 

4.2.3.4 RAdam (Rectified Adam) 

É uma melhoria sobre o Adam que retifica o problema de variância nas etapas 

iniciais do treinamento. Ao fazer isso, RAdam ajuda a estabilizar o processo de 

otimização e melhora a precisão do modelo. Principais características: 

• Estabiliza a variância no início do treinamento, melhorando a precisão. 

• Pode ser benéfico em treinamentos de redes YOLO para garantir 

convergência estável e precisa. 

4.2.3.5 RMSProp (Root Mean Square Propagation) 

Algoritmo adaptativo que ajusta a taxa de aprendizado para cada parâmetro. 

Ele divide a taxa de aprendizado pelo valor médio dos gradientes recentes, permitindo 

que o algoritmo se adapte dinamicamente às variações no dado. Principais 

características: 

• Ajusta a taxa de aprendizado com base na magnitude recente dos 

gradientes. 

• Pode ser usado para melhorar a adaptação em diferentes fases do 

treinamento, especialmente em redes YOLO que lidam com dados 

variados. 

4.2.3.6 Nadam (Nesterov-accelerated Adaptive Moment Estimation) 

É uma variante do Adam que combina Nesterov Momentum com Adam. Isso 

acelera a convergência, especialmente em problemas com mínimos locais complexos. 

Nadam é conhecido por ser mais rápido e eficiente em certos cenários. Principais 

características: 

• Combina as vantagens do Adam com Nesterov Momentum para 

aceleração adicional. 

• Ajuda a alcançar uma convergência mais rápida, o que é crucial para 

treinar redes YOLO em grandes conjuntos de dados. 
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4.2.3.7 Resumo das Características dos Algoritmos Otimizadores 

Cada um dos otimizadores apresentado tem suas próprias vantagens e é 

escolhido com base nos requisitos específicos do problema e nas características do 

conjunto de dados. 

 

Tabela 4. Comparativo dos Otimizadores 

Algoritmo Características Principais Vantagens Desvantagens 

SGD Atualização por exemplo único Simples e rápido Instável, pode ser lento 
Adam Combina RMSProp e Momentum Eficiente, bom 

desempenho 
Pode superestimar 
gradientes 

AdamW Adam com regularização por 
decaimento de pesos 

Melhor generalização Similar ao Adam 

RAdam Retificação de variância no início Mais estável, melhora a 
precisão 

Pode ser mais complexo 

RMSProp Ajuste dinâmico da taxa de 
aprendizado 

Adaptação rápida às 
variações 

Pode não convergir 
sempre 

NAdam Combina Nesterov Momentum com 
Adam 

Convergência mais rápida Complexidade adicional 

4.3. Treinos  

4.3.1 Treino de Teste Comparativo GPU x CPU 

Inicialmente, fizemos um treino comparativo de 120 épocas com os mesmos 

dados de treino/validação usando uma GPU Tesla V100-PCIE-32GB com 32768.0 MB 

Memória (no Ambiente de Pesquisa On Premise da FGV) e uma CPU Intel i7 de 10ª 

geração com 8 núcleos, 32Gb RAM e HD SSD de 1TB. 

Apesar de resultados finais semelhantes, usar uma GPU diminuiu consideravelmente 

o tempo necessário de processamento comparado a uma CPU (de 39h para apenas 

49m) conforme imagens abaixo:  

 

Figura 6. Teste Pré-Treino com 120 Épocas - Sem GPU 
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Figura 7 - Teste Pré-Treino com 120 Épocas - Com GPU 

 

 

Figura 8. Labels 

 

 

Figura 9. Matriz de Confusão Normalizada 
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Figura 10. Comparativo (GPUxCPU) – Curvas 

 

 

 

 

 

 

 

 

 

Figura 11. Comparativo - Metricas (GPUxCPU) 
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Figura 12. Comparativo Modelo (GFLOPs, parameters e speed) 

 

 

 

 

 

 

 

 

Figura 13. Comparativo Treino (dfl_loss, cls_loss e box_loss) 

 

 

 

 

 

 

 

 

  



28 

Figura 14. Comparativo Validação (dfl_loss, cls_loss e box_loss) 

 

 

 

 

 

 

 

 

Figura 15. Uso do Sistema Durante Treino (memória, cpu, disco e gpu) 
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Figura 16. Exemplos de Predições de Teste Com o Modelo Treinado 
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4.3.2 Otimizadores em Treinos Isolados 

Para o comparativo, fizemos treinos individuais substituindo o otimizador e 

mantendo as demais configurações (limitando para o máximo de 600 épocas e 

interrompendo o treino caso passe 10 épocas sem evolução do modelo). 

 

Tabela 5. Resumo do treino (entre otimizadores) 

Otimizador Convergiu? Tempo (horas) Epocas 

processadas 

Melhor 

Resultado 

(época) 

Adam SIM 1,473 125 115 

AdamW SIM 2,861 286 276 

RAdam SIM 0,826 83 73 

RMSProp SIM  0,205 20 10 

NAdam SIM 3,060 290 280 

SGD SIM 1,732 179 169 
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4.3.2.1 Adam 

Treino: 1,473h/125 Épocas 

Convergência: Época 115 

Figura 17. Resumo (Adam) 

 

Figura 18. Curvas (Adam) 
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Figura 19. Treino/Validação (Adam) 

 

 

Figura 20. Predições (Adam) 
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4.3.2.2 AdamW 

Treino: 2,861h/286 Épocas 

Convergência: Época 276 

Figura 21. Resumo (AdamW) 

 

Figura 22. Curvas (AdamW) 
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Figura 23. Treino/Validação (AdamW) 

 

 

Figura 24. Predições (AdamW) 

 

  



36 

4.3.2.3 RAdam 

Treino: 0,826h/83 Épocas 

Convergência: Época 73 

Figura 25. Resumo (Radam) 

 

Figura 26. Curvas (RAdam) 

 

 

 

  



37 

Figura 27. Treino/Validação (RAdam) 

 

Figura 28. Predições (RAdam) 
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4.3.2.4 RMSProp 

Treino: 0,697h/72 Épocas 

Convergência: Época 42 

Figura 29. Resumo (RMSProp) 

 

Os números e as imagens a seguir confirmam que este foi o treino mais destoante. 

Para essa situação especificamente, talvez essa não seja a melhor opção de 

otimizador. 

Figura 30. Curvas (RMSProp) 
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Figura 31. Treino/Validação (RMSProp) 

 

Figura 32. Predição (RMSProp) 
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4.3.2.5 NAdam 

Treino: 3,060h/290 Épocas 

Convergência: Época 280 

Figura 33 - Resumo Treino Otimizadores - NAdam 

  

Figura 34. Curvas (NAdam) 
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Figura 35. Treino/Validação (NAdam) 

 

Figura 36. Predições (NAdam) 
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4.3.2.6 SGD 

Treino: 1,732h/179 Épocas 

Convergência: Época 169 

Figura 37 - Resumo Treino Otimizadores - SGD 

 

Figura 38. Curvas (SGD) 
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Figura 39. Treino/Validação (SGD) 

 

Figura 40. Predições (SGD) 
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4.4. Resultado Comparativo 

Comparamos os resultados obtidos usando os otimizadores Adam, AdamW, 

NAdam, RAdam, SGD e RMSProp (cada qual com suas particularidades). Os dados 

dos treinos com RMSProp foram considerados os mais discrepantes e, para o cenário 

proposto, mostrou-se insatisfatório conforme os dados a seguir e confirmados com os 

dados de predição. 

4.4.1 Recall Confidence 

Combina o recall com a confiança associada às previsões. Isso pode ser útil 

para avaliar não apenas a capacidade do modelo de identificar corretamente as 

instâncias positivas, mas também a confiança com que faz essas previsões. Por 

exemplo, um modelo pode ter um recall alto, mas se a confiança nas previsões for 

baixa, pode não ser tão útil em aplicações práticas. 

 

Figura 41. Comparativo - Recall Confidence 
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4.4.2 Precision Recall 

É a proporção de verdadeiros positivos (TP) sobre a soma de verdadeiros 

positivos e falsos negativos (FN). Ele mede a capacidade do modelo de encontrar 

todos os exemplos positivos. 

 

Figura 42. Comparativo - Precision Recall 

 

4.4.3 Precision Confidence 

Em muitos modelos de aprendizado de máquina, especialmente em detecção 

de objetos, cada previsão vem com uma pontuação de confiança que indica a 

probabilidade de a previsão estar correta. 

 

Figura 43. Comparativo - Precision Confidence 
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4.4.4 F1-Confidence 

Combina o F1-Score com a confiança associada às previsões. Isso pode ser 

útil para avaliar não apenas o equilíbrio entre precisão e recall, mas também a 

confiança com que o modelo faz essas previsões. Um alto F1-Score com alta 

confiança indica que o modelo é não apenas equilibrado em termos de precisão e 

recall, mas também confiante em suas previsões. 

 

Figura 44. Comparativo - F1 Confidence 

 

4.4.5 Lr (Learning Rate) 

A taxa de aprendizado determina o tamanho dos passos que o algoritmo de 

otimização dá ao mover-se em direção ao mínimo da função de perda. 

• Taxa de Aprendizado Alta: Pode fazer com que o modelo converja rapidamente, 

mas corre o risco de pular o mínimo global e não convergir adequadamente. 

• Taxa de Aprendizado Baixa: Pode levar a uma convergência mais estável e 

precisa, mas o treinamento pode ser muito lento e pode ficar preso em mínimos 

locais. 

Os algoritmos usados ajustam a taxa de aprendizado automaticamente com 

base no histórico de gradientes. 
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4.4.5.1 lr/pg2 

Este grupo geralmente inclui os vieses (biases) das camadas. Os vieses são 

ajustados separadamente dos pesos e podem ter uma taxa de aprendizado diferente. 

 

Figura 45. Comparativo - lr/pg2 

 

4.4.5.2 lr/pg1 

Este grupo inclui parâmetros que têm decaimento de peso, como os pesos das 

camadas convolucionais. O decaimento de peso é uma técnica usada para evitar 

overfitting, penalizando grandes pesos durante o treinamento. 

 

Figura 46. Comparativo - lr/pg1 
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4.4.5.3 lr/pg0 

Este grupo inclui parâmetros que não têm decaimento de peso, como os pesos 

das camadas de normalização em lote (BatchNorm). A taxa de aprendizado aplicada 

a este grupo é específica para esses parâmetros. 

 

Figura 47. Comparativo - lr/pg0 

 

4.4.6 Metrics/Recall 

Recall, também conhecido como sensibilidade ou taxa de detecção, mede a 

capacidade do modelo de identificar corretamente todas as instâncias relevantes de 

uma classe. É a proporção de verdadeiros positivos (TP) sobre a soma de verdadeiros 

positivos e falsos negativos (FN). 

 

Figura 48. Comparativo - metrics/recall 
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4.4.7 Metrics/precision 

Precision, ou precisão, mede a proporção de verdadeiros positivos (TP) sobre 

o total de previsões positivas (verdadeiros positivos + falsos positivos, FP). Em outras 

palavras, é a capacidade do modelo de prever corretamente as instâncias positivas. 

Há um trade-off entre recall e precisão: aumentar o recall pode diminuir a 

precisão e vice-versa. Por isso, métricas como o F1-Score são usadas para encontrar 

um equilíbrio entre as duas. 

 

Figura 49. Comparativo - metrics/precision 
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4.4.8 Metrics/mAP50-95 

mAP50-95 é uma métrica mais robusta e informativa do que mAP50 (que 

considera apenas um limiar de IoU de 0.50). Ela avalia o desempenho do modelo em 

uma gama de cenários, desde detecções mais fáceis (IoU de 0.50) até detecções mais 

difíceis (IoU de 0.95). 

 

Figura 50. Comparativo - metrics/mAP50-95 
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4.4.9 Metrics/mAP50 

é uma métrica comum usada para avaliar o desempenho de modelos de 

detecção de objetos, fornecendo uma visão clara de como o modelo se comporta em 

termos de precisão e recall com um limiar de IoU de 0.50. 

 

Figura 51. Comparativo - metrics/mAP50 

 

4.4.10 Model/speed(ms) 

Tempo que um modelo de aprendizado de máquina leva para processar uma 

única amostra de entrada, medido em milissegundos (ms). Crucial para avaliar a 

eficiência e a adequação de um modelo para aplicações em tempo real. 

Figura 52. Comparativo - model/speed(ms) 
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4.4.11 Model/parameters 

São variáveis internas de um modelo de aprendizado de máquina que são 

ajustadas durante o processo de treinamento. Eles são essenciais para definir como 

o modelo transforma os dados de entrada em previsões. São valores que o modelo 

aprende diretamente dos dados durante o treinamento. Eles são ajustados para 

minimizar a função de perda e melhorar a precisão do modelo. 

 

Figura 53. Comparativo - model/parameters 

 

       

4.4.12 Model/GFLOPs 

 GFLOPs representa bilhões de operações de ponto flutuante por segundo. É 

uma medida de quantas operações matemáticas envolvendo números decimais um 

modelo pode realizar em um segundo. Especialmente em redes neurais profundas, o 

número de GFLOPs é uma medida importante de eficiência e desempenho. Modelos 

com maior GFLOPs podem processar dados mais rapidamente, o que é crucial para 

tarefas que exigem alta capacidade computacional, como visão computacional e 

processamento de linguagem natural. 

 Avaliar os GFLOPs de um modelo ajuda a entender sua complexidade e a 

necessidade de recursos computacionais. Isso é especialmente útil ao comparar 

diferentes modelos ou ao otimizar modelos para dispositivos com recursos limitados, 

como smartphones. 
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Figura 54. Comparativo - model/GFLOPs 

 

4.4.13 Train/dfl_loss 

 A DFL refere-se a Distribution Focal Loss (uma variante da Focal Loss), 

projetada para focar mais em exemplos difíceis de classificar. Durante o treinamento, 

a DFL ajuda o modelo a diferenciar melhor entre objetos muito semelhantes ou 

amostras difíceis, melhorando a capacidade do modelo de lidar com casos complexos. 

A DFL é usada em modelos de detecção de objetos, como YOLO, para 

melhorar a precisão e a robustez do modelo ao lidar com dados desafiadores. 

É aplicada na regressão de caixas delimitadoras (bounding boxes), tratando as 

bordas como distribuições em vez de valores fixos. Isso ajuda a corrigir erros de 

previsão, melhorando a precisão em imagens com bordas desfocadas ou objetos 

parcialmente visíveis. 
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Figura 55. Comparativo - train/dfl_loss 

 

4.4.14 Train/cls_loss 

Refere-se à (Perda de Classificação) durante o treinamento de um modelo. A 

Classification Loss mede a diferença entre as previsões de classe do modelo e as 

classes reais dos dados de treinamento. É usada para ajustar os pesos do modelo de 

forma a melhorar a precisão da classificação. 

A perda de classificação é calculada usando a Cross-Entropy Loss (Perda de 

Entropia Cruzada), cuja fórmula é: 

𝐻(𝑦, 𝑝) =  − ∑ 𝑌𝑖 ∙ log (𝑝𝑖)

𝐶

𝑖=1
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Figura 56. Comparativo - train/cls_loss 

 

4.4.15 Train/box_loss 

Refere-se à Box Regression Loss (Perda de Regressão de Caixa) durante o 

treinamento de um modelo de detecção de objetos. A Box Regression Loss mede a 

diferença entre as caixas delimitadoras preditas pelo modelo e as caixas delimitadoras 

reais dos objetos nos dados de treinamento. Essa perda é usada para ajustar os 

parâmetros do modelo de forma a melhorar a precisão das previsões das caixas 

delimitadoras. 

Em modelos como YOLO (You Only Look Once), a Box Regression Loss é crucial 

para garantir que as caixas delimitadoras preditas estejam corretamente alinhadas 

com os objetos detectados. Isso é essencial para a precisão geral do modelo. 
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Figura 57. Comparativo - train/box_loss 

 

4.4.16 Val/dfl_loss 

Idem train/dfl_loss mas durante a fase de validação de um modelo. DFL é 

usada para melhorar a precisão e a robustez do modelo ao lidar com dados 

desafiadores, especialmente em tarefas de detecção de objetos. 

 

Figura 58. Comparativo - val/dfl_loss 
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4.4.17 Val/cls_loss 

Idem train/cls_loss mas durante a fase de validação de um modelo. Usada para ajustar 

as previsões de classe das caixas delimitadoras detectadas 

Figura 59. Comparativo - val/cls_loss 

 

4.4.18 Val/box_loss 

Idem train/box_loss (Perda de Regressão de Caixa) mas durante a fase de 

validação. É usada para ajustar os parâmetros do modelo de forma a melhorar a 

precisão das previsões das caixas delimitadoras. 

Figura 60. Comparativo - val/box_loss 
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4.4.19 System/Gpu Power Usage 

O consumo de energia das GPUs (Unidades de Processamento Gráfico) é uma 

métrica importante para avaliar a eficiência e o desempenho de um sistema. 

Figura 61. Comparativo - GPU Power Usage (W) 

 

4.4.20 System/GPU Memory Allocated 

Refere-se à quantidade de memória da GPU que está sendo usada por um 

modelo ou aplicação em um dado momento. 

Figura 62. Comparativo - GPU Memory Allocated (Bytes) 
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4.4.21 System/GPU Time Spent Accessing Memory 

Refere-se ao tempo que a GPU gasta acessando a memória durante a execução 

de operações. É uma métrica crucial para entender a eficiência do uso da memória 

pela GPU. 

Figura 63. Comparativo - GPU Time Spent Accessing Memory(%) 

 

4.4.22 System/GPU Temperature 

Temperatura da GPU durante sua utilização. 

Figura 64. Comparativo - GPU Temperature (°C) 
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4.4.23 System/GPU Utilization % 

Utilização da GPU (em %). 

Figura 65. Comparativo - GPU Utilization (%) 

 

4.4.24 System/Process Memory Available (MB) 

Durante o treinamento de modelos YOLO (You Only Look Once), é importante 

monitorar a memória disponível do processo para garantir que o treinamento ocorra 

sem problemas. 

Figura 66. Comparativo - Process Memory Available (MB) 
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4.5. Resultados de Predições e Discussões 

Os resultados são discutidos em termos de precisão, robustez e aplicabilidade, 

destacando tanto os acertos quanto as limitações do modelo no reconhecimento de 

veículos militares em imagens. De um modo geral, o único algoritmo experimentado 

que se mostrou destoante dos demais em seus resultados e não conseguiu fazer 

predições satisfatórias foi o RMSProp. 

4.5.1 Exemplos de Detecções (Individualmente) 

A seguir utilizamos mais de um modelo a fim de demonstrar que é possível 

combinar o resultado preditivo de vários modelos (nossos modelos especializados 

foram treinados para detectar as 5 classes de veículos militares inicialmente 

planejadas) mas não identificariam veículos civis, por exemplo. Por outro lado, o 

modelo básico identificaria os veículos civis mas não entenderia os veículos militares. 

Então, adicionamos essa funcionalidade combinando os resultados de nosso treino 

com o modelo básico yolov10n (preparada para distinguir 80 classes diferentes dos 

nossos veículos) conforme a tabela a seguir: 

Tabela 6. Lista de Classes Pré-Treinadas no Modelo YoloV10n 

0: person 
1: bicycle 
2: car 
3: motorcycle 
4: airplane 
5: bus 
6: train 
7: truck 
8: boat 
9: traf f ic light 
10: f ire hydrant 
11: stop sign 
12: parking meter 
13: bench 
14: bird 
15: cat 
16: dog 
17: horse 
18: sheep 
19: cow 

20: elephant 
21: bear 
22: zebra 
23: giraf fe 
24: backpack 
25: umbrella 
26: handbag 
27: tie 
28: suitcase 
29: f risbee 
30: skis 
31: snowboard 
32: sports ball 
33: kite 
34: baseball bat 
35: baseball glove 
36: skateboard 
37: surfboard 
38: tennis racket 
39: bottle 

40: wine glass 
41: cup 
42: fork 
43: knife 
44: spoon 
45: bowl 
46: banana 
47: apple 
48: sandwich 
49: orange 
50: broccoli 
51: carrot 
52: hot dog 
53: pizza 
54: donut 
55: cake 
56: chair 
57: couch 
58: potted plant 
59: bed 

60: dining table 
61: toilet 
62: tv 
63: laptop 
64: mouse 
65: remote 
66: keyboard 
67: cell phone 
68: microwave 
69: oven 
70: toaster 
71: sink 
72: ref rigerator 
73: book 
74: clock 
75: vase 
76: scissors 
77: teddy bear 
78: hair drier 
79: toothbrush 
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Eventualmente, por falta de conhecimento, esse modelo “básico” classificaria, 

nossos veículos militares originalmente como “Trens”, “Barcos” ou “Caminhões” (com 

uma confiança não muito alta na maioria das vezes).   
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Tabela 7. Predição de Veiculos Civis e Militares por Modelo Não Especializado 
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Por outro lado, nossos modelos especializados se mostraram muito bons em 

classificar os veículos militares mas ruins em classificar os veículos civis. 

 

Tabela 8. Lista de Classes Exclusivamente Treinadas nos Modelos CFN 

0: ASTROS 1: CLANF 2: JLTV 3: M113 4: PIRANHA 5: SK105 

 

Tabela 9. Predição de Veiculos Civis e Militares Por Modelo Militar Especializado 

   

   

   

 

4.5.2 Classificações Combinadas 

Ao combinar o resultado de vários modelos, conseguimos extrair o melhor que 

cada um tem a oferecer sem necessariamente precisar retreinar todos os dados. 

 Detecções precisas de veículos militares e civis em ambientes diversos. 
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 Identificação de múltiplos objetos em uma única imagem, com bounding boxes 

corretamente posicionadas e classificações exatas. 

Tabela 10. Predições Combinadas de Mais de um Modelo 
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5. Considerações Finais  

5.1. Sobre a Evolução do Yolo 

Como vimos, a evolução da R-CNN até o YOLO representa uma jornada de 

evolução na detecção de objetos onde cada algoritmo é evoluído a partir de seu 

antecessor. 

O YOLO, por tratar a detecção de objetos como um único problema de 

regressão, processando toda a imagem em uma passagem para frente, torna-o 

extremamente rápido e capaz de processamento em tempo real. Além disso, podemos 

adaptá-lo para nossa necessidade em cada cenário levando em conta capacidade de 

processamento, acurácia e velocidade de resposta. 

Como visto no gráfico abaixo a cada versão o modelo tem evoluído apresentando 

novos recursos e melhorias com aumento de desempenho e flexibilidade. 

 
Figura 67. Comparativo Latência x mAP (média das precisões médias de todas as classes no conjunto de dados) 

 

Fonte: https://github.com/ultralytics/ultralytics 

 

A introdução da IA em sistemas de defesa representa uma evolução significativa na 

forma como os dados são processados e utilizados em operações críticas, reforçando 

a importância do tema em um mundo cada vez mais digitalizado e interconectado. 

5.2. Conclusão 

O presente trabalho investigou o uso do modelo YOLO para o reconhecimento 

de veículos militares em imagens, com foco na aplicação prática e na análise de 

desempenho do modelo. Foram realizadas etapas que incluíram a coleta e anotação 
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de um dataset customizado, o treinamento do modelo em diferentes condições e a 

validação de sua eficiência em cenários variados. 

Os resultados obtidos demonstraram que o YOLO é uma solução viável e eficaz 

para a tarefa proposta, especialmente devido à sua capacidade de operar em tempo 

real, processando imagens a uma velocidade de 8.2 GFLOPs, o modelo alcançou 

seus melhores mAPs em 98.3%, 98.2% e 97.4% com IoU até 0.5 e mAPs 86.9%, 

85.2% e 81.9% IoU de 0.5~0.95 (otimizadores AdamW, SGD e NAdam 

respectivamente). 

Adicionalmente, foi avaliado o potencial de implementação deste sistema em 

drones. Os resultados indicam que o YOLO é particularmente adequado para sistemas 

embarcados, pois sua alta velocidade e baixa latência permitem o reconhecimento de 

veículos em tempo real durante o voo. Isso torna viável sua aplicação em missões 

táticas, vigilância aérea e patrulhamento de fronteiras, onde a identificação precisa e 

rápida é fundamental para a tomada de decisões em ambientes dinâmicos. Os 

arquivos obtidos referentes aos treinos dos modelos com seus pesos não 

ultrapassaram 5Mb). 

A análise dos resultados mostrou que o modelo é robusto em cenários bem 

iluminados e com objetos claramente visíveis, mas obtém bons resultados também 

em condições adversas como baixa iluminação, oclusões e camuflagem desde que 

seja treinado previamente para tal. Esses aspectos destacam a importância de 

aprimorar o dataset e explorar técnicas que aumentem a capacidade do modelo de 

lidar com situações mais complexas. 

5.3. Contribuições 

Este estudo trouxe contribuições relevantes para o campo da visão 

computacional aplicada ao setor militar, como: 

 Desenvolvimento de um fluxo completo de trabalho: Foram definidas todas as 

etapas necessárias para o uso prático do YOLO, desde a coleta e anotação de dados 

até o treinamento, validação e análise dos resultados do modelo. 
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 Criação de um dataset customizado: Incluindo imagens anotadas de diferentes 

tipos de veículos militares em cenários variados, o que pode ser utilizado como base 

para estudos futuros. 

 Avaliação detalhada do desempenho: Foram realizadas análises quantitativas 

e qualitativas do modelo, abrangendo métricas como precisão, velocidade e robustez 

em condições adversas. 

 Proposta de aplicações práticas: Os resultados obtidos reforçam o potencial do 

YOLO para uso em sistemas de vigilância, drones e monitoramento em tempo real, 

oferecendo suporte à tomada de decisões em ambientes críticos. 

5.4. Limitações 

Apesar das contribuições, algumas limitações foram identificadas: 

 Diversidade do dataset: Embora o dataset tenha incluído diferentes cenários, 

ele ainda não abrange todas as possíveis variações encontradas em operações reais, 

como condições climáticas extremas ou veículos de designs menos comuns. 

 Restrição ao YOLO: O estudo focou exclusivamente no YOLO, sem explorar 

combinações ou modelos híbridos que poderiam oferecer melhor desempenho em 

cenários específicos. 

 

5.5. Trabalhos Futuros 

Com base nos resultados obtidos e nas limitações identificadas, algumas 

direções para trabalhos futuros são propostas: 

 1. Expansão do Dataset: 

o Incluir mais imagens com variações climáticas extremas, ângulos 

inusitados e veículos menos comuns. 

o Aumentar a quantidade de exemplos anotados em condições adversas, 

como baixa iluminação e camuflagem intensa. 

o Priorizar imagens aéreas para utilização com drones. 
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 2. Técnicas de Pré-processamento: 

o Aplicar técnicas como aumento de contraste, redução de ruído e 

balanceamento de cores para melhorar a qualidade das imagens de 

entrada. 

o Utilizar dados sintéticos gerados por simulações para complementar o 

dataset. 

 3. Treinamento Híbrido: 

o Combinar o YOLO com outros modelos, como Faster R-CNN, para 

aproveitar os pontos fortes de ambos. 

o Implementar arquiteturas mais recentes, como YOLOv11 a fim de 

explorar avanços tecnológicos mais recentes. 

 4. Uso em Drones e Sistemas Embarcados: 

• Testar o modelo diretamente em drones, avaliando sua capacidade de 

operar em tempo real durante o voo. 

• Desenvolver soluções de integração para adaptar o modelo ao hardware 

de drones, levando em conta limitações como consumo de energia e 

capacidade de processamento. 

 5. Integração com Tecnologias Avançadas: 

• Incorporar informações adicionais, como dados de sensores térmicos, 

infravermelhos e gps para aumentar a precisão em cenários complexos. 
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5.6. Considerações Finais 

A detecção e o reconhecimento de veículos militares por meio de inteligência 

artificial representam um avanço significativo na área de defesa e segurança. Este 

trabalho demonstrou que o YOLO pode ser uma ferramenta poderosa para aplicações 

práticas, equilibrando precisão e eficiência em tempo real. Sua possível 

implementação em drones amplia ainda mais o alcance e a aplicabilidade da 

tecnologia, permitindo o monitoramento autônomo de áreas extensas e a coleta de 

informações estratégicas em tempo hábil. 

Entretanto, os desafios encontrados reforçam a necessidade de continuidade 

nos estudos, com melhorias que visem ampliar a robustez do modelo em cenários 

reais e complexos. Por fim, este estudo não apenas contribui para o campo da visão 

computacional, mas também oferece uma base sólida para futuras pesquisas e 

aplicações práticas, destacando o potencial da inteligência artificial na transformação 

de sistemas de defesa modernos. 
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Apêndice A - Treino de Modelos Customizados Yolo 

import subprocess 

import sys 

import os 

 

path_inicio = '/home/robert.libotti/TCC-FGVCFN-YOLO' 

path_saida = '/home/robert.libotti/OUTPUT' 

path_yolo = path_saida + '/yolov10' 

wandb_key = '<PRIVADO>' 

project_id = 'FGVCFN_2025Nv01' 

epochs = 600 

patience = 10 

versao_yolo = 'yolov10n' 

optimizers = ['RMSProp', 'SGD','NAdam', 'RMSProp', 'RAdam', 'AdamW', 'Adam'] 

 

def  install(package): 

    subprocess.check_call([sys.executable, '-m', 'pip', 'install', package]) 

 

def  checagem(): 

    print('Checando se o ambiente está correto...') 

    import torch 

    import torchvision 

    import wandb 

    import ultralytics 

    import yolov10 

    current_directory = os.getcwd() 

    print('Ambiente OK') 

    print('Versão do Pytorch:', torch.__version__) 

    print('Versão do Torchvision:', torchvision.__version__) 

    print('Versão do Wandb:', wandb.__version__) 

    print('Versão do Ultralytics:', ultralytics.__version__) 

    print(f 'YOLO ({versao_yolo}): ', yolov10.__version__) 

    print(f"Diretorio corrente: {current_directory}") 

 

    if torch.cuda.is_available(): 

        print("GPU is available.") 

    else: 

        print("GPU is not available.") 

 

def  verificar_gpu(): 

    import GPUtil 

    gpus = GPUtil.getGPUs() 

    for gpu in gpus: 

        print(f"ID: {gpu.id}") 

        print(f"Nome: {gpu.name}") 
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        print(f"Memória Total: {gpu.memoryTotal} MB") 

        print(f"Memória Utilizada: {gpu.memoryUsed} MB") 

        print(f"Memória Livre: {gpu.memoryFree} MB") 

        print(f"Utilização: {gpu.load * 100}%") 

        print(f"Temperatura: {gpu.temperature} °C") 

        print("-" * 30)     

 

def  passo01_instala_bibliotecas(): 

    install('torch') # torchvision wandb ultralytics yolov10 

    install('torchvision') 

    install('wandb') 

    install('ultralytics') 

    install('yolov10') 

    install('gitpython') 

    install('gputil') 

 

def  passo02_gitclone_yolo(): 

    os.chdir(path_saida) 

    if not os.path.exists(path_yolo): 

        repo_url = 'https://github.com/THU-MIG/yolov10.git' 

        try: 

            # Clone the repository 

            git.Repo.clone_from(repo_url, path_yolo) 

            print("Repository cloned successfully!") 

        except Exception as e: 

            print(f"An error occurred: {e}") 

     

    checagem() 

 

def  passo03_treino(optimizer): 

    from ultralytics import YOLO, settings 

    import wandb 

    import random 

    import os 

 

    os.chdir(path_yolo) 

    project_name = f '{epochs}epochs{optimizer}' 

    checagem() 

 

    settings.update({"wandb": True}) 

    # Initialize W&B run 

    wandb.login(key=wandb_key)  # userdata.get('WANDB_API_KEY_TCC') 

    wandb.init(project=project_id, name=project_name) 

 

    # opcao 1 

    # model = YOLOv10.from_pretrained('jameslahm/yolov10n')  

 

    # opcao 2 
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    # wget https://github.com/ 

THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt 

    # model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')  

 

    url_yolo = f 'https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt' 

    local_path_yolo = os.path.join(path_yolo, f '{versao_yolo}.pt') 

 

    try: 

        import urllib.request 

        print(f"Downloading {url_yolo} to {local_path_yolo}...") 

        urllib.request.urlretrieve(url_yolo, local_path_yolo) 

        print("Download complete.") 

    except Exception as e: 

        print(f"Error downloading {url_yolo}: {e}") 

 

    model = YOLO(versao_yolo) 

    config = f '{path_inicio}/config.yaml' 

 

    model.train(project=project_id, data=config, epochs=epochs, patience=patience, verbose=True, 

optimizer=optimizer) 

 

 

 

 

# Press the green button in the gutter to run the script.  

if __name__ == '__main__': 

 

    passo01_instala_bibliotecas() 

    passo02_gitclone_yolo() 

 

    checagem() 

 

    for optimizer in optimizers: 

        passo03_treino(optimizer) 
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Apêndice B - Usando Modelos Customizados Para Classificar e Combinar 

Resultados de Forma Personalizada 

import torch 

from PIL import Image 

import cv2 

import os 

import matplotlib.pyplot as plt 

from ultralytics import YOLO 

import json 

 

# Função para carregar o modelo  

def  load_yolo_model(model_path): 

    model = YOLO(model_path) 

    return model 

 

# Função para realizar a detecção de objetos 

def  detect_objects(model, image_path, idx_classes, min_confidence): 

    results = model(image_path) 

 

    if len(results) == 0: 

        return results 

     

    filtered_results = [result for result in results if result.boxes.cls.numel() > 0 and result.boxes.conf[0] >= 

min_confidence and int(result.boxes.cls[0]) in idx_classes] 

    return filtered_results 

 

# Função para desenhar as bounding boxes nas imagens 

def  draw_boxes(image_path, results, output_path): 

    for i, r in enumerate(results): 

        # Plot results image 

        im_bgr = r.plot()  # BGR-order numpy array 

        im_rgb = Image.fromarray(im_bgr[..., ::-1])  # RGB-order PIL image 

 

        r.save(filename=f"{output_path}") 

 

def  draw_boxes_cv2(image, results1, results2, tickness, min_confidence_yolo, min_confidence_cfn): 

    for result in results1: 

        for box in result.boxes: 

            x1, y1, x2, y2 = map(int, box.xyxy[0]) 

            indice = box.cls[0] 

            label = result.names[int(indice)] 

            confidence = box.conf[0] 

            if label == 'car' and confidence > min_confidence_yolo: 

                cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), tickness) 

                cv2.putText(image, f '{label} {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 1, 

cv2.LINE_AA) 
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    for result in results2: 

        for box in result.boxes: 

            x1, y1, x2, y2 = map(int, box.xyxy[0]) 

            indice = box.cls[0] 

            label = result.names[int(indice)] 

            confidence = box.conf[0] 

            if confidence >= min_confidence_cfn: 

                cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), tickness) 

                cv2.putText(image, f '{label} {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 1, 

cv2.LINE_AA) 

 

    return image 

 

# Diretórios 

current_dir = os.getcwd() 

input_dir = f '{current_dir}\\input-files' 

output_dir = f '{current_dir}\\output-files' 

models = ['best-sgd', 'best-adamw', 'best-nadam'] #'best-rmsprop', 'best-radam', 'best-adam', 'yolov10n' 'best-

sgd', 'best-adam', 'best-adamw', 'best-nadam', 'best-radam', 'best-rmsprop', 

models_dir = f '{current_dir}\\model-files' 

model1 = load_yolo_model(f '{models_dir}\\yolov10n.pt') 

 

# para cada model 

for modelo in models: 

    model2 = load_yolo_model(f '{models_dir}\\{modelo}.pt') 

 

    # Processar cada imagem no diretório de entrada 

    for img_file in os.listdir(input_dir): 

        img_path = os.path.join(input_dir, img_file) 

 

        img = cv2.imread(img_path) 

        min_confidence_yolo = 0.5 

        min_confidence_cfn = 0.6 

 

        # 0: person, 1: bicycle, 2: car, 3: motorcycle, 4: airplane, 5: bus, etc.  

        results1 = detect_objects(model1, img_path, [2], min_confidence_yolo) 

         

        # ASTROS, CLANF, JLTV, M113, PIRANHA, SK105 

        results2 = detect_objects(model2, img_path, [0, 1, 2, 3, 4, 5], min_confidence_cfn) 

 

        fname, fext = os.path.splitext(img_file) 

 

        # resultados combinados (com filtros) 

        combined_result = img.copy() 

        combined_result = draw_boxes_cv2(combined_result, results1, results2, 2, min_confidence_yolo, 

min_confidence_cfn) 
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        plt.figure(figsize=(10, 10))  

        plt.imshow(cv2.cvtColor(combined_result, cv2.COLOR_BGR2RGB)) 

        plt.title(f 'Combined Results from yolov10n and CFN-{modelo}') 

        plt.axis('off') 

        #plt.show() 

 

        plt.savefig(f '{output_dir}\\{fname}_combined_{min_confidence_yolo}-{min_confidence_cfn}_{modelo}.png') 

         

print("Processamento concluído e arquivos salvos no diretório de saída.") 

 


