FUNDACAO GETULIO VARGAS
EMAp - ESCOLA DE MATEMATICA APLICADA
ESPECIALIZACAO EM IA APLICADA A SISTEMAS MILITARES

HELBER SOARES MOTA
ROBERT VICENTE LIBOTTI

RECONHECIMENTO DE IMAGENS:
USO DE RECURSOS DE VISAO COMPUTACIONAL
NA DETECCAO DE ALVOS E VIGILANCIA NO ESPECTRO MILITAR

Rio de Janeiro - RJ
2024

HELBER SOARES MOTA
ROBERT VICENTE LIBOTTI

RECONHECIMENTO DE IMAGENS:
USO DE RECURSOS DE VISAO COMPUTACIONAL
NA DETECCAO DE ALVOS E VIGILANCIA NO ESPECTRO MILITAR

Trabalho de conclusdode curso apresentado
a EMAp - Escola de Matematica Aplicada
da Fundacao Getulio Vargas como parte
dos requisitos necessarios para a
concluséo do Curso de Especializagcdo em
IA Aplicada a Sistemas Militares.

Orientador: Prof. Rafael de Pinho André

Rio de Janeiro
2024

SUMARIO

1. T (oo [U Lo T 0SSP 9
2. ODJBTIVOS ...ttt b n e n e 9
2.1, ODJELVO GEIAL.....ceiieieeiieeieee bbb 9
2.2. ODbjetivVOS ESPECITICOSccuiieeieice ettt et 9
3. (U o Fo g loT g v= Tor= o N =To T o WSS 10
3.1. Conceitos Relacionados.........c.cooiiiriiiiiieie e 10
3.2. Reconhecimento de IMAgENScccveiiiieiiee e e ne s 10
3.3. Redes Neurais CONVOIUCIONAIS.........cceruruirierieiniere e 11
3.4. Algoritmos de DetecGao de ODJELOSccccceveeiieriereee s 12
34.1 R-CNN (O PIONEIND)....cuiieiieiriiriieieieiesteeeeee ettt 12
3.4.2 FAStR-CNN. ... 13
3.4.3 Faster R-CNN ... 13
344 B (O] ORI 13
3.5. Comparando Pros € CONTIASccceceerieriirerieniesieesie st 14
4. AY/1=1 700 (0] (o o | 1= VOSSP 15
4.1. Coletae AnNotacao de DadOsScocoriririrriene e e 15
411 LADEING e 16
412 Detalhes do processo de Anotacgéo e Divisdo do DataSet 18
4.2. Configuracdo do Modelo YOLO......co ettt 18
421 Treinamento dO MOAEI0coiiiiieiee s 19
422 Métricas de Validacgdo, Testes e Avaliagdo do Modeloccceuneee. 20
423 OtIMIZAAOIES ...ttt r e en s 22

T B 1 (=11 1o 1 TSROSO PRSP 24
43.1 Treino de Teste Comparativo GPU X CPU ... 24
4.3.2 Otimizadores em Trein0s ISOlados..........cccveeenereieneeeseseeee s 31
4.4. Resultado COMPAratiVO.........cccecieeeeiieie e ae e ens 44

44.1 Recall CoNfIdENCE.....coeeeeeeeeeeeee e 44

442 Precision RECAIL........ooo oo 45

443 Precision CoNfideNCE........ccoiiieereeeer e 45
444 FL-CONTIBNCEo 46
4.4.5 Lr (LEarning RATE)coi ittt 46
4.4.6 METICS/RECAIL ... 48
447 Y LT T otTf o] (=T o1] (o o 1S 49
448 MEtriCS/IMAPS0-95 ... 50
449 METICS/MAPSO ... 51
4410 MOAEl/SPEEA(IMS) ..eoveeiiiiierierieeieee ettt 51
4411 MOAEl/PAramELEISccuecieceectece ettt et e e ne s 52
4412 MOUECIGFLOPS ..ottt sttt ee s 52
4413 Train/Afl_IOSS...ci e 53
o S I = 11 1 (o3 FS T (o 1= 54
o S T I = 1 gV 0T) G [13 SRS 55
o SR V4= 11 o 1 [1SS PSSR 56
AA17 VAICIS 10OSS ...ttt sttt re e sraesbeesaeeeree s 57
o T V4= 1/ o To)G [0 17 TR 57
4419 System/GpuU POWEN USAJEcccoiiiiieierinieeriee ettt nees 58
4420 System/GPU Memory AlIOCAtedcccoviiireninineeesce e 58
4421 System/GPU Time Spent Accessing MmOycccccvevereereeieseesieennens 59
4422 System/GPU TEMPEIALUIEcceccveceeecieeee sttt sre et a e ene s 59
4423 System/GPU ULHIZAtION Y0coiiieiiieieee et 60
4.4.24 System/Process Memory Available (MB)........cccooviiiiininiencneneneeene 60
4.5. Resultados de PredicOes € DISCUSSOES.......ccceveeeerieeiieseeseesieesre e sseeseseeneas 61
45.1 Exemplos de Detecc¢des (Individualmente)ccceovveevenienceseenieeenne 61
452 Classificag0es COmMDINAUAScoceiiriririeiee e 64
CoNSIAEragles FINAIS........cccciiieriei e e e ste e e et e e e neeeneesreeseenee e 69

5.1. Sobre a EVOIUGAO dO YOIO....cicoiiiecice ettt 69

B 2. CONCIUSAO oottt et e e ee et tesnnennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 69

5.3, CONDUIGDES......i ettt ettt ae e e sreensesneeeneennean 70
S I 11] 7= Tt o 1= 1 SRR 71
5.5. Trabaln oS FUTUTOS.......ccoiiiieieeee s 71
5.6. CoNSIAeragies FINAIS........cccuiiiiiiiirieiei e 73
6. REFEIENCIAS ...ttt 74
Apéndice A - Treino de Modelos Customizados YOlO..........cccccveveeiecieeieeceese e 76

Apéndice B - Usando Modelos Customizados Para Classificare CombinarResultados
de FOrma PersonaliZada..........cccoeiiiiiniieeeese et 79

LISTA DE FIGURAS

Figura 1. Convolutional Neural Network (CNN)cccooiiieree e 12
Figura 2. Comparacéao da Evolucéo na Deteccdo de Objetos (R-CNN, Fast R-CNN,
Faster R-CNN € YOLO) ..ottt st st sse et s sbe et e e e nneennean 15
Figura 3. Arquitetura Utilizada Azure/OnPremiSe/LocCalccocvererierieeiescseneneenns 16
Figura 4. Exemplos de Labeling Gerados Pelo Label Studio.........cccccoevevcieiencinnnen. 16
Figura 5. GPU Utilizada no Servidor de Pesquisa da FGVccccoovreriniennnineneenns 18
Figura 6. Teste Pré-Treino com 120 Epocas - SEM GPUccoeveveeceveeneseeeseenens 24
Figura 7 - Teste Pré-Treino com 120 Epocas - COm GPUccccccveevecuevcreceevesrennn. 25
FIQUIA 8. LADEIS ... oottt ettt et re e sre e neennesnaene s 25
Figura 9. Matriz de Confusdo Normalizada...........ccoceeeieeiieieeieseree e 25
Figura 10. Comparativo (GPUXCPU) — CUIVAS........ccoriririeieiesie e 26
Figura 11. Comparativo - Metricas (GPUXCPU)........cccooeiiieiecee et 26
Figura 12. Comparativo Modelo (GFLOPSs, parameters e speed)cccocvvvrererennnne 27
Figura 13. Comparativo Treino (dfl_loss, cls_[0SS € boX_10SS)cccevvvveevieieiiiesieenenn 27
Figura 14. Comparativo Validagao (dfl_loss, cls_loss € boX_10SS)......ccccveevvrieeiennnnne 28
Figura 15. Uso do Sistema Durante Treino (memoria, cpu, diSCO € gpu)ccceeueneen. 28
Figura 16. Exemplos de Predi¢des de Teste Com o Modelo Treinadoc.......... 29
Figura 17. RESUMO (AQAIM) ...ouiiiiiiiiiieiereerie ettt 32
Figura 18. CUNAS (AGAM) ..eciicieieecieee ettt sae e eeete e e sne e te e e s teeneeneeaneas 32
Figura 19. Treino/ValidaGao (ACQAIM)cceiiririeieriese et 33
Figura 20. Predic0es (AGAIM)ccoiiiiiiiesiecie et ee et et ee e sne e sneene s 33
Figura 21. ReSUMO (AAMWV) ..o 34
Figura 22. CUNVAS (AQAMW)....cceiieeiece et ee et ae e ste e s e aesneesseensesneenseensens 34
Figura 23. Treino/ValidaGa0 (AdAmMW)cocuieiieiieciecee st 35
Figura 24. Predic8es (AAmMWV) ...ttt 35
Figura 25. ReSUMO (RAAAM).......cciiiieieciee ettt et sre e neesne e 36
Figura 26. CUrvas (RAAIM)ooeie et 36
Figura 27. Treino/Validagao (RATAM)coeeriieriee et et nne s 37
Figura 28. Predig0es (RATAIM) ..ottt st sne e 37
Figura 29. ReSUMO (RMSPIOP) ..ccueeiieieiiesieeieseese st eie e sie e see e se e sneesreesseseesneensens 38
Figura 30. CUVas (RMSPIOP) ...oooiiiiieiie ittt st 38
Figura 31. Treino/Validagao (RMSPIOP)cccouiiiiririerinireese et 39
Figura 32. PrediCa0 (RMSPIOP) ...eciieieiie ettt ettt te et nesna e 39
Figura 33 - Resumo Treino Otimizadores - NAJAMccocceeiieeiieieee e 40

Figura 34. Curvas (NAAM)ooeeeee et 40
Figura 35. Treino/Validacao (NACAM)cceouiiiieeeece e 41
Figura 36. Predic8es (NAGAM) ..ot 41
Figura 37 - Resumo Treino Otimizadores - SGDccccooeiieiicee e 42
FIgura 38. CUIVAS (SGD)ocuiiuiiiiieieiierie sttt sn e ne e 42
Figura 39. Treino/ValidaGao (SGD).....cccceveeieeeeseee e eee s esie e se e eee e s sae e sneenne s 43
Figura 40. PrediGOES (SGD) ..ottt sttt st s aeesne e 43
Figura 41. Comparativo - Recall Confidence.........c.covviririiiiiii e 44
Figura 42. Comparativo - Precision ReCallccceeeiiieiiciie e 45
Figura 43. Comparativo - Precision CONfIdencCe.........ccoeroiriiiiniie e 45
Figura 44. Comparativo - F1 CONfideNCe......c.cccuveeeiiie e 46
Figura 45. Comparativo = I1/PO2ooueeeieeeeee et 47
Figura 46. Comparativo - II/POLoceeieiee et e et nna e a7
Figura 47. Comparativo - I1/PJO0ooueeeieeeeeesee et 48
Figura 48. Comparativo - MetricS/reCallcooiiiiiriiiiieere e 48
Figura 49. Comparativo - MetriCS/PreCiSIONcviciieiie et 49
Figura 50. Comparativo - metricS/MAPS0-95 ... 50
Figura 51. Comparativo - MetriCS/IMAPS0cco e 51
Figura 52. Comparativo - model/SPeed(IMS)cccoceieriireereee e 51
Figura 53. Comparativo - model/parameters.........ccveveieerieiesee e seese e 52
Figura 54. Comparativo - MOUEI/GFLOPSccooiiiiiieeeeeeee e 53
Figura 55. Comparativo - train/dfl_l0SS..........ccoiiiiiiniiicee e 54
Figura 56. Comparativo - train/ClIS_l0SS.......ccccveieeiieieiie e 55
Figura 57. Comparativo - train/BOX_10SScccoeiiiiiiriireeere e 56
Figura 58. Comparativo - Val/dfl_[0SScccecvviiiiicece e 56
Figura 59. Comparativo - Val/CIS_10SS........cccoeiiiiiiiiri e 57
Figura 60. Comparativo - Val/DOX 0SScccvieieiieiicie ettt nne s 57
Figura 61. Comparativo - GPU Power Usage (W)cccooeeiieve et 58
Figura 62. Comparativo - GPU Memory Allocated (BYteS)ccccverererieeieenienierereenns 58
Figura 63. Comparativo - GPU Time Spent Accessing Memory(%0)......cccccevvveveeieennene 59
Figura 64. Comparativo - GPU Temperature (°C)ccerrriiineresieeeeseeseesie e 59
Figura 65. Comparativo - GPU UtIliZation (20)........ccccevvrieieereeie e cee e 60
Figura 66. Comparativo - Process Memory Available (MB).......ccccccoeieviecceecieeceeee. 60

Figura 67. Comparativo Laténcia x mAP (média das precisbes médias de todas as

classes no conjunto de dados)

LISTA DE TABELAS

Tabela 1.
Tabela 2.
Tabela 3.
Tabela 4.
Tabela 5.
Tabela 6.
Tabela 7.
Tabela 8.
Tabela 9.

Estrutura Basica de uma CNN ... e 11
Pros e Contras: R-CNN, Fast R-CNN, Faster R-CNN e YOLO................... 14
Principais Parametros Utilizados no PreTreino GPUXCPUccccene... 19
Comparativo doS OtIMIZAUOIES.........cccerirereririeee sttt 24
Resumo do treino (entre otimiZadores)cccccveeveeveieesee e 31
Lista de Classes Pré-Treinadas no Modelo YoloV10nccccecvveeeeeeeenen. 61
Predicao de Veiculos Civis e Militares por Modelo Nao Especializado 63

Lista de Classes Exclusivamente Treinadas nos Modelos CFN.................. 64

Predigéo de Veiculos Civis e Militares Por Modelo Militar Especializado.. 64

Tabela 10. Predicbes Combinadas de Mais de um Modelocccoevevveveccieieccieenee, 65

Reconhecimento de Imagens: Uso de Recursos de Visdao Computacional na
Deteccdo de Alvos e Vigilancia no Espectro Militar
EMAp - Escola de Matemética Aplicada da Fundacéo Getulio Vargas

Rio de Janeiro - Brasil

robert.libotti@gmail.com, helberjf @gmail.com

Resumo

A crescente complexidade dos conflitos modernos exige solucdes tecnoldgicas
gue possam identificar e classificar veiculos militares de forma eficiente. Essa
identificacdo é fundamental em aplicacdes de reconhecimento aéreo e terrestre,
monitoramento de fronteiras, acbes de sabotagem, tarefas de inteligéncia, contra-
ataque e no uso de drones em operacgfes taticas. O emprego de inteligéncia artificial
(IA) nesse processo, mais especificamente através de modelos de redes neurais
convolucionais (CNNs), se mostra uma abordagem robusta e viavel, oferecendo alta
acuracia e velocidade na deteccao e classificacdo de objetos em imagens complexas.
O objetivo deste trabalho consiste em propor uma abordagem para detectar e
classificar algumas classes de veiculos militares (a saber: ASTROS, CLANF, JLTV,
M113, PIRANHA e SK105) através de imagens que podem ser capturadas a partir de
drones, cameras fixas ou méveis combinando o modelo YOLOv10 e uma CNN. Os
resultados experimentais mostram que o modelo alcancou um desempenho
consideravel (com precisdo acima de 90% em muitos casos) e mesmo que a
quantidade de imagens utilizadas no treino tenha sido pequena para uma aplicacao
real, demonstra a viabilidade para utilizagdo em dispositivos embarcadas ou em uma

arquitetura em nuvem com processamento remoto, por exemplo.

Palavras-chave
YOLO; PyTORCH, CNN; Visao Computacional; IA; Veiculos Militares.

1. Introducéao

A inteligéncia artificial (IA) é definida como “a capacidade de um sistema
interpretar corretamente dados externos, aprender a partir desses dados e utilizar
esse conhecimento para atingir objetivos e tarefas especificas por meio de adaptacéo
flexivel” (Kaplan; Haenlein, 2019). E um campo da ciéncia da computagdo voltado
para a criacdo de sistemas capazes de realizar tarefas que normalmente exigiriam
inteligéncia humana, como reconhecimento de padrbes, aprendizado e tomada de
decisdo. Baseada em técnicas como aprendizado de maquina e aprendizado
profundo, a 1A é amplamente aplicada em solucbes especificas de Visao
Computacional para detectar e classificar objetos em imagens. No contexto deste
trabalho, a IA é essencial para o desenvolvimento de tecnologias que permitam a

identificacdo rapida e precisa de veiculos militares em cenarios complexos diversos.
2. Objetivos

2.1. Objetivo Geral

A introducdo da IA em sistemas de defesa representa uma evolucao
significativa na forma como os dados sdo processados e utilizados em operacdes
criticas, reforcando a importancia do tema em um mundo cada vez mais digitalizado
e interconectado.

2.2. Objetivos Especificos

Neste trabalho, propomos explorar o uso do YOLO para o reconhecimento de
veiculos militares através de imagens para uso em sistemas embarcados em drones
(ou qualquer dispositivo que possa desempenhar processamento local) ou
remotamente através de uma arquiteturaem nuvem, com foco na aplicagao pratica e
analise do desempenho do modelo. Para isso, serdo abordadas etapas como a coleta
e anotacdo de dados especificos, incluindo a criacdo de caixas delimitadoras
(bounding boxes) para cada veiculo presente nas imagens do banco de dados, o
treinamento do modelo em um dataset customizado e a validacao de seu desempenho
em diferentes condi¢des. Adicionalmente, seréo verificados os desafios enfrentados,

como a presenca de ruidos nas imagens, variacdes de iluminacdo, oclusdes e a

10

diversidade visual dos veiculos militares, que incluem tanques, carros blindados,

veiculos anfibios de assalto e outros meios militares de transporte especializados.

A relevancia deste estudo reside no potencial de aprimorar sistemas
automatizados de deteccao, contribuindo para o avancotecnologiconaarea de defesa
e seguranca. Além disso, os resultados podem servir como base para a
implementacdo de solucdes praticas em diferentes contextos, como vigilancia
autbnoma por drones e cameras, analise estratégica em tempo real, uso de sistemas
de inteligéncia artificial de reconhecimento de imagens em planejamentos por cartas
topograficas, como por exemplo a carta de trafegabilidade sendo feita de forma

automatica e apoio a tomada de decisfes taticas.

Assim, este trabalho esta estruturado em capitulos que abordam, inicialmente,
os fundamentos tedéricos do reconhecimento de imagens, das redes neurais
convolucionais e do YOLO, seguidos da metodologia adotada para o treinamento e
validagdo do modelo. Posteriormente, seréo apresentados os resultados obtidos e
suas implicacbes praticas, culminando nas consideracdes finais e sugestdes para
trabalhos futuros. O objetivo principal € demonstrar como o uso do YOLO pode ser
eficaz no reconhecimento de veiculos militares, oferecendo uma contribuicdo

significativa para a area de visdo computacional e suas aplicacdes no setor militar.

3. Fundamentacéo Tedrica

3.1. Conceitos Relacionados

A fundamentacdo tedrica deste trabalho aborda os conceitos-chave
relacionados ao reconhecimento de imagens, redes neurais convolucionais (CNNs) e
ao modelo YOLO (You Only Look Once). Esses tdpicos sdo fundamentais para
compreender a aplicacéo de técnicas de visdo computacional no reconhecimento de

veiculos militares em imagens.

3.2. Reconhecimento de Imagens

O reconhecimentode imagens é uma subareada visdo computacional que visa
identificar e classificar objetos em imagens digitais. Essa tarefa envolve a anélise de

11

caracteristicas especificas, como formas, cores, texturas e padrdes, que permitem
diferenciar objetos e atribui-los a categorias definidas.
Com o avanco da tecnologia, os métodos tradicionais baseados em extragcdo manual
de caracteristicas deram lugar a abordagens baseadas em aprendizado de maquina,
especialmente aprendizado profundo (deep learning). Esses métodos utilizamredes
neurais artificiais capazes de aprender representacdes complexas diretamente a partir
dos dados, eliminando a necessidade de intervencdo manual para a extragao de
caracteristicas.

A importancia do reconhecimento de imagens esta em sua ampla gama de
aplicagfes, queincluemsistemasde vigilancia, diagnosticomédico, direcdo autbnoma
e, no contexto militar, a identificacdo de veiculos, tropas e equipamentos em

ambientes operacionais.

3.3. Redes Neurais Convolucionais

Redes Neurais Convolucionais (Convolutional Neural Networks, CovNets ou
CNNs) sdo um tipo especifico de rede neural projetada para processar dados que
possuem uma estrutura em forma de grade, como imagens. Elas sdo amplamente
utilizadas em tarefas de visdo computacional, como reconhecimento de objetos,

segmentacao de imagens e deteccdo de padroes.

A estrutura basica de uma CNN é composta pelos seguintes elementos:

Tabela 1. Estrutura Basica de uma CNN

Camadas Convolucionais | Aplicam filtros (ou kernels) a imagem de entrada para extrair
caracteristicas relevantes, como bordas, texturas e formas. Cada filtro
aprende uma caracteristica especifica durante o treinamento. O
resultado dessa operagcdo é um mapa de caracteristicas (feature
map), que destaca as regides onde os padrdes foram detectados.

Camadas de Pooling (ou | Reduzem adimensionalidade das caracteristicas extraidas, mantendo
Subamostragem) as informagdes mais importantes e aumentando a eficiéncia
computacional. Exemplos incluem o max pooling (selecdo do valor
maximo em uma regiéo) e o average pooling (média dos valores).

Camadas Fully Geralmente realizam a classificagdo final com base nas
Connected caracteristicas extraidas.

12

FuncBes de Ativagéo Introduzem né&o linearidade ao modelo, permitindo a aprendizagem de
padrdes complexos. Fungdes como ReLU (Rectified Linear Unit) e
softmax sdo amplamente utilizadas.

O usode CNNsem tarefas de reconhecimento de imagensrevolucionou aarea,
proporcionando ganhos significativos em precisao e eficiéncia. CovNets sdo capazes
de extrair caracteristicas relevantes de dados automaticamente e com alta preciséo.
No entanto, para treinar redes neurais convolucionais com eficiéncia é necessario que
se tenhaacesso a recursos computacionais significativos. O Treinamento necessita
de grande quantidade de volume de dados rotulados e GPUs poderosas para

obtencé&o de bons resultados.

Figura 1. Convolutional Neural Network (CNN)

INPUT OUTPUT
fo e
il o1 | bk
= o
B NP
L:; @ 0:
r F:‘ p m

Fonte: https://www.ionos.com/pt-br/digitalguide/sites-de-internet/desenvolvimento-web/convolutional-

neural-network/

3.4. Algoritmos de Deteccéo de Objetos

3.4.1 R-CNN (O Pioneiro)
A R-CNN, ou Regides com recursos da CNN, entrou em cena em 2014, marcando
uma mudanca de paradigma na detecc¢éo de objetos. Como funciona:

e Gera propostas de regido (~2000) usando pesquisa seletiva

e Extrai recursos da CNN de cada regido

13

e Classifica regides usando classificadores SVM

3.4.2 Fast R-CNN

A Fast R-CNN abordou as limitagdes de velocidade de seu antecessor, mantendo alta
precisdo. Como funciona:

e Processa a imagem inteira através da CNN uma vez

e Usa o agrupamento de ROI para extrair recursos para cada proposta de regiao

e Usa camada softmax para classificacédo e regresséo de caixa delimitadora

3.4.3 Faster R-CNN

A Faster R-CNN introduziu a Region Proposal Network (RPN), tornando todo o
pipeline de deteccao de objetos treinavel de ponta a ponta. Como funciona:
¢ Usa uma rede totalmente convolucional para gerar propostas de regiéo
e Compartilha recursos convolucionais de imagem completa com a rede de
deteccao
e Treina RPN e Fast R-CNN juntos

Exemplo de uso: Na conduc¢éo autbnoma, o Faster R-CNN pode detectar e classificar
veiculos, pedestres e sinais de transito quase que em tempo real, o que é crucial para
tomada rapida de decisoes.

344 YOLO

O YOLO (You Only Look Once) revolucionou a deteccao de objetos ao enquadra-a
como um unico problema de regressdo, direto dos pixels da imagem para as
coordenadas de caixas delimitadoras e probabilidades de classe. Como funciona:
¢ Divide aimagem em uma grade
e Para cada célula da grade, prevé caixas delimitadoras e probabilidades de
classe

e Aplicauma unica passagem para frente em toda a imagem

3.5. Comparando Prés e Contras

14

De acordo com a literatura pesquisada, comparando os algoritmos de detecc¢éo e
reconhecimento de imagens R-CNN, Fast R-CNN, Faster R-CNN e YOLO, temos o

seguinte:

Tabela 2. Prés e Contras: R-CNN, Fast R-CNN, Faster R-CNN e YOLO

PROS

CONTRAS

R-CNN
(Regions with
Convolutional

Neural

Alta precisdo: R-CNN é conhecido por
sua alta precisdo na detecc¢ao de objetos

Lento: O processo é relativamente
lento porque envolve varias etapas,
incluindo a geracéo de propostas de
regiao e a extragdo de
caracteristicas.

Maior eficiéncia: Processa a imagem
inteira uma vez e usa Rol pooling para
extrair caracteristicas de cada regiao
proposta.

Flexibilidade: Pode ser usado em uma | Requer muitos recursos: Devido
Networks) variedade de aplicagdes devido a sua| ao seu processo complexo,
precisao. consome muitos recursos

computacionais.
Mais rapido: Melhora significativamente | Ainda depende de propostas
Fast R-CNN o tempo de processamento em | externas: A geracdo de propostas
comparacao com o] R-CNN. | de regido ainda é um gargalo.

Requer ajustes manuais: Precisa
de ajustes manuais para otimizar o
desempenho.

Faster R-CNN

Propostas répidas: Introduz uma rede
de proposta de regido (RPN) que gera
propostas de regido rapidamente.

Mais rapido e eficiente: Melhora ainda
mais o tempo de processamento e a
eficiéncia em comparagdo com Fast R-
CNN.

Complexidade: A introducdo da
RPN aumenta a complexidade do
modelo.

Requer ajustes manuais: Assim
como Fast R-CNN, precisa de
ajustes manuais para otimizar o
desempenho.

YOLO
(You Only Look
Once)

Rapido: YOLO é muito mais rapido do
gue R-CNN porque processa a imagem
inteira em uma Unica passagem.

Eficiente: Usa menos recursos
computacionais em comparagdo com R-
CNN.

Menor precisdo: Embora seja
rapido, YOLO pode ser menos
preciso em comparagcdo com R-
CNN, especialmente em imagens
complexas.

Dificuldade em detectar objetos
pequenos: YOLO pode ter
dificuldade em detectar objetos

pequenos ou que estdo proximos
uns dos outros.

fonte: https://datadance.ai/machine-learning/r-cnn-vs-r-cnn-fast-vs-r-cnn-faster-vs-yolo/

15

Figura 2. Comparacao da Evolucéo na Detecgéo de Objetos (R-CNN, Fast R-CNN, Faster R-CNN e YOLO)

End-to-end
Algorithm Speed Accuracy Real-time? Trainable Year
R-CNN 47slimage High No No 2014
Fast R-CNN 2slimage Higher No Partial 2015
Faster R-CNN 0.2s/image Highest Near Yes 2015
YOLO 0.02s/image Good Yes Yes 2016

fonte: https://datadance.ai/machine-learning/r-cnn-vs-r-cnn-fast-vs-r-cnn-faster-vs-yolo/

4. Metodologia

Este capitulo apresenta a metodologia adotada para o desenvolvimento do
modelo de reconhecimento de veiculos militares utilizando o YOLO. S&o descritas as
etapas préaticas de coleta e anotacdo de dados, configuragdo do modelo, treinamento
e validacéo, detalhando os procedimentos técnicos e as ferramentas utilizadas. O
objetivo é garantir a reprodutibilidade e a clareza do processo.

4.1. Coleta e Anotacado de Dados”

A primeira etapa da metodologia consiste na obtencdo de um conjunto de
dados adequado para o treinamento do modelo. Para este trabalho, foram utilizadas
imagens de veiculos militares provenientes de fontes publicas, como bancos de
imagens, videos de desfiles militares e registros de operac6es militares.

Critérios de selecdo das imagens: diversidade visual, incluindo diferentes tipos
de veiculos militares, como tanques, carros blindados de combate e veiculos anfibios
de assalto. Variagdes de cenario: ambientes urbanos, florestais, desérticos e outros.
Diferentes condi¢des climéticas e de iluminacdo: imagens em alta e baixa iluminacéo,

presenca de ruido e oclusdes.

ApoOs a coleta de 4361 imagens, foi realizada a classificacdo dos arquivos de
treino/validacdo que foram armazenados em um Data Lake privado em nuvem no
Microsoft Azure (Microsoft Azure Blob Storage) e que foi utilizado posteriormente
como repositorio de dados para o Label Studio que é uma ferramenta de cédigo aberto
para rotulagem de dados que permite a integracdo com diversos sistemas de
armazenamentoem nuvem. Para rodar o Label Studio em estrutura propria, utilizamos

16

um servidor virtual Linux Ubuntu 24.04 em nuvem com 4vcpus, 16GiB RAM e HD

Premium SSD LRS de 30GiB de acordo com a arquitetura abaixo:

Figura 3. Arquitetura Utilizada Azure/OnPremise/Local

/ \ / Treino / Validacao \

GPU - On Premise FGV

Microsoft Azure @) . P

— (Python)
— - | 1
T VM Label Studio Azure Blob Storage

Labeling CPU - Local Dev

\. \ -

fase 1 fase 2

Na primeira fase, alimentamos um datalake com as imagens em nuvem e
fizemos o trabalho de labeling com auxilio do Label Studio. Na segunda fase, para
processamento e fins comparativos, lemos as anotacdes e as imagens a partir do
hardware local (processador Intel i7 de 102 geracdo com 8 nucleos, 32Gb RAM e HD
SSD de 1TB mas sem GPU) e hardware on premise do ambiente do pesquisador da
FGV (GPU: Tesla V100-PCIE-32GB com 32768.0 MB Memoria), treinamos nosso
modelo customizado e escrevemos 0s resultados para analise e inferéncia no Wandb

(wandb.io).

4.1.1 Labeling

No processo inicial de labeling, foram criadas caixas delimitadoras (bounding
boxes) nos dados de treino e validacdo a fim de identificar cada classe de veiculo
desejado. Cada bounding box foi rotulada com a classe correspondente aos veiculos
tratados no escopo deste trabalho.

Figura 4. Exemplos de Labeling Gerados Pelo Label Studio

|asmos | oo

l MLITAR TRUCK

| s

lulc»t

| rin

| Prasonn

| sios

%‘i&:‘:ﬂf =

P

| PFRANSA

| sxies

17

18

4.1.2 Detalhes do processo de Anotagéo e Divisdo do DataSet

As caixas delimitadoras foram ajustadas para englobar totalmente o veiculo,
evitando incluir &reas irrelevantes. Cada veiculo foi rotulado com uma classe
especifica: “SK105” (tanque leve), "ASTROS” (sistema de lancadores multiplos de
foguetes- MLRS), “CLANf” (carro lagarta anfibio), “JLTV” (veiculo tatico multifuncional
leve), "M113” (veiculo blindado de transporte de pessoal0 e “PIRANHA" (veiculo
blindado de combate com rodas).

Seguindo o Principio de Pareto, o dataset foi dividido em treinamento (80%) e

validacao (20%) para garantir a avaliacéo objetiva do modelo.

4.2. Configuragédo do Modelo YOLO

A configuracdo do YOLO foi realizada com base em sua versdao YOLOvV10,
devido a sua eficiéncia e facilidade de uso em frameworks modernos como PyTorch.
As etapas de configuracdo envolveram ajustes na arquitetura do modelo, parametros

de treinamento e preparacédo do ambiente computacional.

Para implementacédo e treinamento utilizamos a linguagem de programacao

Python naverséo 3.10 pela compatibilidade com bibliotecas de aprendizado profundo.

Figura 5. GPU Utilizada no Servidor de Pesquisa da FGV

ID: DO

Home: Tesla V1
Memaria Tota
Memaria Tcil

Memaria Livr

Utilizacdn: 0.0%
Temperatura: 24.0 °C

19

Tabela 3. Principais Parametros Utilizados no PreTreino GPUxCPU

mode: train

Modo de treino

model: yolov10n.yaml

Utilizamos o modelo n (nano) do YOLO v10 porser aop¢ao mais leve
e facil de implementar posteriormente em um dispositivo embarcado

epochs: 300

Apos alguns pre-testes foi possivel verificarconvergéncia por voltada
época 200. Posteriormente, para os dados apresentados neste
trabalho, limitamos em 600 épocas e configuramos para parar
automaticamente caso passasse por 10 epocas sem efetiva evolugdo
do modelo.

workers: 8

Quantidade de processos paralelos

verbose: true

Gerar informacdes detalhadas sobre o processo de treinamento

show_labels: true

Exibir os rétulos dos objetos detectados

show_conf: true

Exibir a pontuacdo de confianca

show_boxes: true

Exibir as caixas ao redor dos objetos detectados

421 Treinamento do Modelo

O treinamento do modelo foi realizado utilizando o conjunto de dados anotado

na etapa de labeling (dados de treino e validacdo). Durante esta etapa, o YOLO foi

exposto as imagens de treinamento, ajustando seus pesos para minimizar a perda e

aumentar a precisao na deteccéo dos tipos de veiculos que definimos no escopo.

A funcao de perda do YOLO considera trés componentes principais:

o Erro delocalizagdo: Avalia a precisdo das coordenadas das bounding

boxes previstas.

o Erro de classificacdo: Mede a correspondéncia entre a classe prevista

e a classe real do objeto.

o Erro de confianca: Avalia a certeza do modelo em relagéo a presenca

de um objeto.

Treinamento em multiplas escalas: O YOLOvV10 foi configurado para treinar

em imagens de tamanhos e iluminacao variados em angulos e ambientes diversos, e

pudemos verificar sua robustez em detectar objetos de diferentes dimensdes em

cenarios diversos.

Validagdo durante o treinamento: A cada época, o modelo foi validado

utilizando o conjunto de validacao, gerando métricas como precisdo (mAP) e taxa de

erro.

20

4.2.2 Meétricas de Validacéao, Testes e Avaliagcdo do Modelo

Apos o treinamento, o modelo foi avaliado utilizando o conjunto de teste,
composto por imagens inéditas que néo foram vistas pelo modelo durante o

treinamento. Essa etapa garantiu uma avaliacdo objetiva do desempenho do YOLO.

Essas métricas sdo usadas para monitorar e ajustar o desempenho do modelo
durante o treinamento e a validacdo, garantindo que ele seja capaz de detectar e

classificar objetos com alta precisao.

1. Recall-Confidence(B): refere-se a capacidade de um modelo de identificar corretamente
todas as instancias relevantes de uma classe. E a proporc¢éo de verdadeiros positivos (TP)
sobre a soma de verdadeiros positivos e falsos negativos (FN). Em outras palavras, € a
capacidade do modelo de encontrar todos os exemplos positivos.

TP

Recall = TP+—FN

2. Precision-Recall(B): combina a preciséo e o recall para fornecer uma Unica medida de
desempenho. A precisdo é a propor¢cédo de verdadeiros positivos sobre a soma de
verdadeiros positivos e falsos positivos (FP). O Precision-Recall é frequentemente usado

em gréficos para avaliar o desempenho de classificadores.

TP
TP +FP

Precision =
3. Precision-Confidence(B): refere-se a confianca que temos na precisdo do modelo. A
confianca pode ser interpretada como a probabilidade de que uma previsao positiva seja
correta. Isso € importante em contextos em que a precisédo € critica, como diagndsticos

médicos.

4. F1-Confidence(B): o F1-Score € a média harmbnica da precisao e do recall,
proporcionando um equilibrio entre os dois. E Gtil quando precisamos de um equilibrio entre
precisao e recall. A confianca no F1-Score indica a robustez do modelo em termos de
equilibrio entre precisao e recall.

Precision x Recall
F1— Score =2 %

Precision + Recall

10.

11.

21

mMAP50 (Mean Average Precision at loU 0.50): a precisdo média (AP) é calculada como
a area sob a curva de precisdo-recall para uma classe especifica. O mAP50 é a média
dessas precisbes médias para todas as classes, considerando um limiar de loU
(Intersection over Union) de 0.50. Isso significa que uma deteccado € considerada correta
se a sobreposicao entre a caixa predita e a caixa real for de pelo menos 50%.

MAP50-95: é uma média da precisdo média calculada em diferentes limiares de loU,
variando de 0.50 a 0.95 (em incrementos de 0.05). Ela fornece uma visao mais abrangente
do desempenho do modelo em diferentes niveis de dificuldade de deteccao

val/dfl_loss: refere-se a perda de distribuicdo de deslocamento (Distribution Focal Loss)
durante a validacdo. A DFL é uma técnica usada para melhorar a preciséo da localizacao
dos objetos, ajustando as previsdes das caixas delimitadoras para que correspondam mais

precisamente aos objetos reais nas imagens.

val/cls_loss: refere-se aperdade classificacao (Classification Loss) durante a validacéo. A
perda de classificacdo mede a precisdo com que o modelo esta atribuindo a classe correta
aos objetos detectados. E uma métrica crucial para avaliar a capacidade do modelo de

distinguir entre diferentes tipos de objetos.

val/box_loss: refere-se a perda de caixa delimitadora (Bounding Box Loss) durante a
validacdo. A perda de caixa delimitadora avalia a precisdo das coordenadas das caixas
delimitadoras previstas pelo modelo em comparacdo com as caixas delimitadoras reais
dos objetos nas imagens.

GFLOPs (Giga Floating Point Operations per Second): é uma métrica que mede o
desempenho de um modelo de aprendizado de maquina em termos de operacdes de ponto
flutuante por segundo. Quando falamos em GFLOPs, estamos nos referindo abilhdes de
operacdes de ponto flutuante por segundo.

Model parameters: sao variaveis internas de um modelo de aprendizado de maquina que
sé@o ajustadas durante o processo de treinamento. Eles sdo essenciais para definir como
o modelo transforma os dados de entrada em previsdes. Sdo valores que o modelo
aprende diretamente dos dados durante o treinamento. Eles séo ajustados para minimizar
a funcéo de perda e melhorar a preciséo do modelo.

22

4.2.3 Otimizadores

Os otimizadores ajudam a minimizar a fung¢ado de perda durante o treinamento
da rede neural. A seguir uma visao geral de como os diferentes otimizadores podem
ser usados com YOLO.

4.2.3.1 SGD (Stochastic Gradient Descent)

E uma versdo do gradiente descendente que atualiza os pesos da rede neural
usando apenas um Unico exemplo de treinamento por vez. Isso ajuda a encontrar o
minimo global mais rapido, mas pode ser instavel devido a alta variabilidade nas
atualizacdes. Caracteristicas principais:

e Simplicidade e eficiéncia em termos de memoria.

e Utilizado em muitas implementa¢des basicas do YOLO devido a sua
simplicidade.

e Pode ser combinado com técnicas como momentum para melhorar a

convergéncia.

4.2.3.2 Adam (Adaptive Moment Estimation)

Combina as vantagens de dois outros algoritmos, o RMSProp e 0 Momentum.
Ele calcula médias modveis dos gradientes passados e das suas magnitudes
quadraticas, permitindo adaptacdes mais rapidas e precisas. Adam € amplamente
utilizado por sua eficiéncia e desempenho. Principais caracteristicas:
o Adaptativo e eficiente, ajustando a taxa de aprendizado com base em
momentos passados.
e Amplamente utilizadoemredes YOLO modernas por sua capacidade de

rapida convergéncia e estabilidade.

4.2.3.3 AdamW (Adam with Weight Decay)

E uma variagdo do Adam que incorpora a regularizacdo por decaimento dos
pesos diretamente no algoritmo. Principais caracteristicas:
e Variacdo do Adam com regularizacéo por decaimento de peso.
e Ajudaa evitar overfitting, promovendo melhorgeneralizacdo, o que é (til

em cenarios com conjuntos de dados limitados.

23

4.2.3.4 RAdam (Rectified Adam)

E uma melhoria sobre o Adam que retifica o problema de variancia nas etapas
iniciais do treinamento. Ao fazer isso, RAdam ajuda a estabilizar o processo de
otimizac&@o e melhora a precisdo do modelo. Principais caracteristicas:

e Estabiliza a variancia no inicio do treinamento, melhorando a preciséao.
e Pode ser benéfico em treinamentos de redes YOLO para garantir

convergéncia estavel e precisa.

4.2.3.5 RMSProp (Root Mean Square Propagation)

Algoritmo adaptativo que ajusta a taxa de aprendizado para cada parametro.

Ele divide a taxa de aprendizado pelo valor médio dos gradientes recentes, permitindo

gque o algoritmo se adapte dinamicamente as variagdes no dado. Principais

caracteristicas:

e Ajusta a taxa de aprendizado com base na magnitude recente dos
gradientes.

e Pode ser usado para melhorar a adaptacdo em diferentes fases do

treinamento, especialmente em redes YOLO que lidam com dados

variados.

4.2.3.6 Nadam (Nesterov-accelerated Adaptive Moment Estimation)

E uma variante do Adam que combina Nesterov Momentum com Adam. Isso
acelera a convergéncia, especialmente em problemas com minimos locais complexos.
Nadam € conhecido por ser mais rapido e eficiente em certos cenarios. Principais
caracteristicas:

e Combina as vantagens do Adam com Nesterov Momentum para
aceleracgéo adicional.
e Ajuda a alcancar uma convergéncia mais rapida, o que é crucial para

treinar redes YOLO em grandes conjuntos de dados.

24

4.2.3.7 Resumo das Caracteristicas dos Algoritmos Otimizadores

Cada um dos otimizadores apresentado tem suas proprias vantagens e é
escolhido com base nos requisitos especificos do problema e nas caracteristicas do
conjunto de dados.

Tabela 4. Comparativo dos Otimizadores

Algoritmo Caracteristicas Principais Vantagens Desvantagens
SGD Atualizacao por exemplo Gnico Simples e rapido Instavel, pode ser lento
Adam Combina RMSProp e Momentum Eficiente, bom Pode superestimar
desempenho gradientes
AdamW Adam com reqgularizacao por Melhor generalizagéo Similar ao Adam
decaimento de pesos
RAdam Retificacdo de variancia no inicio Mais estavel, melhora a Pode ser mais complexo
precisédo
RMSProp Ajuste dinamico da taxa de Adaptacao rapida as Pode nao convergir
aprendizado variacoes sempre
NAdam Combina Nesterov Momentum com Convergénciamaisrapida = Complexidade adicional

Adam

4.3. Treinos

4.3.1 Treino de Teste Comparativo GPU x CPU

Inicialmente, fizemos um treino comparativo de 120 épocas com 0S mesmos
dados de treino/validacdousandouma GPU Tesla V100-PCIE-32GB com 32768.0 MB
Memodria (no Ambiente de Pesquisa On Premise da FGV) e uma CPU Intel i7 de 102
geracdo com 8 nucleos, 32Gb RAM e HD SSD de 1TB.

Apesar de resultados finais semelhantes, usar uma GPU diminuiu consideravelmente
0 tempo necessario de processamento comparado a uma CPU (de 39h para apenas

49m) conforme imagens abaixo:

Figura 6. Teste Pré-Treino com 120 Epocas - Sem GPU

Ultralytics 5.3.63 :? Python-3.12.7 torch-2.5.1+cpu CPU (Intel Core(TM) 1i7-97@68T 2.88GHz)
YOLOv1&n summary (fused): 285 layers, 2,696,756 parameters, @ gradients, B.Z GFLOPs
Class Images Instances Box(P R mMAPSE mAPSB-95):
all 911 1127 8.942 a.926 a.967 8.78
ASTROS 284 265 8.931 a.857 8.948 B.772
CLANF 192 239 8.942 a.944 a.964 B.782
JLTV 118 133 8.984 a.913 a.982 B.83
M113 237 271 8.945 a.956 a8.978 B. 799
PLRANHA 51 =1 8.897 a.939 a.942 B.722
K185 142 153 8.951 a.948 8.986 B.F7ry
Speed: @.8ms preprocess, 43.6ms inference, @.8ms loss, #.1ms postprocess per image

Figura 7 - Teste Pré-Treino com 120 Epocas - Com GPU

Ultralytics E.3.66 ﬁ Python-3.18.12 torch-2.5.1+cul24 CUDA:® (Tesla viee-PCIE-32GB, 32494MiB)
YOLOv18n summary (fused): 285 layers, 2,888,756 parameters, ® gradients, 8.2 GFLOPs

Class Images Instances Box(P R mAPSE mAPSB-95):
all 911 1127 B8.943 a.927 8.969 B.B82
ASTRO 284 285 8.916 a.857 8.954 B.794
CLANF 193 239 8.946 8.946 8.967 B.791
JLTV 118 1313 B8.968 a.987 8.974 B.BI5
M113 237 7 8.948 a.967 8.983 B.E16
PIRANHA 51 (1] 8.913 a.933 8.955 B.766
SK185 142 153 a.97 8.948 8.983 B.B19

Speed: @.1ms preprocess, B.6ms inference, ©.8ms loss, @.1ms postprocess per image

Figura 8. Labels

800 -

600 -

instances
&
o
o
.

200 -

0-

CLANF

v -
M113
K105

ASTROS
PIRANHA

1.0~

Figura 9. Matriz de Confusdo Normalizada

Confusion Matrix Mormalized

w
=]
2
5
2

08

0.6

Predicted
M113

04

PIRANHA

-0z

SK105

background

| ' i . | ' ' -o0
ASTROS CLANF v M113 PIRANHA SK105 background
True

25

Figura 10. Comparativo (GPUXCPU) — Curvas

Recall-Confidence(B)

Precision-Recall(B)

LTV 0.8+

06

Precision

— treino com cpu
— treino com gpu

0.2

00 01 02 03 0.4 05 08 07 08 08 10
Confidence

00 o1 02 03 04 05 08 07 08 08 10
Recall

Precision-Confidence(B) F1-Confidence(B)

— treino com cpu
— treino com gpu
02

00 o1 02 03 04 05 06 07 08 08 10 Y
Confidence

T
01 02 03 04 05 06 07 08 08 10
Confidence

Figura 11. Comparativo - Metricas (GPUxCPU)

metrics/recall(B) metrics/precision(B)

— treinocomgpu — treino com cpu s = treino comgpu = treino com cpu s
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
Step Step
20 40 60 80 100 120 20 40 60 80 100 120
metrics/mAP50-95(B) metrics/mAP50(B)
~— treino com gpu — treino com cpu A = treino com gpu = treino com cpu :
0.8
0.8
0.6
0.6
0.4
04
0.2 0.2
Step Step

2 40 60 80 100 120 20 40 60 80 100 120

26

Figura 12. Comparativo Modelo (GFLOPs, parameters e speed)

model/GFLOPs model/parameters

treino com gpu treino com gpu

treino com cpu treino com cpu

0 200,000400,000600,000800,000,000,000200,0(0400,000600,000800,00N000,06200,0aR400,0B)600,000

o
»
w
IS
m
o
~

©

model/speed_PyTorch(ms)

treino com gpu

treino com cpu

°
@

10 15 20 25 30 35 40 45 50 55

Figura 13. Comparativo Treino (dfl_loss, cls_loss e box_loss)

train/dfl_loss train/cls_loss

= treinocomgpu = treino com cpu 4 — treino com gpu — treino com cpu

-

[A < 2w 3

NS B ® ow N
[~ w IS @
iy

20 40 60 80 100 120 20 40 60 80 100 120

train/box_loss

— treinocomgpu — treino com cpu 4

4]
i ~ n w

20 40 60 80 100 120

28

Figura 14. Comparativo Validacéo (dfl_loss, cls_loss e box_loss)

val/dfl_loss

train/cls_loss
= treino com gpu = treino com cpu H

% — treino com gpu — treino com cpu 4
10
5
8
4
6 3
4 k\k 2
step, 1 tep,
20 40 60 80 100 120 20 40 60 80 100 120
val/box_loss
~ treinocomgpu = treino com cpu &
5
4
3
2
————1
20 40 60 80 100 120

Figura 15. Uso do Sistema Durante Treino (memdria, cpu, disco e gpu)

System Memory Utilization (%) Process Memory In Use (%)

— treinocom gpu = treino com cpu $ — treino com gpu — treino com cpu :
100 100
80 80
60 60
40 40
20 20
i e Irs)
G s Time {hours) i L {
10 20 30 10 20 30
Process CPU Utilization (%) System CPU Utilization (per core) (%)
— treinocomgpu — treino com cpu s — treino com gpu System CPU 0 Utilization (%] == treino com gou System CPU 1 Utilization (4)
100 = treino com gpu System CPU 10 Utilization (%] = treino com gpu System CPU 100 Utilization (%) A
-~ treino com gpu System CPU 101 Utilization (%) — treino com gou System CPU 102 Utilization (%)
== treino com gpu System CPU 103 Utilization (%) =~ treino com gou System CPU 104 Utilization (%) &)
80 " " . » "
60
40
20
i ka Time {hours) o Time (hours)
10 20 30

29

Disk 1/0 Utilization (MB) Disk Utilization (GB)
— treino com gpu ME read from disk == treino com gpu MB written to disk i — treinocom gpu = treino com cpu %
— treino com cpu MB read from disk == treino com cpu MB written to disk - .
2 350
300
1
250
o » 200
150
100
" Time (hours) 50 R Time (hours)
5 10 15 20 5 10 15 20
GPU Memory Allocated (Bytes) GPU Time Spent Accessing Memory (%)
= treino com gau B — treino com gpu s
4.5e+9 100
4e+9
80
3.5e+9 l
3e+9 ’ L
2.5e+9 ‘ 20
2e+9
| zo
1.5e+9
l Time (minutes) o Tirpe (minutes)
10 20 30 40
GPU Temperature (°C) GPU Utilization (%)
= treino com gpu 53 = treino com gpu s
36 100
34 5
32
60
30 '
40
28
] 20
26
2] Time (minutes) 0 Tirhe (minutes)
1o 35 0 56 10 20 30 40

Figura 16. Exemplos de Predi¢des de Teste Com o Modelo Treinado

91b1d60d-M113-61c289f6c8027e24 526é7287k$K105 8cccf5322661d528Bi3388822113-918e399739¢ch30dOBI3ax87d\V1113-41572e527b9d a4,
M113 0.9

0513¢743-M113-0d33eah8a83d3e2[
M113 0.9

a169dbaa-PIRANHA-2b6cecc4d85
PIRANHA 0.9 EPIRANHA 1.0

30

STROS.0 &
Nclnea
FEETAS HASTROS 0.4

s\ ¥
= : e ——

o A —

— ’ ASTROS 0.9

BASTROS 0.9 W0 | = 14" | oo NIISION.

i P Ry

af4obaba-N113-4

_;_M~1 1308 ¢

¥ - | = PN . . Y
20961031-M1 1§l-75aeb9283,_2{§06 d7942b73 i) “ & ¢ OIET2A bBELLANF-0382achT79861

i —— TV (% — 1

31

A4E A14 42 ‘0
%__f?fF."IRANHA 2104 3¢8fa0

L)

d370EFMBTROS- 712

na
ASTROASTROS 0.3

4.3.2 Otimizadores em Treinos Isolados

Para o comparativo, fizemos treinos individuais substituindo o otimizador e
mantendo as demais configurages (limitando para o maximo de 600 épocas e
interrompendo o treino caso passe 10 épocas sem evolucao do modelo).

Tabela 5. Resumo do treino (entre otimizadores)

Otimizador Convergiu? Tempo (horas) Epocas Melhor
processadas Resultado

(época)

Adam SIM 1,473 125 115

AdamW SIM 2,861 286 276

RAdam SIM 0,826 83 73

RMSProp SIM 0,205 20 10

NAdam SIM 3,060 290 280

SGD SIM 1,732 179 169

4.3.2.1 Adam

Treino: 1,473h/125 Epocas

Convergéncia: Epoca 115
Figura 17. Resumo (Adam)

Ultralytics 8.3.66 g7 Python-3.18.12 torch-2.5.1+cul24 CUDA:@ (Tesla V18@-PCIE-32GB, 32494MiB)

YOLOv18n summary (fused): 285 layers, 2,696,756 parameters, @ gradients, §.2 GFLOPs

Class Images
all 911
ASTROS 284
CLANF 192
LTV 118
M113 237
PIRANHA 51
SKles 142

Instances

Box (P

1127 @.88
265 a.344
239 @.88
133 B8.972
271 B8.916
66 a8.787
153 B8.881

D0 000 o

R
8.39
.B68
.521
857
923
864
.5eE

mAPS® mAP58-95): 100%

@.927
@.983
@.941
@.948

@8.96
@.885
@.926

B8.689
a.68

Speed: @.1lms preprocess, B.6ms inference, @.8ms loss, @.1lms postprocess per image

Figura 18. Curvas (Adam)

Precision

F1-Confidence Curve

—— ASTROS
—— CLANF
v
—— M3
—— PIRANHA
SK105
— all classes 0,88 at 0.325

a1 06 08

Conficence

Precision-Confidence Curve

0.4 086 0.8
Confidence

10
—— ASTROS.
—— CLANF
v
—— M113
—— PIRANHA
SK105
—— all classes 1.00 at 0.946
10

08 -

06+

Precision

0.4+

0.2-

Recall

Precision-Recall Curve

Recall-Confidence Curve

—— ASTROS 0.903
—— CLANF 0,941
LTV 0,848
—— M1130.960
—— PIRANHA 0885
SK105 0.926
— all classes 0.927 MAP@D.5

Toe

0.4 0.6
Confidence

—— ASTROS
~— CLANF
v
—— M113
—— PIRANHA
5K105
—— all classes 0.98 at 0.000

10

32

Figura 19. Treino/Validacao (Adam)

train/box_loss

train/cls_loss

train/dfl_loss

metrics/precision(B)

33

metrics/recall(B)

6.
—e— results
o944 smooth 3.2 0.8 1 0.8 4
2.8
3.0 0.6 0.6
2.6
2.4 281 041 0.41
2.2 2.6 0.24
0.21
201, : : : : : 244, : : 0.0+ : : . : :
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
80 A
54 0.8 0.6
60 81
0.6
44 0.4
40+ 61
0.4+
3_
0.2
204} 4 024
2 .
T T T 01, r T 24 . T 0.07 . . 004 : .
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figura 20. Predicdes (Adam)

e — e

220 A —

ASTROS 0.8

JASTROS.N7
TRmMASTROS(0.7

M1130.7

k.

4.3.2.2 AdamwW

Treino: 2,861h/286 Epocas
Convergéncia: Epoca 276

Figura 21. Resumo (AdamW)

Ultralytics 8.3.66 ﬁ’ Python-3.18.12 torch-2.5.1+cul24 CUDA:® (Tesla V188-PCIE-32GB, 32494MiB)
YOLOv1@n summary (fused): 285 layers, 2,696,756 parameters, @ gradients, &.2 GFLOPs
mAP5@ mAPS@-95): 108%

Class Images Instances
all 911 1127
ASTROS 284 265
CLANF 192 239
LTV 118 133
M113 237 271
PIRANHA 51 66
SK185 142 153

Box (P R
@.956 @.959
@.945 @.912

B.95 @.953
@.969 8.962
@.955 a.97
@.938 a.97
@.981 B.988

a.

[~)

983 8.869
973 8.862
979 8.835
989 3.898
987 3.878
979 3.864
993 3.875

Speed: @.1ms preprocess, @.7ms inference, ©.8ms loss, @.lms postprocess per image

Figura 22. Curvas (AdamW)

F1-Confidence Curve

2 \
i il
d “I W

06 !

0.4

0.24 ‘

0.0 0.2 a1 0.6 08
Confidence

Precision-Confidence Curve

Precision

02

0.0 0.2 0.4 086 08
Confidence

10

Precision-Recall Curve

1.0
—— ASTROS. —— ASTROS0.973
—— CLANF \"\ —— CLANF0.979
v LTV 0.988
—— MI113 —— M113 0.987
—— PIRANHA 081 —— PIRANHA 0.979
SK105 SK105 0.993
= all classes 0.96 at 0.476 — all classes 0.983 MAP@0.5
06
5
£
0.4
0.24
0.0
0.0 02 0 06 08 10
Recall
10 Recall-Confidence Curve
—— ASTROS. == —— ASTROS
—— CLANF —— — —— CLAMF
v 1¥\akixhﬁ v
—— M113 —~— \ —— M113
—— PIRANHA 081 —— PIRANHA
SK105) SK105
—— all classes 1.00 at 0,963 | | —— all classes 0,99 at 0.000
| i
0.6 kk
F |
2
I
0.4
0.2
00
0.0 02 0.4 06 0.8 1.0

Confidence

34

Figura 23. Treino/Validagado (AdamW)

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
6 1.0 1.0
3.0 —e— results 3.25 4
5 -+ smooth 0.8 0.8 1
3.001
2.5
2751 0.6 0-6
201 2.50 0.4 0.4 1
151 2.254 0.2 0.2 A
: : ; ; 2.001, , : ; 0.0 -
0 200 0 200 0 200 0 200 200
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
12 4 1.0
4.01 10 0.8 1
i 5 0.8
3.5
g 0.6
3.0 4 0.6 1
6
] 0.4
25 0.4
2.0 41 31
0.2 0.24
1.5 24
2
Lo, : ol : : : 0.017 : 0.0 ¢ :
0 200 0 200 0 200 0 200 0 200

Figura 24. Predicdes (AdamW)

20824 15-M]13-9¢1043a8faQbeirca]

740 S0 MUPARTROSSSHENDEE 2 33 T4
ASTROS 0. oM -~

ASTROS 0.9588

qgeaASTROS 0.9

WPV T== e

ASTROS 0.9
ASTROS 0.8'S 0.9

..GfBeE 686&7394|Aé'ﬂ58’s"6 'é-2b5f43f014 P3

4.3.2.3 RAdam

Treino: 0,826h/83 Epocas

Convergéncia: Epoca
Figura 25. Resumo (Radam)

73

Ultralytics 8.3.66 s? Python-3.18.12 torch-2.5.1+cul24 CUDA:@ (Tesla V10@-PCIE-32GB, 32494MiB)
YOLOv1en summary (fused): 285 layers, 2,696,756 parameters, © gradients, §.2 GFLOPs

Class Images
all 911
ASTROS 284
CLANF 192
v 118
M113 237
PIRANHA 51
SK185 142

Instances
1127

265

239

133

2711

66

153

Box(P
B.868
B.815
8.9a9

8.93
B.981
B.812
B.344

Speed: @.1lms preprocess, @.7ms inference, @.8ms loss, @

Figura 26. Curvas (RAdam)

F1-Confidence Curve

1.0
o8y T
If. A BN
7
/ M \
Bl T, 1
06 / \\ \
@ / - |
f \/ﬁ |
0.4 |
N
!
0.2 ‘I
|
A
0 DN
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Precision-Confidence Curve

Precision

0.0 0.2 a1 06 08
Confidence

10

— ASTROS.
— CLANF
v
— M113
— PIRANHA
SK105

— il classes 0,84 at 0,268

—— ASTROS
—— CLANF
v
—— M113
—— PIRANHA
SK105

— all classes 1,00 at 0.974

R mAPS® mAPS@-95): 188%

3.818 2.894 8.652

8.797 8.863 8.612

3.988 8.931 8.711
@.812 3.986 8.666
B.877 8.934 8.692

8.59 @.787 8.533
@.922 3,944 8.697

.2ms postprocess per image

Precision-Recall Curve

08+

0.6 -

Precision

0.4

0.2+

00

0.0 0.2

Recall-Confidence Curve

%i::ﬁixszff?»r\ﬁ

‘\L “\\3
N

06+ ™ \ \\

T~ \

Recall

0.2-

00

0.0 0.2 0.1 0.6
Confidence

—— ASTROS 0.B63
—— CLANF 0,931
JLTv 0.506
—— M113 0,934
—— PIRANHA 0.787
SK105 0.944
— il classes 0.892 MAP@0.5

—— ASTROS
—— CLANF
v
—— M113
—— PIRANHA
SK105
= all classes 0,96 at 0.000

Figura 27. Treino/Validacao (RAdam)

train/box_loss

train/cls_loss

train/dfl_loss

metrics/precision(B)

37

metrics/recall(B)

2.8
—e— results 3.04 054 0.8
+ smooth !
2.6 221
2.8 081 0.61
2.41
2.7 1 0.41
0.4
2.2 2.61
0.2
2.54 0.2 4
0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
3.51
4.0 4 0.8 067
0.5 -
3.01]
35+ 06 041
0.4 0.37
2.5 3.0
0.2
0.211
0.1}
2.0 2.54
T . . . T . . : T : T T 0.0+ T . .
0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75

M1130.9
\

) fﬁmdb613-a64185_5~6aea424c‘

1

M113 0.6

e

38

4.3.2.4 RMSProp
Treino: 0,697h/72 Epocas

Convergéncia: Epoca 42
Figura 29. Resumo (RMSProp)

Ultralytics 8.3.66 ﬂ Python-3.18.12 torch-2.5.1+cul24 CUDA:@ (Tesla V18@-PCIE-32GB, 32494MiB)
YOLOv18n summary (fused): 285 layers, 2,696,756 parameters, @ gradients, 8.2 GFLOPs

Class Images Instances Box(P R mAPS@ mAPS8-95): 1008%]
all 911 1127 @.2437 28.133 @.8429 28.2123
ASTROS 204 265 @.2669 8.8113 @.8415 8.2121
CLANF 192 239 @.888639 8.339 @.88297 8.888511
JLTV 118 133 @.8154 8.8226 @.e8787 8.08138
M113 237 271 @.8587 @.8923 8.8355 a.e1a7
PIRANHA 51 66 2.e1a1 @8.8152 @.28879 0.800879
SK185 142 153 9.111 8.32 @.161 2.2483

Speed: @.1lms preprocess, 9.6ms inference, @.8ms loss, 8.1lms postprocess per image

Os numeros e as imagens a seguir confirmam que este foi o treino mais destoante.
Para essa situacao especificamente, talvez essa nédo seja a melhor opgao de

otimizador.
Figura 30. Curvas (RMSProp)

10 Fl-Confidence Curve 10 Precision-Recall Curve
T
—— asTROS —— ASTROS 0.042
CLANF CLANF 0.003
LTV LTV 0.008
— M113 —— M1130.035
08+ PIRANHA 08+ —— PIRANHA 0.009
SK105 SK105 0.161
= all classes 0.05 at 0.078 = all classes 0.043 MAP@D.5
0.6+ 0.6+
§
o 2
I o
g
= |
0.4

IR

Too 02 0.4 0.6 0.8 10

. 10
Confidence
Lo Precision-Confidence Curve Lo Recall-Confidence Curve
{ — ASTROS. — ASTROS
| CLANF CLANF
\{\Nl v v
| — M113 — MI113
087 | —— PIRANHA o087 —— PIRANHA
M SK105 sK105
‘ = all classes 1.00 at 0.865 = all classes 0.17 &t 0.000
0.6 0.6+
5 M =
]]
i &
«
0.4
0.2 /
A
Mo
=71 A
0.0 L 1 —
0.0 0.2 0.4 0.6 0.8 10 0.6 0.8 1.0

Confidence Confidence

Figura 31. Treino/Validacdo (RMSProp)

train/box_loss

5.0 1

4.5 1

4.0

3.5

50

val/box_loss

8.0 4

7.51

7.04

6.5

6.0

5.5

§

50

train/cls_loss

train/dfl_loss

39

metrics/precision(B) metrics/recall(B)

—e— results 6.0 0.8
----- smooth 0.4+
5.5 1 0.6
0.31
5.0 1
0.4 1 024
4.51
0.2 { 014
4.0
354 : 001 . 001, :
0 50 0 50 0 50
val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1200 A 0.012 4
4 12 A
1000 0.010 A
800 §]
104 0.008
600 1 0.006 4
400 4 84 0.004 4
200 4 J . 0.002 4
L] L] 6 - of
04 luﬂ o 0.000
0 50 0 50 0 50 0 50

SOl ROS- 782b5f4of0 14

”Wo * b8BE304

| JANS

P333792 SEMBITROS-712 cOa1§pag

82ch St SO TIEIROS -2ed6 258f

fc8df:

i o
" Al

4.3.2.5 NAdam

Treino: 3,060h/290 Epocas
Convergéncia: Epoca 280

Figura 33 - Resumo Treino Otimizadores - NAdam

Ultralytics 8.3.66 g7 Python-3.18.12 torch-2.5.1+cul24 CUDA:® (Tesla VW1@8-PCIE-32GB, 32494MiB)
YOLOw1@n summary (fused): 285 layers, 2,696,756 parameters, @ gradients, 8.2 GFLOPs

Class Images Instances
all 911 1127
ASTROS 294 265
CLANF 192 239
LTV 118 133
M113 237 271
PIRANHA 51 66
SK185 142 153

Figura 34. Curvas (NAdam)

F1-Confidence Curve

’ \
0.4

|

0o 0.2 0.1 06 08 10
Confidence
10 Precision-Confidence Curve
0.8
0.6]
S
g
&
0.4
0.2
0.0
0.0 0.2 0.4 06 0.8 10
Confidence

Box (P
957
963
949
G389
456
913
973

DO OO0 00

— ASTROS
—— CLANF
v
— M113
—— PIRANHA
SK105
= all classes 0.94 at 0,622

— all classes 1.00 at 0.963

[l G oSl

R mAPS8 mAPS@-95): 190%
922 B.974 a.819
875 B8.965 a.883
929 B.968 a.5e4
925 B8.985 a.846
962 B.986 @.838
594 B.954 a.782
947 B.985 a.839
Precision Recall Curve
1.0
0B-
06
§
= 0.4
0.2+
00
0.0 0.2 04 0.6 08 10
Recall
10 Recall-Confidence Curve
- S
— -
—
08~ N
AV
W\
3 A
H \\1 J
0.4 'l ‘
|
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

ASTROS 0,965

CLANF 0,969

LTV 0.985

M113 0.986

PIRANHA 0.952

SK105 0.985

all classes 0.974 MAP@0,5

= all classes 0,99 at 0.000

Figura 35. Treino/Validacao (NAdam)

train/box_loss train/cls_loss train/dfl_loss

metrics/precision(B)

metrics/recall(B)

3.50
6 —— results
3.0 pes th .25 .84
SMOO 3.25 084 0.8
3.00

] 0.6 1

23 275 0.6 1
: 0.4 A

2.0 2.50 1 0.4
0.2 1

15 2.254
’ T T T T T T 0.2 1 T T DAO L
0 200 0 200 0 200 0 200 200
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)

1.0

57 0.8
25

5 0.81
4 20 1 0.6 1

4 0.6
5 15 A 0.4

0.4

10 A 3

1 0.24

2] 5| i 0.2
0 21 0.0 0.0

0 200 0 200 0 200 0 200 0 200

Cli

A
h
‘i \>

447333598 SMMBIROS-7 12

T
L PSS
ASTROS 0.9

-

Sl

ASTROS 0.9

c0a1$

4.3.2.6 SGD

Treino: 1,732h/179 Epocas

Convergéncia: Epoca 169

Figura 37 - Resumo Treino Otimizadores - SGD

Ultralytics 8.3.66 ﬂ Python-3.18.12 torch-2.5.1+cul24 CUDA:® (Tesla V1@@-PCIE-32GB, 32494MiB)
YOLOv1@n summary (fused): 285 layers, 2,696,756 parameters, 8 gradients, 8.2 GFLOPs

Class Images Instances
all 911 1127
ASTROS 284 265
CLANF 192 239
LTV 118 133
M113 237 271
PIRANHA 51 66
5K185 142 153

Box(P
8.959
8.956
8.943
8.992
8.9439
8.937
8.975

R
8.956
8.986
8.962
8.973
8.967
8.939
8.987

mAPS@ mAP5@-95): 198%

8.982 8.852
8.971 8.838
8.972 8.819
8.994 9.896
8.989 a.86
8.976 8.83
8.99 8.867

Speed: @.1lms preprocess, 8.7ms inference, @.8ms loss, 8.4ms postprocess per image

Figura 38. Curvas (SGD)

F1-Confidence Curve

0o 0.2 0.1 06 08
Confidence

Precision-Confidence Curve

Precision

0.0 0.2 0.4 06 08
Confidence

10

— ASTROS
—— CLANF
v
— M113
—— PIRANHA
SK105

— all classes 0,96 at 0,509

— all classes 1.00 at 0.958

Precision-Recall Curve

—— ASTROS0.871
—— CLANF 0.972
LTV 0.994
—— M113 0.989
081 —— PIRANHA 0.976
SK105 0.990
— all classes 0.982 MAP@0.5

Precision
e
&

£
iy

0.2+

Recall

—— M113
08 -

\ —— all classes 0.99 at 0.000

06+ i\

Recall

0.4 \ |

0.2 I’

0.0 0.2 0.4 06 0.8 10
Confidence

Figura 39. Treino/Validacao (SGD)

train/box_loss

train/cls_loss

train/dfl_loss

metrics/precision(B)

43

metrics/recall(B)

74 2.8+
2.4 —e— results
6 smooth 0.9
2.2 264 081 0.8 1
5 B
2.04 0.7
44 ']
2.41 06
1.8 34 0.6
1.6 4 24 224 0.51 0.4 1
1.4 1 0.4
0 50 100 150 0 50 100 150 0 50 100 150 100 150 0 50 100 150
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
3.5 6 1.0
0.8 1
3.0 51 401
0.8
4 354 0.6
2.5
3 3.04 0.61
2.04 0.4
21 2.5 041
1.5
i 0.2 1
1 2.01
0 50 100 150 0 50 100 150 0 50 100 150 100 150 0 50 100 150

Figura 40. Predicdes (SGD)

2f032415 M113 S G4308fa0bej1c4
1.0

ggEaASTROS 0.9

w7

EMWRTPAQ—‘WM 2862 23 9PCTEN

"'_.“COfBeF 68BE304

ASTROS

A ACTDAC 7

‘ASTROS 0.9

2b5f43f014

44

4.4. Resultado Comparativo

Comparamos os resultados obtidos usando os otimizadores Adam, AdamW,
NAdam, RAdam, SGD e RMSProp (cada qual com suas particularidades). Os dados
dos treinos com RMSProp foram considerados os mais discrepantes e, para o cenario
proposto, mostrou-se insatisfatorio conforme os dados a seguir e confirmados com os
dados de predicéo.

44.1 Recall Confidence

Combina o recall com a confianga associada as previsfes. Isso pode ser (il
para avaliar ndo apenas a capacidade do modelo de identificar corretamente as
instancias positivas, mas também a confianca com que faz essas previsdes. Por
exemplo, um modelo pode ter um recall alto, mas se a confianganas previsdes for

baixa, pode néo ser tdo til em aplicacdes praticas.

Figura 41. Comparativo - Recall Confidence

Recall-Confidence(B}

Q

5]

1.0
o

080
08s
o8

0

45

4.4.2 Precision Recall

E a proporcédo de verdadeiros positivos (TP) sobre a soma de verdadeiros
positivos e falsos negativos (FN). Ele mede a capacidade do modelo de encontrar
todos os exemplos positivos.

Figura 42. Comparativo - Precision Recall

Precision-Recall(B}
100 T rTrrererrrer

08s

4.4.3 Precision Confidence

Em muitos modelos de aprendizado de maquina, especialmente em deteccdo
de objetos, cada previsdo vem com uma pontuacdo de confianca que indica a

probabilidade de a previséo estar correta.

Figura 43. Comparativo - Precision Confidence

Precision-Confidence(E)

. ‘ : s e e VT B
000 00 0B 042 06 020 024 028 032 036 040 04e 046 052 056 06D 084 088 072 0T 080 0Be QBB 062 006 100

46

444 F1-Confidence

Combina o F1-Score com a confianca associada as previsdes. Isso pode ser
atil para avaliar ndo apenas o equilibrio entre precisdo e recall, mas também a
confiangca com que o modelo faz essas previsdes. Um alto F1-Score com alta
confianca indica que o modelo € nado apenas equilibrado em termos de preciséo e
recall, mas também confiante em suas previsdes.

Figura 44. Comparativo - F1 Confidence

F1-Confidence(B)

0.08 o2 018 020 024 oz 032 038 0.40 044 0.48 052 056 060 084 063 072 078 080 084 088] 0% 100
Confidence

445 Lr (Learning Rate)

A taxa de aprendizado determina o tamanho dos passos que o algoritmo de
otimizacdo da ao mover-se em dire¢cdo ao minimo da func¢éo de perda.

« Taxade Aprendizado Alta: Pode fazer com que o modelo converja rapidamente,
mas corre o risco de pular o minimo global e ndo convergir adequadamente.

« Taxa de Aprendizado Baixa: Pode levar a uma convergéncia mais estavel e
precisa, mas o treinamento pode ser muito lento e pode ficar preso em minimos
locais.

Os algoritmos usados ajustam a taxa de aprendizado automaticamente com
base no histérico de gradientes.

47

4.45.1 Irlpg2

Este grupo geralmente inclui os vieses (biases) das camadas. Os vieses sao

ajustados separadamente dos pesos e podem ter uma taxa de aprendizado diferente.

Figura 45. Comparativo - Ir/pg2

Ir/pg2
Adamw

— Adam — RAdam = NAdam

50 100 150 200 250

4.45.2 Irlpgl

Este grupo inclui parametros que tém decaimento de peso, como 0s pesos das
camadas convolucionais. O decaimento de peso € uma técnica usada para evitar
overfitting, penalizando grandes pesos durante o treinamento.

Figura 46. Comparativo - Ir/pgl

Ir/pgl
AdamW

SGD = Adam — RAdam — NAdam

0.008 l\

0.006 ‘

0.004

0.002 \
tep
5 oc 201 250

48

4.45.3 Ir/lpg0

Este grupoinclui parametros que nédo tém decaimento de peso, como 0S pesos
das camadas de normalizagéo em lote (BatchNorm). A taxa de aprendizado aplicada

a este grupo é especifica para esses parametros.

Figura 47. Comparativo - Ir/pg0

0.01
_—étep‘
5 5

446 Metrics/Recall

Recall, também conhecido como sensibilidade ou taxa de deteccdo, mede a
capacidade do modelo de identificar corretamente todas as instancias relevantes de
uma classe. E a propor¢éo de verdadeiros positivos (TP) sobre a soma de verdadeiros
positivos e falsos negativos (FN).

Figura 48. Comparativo - metrics/recall

metrics/recall(B)
— RMSProp SGD = Adam = AdamW =— RAdam = NAdam

<

0.8

0.6

0.4

0.2

50 100 150 200 250

49

4.4.7 Metrics/precision

Precision, ou precisdo, mede a proporcéo de verdadeiros positivos (TP) sobre
o total de previsdes positivas (verdadeiros positivos + falsos positivos, FP). Em outras
palavras, é a capacidade do modelo de prever corretamente as instancias positivas.

H& um trade-off entre recall e precisdo: aumentar o recall pode diminuir a
precisdo e vice-versa. Por isso, métricas como o F1-Score sdo usadas para encontrar

um equilibrio entre as duas.

Figura 49. Comparativo - metrics/precision

metrics/precision(B)
=— RMSProp SGD == Adam = AdamW =— RAdam = NAdam

<

0.8

0.6

0.4

0.2

Ste
o ML ot p

50 100 150 200 250

50

4.4.8 Metrics/mAP50-95

MAP50-95 é uma meétrica mais robusta e informativa do que mAP50 (que
considera apenas um limiar de IoU de 0.50). Ela avaliao desempenho do modelo em
uma gama de cenéarios,desde detec¢des mais faceis (loU de 0.50) até deteccbes mais
dificeis (loU de 0.95).

Figura 50. Comparativo - metricssmAP50-95

metrics/mAP50-95(B)
=— RMSProp SGD = Adam = AdamW =— RAdam =— NAdam

<

0.8

0.6

0.4

0.2

50 100 150 200 250

51

449 Metrics/mAP50

€ uma métrica comum usada para avaliar o desempenho de modelos de
detecgdo de objetos, fornecendo umaviséo clara de como 0 modelo se comporta em

termos de preciséo e recall com um limiar de loU de 0.50.
Figura 51. Comparativo - metrics/mAP50

metrics/mAP50(B)
= RMSProp =~ SGD = Adam =— AdamW =— RAdam = NAdam

<

0.8
0.6
0.4
0.2
. A.A-_/VM.\M_A - Step
50 100 150 200 250

4.4.10 Model/speed(ms)

Tempo que um modelo de aprendizado de maquinaleva para processar uma
Unica amostra de entrada, medido em milissegundos (ms). Crucial para avaliar a

eficiéncia e a adequacao de um modelo para aplicagcbes em tempo real.

Figura 52. Comparativo - model/speed(ms)

model/speed_PyTorch(ms)

RMSProp

GD

| v

Adam

x>
o
o
3
=

RAdam

NAdam

0. 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0

o

52

4.4.11 Model/parameters

Sédo variaveis internas de um modelo de aprendizado de maquina que séo
ajustadas durante o processo de treinamento. Eles sdo essenciais para definircomo
0 modelo transforma os dados de entrada em previsdes. Sao valores que o modelo
aprende diretamente dos dados durante o treinamento. Eles sdo ajustados para

minimizar a funcao de perda e melhorar a precisdo do modelo.

Figura 53. Comparativo - model/parameters

model/parameters

[200,000 400000 600,000 800,000 1,000,000 1200000 1,400,000 1,600,000 1,500,000 2,000,000 2,200,000 2,400,000 2,600,000

4.4.12 Model/GFLOPs

GFLOPs representa bilhdes de operacées de ponto flutuante por segundo. E
uma medida de quantas opera¢des matematicas envolvendo nimeros decimais um
modelo pode realizar em um segundo. Especialmente em redes neurais profundas, o
numero de GFLOPs é uma medida importante de eficiéncia e desempenho. Modelos
com maior GFLOPs podem processar dados mais rapidamente, o que € crucial para
tarefas que exigem alta capacidade computacional, como visdo computacional e
processamento de linguagem natural.

Avaliar os GFLOPs de um modelo ajuda a entender sua complexidade e a
necessidade de recursos computacionais. Isso é especialmente Gtil ao comparar
diferentes modelos ou ao otimizar modelos para dispositivos com recursos limitados,
como smartphones.

53

Figura 54. Comparativo - model/GFLOPs

model/GFLOPs

RMSProp

(%]

GD

Adam

x>
o
o
3
=

RAdam

NAdam

-
N
w
»H
o
o
~_
3

(=)

4.4.13 Train/dfl_loss

A DFL refere-se a Distribution Focal Loss (uma variante da Focal Loss),
projetada para focar mais em exemplos dificeis de classificar. Durante o treinamento,
a DFL ajuda o modelo a diferenciar melhor entre objetos muito semelhantes ou
amostras dificeis, melhorando a capacidade do modelo de lidarcom casos complexos.

A DFL é usada em modelos de deteccdo de objetos, como YOLO, para
melhorar a preciséo e a robustez do modelo ao lidar com dados desafiadores.

E aplicada naregresséo de caixas delimitadoras (bounding boxes), tratando as
bordas como distribuicbes em vez de valores fixos. Isso ajuda a corrigir erros de
previsdo, melhorando a precisdo em imagens com bordas desfocadas ou objetos
parcialmente visiveis.

54

Figura 55. Comparativo - train/dfl_loss

train/dfl_loss

— RMSProp SGD = Adam AdamW =— RAdam = NAdam s
6
N
4
3 &‘

o A
Qtep1
50 100 150 200 250

4.4.14 Train/cls_loss

Refere-se a (Perda de Classificagdo) durante o treinamento de um modelo. A
Classification Loss mede a diferenca entre as previsdes de classe do modelo e as
classes reais dos dados de treinamento. E usada para ajustar os pesos do modelo de
forma a melhorar a precisao da classificacao.

A perda de classificacdo é calculada usando a Cross-Entropy Loss (Perda de

Entropia Cruzada), cuja férmula é:

HO.p) = =) Vi -log (n)

55

Figura 56. Comparativo - train/cls_loss

train/cls_loss
— RMSProp SGD = Adam AdamW = RAdam = NAdam

<

50 100 150 200 250

4.4.15 Train/box_loss

Refere-se a Box Regression Loss (Perda de Regressdo de Caixa) durante o
treinamento de um modelo de deteccdo de objetos. A Box Regression Loss mede a
diferencaentre as caixas delimitadoras preditas pelo modelo e as caixas delimitadoras
reais dos objetos nos dados de treinamento. Essa perda é usada para ajustar 0s
parametros do modelo de forma a melhorar a precisdo das previsdes das caixas
delimitadoras.

Em modelos como YOLO (You Only Look Once), a Box Regression Loss é crucial
para garantir que as caixas delimitadoras preditas estejam corretamente alinhadas
com os objetos detectados. Isso é essencial para a precisao geral do modelo.

56

Figura 57. Comparativo - train/box_loss

train/box_loss
= RMSProp SGD == Adam = AdamW = RAdam = NAdam

<

50 100 150 200 250

4.4.16 Val/dfl loss

Idem train/dfl_loss mas durante a fase de validacdo de um modelo. DFL é
usada para melhorar a precisdo e a robustez do modelo ao lidar com dados
desafiadores, especialmente em tarefas de deteccdo de objetos.

Figura 58. Comparativo - val/dfl_loss

val/dfl_loss
= RMSProp SGD = Adam = AdamW = RAdam = NAdam

<

12 -}
1

10

Step

50 100 150 200 250

57

4.4.17 Vallcls_loss

Idem train/cls_loss mas durante a fase de validacdo de um modelo. Usada para ajustar
as previsdes de classe das caixas delimitadoras detectadas

Figura 59. Comparativo - val/cls_loss

val/cls_loss
= RMSProp SGD = Adam = AdamW =— RAdam =— NAdam

<

1000
800
600
400

200

o b A JM i - Step

50 100 150 200 250

4.4.18 Val/box_loss

Idem train/box_loss (Perda de Regressdo de Caixa) mas durante a fase de
validacdo. E usada para ajustar os parametros do modelo de forma a melhorar a

precisao das previsdes das caixas delimitadoras.

Figura 60. Comparativo - val/box_loss

val/box_loss
=— RMSProp SGD = Adam = AdamW =— RAdam =— NAdam

<

Step

50 100 150 200 250

58

4.4.19 System/Gpu Power Usage

O consumode energia das GPUs (Unidades de Processamento Grafico) € uma

métrica importante para avaliar a eficiéncia e o desempenho de um sistema.
Figura 61. Comparativo - GPU Power Usage (W)

GPU Power Usage (W)
= RMSProp == SGD == Adam =— AdamW = RAdam = NAdam

mn ”! Hl“ w

<

180

160

14

o

12

o

100

80

60

40 1k h:ig

50 100 150

4.4.20 System/GPU Memory Allocated

Refere-se a quantidade de memadria da GPU que estd sendo usada por um

modelo ou aplicacdo em um dado momento.
Figura 62. Comparativo - GPU Memory Allocated (Bytes)

GPU Memory Allocated (Bytes)
=— RMSProp == SGD == Adam =— AdamW = RAdam = NAdam

3e+10 || | P

2.5e+10 I

<

2e+10

1.5e+10

le+10

5e+9
Time (minkifes)

50 100 150

59

4.4.21 System/GPU Time Spent Accessing Memory

Refere-se ao tempo que a GPU gasta acessando a memaria durante a execucao
de operacBes. E uma métrica crucial para entender a eficiéncia do uso da meméria

pela GPU.
Figura 63. Comparativo - GPU Time Spent Accessing Memory(%)

GPU Time Spent Accessing Memory (%)
= RMSProp == SGD == Adam =— AdamW = RAdam = NAdam

<

100

80

60

40

20

50 100 150

4.4.22 System/GPU Temperature

Temperatura da GPU durante sua utilizagao.
Figura 64. Comparativo - GPU Temperature (°C)

GPU Temperature (°C)
= RMSProp == SGD == Adam =— AdamW = RAdam = NAdam

<

40

35

Ll

TR LT l Ll ,
- TR Y (TR
|

25
Time (minutes)

50 100 150

60

4.4.23 System/GPU Utilization %

Utilizacdo da GPU (em %).
Figura 65. Comparativo - GPU Utilization (%)

GPU Utilization (%)
= RMSProp == SGD == Adam == AdamW = RAdam = NAdam

<

100

80

60

40

20

50 100 150

4.4.24 System/Process Memory Available (MB)

Durante o treinamento de modelos YOLO (You Only Look Once), é importante
monitorar a memoéria disponivel do processo para garantir que o treinamento ocorra

sem problemas.

Figura 66. Comparativo - Process Memory Available (MB)

Process Memory Available (MB)
=— RMSProp == SGD = Adam =— AdamW = RAdam = NAdam

le+6 “WW

<

9.95e+5
990000

9.85e+5

P0000 o oA v A A NN
9.75e+5 WWWWW Time (minutes)

50 100 150

61

4.5. Resultados de Predi¢gfes e Discussodes

Os resultados séo discutidos em termos de precisao, robustez e aplicabilidade,
destacando tanto os acertos quanto as limitagdes do modelo no reconhecimento de
veiculos militares em imagens. De um modo geral, o Unico algoritmo experimentado
gue se mostrou destoante dos demais em seus resultados e ndo conseguiu fazer

predi¢cdes satisfatorias foi o RMSProp.

4.5.1 Exemplos de Detecg¢des (Individualmente)

A seguir utilizamos mais de um modelo a fim de demonstrar que € possivel
combinar o resultado preditivo de varios modelos (nossos modelos especializados
foram treinados para detectar as 5 classes de veiculos militares inicialmente
planejadas) mas néo identificariam veiculos civis, por exemplo. Por outro lado, o
modelo basico identificaria os veiculos civis mas nédo entenderia os veiculos militares.
Entéo, adicionamos essa funcionalidade combinando os resultados de nosso treino
com o modelo basico yolov10n (preparada para distinguir 80 classes diferentes dos

nossos veiculos) conforme a tabela a seguir:

Tabela 6. Lista de Classes Pré-Treinadas no Modelo YoloV10n

0: person 20: elephant 40: wine glass 60: dining table
1: bicycle 21: bear 41: cup 61: toilet

2: car 22: zebra 42: fork 62: tv

3: motorcycle 23: giraffe 43: knife 63: laptop

4. airplane 24: backpack 44: spoon 64: mouse

5: bus 25: umbrella 45: bowl 65: remote

6: train 26: handbag 46: banana 66: keyboard
7: truck 27: tie 47: apple 67: cell phone
8: boat 28: suitcase 48: sandwich 68: microwave
9: traffic light 29: frisbee 49: orange 69: oven

10: fire hydrant 30: skis 50: broccoli 70: toaster

11: stop sign 31: snowboard 51: carrot 71: sink

12: parking meter 32: sports ball 52: hot dog 72: refrigerator
13: bench 33: kite 53: pizza 73: book

14: bird 34: baseball bat 54: donut 74: clock

15: cat 35: baseball glove 55: cake 75: vase

16: dog 36: skateboard 56: chair 76: scissors
17: horse 37: surfboard 57: couch 77: teddy bear
18: sheep 38: tennis racket 58: potted plant 78: hair drier
19: cow 39: bottle 59: bed 79: toothbrush

62

Eventualmente, por falta de conhecimento, esse modelo “basico” classificaria,

nossos veiculos militares originalmente como “Trens”, “Barcos” ou “Caminhdes” (com

uma confiang¢a n&o muito alta na maioria das vezes).

63

Tabela 7. Predicdo de Veiculos Civis e Militares por Modelo N&o Especializado

person 0.26

LV

64

Por outro lado, nossos modelos especializados se mostraram muito bons em
classificar os veiculos militares mas ruins em classificar os veiculos civis.

Tabela 8. Lista de Classes Exclusivamente Treinadas nos Modelos CFN

[0: ASTROS | 1: CLANE | 2: JLTV | 3: M113 | 4. PIRANHA | 5: SK105 |

Tabela 9. Predigéo de Veiculos Civis e Militares Por Modelo Militar Especializado

=k N JLTV_0.90
7 — JLTV 0.85

.)}g'l A

PIRANHA 0.95

4.5.2 Classificagcbes Combinadas

Ao combinar o resultado de varios modelos, conseguimos extrair o melhor que

cada um tem a oferecer sem necessariamente precisar retreinar todos os dados.

Deteccdes precisas de veiculos militares e civis em ambientes diversos.

65

Identificacao de multiplos objetos em uma Unicaimagem, com bounding boxes

corretamente posicionadas e classificacdes exatas.

Tabela 10. Predigbes Combinadas de Mais de um Modelo

Combined Results from yolov10n and CFN-best-adamw

ASTROS 0.93

Combined Results from yolov10n and CFN-best-adamw

—

Combined Results from yolov10n and CFN-best-sgd

Combined Results from yolov10n and CFN-best-sgd

Combined Results from yolov10n and CFN-best-sgd
A 3 y R [T S i

X g

66

Combined Results from yolov10n and CFN-best-sgd

Combined Results from yolov10n and CFN-best-sgd

M113 0.93

Combined Results from yolov10n and CFN-best-sgd

Combined Results from yolov10n and CFN-best-sgd

Combined Results from yolov10n and CFN-best-sgd

FPIRANHA 0.9/

67

Combined Results from yolov10n and CFN-best-sgd

PIRANHA 0.95

Combined Results from yolov10n and CFN-best-sgd

| -~

Combined Results from yolov10n and CFN-best-sgd

Combined Results from yolov10n and CFN-best-sgd

b m
£
g Bicentendrig
e —

Combined Results from yolov10n and CFN-best-sgd

T —

Combined Results from yolovl0n and CFN-best-sgd

68

Combined Results from yolov10n and CFN-best-sgd

Combined Results from yolov10n and CFN-best-sgd

r

69

5. Consideracdes Finais

5.1. Sobre aEvolucao do Yolo

Como vimos, a evolucao da R-CNN até o YOLO representa uma jornada de
evolucédo na deteccdo de objetos onde cada algoritmo é evoluido a partir de seu
antecessor.

O YOLO, por tratar a deteccdo de objetos como um Unico problema de
regressdo, processando toda a imagem em uma passagem para frente, torna-o
extremamente rapido e capaz de processamento em tempo real. Além disso, podemos
adapta-lo para nossa necessidade em cada cenario levando em conta capacidade de
processamento, acuracia e velocidade de resposta.

Como visto no grafico abaixo a cada versdo o modelo tem evoluido apresentando

novos recursos e melhorias com aumento de desempenho e flexibilidade.
Figura 67. Comparativo Laténciax mAP (média das precisdes médias de todas as classes no conjunto de dados)

55.0 11

®P uitralytics

52.5 4 YOLO

=—8= YOLO1U
YOLOv10
YOLOVS
YOLOVS
YOLOVT
YOLOV6E-3.0
YOLOV5
PP-YOLOE+
DAMO-YOLO
YOLOX

37.5 1 EfficientDet

P -9

& N 3

[] [4,] (=]
L 'l 'l

COCO mAPJ0,~ 95

42.5 4

40.0 1 "

0 2 4 6 8 10 12 14 16
Latency T4 TensorRT10 FP16 (ms/img)

Fonte: https://github.com/ultralytics/ultralytics

A introducéo da IA em sistemas de defesa representa uma evolucao significativa na
forma como os dados séo processados e utilizados em operacgdes criticas, reforgcando

a importancia do tema em um mundo cada vez mais digitalizado e interconectado.

5.2. Conclusao

O presente trabalho investigou o uso do modelo YOLO para o reconhecimento
de veiculos militares em imagens, com foco na aplicacdo pratica e na analise de

desempenho do modelo. Foram realizadas etapas que incluiram a coleta e anotagéo

70

de um dataset customizado, o treinamento do modelo em diferentes condicbes e a

validacao de sua eficiéncia em cenéarios variados.

Os resultados obtidos demonstraram que o YOLO € umasolucéoviavel e eficaz
para a tarefa proposta, especialmente devido a sua capacidade de operar em tempo
real, processando imagens a uma velocidade de 8.2 GFLOPs, o modelo alcancou
seus melhores mAPs em 98.3%, 98.2% e 97.4% com IloU até 0.5 e mAPs 86.9%,
85.2% e 81.9% IloU de 0.5~0.95 (otimizadores AdamW, SGD e NAdam

respectivamente).

Adicionalmente, foi avaliado o potencial de implementacéo deste sistema em
drones. Os resultadosindicamque o YOLO € particularmente adequado para sistemas
embarcados, pois sua alta velocidade e baixa laténcia permitem o reconhecimento de
veiculos em tempo real durante o voo. Isso torna viavel sua aplicacdo em missdes
taticas, vigilancia aérea e patrulhamento de fronteiras, onde a identificacdo precisae
rapida € fundamental para a tomada de decisbes em ambientes dinamicos. Os
arquivos obtidos referentes aos treinos dos modelos com seus pesos nhao

ultrapassaram 5Mb).

A analise dos resultados mostrou que o modelo € robusto em cenérios bem
iluminados e com objetos claramente visiveis, mas obtém bons resultados também
em condicOes adversas como baixa iluminagao, oclusdes e camuflagem desde que
seja treinado previamente para tal. Esses aspectos destacam a importancia de
aprimorar o dataset e explorar técnicas que aumentem a capacidade do modelo de
lidar com situacdes mais complexas.

5.3. Contribuigcbes

Este estudo trouxe contribuicbes relevantes para o campo da visao

computacional aplicada ao setor militar, como:

Desenvolvimento de um fluxo completo de trabalho: Foram definidas todas as
etapas necessarias para o uso pratico do YOLO, desde a coleta e anotacéo de dados

até o treinamento, validacao e analise dos resultados do modelo.

71

Criacdo de um dataset customizado: Incluindo imagens anotadas de diferentes
tipos de veiculos militares em cenarios variados, o que pode ser utilizado como base

para estudos futuros.

Avaliacdo detalhada do desempenho: Foram realizadas anélises quantitativas
e qualitativas do modelo, abrangendo métricas como precisao, velocidade e robustez
em condic¢des adversas.

Proposta de aplicacdes praticas: Os resultados obtidos reforgam o potencial do
YOLO para uso em sistemas de vigilancia, drones e monitoramento em tempo real,

oferecendo suporte a tomada de decisdes em ambientes criticos.

5.4. Limitagcbes
Apesar das contribui¢cdes, algumas limitacdes foram identificadas:

Diversidade do dataset: Embora o dataset tenha incluido diferentes cenéarios,
ele ainda ndo abrange todas as possiveis variacdes encontradas em operacdes reais,

como condig¢Bes climaticas extremas ou veiculos de designs menos comuns.

Restricdo ao YOLO: O estudo focou exclusivamente no YOLO, sem explorar
combina¢des ou modelos hibridos que poderiam oferecer melhor desempenho em
cenarios especificos.

5.5. Trabalhos Futuros

Com base nos resultados obtidos e nas limitagdes identificadas, algumas

direcdes para trabalhos futuros sao propostas:
1. Expansao do Dataset:

o Incluir mais imagens com variacdes climaticas extremas, angulos
inusitados e veiculos menos comuns.

o Aumentara quantidade de exemplos anotados em condi¢des adversas,
como baixa iluminacéao e camuflagem intensa.

o Priorizarimagens aéreas para utilizacdo com drones.

72

Técnicas de Pré-processamento:

Aplicar técnicas como aumento de contraste, reducdo de ruido e
balanceamento de cores para melhorar a qualidade das imagens de
entrada.
Utilizar dados sintéticos gerados por simulacdes para complementar o
dataset.

Treinamento Hibrido:

Combinar o YOLO com outros modelos, como Faster R-CNN, para
aproveitar os pontos fortes de ambos.

Implementar arquiteturas mais recentes, como YOLOv1l a fim de
explorar avancos tecnoldgicos mais recentes.

Uso em Drones e Sistemas Embarcados:

Testar 0 modelo diretamente em drones, avaliando sua capacidade de
operar em tempo real durante o voo.

Desenvolversolucfesde integracdo para adaptar o modelo ao hardware
de drones, levando em conta limitacbes como consumo de energia e

capacidade de processamento.

Integracdo com Tecnologias Avangadas:

Incorporar informacdes adicionais, como dados de sensores térmicos,

infravermelhos e gps para aumentar a precisdo em cenarios complexos.

73

5.6. Consideracdes Finais

A detecgdo e o reconhecimento de veiculos militares por meio de inteligéncia
artificial representam um avanco significativo na area de defesa e seguranca. Este
trabalho demonstrou que o YOLO pode ser uma ferramenta poderosa para aplicacoes
praticas, equilibrando precisdo e eficiéncia em tempo real. Sua possivel
implementacdo em drones amplia ainda mais o alcance e a aplicabilidade da
tecnologia, permitindo o0 monitoramento autbnomo de areas extensas e a coleta de

informacdes estratégicas em tempo habil.

Entretanto, os desafios encontrados reforcam a necessidade de continuidade
nos estudos, com melhorias que visem ampliar a robustez do modelo em cenarios
reais e complexos. Por fim, este estudo ndo apenas contribui para o campo da visédo
computacional, mas também oferece uma base sélida para futuras pesquisas e
aplicacOes praticas, destacando o potencial da inteligéncia artificial na transformacéo

de sistemas de defesa modernos.

74

6. Referéncias

REDMON, J. et al. You only look once: Unified, real-time object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).[S.l.: s.n], 2016.

J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 6517—
6525

Lindsay, G. Convolutional neural networks as a model of the visual system: past,
present, and future. Journal of Cognitive Neuroscience, v. 33, p. 2017-2031, 2020.
Disponivel em: https://doi.org/10.1162/jocn _a 01544. Acesso em: 10 set. 2024.

BRAGA,A. de P.; CARVALHO,A.delL. F.; LUDERMIR, T. Redes neurais artificiais:
teoria e aplicagcdes. Livros Técnicos e Cientificos, 2000. ISBN 9788521612186.
Disponivel em: https://books.google.com.br/books?id=cUgEaAEACAAJ.

HUANG, R.; PEDOEEM, J.; CHEN, C. Yolo-lite: a real-time object detection
algorithm optimized for non-gpu computers. In: IEEE. 2018 IEEE International
Conference on Big Data (Big Data). [S.l.], 2018. p. 2503-2510.

R-CNN vs R-CNN Fast vs R-CNN Faster vs YOLO. Datadance. 2024. 20 out. 2024.

Disponivel em https://datadance.ai/machine-learning/r-cnn-vs-r-cnn-fast-vs-r-cnn-

faster-vs-yolo/. Acesso em 20 dez. 2024.

LECUN, Yann; BOTTOU, Léon; BENGIO, Yoshua; HAFFNER, Patrick. Gradient-
based learning applied to document recognition. Disponivel em:
https://ieeexplore.ieee.org/document/726791. Acesso em: 15 dez. 2024.

Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, Guiguang Ding.
YOLOv10: Real-Time End-to-End Object Detection. Disponivel em:
https://arxiv.org/abs/2405.14458. Acesso em: 30 out. 2024.

ULTRALYTICS. Ultralytics YOLO Source Codes and Examples on Github.
Disponivel em https:/github.com/ultralytics/ultralytics. Acesso em: 20 set. 2024.

75

ULTRALYTICS. YOLOv10: Real-Time End-to-End Object Detection. Disponivel em

https://docs.ultralytics.com/models/yolov10. Acesso em: 20 set. 2024.

MICROSOFT. Azure Blob Storage. Disponivel em https://azure.microsoft.com/en-

us/products/storage/blobs/. Acesso em: 10 ago. 2024.

Label Studio. Label Studio Quick Start. Disponivel em
https://labelstud.io/guide/quick_start. Acesso em 10 out. 2024.

Apéndice A - Treino de Modelos Customizados Yolo

import subprocess
import sys
import os

path_inicio = '/home/robert.libotti/TCC-FGVCFN-YOLO'

path_saida = '/home/robert.libotti/OUTPUT'

path_yolo = path_saida + '/yolov10’

wandb_key = '<PRIVADO>'

project_id = '"FGVCFN_2025Nv01’

epochs = 600

patience = 10

versao_yolo = 'yolov10n'

optimizers = ['RMSProp’, 'SGD','NAdam’, 'RMSProp’, 'RAdam’, '"AdamW', 'Adam’]

def install(package):
subprocess.check_call([sys.executable, '-m’, 'pip’, "install’, package])

def checagem():
print('Checando se o ambiente esta correto...")
import torch
import torchvision
import wandb
import ultralytics
import yolov10
current_directory = os.getcwd()
print('Ambiente OK')
print('Versdo do Pytorch:', torch.__version_)
print('Versdo do Torchvision:', torchvision.__version__)
print('Versdo do Wandb:', wandb.__version_))
print('Versao do Ultralytics:', ultralytics.__version_)
print(f'YOLO ({versao_yolo}): ', yolov10.__version_)
print(f"Diretorio corrente: {current_directory}")

if torch.cuda.is_available():
print("GPU is available.")
else:
print("GPU is not available.")

def verificar_gpu():
import GPULil
gpus = GPUtil.getGPUs()
for gpu in gpus:
print(f"ID: {gpu.id}")
print(f"Nome: {gpu.name}")

76

print(f"Memoria Total: {gpu.memoryTotal} MB")
print(f"Memoria Utilizada: {gpu.memoryUsed} MB")
print(f"Memoria Livre: {gpu.memoryFree} MB")
print(f"Utilizacdo: {gpu.load * 100}%")
print(f"Temperatura: {gpu.temperature} °C")
print("-" * 30)

def passo01_instala_bibliotecas():
install('torch") # torchvision wandb ultralytics yolov10
install('torchvision')
install('wandb')
install('ultralytics’)
install('yolov10")
install('gitpython’)
install("gputil")

def passo02_gitclone_yolo():
os.chdir(path_saida)
if not os.path.exists(path_yolo):
repo_url = 'https://github.com/THU-MIG/yolov10.git'
try:
Clone the repository
git.Repo.clone_from(repo_url, path_yolo)
print("Repository cloned successfully!")
except Exception as e:
print(f"An error occurred: {e}")

checagem()

def passo03_treino(optimizer):
from ultralytics import YOLO, settings
import wandb
import random
import os

os.chdir(path_yolo)
project_name = f'{epochs}epochs{optimizer}'
checagem()

settings.update({"wandb": True})

Initialize W&B run

wandb.login(key=wandb_key) # userdata.get('WANDB_AP| KEY TCC)
wandb.init(project=project_id, name=project_name)

opcao 1
model = YOLOv10.from_pretrained(jameslahm/yolovi0n’)

opcao 2

wget https.//github.com/
THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
model = YOLOvT10('yolov10{n/s/m/b/l/x}.pt)

url_yolo = f'https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt'
local_path_yolo = os.path.join(path_yolo, f'{versao_yolo}.pt")

try:
import urllib.request
print(f"Downloading {url_yolo} to {local_path_yolo}...")
urllib.request.urlretrieve(url_yolo, local_path_yolo)
print("Download complete.")

except Exception as e:
print(f"Error downloading {url_yolo}: {e}")

model = YOLO(versao_yolo)
config = f'{path_inicio}/config.yaml’

model.train(project=project_id, data=config, epochs=epochs, patience=patience, verbose=True,
optimizer=optimizer)

Press the green button in the gutter to run the script.

if _name__ =='_main_"

passo01_instala_bibliotecas()

passo02_gitclone_yolo()
checagem()

for optimizer in optimizers:
passo03_treino(optimizer)

78

79

Apéndice B - Usando Modelos Customizados Para Classificar e Combinar
Resultados de Forma Personalizada

import torch

from PIL import Image

import cv2

import os

import matplotlib.pyplot as plt
from ultralytics import YOLO

import json

Fungdo para carregar o modelo
def load_yolo_model(model_path):
model = YOLO(model_path)

return model

Fungdo para realizar a deteccdo de objetos
def detect_objects(model, image_path, idx_classes, min_confidence):

results = model(image_path)

if len(results) == 0:
return results

filtered_results = [result for result in results if result.boxes.cls.numel() > 0 and result.boxes.conf[0] >=
min_confidence and int(result.boxes.cls[0]) in idx_classes]
return filtered_results

Fungdo para desenhar as bounding boxes nas imagens
def draw_boxes(image_path, results, output_path):
fori, r in enumerate(results):
Plot results image
im_bgr = r.plot() # BGR-order numpy array
im_rgb = Image.fromarray(im_bgr][..., :-1]) # RGB-order PIL image

r.save(filename=f"{output_path}")

def draw_boxes_cv2(image, results1, results2, tickness, min_confidence_yolo, min_confidence_cfn):
for result in results1:
for box in result.boxes:
x1,y1, x2, y2 = map(int, box.xyxy[0])
indice = box.cls[0]
label = result.names[int(indice)]
confidence = box.conf[0]
if label == 'car' and confidence > min_confidence_yolo:
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), tickness)
cv2.putText(image, f'{label} {confidence:2f}, (x1,y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 1,
cv2.LINE_AA)

80

for result in results2:
for box in result.boxes:

x1,y1, x2, y2 = map(int, box.xyxy[0])

indice = box.cls[0]

label = result.names[int(indice)]

confidence = box.conf[0]

if confidence >= min_confidence_cfn:
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), tickness)
cv2.putText(image, f'{label} {confidence:2f}, (x1,y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 1,

cv2.LINE_AA)

return image

Diretorios

current_dir = os.getcwd()

input_dir = f'{current_dirf\\input-files'

output_dir = f'{current_dirf\\output-files'

models = ['best-sgd’, 'best-adamw’, 'best-nadam'] #'best-rmsprop, 'best-radam;, 'best-adam’, 'voloviOn' best-
sgd, 'best-adam’, 'best-adamw, 'best-nadam, 'best-radam, 'best-rmsprop,

models_dir = f'{current_dir}\\model-files'

model1 = load_yolo_model(f'{models_dir}\\yolov10n.pt")

para cada model
for modelo in models:
model2 = load_yolo_model(f'{models_dir}\\{modelo}.pt')

Processar cada imagem no diretdrio de entrada
forimg_file in os.listdir(input_dir):
img_path = os.path.join(input_dir, img_file)

img = cv2.imread(img_path)
min_confidence_yolo = 0.5
min_confidence cfn = 0.6

0: person, 1: bicycle, 2. car, 3. motorcycle, 4: airplane, 5: bus, etc.
results1 = detect_objects(model1, img_path, [2], min_confidence_yolo)

ASTROS, CLANF, JLTV, M113, PIRANHA, SK105
results2 = detect_objects(model2, img_path, [0, 1, 2, 3, 4, 5], min_confidence_cfn)

fname, fext = os.path.splitext(img_file)

resultados combinados (com filtros)

combined_result = img.copy()

combined_result = draw_boxes_cv2(combined_result, results1, results2, 2, min_confidence_yolo,
min_confidence_cfn)

81

plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(combined_result, cv2.COLOR_BGR2RGB))
plt.title(f'Combined Results from yolov10n and CFN-{modelo}")
plt.axis(‘off')

#plt.show()

plt.savefig(f'{output_dirh\\{fname}_combined_{min_confidence_yolo}-{min_confidence_cfn}_{modelo}.png’)

print("Processamento concluido e arquivos salvos no diretério de saida.")

