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RESUMO

PEREIRA, Renan Scavone Fernandes. Previsão da taxa de câmbio Real/Dólar
norte-americano usando modelos de Deep Learning. 2025. 112 f. Dissertação (Mestrado em
Ciências Econômicas) – Faculdade de Ciências Econômicas, Universidade do Estado do Rio
de Janeiro, Rio de Janeiro, 2025.

A previsão da taxa de câmbio constitui um dos maiores desafios da literatura econômica
e financeira, assumindo relevância estratégica para a formulação de políticas e a tomada de de-
cisões voltadas à alocação eficiente de recursos. Nesta dissertação, investiga-se a previsão da
taxa de câmbio Ptax de venda do Real brasileiro frente ao Dólar norte-americano (BRL/USD)
por meio de modelos de Deep Learning (DL), avaliados em horizontes de 1, 10 e 20 dias
úteis à frente e comparados ao modelo Random Walk (RW), amplamente reconhecido na lite-
ratura como um benchmark robusto em previsões cambiais. Utilizaram-se séries de dados com
frequência diária, abrangendo o período de 2020 a 2024, divididas sequencialmente em con-
juntos de treinamento, validação e teste, de forma a simular uma aplicação prática. O estudo
adotou duas abordagens: a univariada, baseada exclusivamente na série da taxa de câmbio, e a
multivariada, que incorporou variáveis econômicas e financeiras. Para cada horizonte de previ-
são e abordagem, testaram-se arquiteturas de DL com uma (1CR) ou duas camadas recorrentes
(2CR). A seleção do modelo de DL foi orientada pelas métricas de erro no conjunto de valida-
ção, seguida da avaliação do desempenho no conjunto teste. Os resultados evidenciam que, na
abordagem univariada, as previsões dos modelos de DL selecionados não superaram as do RW
no conjunto de teste, período em que os dados são novos para os modelos. Apenas no horizonte
de 10 dias úteis, o teste de Diebold-Mariano Modificado (DMM) indicou equivalência esta-
tística. Entretanto, para 20 dias úteis, verificou-se deterioração acentuada do desempenho dos
modelos de DL selecionados, com métricas de erro superiores em, no mínimo, 50% em relação
ao RW. Por outro lado, na abordagem multivariada, o teste DMM, ao nível de 10% de significân-
cia, apontou que as previsões dos modelos de DL selecionados apresentaram um desempenho
estatisticamente superior as do RW no horizonte de 20 dias úteis, nas duas arquiteturas ava-
liadas (1CR e 2CR). De forma consistente, os resultados do teste de flutuação de Giacomini
e Rossi (2010) e do teste de racionalidade de Rossi e Sekhposyan (2016) indicaram, respecti-
vamente, nas janelas temporais, uma acurácia igual ou superior das previsões dos modelos de
DL multivariados selecionados e um menor viés e irracionalidade dos erros comparativamente
ao RW. Conclui-se que, embora os modelos de DL não tenham superado o benchmark no cur-
tíssimo prazo, a inclusão de variáveis econômicas e financeiras diárias proporcionou ganhos
significativos no desempenho preditivo em horizontes mais longos, ainda no curto prazo. Os
resultados reforçam o potencial dos modelos multivariados de DL para aprimorar a previsão da
taxa de câmbio, contribuindo tanto para a literatura acadêmica quanto para aplicações práticas
no mercado financeiro.

Palavras-chave: Taxa de câmbio Ptax. Previsão. Deep Learning.



ABSTRACT

PEREIRA, Renan Scavone Fernandes. Forecasting the exchange rate of the brazilian Real to
the US Dollar using Deep Learning Models. 2025. 112 f. Dissertação (Mestrado em Ciências
Econômicas) – Faculdade de Ciências Econômicas, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, 2025.

Exchange rate forecasting is one of the greatest challenges in economic and financial
literature, holding strategic importance for policy formulation and decision-making aimed at
efficient resource allocation. This dissertation investigates the forecasting of the Ptax exchange
rate for the Brazilian Real against the US Dollar (BRL/USD) using Deep Learning (DL) mo-
dels, evaluated over time horizons of 1, 10, and 20 business days ahead, and compared to the
Random Walk (RW) model, which is widely recognized in the literature as a robust benchmark
for exchange rate forecasting. Daily data series covering the period 2020 to 2024 were used, se-
quentially divided into training, validation, and test sets to simulate a practical application. The
study adopted two approaches: a univariate approach, based exclusively on exchange rate data,
and a multivariate approach, which incorporated economic and financial variables. For each
forecast horizon and approach, DL architectures with one (1CR) or two recurrent layers (2CR)
were tested. DL model selection was guided by error metrics on the validation set, followed
by performance evaluation on the test set. The results show that, in the univariate approach,
the predictions of the selected DL models did not outperform those of RW on the test set, a
period in which the data is new to the models. Only on the 10-business-days horizon did the
Modified Diebold-Mariano (DMM) test indicate statistical equivalence. However, for the 20-
business-days horizon, a sharp deterioration in the performance of the selected DL models was
observed, with error metrics at least 50% higher than those of the RW. On the other hand, in the
multivariate approach, the DMM test, at the 10% significance level, indicated that the forecasts
of the selected DL models performed statistically better than those of RW over the 20-business-
days horizon, in both architectures evaluated (1CR and 2CR). Consistently, the results of the
Giacomini and Rossi (2010) fluctuation test and the Rossi and Sekhposyan (2016) rationality
test indicated, respectively, in the time windows, equal or superior accuracy of the selected
multivariate DL models’ forecasts, and lower bias and irrationality in errors compared to the
RW. It is concluded that, although the DL models did not outperform the benchmark in the very
short term, the inclusion of daily economic and financial variables provided significant gains in
predictive performance over longer horizons, even in the short term. The results reinforce the
potential of multivariate DL models to improve exchange rate forecasting, contributing both to
the academic literature and to practical applications in the financial market.

Keywords: Exchange Rate Ptax. Forecast. Deep Learning.



LISTA DE ILUSTRAÇÕES

Figura 1 - Diagrama do modelo LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figura 2 - Diagrama do modelo GRU. . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figura 3 - Gráfico das séries temporais coletadas no período de 2020 a 2024. . . . . . 46
Figura 4 - Matriz de correlação das variáveis (preços) no período de 2020 a 2024. . . 48
Figura 5 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 1 dia

útil à frente do modelo selecionado univariado com 1CR vs RW no período
de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figura 6 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 1 dia
útil à frente do modelo selecionado univariado com 2CR vs RW no período
de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figura 7 - Gráficos das estatísticas dos testes de flutuação Giacomini e Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figura 8 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 1 dia
útil à frente do modelo selecionado multivariado com 1CR vs RW no pe-
ríodo de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figura 9 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 1 dia
útil à frente do modelo selecionado multivariado com 2CR vs RW no pe-
ríodo de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figura 10 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figura 11 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 10
dias úteis à frente do modelo selecionado univariado com 1CR vs RW no
período de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figura 12 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 10
dias úteis à frente do modelo selecionado univariado com 2CR vs RW no
período de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figura 13 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figura 14 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 10
dias úteis à frente do modelo selecionado multivariado com 1CR vs RW no
período de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Figura 15 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 10
dias úteis à frente do modelo selecionado multivariado com 2CR vs RW no
período de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figura 16 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figura 17 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 20
dias úteis à frente do modelo selecionado univariado com 1CR vs RW no
período de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figura 18 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 20
dias úteis à frente do modelo selecionado univariado com 2CR vs RW no
período de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figura 19 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figura 20 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 20
dias úteis à frente do modelo selecionado multivariado com 1CR vs RW no
período de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figura 21 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 20
dias úteis à frente do modelo selecionado multivariado com 2CR vs RW no
período de teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figura 22 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figura 23 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação nas previsões 1 dia à frente . . . . . . . . . . . . . 101

Figura 24 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figura 25 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figura 26 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figura 27 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Figura 28 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e
testes de racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos
de teste e de validação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figura 29 - Funções de perda dos períodos de treino e de validação do modelo de DL
univariado com 1CR 1 dia à frente . . . . . . . . . . . . . . . . . . . . . . 107

Figura 30 - Funções de perda dos períodos de treino e de validação do modelo de DL
univariado com 2CR 1 dia à frente . . . . . . . . . . . . . . . . . . . . . . 107

Figura 31 - Funções de perda dos períodos de treino e de validação do modelo de DL
multivariado com 1CR 1 dia à frente . . . . . . . . . . . . . . . . . . . . . 108

Figura 32 - Funções de perda dos períodos de treino e de validação do modelo de DL
multivariado com 2CR 1 dia à frente . . . . . . . . . . . . . . . . . . . . . 108

Figura 33 - Funções de perda dos períodos de treino e de validação do modelo de DL
univariado de 1CR com previsão 10 dias úteis à frente . . . . . . . . . . . 109

Figura 34 - Funções de perda dos períodos de treino e de validação do modelo de DL
univariado de 2CR com previsão 10 dias úteis à frente . . . . . . . . . . . 109

Figura 35 - Funções de perda dos períodos de treino e de validação do modelo de DL
multivariado de 1CR com previsão 10 dias úteis à frente . . . . . . . . . . 110

Figura 36 - Funções de perda dos períodos de treino e de validação do modelo de DL
multivariado de 2CR com previsão 10 dias úteis à frente . . . . . . . . . . 110

Figura 37 - Funções de perda dos períodos de treino e de validação do modelo de DL
univariado de 1CR com previsão 20 dias úteis à frente . . . . . . . . . . . 111

Figura 38 - Funções de perda dos períodos de treino e de validação do modelo de DL
univariado de 2CR com previsão 20 dias úteis à frente . . . . . . . . . . . 111

Figura 39 - Funções de perda dos períodos de treino e de validação do modelo de DL
multivariado de 1CR com previsão 20 dias úteis à frente . . . . . . . . . . 112

Figura 40 - Funções de perda dos períodos de treino e de validação do modelo de DL
multivariado de 2CR com previsão 20 dias úteis à frente . . . . . . . . . . 112



LISTA DE TABELAS

Tabela 1 - Arquiteturas e parâmetros dos modelos de DL . . . . . . . . . . . . . . . . 40
Tabela 2 - Métricas descritivas das séries temporais em preços . . . . . . . . . . . . . 47
Tabela 3 - Métricas de erro das previsões dos modelos univariados de DL com 1CR e

do modelo RW 1 dia à frente . . . . . . . . . . . . . . . . . . . . . . . . . 51
Tabela 4 - Métricas de erro das previsões 1 dia à frente dos modelos univariados de

DL com 2CR e do RW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Tabela 5 - Métricas de erro das previsões 1 dia à frente do modelo RW e dos modelos

de DL univariados selecionados em cada arquitetura . . . . . . . . . . . . 53
Tabela 6 - Testes estatísticos para o modelo univariado de DL selecionado com 2CR e

o modelo RW nas previsões 1 dia útil à frente . . . . . . . . . . . . . . . . 56
Tabela 7 - Métricas de erro das previsões dos modelos multivariados de DL com 1CR

e do modelo RW 1 dia útil à frente . . . . . . . . . . . . . . . . . . . . . . 58
Tabela 8 - Métricas de erro das previsões dos modelos multivariados de DL com 2CR

e do modelo RW 1 dia útil à frente . . . . . . . . . . . . . . . . . . . . . . 59
Tabela 9 - Métricas de erro das previsões 1 dia útil à frente dos modelos de DL multi-

variados selecionados em cada arquitetura vs. modelo RW . . . . . . . . . 60
Tabela 10 - Testes estatísticos para comparação do modelo multivariado de DL seleci-

onado com 2CR e do modelo RW nas previsões 1 dia útil à frente . . . . . 63
Tabela 11 - Métricas de erro das previsões dos modelos univariados de DL com 1CR e

do modelo RW 10 dias úteis à frente . . . . . . . . . . . . . . . . . . . . . 65
Tabela 12 - Métricas de erro das previsões dos modelos univariados de DL com 2CR e

do modelo RW 10 dias úteis à frente . . . . . . . . . . . . . . . . . . . . . 66
Tabela 13 - Métricas de erro das previsões 10 dias úteis à frente dos modelos de DL

univariados selecionados em cada arquitetura vs. modelo RW . . . . . . . 67
Tabela 14 - Testes estatísticos para comparação do modelo univariado de DL selecio-

nado com 1CR e do modelo RW nas previsões 10 dias úteis à frente . . . . 70
Tabela 15 - Métricas de erro das previsões dos modelos multivariados de DL com 1CR

e do modelo RW 10 dias úteis à frente . . . . . . . . . . . . . . . . . . . . 72
Tabela 16 - Métricas de erro das previsões dos modelos multivariados de DL com 2CR

e do modelo RW 10 dias úteis à frente . . . . . . . . . . . . . . . . . . . . 73
Tabela 17 - Métricas de erro das previsões 10 dias úteis à frente dos modelos de DL

multivariados selecionados em cada arquitetura vs. modelo RW . . . . . . 74
Tabela 18 - Testes estatísticos para comparação do modelo multivariado de DL seleci-

onado com 2CR e do modelo RW nas previsões 10 dias úteis à frente . . . 77
Tabela 19 - Métricas de erro das previsões dos modelos univariados de DL com 1CR e

do modelo RW 20 dias úteis à frente . . . . . . . . . . . . . . . . . . . . . 79



Tabela 20 - Métricas de erro das previsões dos modelos univariados de DL com 2CR e
do modelo RW 20 dias úteis à frente . . . . . . . . . . . . . . . . . . . . . 80

Tabela 21 - Métricas de erro das previsões 20 dias úteis à frente dos modelos de DL
univariados selecionados em cada arquitetura vs. modelo RW . . . . . . . 81

Tabela 22 - Testes estatísticos para comparação do modelo univariado de DL selecio-
nado com 1CR e do modelo RW nas previsões 20 dias úteis à frente . . . . 83

Tabela 23 - Métricas de erro das previsões dos modelos multivariados de DL com 1CR
e do modelo RW 20 dias úteis à frente . . . . . . . . . . . . . . . . . . . . 85

Tabela 24 - Métricas de erro das previsões dos modelos multivariados de DL com 2CR
e do modelo RW 20 dias úteis à frente . . . . . . . . . . . . . . . . . . . . 86

Tabela 25 - Métricas de erro das previsões 20 dias úteis à frente dos modelos de DL
multivariados selecionados em cada arquitetura vs. modelo RW . . . . . . 87

Tabela 26 - Testes estatísticos para comparação do modelo multivariado de DL seleci-
onado com 1CR e do modelo RW nas previsões 20 dias úteis à frente . . . 89

Tabela 27 - Testes estatísticos para comparação do modelo univariado de DL selecio-
nado com 1CR e do modelo RW nas previsões 1 dia à frente . . . . . . . . 101

Tabela 28 - Testes estatísticos para comparação do modelo multivariado de DL seleci-
onado com 1CR e do modelo RW nas previsões 1 dia à frente . . . . . . . 102

Tabela 29 - Testes estatísticos para comparação do modelo univariado de DL selecio-
nado com 2CR e do modelo RW nas previsões 10 dias úteis à frente . . . . 103

Tabela 30 - Testes estatísticos para comparação do modelo multivariado de DL seleci-
onado com 1CR e do modelo RW nas previsões 10 dias úteis à frente . . . 104

Tabela 31 - Testes estatísticos para comparação do modelo univariado de DL selecio-
nado com 2CR e do modelo RW nas previsões 20 dias úteis à frente . . . . 105

Tabela 32 - Testes estatísticos para comparação do modelo multivariado de DL seleci-
onado com 2CR e do modelo RW nas previsões 20 dias úteis à frente . . . 106



LISTA DE ABREVIATURAS E SIGLAS

ADAM Adaptive Moment Estimation

ADAMW Adaptive Moment Estimation with Decoupled Weight Decay

BiGRU Bidirectional Gated Recurrent Unit

BiLSTM Bidirectional Long Short-Term Memory

DXY U.S Dollar Index

CDS Credit Default Swap

DL Deep Learning

CRY Índice CRY

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

ML Machine Learning

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

BRL Real brasileiro

ReLU Rectified Linear Unit

RMSE Root Mean Squered Error

RW Random Walk - Passeio Aleatório

USD Dólar Norte-Americano

VIX Cboe Volatitility Index



SUMÁRIO

INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1 REVISÃO DA LITERATURA . . . . . . . . . . . . . . . . . . . . . . . . 18
2 FUNDAMENTOS TEÓRICOS . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1 Modelo Random Walk (Passeio Aleatório) . . . . . . . . . . . . . . . . . . . 24
2.2 Long Short-Term Memory Unit (LSTM) e Bidirectional Long Short-Term

Memory Unit (BiLSTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Gated Recurrent Unit (GRU) e Bidirectional Gated Recurrent Unit (BiGRU) 27
2.4 Conceitos relevantes aplicados ao Deep Learning . . . . . . . . . . . . . . 28
2.4.1 Funções de ativação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Gradiente descendente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Overfitting e underfitting e conceitos relacionados ao treinamento dos modelos

de DL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Métricas de erro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Erro Médio Absoluto ou Mean Absolute Error (MAE) . . . . . . . . . . . . . 30
2.5.2 Erro Quadrado Médio ou Mean Squared Error (MSE) . . . . . . . . . . . . . 31
2.5.3 Raiz do Erro Quadrado Médio ou Root Mean Squared Error (RMSE) . . . . . 31
2.5.4 Erro Médio Absoluto Percentual ou Mean Absolute Percent Error (MAPE) . . 31
2.6 Testes estatísticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.1 Teste de Diebold-Mariano (1995) . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 Teste de Diebold-Mariano Modificado (1997) . . . . . . . . . . . . . . . . . . 33
2.6.3 Teste de flutuação de Giacomini e Rossi (2010) . . . . . . . . . . . . . . . . . 33
2.6.4 Teste de racionalidade de Rossi e Sekhposyan (2016) . . . . . . . . . . . . . . 34
3 METODOLOGIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Coleta, preparação dos dados e treinamento . . . . . . . . . . . . . . . . . 37
3.2 Modelos Preditivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Avaliação do Desempenho . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Seleção de variáveis explicativas . . . . . . . . . . . . . . . . . . . . . . . . 42
4 DESCRIÇÃO ESTATÍSTICA DOS DADOS . . . . . . . . . . . . . . . . . 45
5 RESULTADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1 Resultados das previsões 1 dia à frente . . . . . . . . . . . . . . . . . . . . 51
5.1.1 Modelos univariados de DL vs. modelo RW nas previsões 1 dia à frente . . . . 51
5.1.1.1 Modelos univariados de DL com 1CR vs. modelo RW nas previsões 1 dia à

frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.1.2 Modelos univariados de DL com 2CR vs. modelo RW nas previsões 1 dia à

frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



5.1.1.3 Modelos de DL univariados selecionados vs. modelo RW nas previsões 1 dia
à frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1.4 Testes estatísticos entre o modelo RW e o modelo de DL univariado selecio-
nado com melhor desempenho no período de teste nas previsões 1 dia útil à
frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.2 Modelos multivariados de DL vs. modelo RW nas previsões 1 dia útil à frente . 58
5.1.2.1 Modelos multivariados de DL com 1CR vs. modelo RW nas previsões 1 dia

útil à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.2.2 Modelos multivariados de DL com 2CR vs. modelo RW nas previsões 1 dia

útil à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.2.3 Modelos de DL multivariados selecionados vs. modelo RW nas previsões 1 dia

útil à frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2.4 Testes estatísticos entre o modelo de DL multivariado selecionado com melhor

desempenho no período de teste vs. modelo RW nas previsões 1 dia útil à frente 63
5.2 Resultados das previsões 10 dias úteis à frente . . . . . . . . . . . . . . . . 65
5.2.1 Modelos univariados de DL vs. modelo RW nas previsões 10 dias úteis à frente: 65
5.2.1.1 Modelos univariados de DL com 1CR vs. modelo RW nas previsões 10 dias

úteis à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.1.2 Modelos univariados de DL com 2CR vs. modelo RW nas previsões 10 dias

úteis à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.1.3 Modelos de DL univariados selecionados vs. modelo RW nas previsões 10 dias

úteis à frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.1.4 Testes estatísticos entre o modelo de DL univariado selecionado com melhor

desempenho no período de teste vs. modelo RW nas previsões 10 dias úteis à
frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Modelos multivariados de DL vs. modelo RW nas previsões 10 dias úteis à frente 72
5.2.2.1 Modelos multivariados de DL com 1CR vs. modelo RW nas previsões 10 dias

úteis à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2.2 Modelos multivariados de DL com 2CR vs. modelo RW nas previsões 10 dias

úteis à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2.3 Modelos de DL multivariados selecionados vs. modelo RW nas previsões 10

dias úteis à frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.2.4 Testes estatísticos entre o modelo de DL multivariado selecionado com melhor

desempenho no período de teste vs. modelo RW nas previsões 10 dias úteis à
frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Resultados das previsões 20 dias úteis à frente . . . . . . . . . . . . . . . . 79
5.3.1 Modelos univariados de DL vs. modelo RW nas previsões 20 dias úteis à frente 79
5.3.1.1 Modelos univariados de DL com 1CR vs. modelo RW nas previsões 20 dias

úteis à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



5.3.1.2 Modelos univariados de DL com 2CR vs. modelo RW nas previsões 20 dias
úteis à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1.3 Modelos de DL univariados selecionados vs. modelo RW nas previsões 20 dias
úteis à frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1.4 Testes estatísticos entre o modelo de DL univariado selecionado com melhor
desempenho no período de teste vs. modelo RW nas previsões 20 dias úteis à
frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Modelos multivariados de DL vs. modelo RW nas previsões 20 dias úteis à frente 85
5.3.2.1 Modelos multivariados de DL com 1CR vs. modelo RW nas previsões 20 dias

úteis à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2.2 Modelos multivariados de DL com 2CR vs. modelo RW nas previsões 20 dias

úteis à frente: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2.3 Modelos de DL multivariados selecionados vs. modelo RW nas previsões 20

dias úteis à frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2.4 Testes estatísticos entre o modelo de DL multivariado selecionado com melhor

desempenho no período de teste vs. modelo RW nas previsões 20 dias úteis à
frente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Considerações finais sobre os resultados obtidos . . . . . . . . . . . . . . . 91
CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
APÊNDICE A – Testes estatísticos para comparação do desempenho das pre-
visões do modelo RW e dos modelos de DL selecionados com segundo menor
valor nas métricas de erro no período de teste . . . . . . . . . . . . . . . . . 101
APÊNDICE B – Gráficos obtidos no treinamento dos modelos de DL sele-
cionados com as menores métricas de erro no período de teste referente ao
comportamento das funções de perda de treino e de validação . . . . . . . . . 107



15

INTRODUÇÃO

A taxa de câmbio representa o preço de uma moeda estrangeira em relação à moeda
nacional. Assim, ela exerce um papel fundamental na dinâmica macroeconômica, influenciando
diretamente o comércio exterior, os fluxos de capitais e a formulação da política monetária. Em
economias emergentes como a brasileira, sua oscilação pode afetar significativamente o nível
de preços, a competitividade e as decisões de investimento. Nesse contexto, prever a trajetória
da taxa de câmbio, ainda que em horizontes curtos, é uma tarefa de grande relevância para
formuladores de políticas, analistas financeiros e agentes do mercado.

Durante a pandemia de COVID-19, o mercado cambial passou por uma intensa vola-
tilidade. A incerteza econômica e o fluxo de capitais para ativos mais seguros levaram a uma
expressiva desvalorização do Real brasileiro frente ao Dólar americano, impulsionada pela fuga
de investidores estrangeiros e pela redução da liquidez global. Além disso, as medidas de estí-
mulo fiscal e monetário adotadas pelo governo brasileiro para mitigar os efeitos da crise gera-
ram preocupações quanto à sustentabilidade fiscal e à trajetória da dívida pública, aumentando
a percepção de risco. Mais recentemente, o cenário político internacional tem sido marcado
por conflitos armados e transformações geopolíticas relevantes, como as eleições nos Estados
Unidos, que intensificaram disputas comerciais e elevaram tarifas aduaneiras — especialmente
entre os EUA e a China. Esse ambiente contribuiu para tornar o comportamento da taxa de câm-
bio ainda mais complexo e volátil. Nesse cenário, reforça-se a necessidade de aperfeiçoamento
contínuo dos modelos preditivos com objetivo de captar a complexidade do mercado cambial e
oferecer suporte consistente à tomada de decisão de agentes econômicos, tanto no setor público
quanto no privado.

Segundo Krugman, Obstfeld e Melitz (2015, p. 269) a taxa de câmbio é considerada um
preço de ativo, sendo regulada pelos mesmos princípios que governam outros preços de ativos
financeiros. Dessa forma, não existem oportunidades contínuas de lucro sem risco. Se existir
uma diferença de preços, investidores exploram essa oportunidade por meio de arbitragem, le-
vando a um equilíbrio nos preços. Por outro lado, pela hipótese de eficiência de mercado, não
se esperam retornos superiores à média de forma consistente, já que os preços se ajustam rapi-
damente às novas informações. Neste contexto, Krugman, Obstfeld e Melitz (2015, prefácio)
descrevem que as taxas de juros e as expectativas são fatores essenciais na determinação do
câmbio.

As dinâmicas cambiais são influenciadas por uma multiplicidade de fatores, como cho-
ques externos, taxas de juros, fluxos de capitais e expectativas de mercado, o que torna a pre-
visão da taxa de câmbio uma tarefa desafiadora. Embora modelos econométricos tradicionais
sejam amplamente utilizados nesse contexto, eles frequentemente apresentam limitações na
captura de padrões não lineares e de interações complexas entre variáveis. Desde os trabalhos
pioneiros de Meese e Rogoff (1982, 1983), a literatura evidencia que modelos baseados em
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fundamentos econômicos, em geral, não superam o desempenho preditivo do modelo Random

Walk (RW), apontado como um benchmark, especialmente em horizontes de curto prazo.
Diante desse cenário e impulsionadas pelos avanços computacionais, as redes neurais

artificiais têm se consolidado como uma alternativa promissora para modelagem e previsão em
séries temporais financeiras. Nesse âmbito, as técnicas de aprendizado profundo, conhecidas
como Deep Learning (DL), são capazes de capturar padrões complexos e não linearidades, ofe-
recendo maior flexibilidade na modelagem de relações dinâmicas. Assim, o principal objetivo
deste estudo é investigar se as previsões dos modelos Long Short-Term Memory (LSTM), Bi-

directional Long Short-Term Memory (BiLSTM), Gated Recurrent Unit (GRU) e Bidirectional

Gated Recurrent Unit (BiGRU), aplicados conforme as arquiteturas e configurações descritas na
metodologia, são capazes de superar o desempenho das previsões do modelo RW, na previsão
da taxa de câmbio Ptax de venda do Real brasileiro por Dólar americano.

A definição dos horizontes de previsão adotados neste estudo — 1, 10 e 20 dias úteis
à frente — decorre de uma demanda prática observada no âmbito da administração pública,
especificamente na Diretoria de Finanças da Marinha do Brasil, referente a otimização do envio
de recursos financeiros ao exterior. Esses recursos destinam-se a cobrir despesas de custeio e
aquisição de equipamentos de defesa, e sua liberação está sujeita a peculiaridades da execução
orçamentária e financeira do governo federal, que muitos vezes impõem prazos operacionais de
curto prazo. Nesse sentido, torna-se inviável a adoção de modelos baseados em fundamentos
econômicos tradicionais como os modelos monetários, como a regra de Taylor combinada com a
paridade da taxa de juros ou, ainda, como a paridade do poder de compra. Tais modelos utilizam
variáveis macroeconômicas que, em sua maioria, são divulgadas com frequência mensal ou
trimestral, o que compromete sua aplicabilidade em previsões de alta frequência.

Dessa forma, serão utilizadas variáveis econômicas e financeiras com disponibilidade
diária nas previsões dos modelos multivariados com objetivo de capturar variações relevantes
na taxa de câmbio de curto prazo. Entre elas, destacam-se as taxas de juros de curto e longo
prazo, o índice de preços de commodities (CRY), os índices acionários Ibovespa e S&P 500, o
Credit Default Swap (CDS) associado ao risco soberano e o índice de volatilidade Cboe (VIX)
como proxy do risco de mercado e do risco sistêmico, além do United States Dollar Index

(DXY), que reflete a força relativa do Dólar americano frente a uma cesta de moedas de países
desenvolvidos. Essas variáveis permitem incorporar informações contemporâneas e relevantes
ao comportamento diário da taxa de câmbio, tornando-as mais adequadas para os horizontes
propostos.

Abrangendo o período de 2020 a 2024, adotam-se duas abordagens: a univariada, que
utiliza apenas os valores passados da própria taxa de câmbio, e a multivariada, que incorpora
variáveis econômicas e financeiras, além dos valores passados da taxa de câmbio. Para cada
abordagem e horizonte de previsão, os modelos de DL serão avaliados em duas arquiteturas
distintas: uma delas com uma camada recorrente e outra com duas. O desempenho dos modelos
será comparado por meio das métricas de erro RMSE, MAE e MAPE, além da aplicação de
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testes estatísticos.
Os resultados obtidos indicam que, embora as previsões dos modelos de DL não tenham

superado as do benchmark tradicional no curtíssimo prazo, a inclusão de variáveis econômicas
e financeiras de frequência diária gerou ganhos relevantes para horizontes mais longos, ainda no
curto prazo. Esses achados evidenciam o potencial das abordagens multivariadas baseadas em
redes neurais para aprimorar a previsão da taxa de câmbio, contribuindo para o avanço de um
campo ainda pouco explorado na literatura brasileira e oferecendo subsídios tanto à formulação
de políticas econômicas quanto a decisões voltadas à alocação eficiente de recursos.

Além desta introdução, o estudo está estruturado da seguinte forma: o Capítulo 1 apre-
senta a revisão da literatura sobre a previsão da taxa de câmbio; o Capítulo 2 descreve os mo-
delos de previsão utilizados, os conceitos fundamentais de DL e os testes estatísticos aplicados
para a comparação do desempenho preditivo; o Capítulo 3 detalha a metodologia adotada; o Ca-
pítulo 4 apresenta os dados utilizados na análise, acompanhados pelas respectivas estatísticas
descritivas; o Capítulo 5 descreve a comparação dos resultados das previsões de 1, 10 e 20 dias
úteis à frente do modelo RW com as dos modelos de DL univariados e multivariados, além das
considerações finais sobre os resultados obtidos; e, na sequência, descrevem-se as conclusões
dessa dissertação.
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1 REVISÃO DA LITERATURA

A literatura apresenta diferentes abordagens para a previsão da taxa de câmbio, algumas
das quais são destacadas a seguir, com ênfase especial naquelas aplicadas ao caso brasileiro.
Porém, antes disso, cabe apresentar o conceito de taxa de câmbio Ptax e os motivos de sua
utilização neste estudo.

O mercado de câmbio é dividido em dois tipos principais: à vista e a termo. No mercado
à vista, a troca de moedas ocorre imediatamente, com um preço previamente estabelecido. Já no
mercado a termo, o valor da moeda é determinado no presente, mas a liquidação da transação
ocorre em uma data futura. Este estudo focará na previsão do mercado de câmbio à vista. Cabe
observar que, conforme descrito por Dornbusch, Fischer e Startz (2013, p. 46), nos regimes
de câmbio fixo os bancos centrais intervêm comprando e vendendo moedas estrangeiras para
estabilizar a taxa de câmbio, enquanto nos regimes flutuantes, o mercado determina o valor da
moeda. No entanto, muitos países, como o Brasil, adotam um regime intermediário, permitindo
a flutuação cambial com intervenções ocasionais para evitar variações extremas.

Conforme o Estudo Especial n. 42 do Banco Central do Brasil (BRASIL. Banco Central
do Brasil, 2019), a taxa de câmbio de referência do Real por Dólares americanos mais utilizada
no mercado cambial brasileiro é a Ptax. Ela serve como base para contratos futuros, opções,
derivativos e operações financeiras. Além disso, é referência para contratos em Real nas bolsas
internacionais, e amplamente usada por analistas econômicos, pesquisadores e o público em
geral. Sendo, por este motivo, a taxa de câmbio escolhida neste estudo preditivo. A Resolução
n° 45 do Banco Central do Brasil (BRASIL. Banco Central do Brasil, 2020) dispõe que o
referido órgão realize quatro consultas diárias, com duração de dois minutos cada, em horários
aleatórios dentro dos intervalos: 10h-10h10, 11h-11h10, 12h-12h10 e 13h-13h10. Assim, a
taxa de câmbio Ptax de compra e a taxa de câmbio Ptax de venda do Real/Dólar americano
referentes a cada consulta corresponderão, respectivamente, às médias das cotações de compra
e das cotações de venda efetivamente fornecidas pelos dealers, excluídas, em cada caso, as
duas maiores e as duas menores. Por sua vez, as taxas Ptax de compra e taxas Ptax de venda
de cada dia corresponderão às médias aritméticas das quatro taxas de compra ou das quatro
taxas de venda do Real/Dólar americano, conforme o caso, obtidas na forma descrita acima,
sendo divulgadas pelo Banco Central do Brasil (BCB) conjuntamente com o resultado da última
consulta do dia.

Conforme descrito anteriormente, Krugman, Obstfeld e Melitz (2015, p. 269) apontam
que a taxa de câmbio é considerada um preço de ativo, seguindo os mesmos princípios que
governam os preços de ativos financeiros. Nesse sentido, aplicam-se também as conclusões de
Fama (1965), que testa a validade empírica do modelo RW para o comportamento dos preços
das ações e que aponta que os dados parecem oferecer um suporte consistente para esse modelo.
O artigo utiliza dados diários das trinta ações que compõem o índice industrial Dow Jones, com
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o período de análise variando de ação para ação, abrangendo, em geral, do final de 1957 até
setembro de 1962. Argumenta-se que o uso do histórico de preços não seria capaz de contribuir
para uma previsão confiável dos movimentos futuros e de aumentar o lucro esperado do inves-
tidor, dada a evidência de independência das mudanças dos preços, fato que é consistente com
a hipótese de eficiência de mercado. Assim, considera-se que os argumentos a favor da análise
gráfica são completamente insustentáveis, a menos que respaldados por dados empíricos.

Os reconhecidos estudos de Meese e Rogoff (1982, 1983) avaliaram a precisão preditiva
de modelos estruturais e de séries temporais na previsão das taxas de câmbio, comparando-os
ao modelo de RW. Os resultados indicaram a incapacidade dos modelos estruturais de explicar o
comportamento das taxas de câmbio com base em fundamentos econômicos. Foram analisados
modelos monetários de preços flexíveis (Frenkel-Bilson), preços rígidos (Dornbusch-Frankel)
e um modelo de preços rígidos com conta corrente (Hooper-Morton), com a utilização de mo-
delos VAR (vetores auto-regressivos) para identificar fatores que influenciam a taxa de câmbio.
Utilizaram-se dados mensais de 1973 a 1981 para diferentes pares cambiais, considerando de
acordo com cada modelo variáveis como diferenciais de juros de curto e de longo prazo, de
oferta de moeda americana e estrangeira, de balanças comerciais, de inflação e de produção.
Os resultados demonstraram que o RW é tão preciso quanto qualquer modelo estimado para
previsões de 1 a 12 meses, com sua vantagem diminuindo conforme o horizonte se aproxima
de 12 meses. Para prazos mais longos, embora algumas métricas de erro, como RMSE e MAE,
possam apresentar melhorias ocasionais, os resultados continuam instáveis. Mesmo com o uso
de valores futuros conhecidos das variáveis explicativas, os modelos estruturais não superam o
RW, ressaltando a dificuldade inerente à previsão cambial.

Posteriormente, Rogoff (2008) destaca que alguns estudos trazem evidências de que
modelos de taxa de câmbio baseados em fundamentos, especialmente monetários, parecem
superar o RW na previsão de longo prazo. Esses modelos, que podem incluir funções de reação
da regra de Taylor, explicam como as taxas de câmbio reagem a anúncios de juros do Banco
Central, com valorização da moeda diante de expectativas de altas futuras. Considera-se que
o debate passou a girar em torno da eficácia dos modelos estruturais em prever horizontes
intermediários, de um mês a um ano, os mais relevantes para políticas econômicas. Salienta-se
que o resultado do estudo de Meese e Rogoff (1983), o qual trouxe evidências de que os modelos
estruturais não superam o modelo RW na previsão da taxa de câmbio, refere-se principalmente
às moedas flutuantes de economias avançadas, como o Iene, a Libra e o Euro em relação ao
dólar, mas não necessariamente às moedas de mercados emergentes, devido aos diferenciais de
juros e inflação geralmente mais elevados. Ressalta-se também uma exceção no caso de países
como Austrália, Nova Zelândia e Canadá, cujas taxas de câmbio parecem estar fortemente
correlacionadas com os preços das commodities que compõem suas pautas de exportação.

Rossi (2013) revisa a literatura sobre previsão cambial desde Meese e Rogoff (1983)
e compara o desempenho de diversos modelos em horizontes curtos (um mês ou trimestre) e
longos (quatro anos) com o modelo RW sem drift, utilizando o RMSFE (Root Mean Squared
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Forecast Error) como métrica. Reestimam-se modelos VECM recursivamente em uma janela
móvel correspondente à metade da amostra e empregam-se testes estatísticos como Diebold-
Mariano (1995) e West (1996), Clark-West (2006) e o teste de flutuação de Giacomini e Rossi
(2010). O estudo considera taxas de câmbio em relação aos EUA para países como Austrália,
Canadá, Japão e Reino Unido, reunindo indicadores mensais e trimestrais, incluindo taxas de
juros overnight, Letras do Tesouro de 3 meses, Títulos do Tesouro de 5 anos, PIB/produção
industrial, índice de preços ao consumidor (CPI) e estoque de moeda, além de dados anuais
ou trimestrais sobre contas correntes, balança comercial, dívida pública e déficit/superávit do
governo. As amostras variam de país para país, mas normalmente vão de 1973 à 2006. Os
resultados indicam que preditores fundamentalistas tradicionais apresentam eficácia limitada no
curto prazo, enquanto variáveis como a regra de Taylor e ativos estrangeiros líquidos mostram
alguma previsibilidade em modelos lineares mais simples. Contudo, superar o modelo RW sem
drift continua sendo um desafio, sem evidências consistentes de superioridade preditiva fora da
amostra. Assim, as conclusões de Meese e Rogoff (1983) permanecem relevantes, sugerindo
que a previsibilidade cambial é ocasional e de curta duração.

Em estudo aplicado no Brasil, Perdomo e Botelho (2007) revisitam a conclusão de Me-
ese e Rogoff (1983) sobre a superioridade do modelo RW na previsão da taxa de câmbio. Tal
estudo compara a eficácia preditiva do RW com as projeções de instituições financeiras e con-
sultorias listadas no ranking Top-5 do BCB em três horizontes: curto (até um mês), médio (até
quatro meses) e longo prazo (até doze meses). Os resultados indicam que o modelo RW superou
o poder preditivo até mesmo dos modelos utilizados pelas instituições com melhor desempenho.
Adicionalmente, constatou-se que a superioridade do modelo RW foi ainda mais pronunciada
em horizontes estendidos. Assim, ressalta-se que, apesar dos resultados da literatura, agentes
econômicos ainda utilizam métodos menos precisos, confiando em supostas vantagens informa-
cionais.

No mesmo sentido, Hadad (2015) investiga no Brasil se modelos baseados em funda-
mentos macroeconômicos podem superar o RW na previsão da taxa de câmbio. Utilizando
dados trimestrais de oito países analisados em pares, o estudo emprega modelos VAR, VECM e
correção de viés para projeções de 1 a 6 trimestres, abrangendo períodos de crise e estabilidade.
O teste de Diebold-Mariano foi aplicado para avaliar a superioridade preditiva entre os modelos.
Concluiu-se que o modelo RW sem drift se mostrou o benchmark mais difícil de superar, espe-
cialmente até três trimestres, enquanto o modelo com drift foi facilmente superado. Além disso,
os melhores modelos multivariados foram aqueles que não incluíram agregados monetários e
taxas de juros internas e externas.

Kopp (2019) analisou o comportamento do mercado de câmbio brasileiro, testando a
hipótese de Meese-Rogoff, descrita anteriormente. Utilizando dados mensais e trimestrais do
período de janeiro de 2000 a julho de 2018, o estudo comparou previsões geradas por mo-
delos de equilíbrio externo e pela regra de Taylor. Os resultados corroboram a hipótese de
Meese-Rogoff, indicando que nenhum dos modelos econômicos superam a abordagem do pas-
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seio aleatório em estimações fora da amostra para a taxa de câmbio.
Almeida (2022) analisou o comportamento da taxa de câmbio nominal do Real frente

ao Dólar durante a pandemia de COVID-19, investigando possíveis desvios dos fundamentos
globais. Utilizando 199 observações mensais desde janeiro de 2006, aplicou Mínimos Qua-
drados Ordinários e o Filtro de Kalman para estimar mudanças estruturais nos coeficientes das
variáveis explicativas (CDS, DXY, CRY, VIX, SELIC e NTN-B). Observou-se que, a partir de
2020, houve alterações significativas nesses coeficientes, indicando uma modificação na rela-
ção econométrica entre as variáveis. A comparação entre modelos preditivos revelou perda de
capacidade preditiva dos benchmarks tradicionais.

Genin (2023) investiga o poder preditivo de modelos de projeção da taxa de câmbio
para cinco moedas em relação ao Dólar (Japão, Brasil, Colômbia, Chile e México) no período
de 1995 a 2020, com dados trimestrais do Fundo Monetário Internacional e da Bloomberg. Fo-
ram utilizadas 104 observações trimestrais, reservando 75% dos dados para treinamento e 25%
para teste. Inicia-se o estudo com os modelos estruturais clássicos testados por Meese e Rogoff
(1982, 1983), através de modelos VAR e VECM, utilizando-se múltiplos critérios de seleção,
incluindo medidas de função perda e de direção de mudança, esta última relacionada ao acerto
na direção do ativo ao longo do tempo. Para considerar a inovação, incorpora-se a variável
CDS de 5 anos como proxy da incerteza. Os resultados mostram que não há um modelo que
seja universalmente superior nas projeções de um a seis trimestres, mas destacam a eficácia dos
modelos monetários baseados em fundamentos em comparação com o RW a partir do segundo
trimestre. O estudo explora também o uso de redes neurais como abordagem não linear. Neste
caso, o horizonte de previsão foi definido em um trimestre. Aponta-se a superioridade preditiva
da arquitetura LSTM em relação ao modelo RW, em termos de erros quadráticos médios, em
todos os países analisados. Considera-se que uma explicação sugerida para o Puzzle de Meese
e Rogoff (1983) seria a não-linearidade do processo gerador de dados. Contudo, argumenta-se
que o modelo LSTM apresenta limitações na presença de outliers causados por eventos impre-
visíveis, tais como a COVID-19.

Makika (2022) investiga a previsibilidade das taxas de câmbio utilizando redes neurais
profundas em comparação com modelos lineares tradicionais. Foram aplicados modelos li-
neares ARIMA e ARFIMA e não-lineares Multilayer Perceptron (MLP), LSTM e GRU para
prever as taxas diárias de câmbio Real/Dólar e Euro/Dólar com dados diários de dezembro de
2003 a maio de 2021, com horizontes de previsão dos preços diários de 1 e 7 passos à frente.
A avaliação do desempenho utilizou MAE, MSE, RMSE e acurácia direcional. Os resultados
demonstraram que os modelos não-lineares superam os lineares em ambos os horizontes, sendo
a estrutura GRU a mais eficaz em termos de erro e precisão preditiva.

Marins (2024) avalia a capacidade de previsão de curto prazo (um e três meses) do mo-
delo de opções implícitas (Option-Implied model) para o Brasil e outros 13 países emergentes.
As moedas investigadas são da Índia, México, Rússia, Chile, Singapura, África do Sul, Tur-
quia, Colômbia, Malásia, Indonésia, Israel, Filipinas e Tailândia. O estudo compara modelos
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forward-looking baseados em opções cambiais com modelos econômicos (regra de Taylor, mo-
delos monetários e paridade de poder de compra) baseados em dados históricos e o modelo
RW, no período de maio de 2008 a janeiro de 2022. Os resultados indicam que, em termos
de RMSE, o modelo de opções implícitas supera estatisticamente os modelos econômicos e o
modelo RW em quase todos os casos, apresentando as maiores reduções de erro para a maioria
dos países, variando entre 21% e 32% para o horizonte de um mês à frente e entre 15% e 37%
para o horizonte de três meses à frente. Utiliza-se o teste Diebold e Mariano (1995) com ajuste
de West (1996) para testar a diferença entre as previsões dos modelos e as do RW.

Türkoğlu, Göçecek e Yumrukuz (2024) avaliaram a eficácia de modelos de previsão
para as flutuações da taxa de câmbio entre o Dólar e a Lira turca (USD/TRY), utilizando mo-
delos como Support Vector Machine (SVM), XGBoost, LSTM e GRU com conjuntos de 96
e 21 variáveis explicativas (VIX, CDS, Overnight Interest Rate, US10Y Treasury Yield, entre
outras). O estudo, que usou dados de 01/01/2010 a 30/04/2024 provenientes de fontes como
Bloomberg e BDDK (Agência de Regulação e Supervisão Bancária da Turquia), concluiu que
os modelos LSTM e GRU superaram os demais, com o GRU apresentando a maior precisão
preditiva. A pesquisa evidenciou que modelos baseados em redes neurais são mais eficazes na
captura das dinâmicas complexas da taxa de câmbio, ao contrário do SVM, que teve um de-
sempenho inferior com dados de alta dimensionalidade, e do XGBoost, que apresentou poder
preditivo moderado. Esses achados destacam a importância da escolha adequada de modelos
e variáveis em previsões de séries temporais financeiras. Esses resultados contribuíram para o
uso do modelos LSTM e GRU neste estudo.

Siami-Namini, Tavakoli e Namin (2019) analisaram o desempenho dos modelos ARIMA,
LSTM e BiLSTM na previsão de séries temporais de ações e índices de bolsa de valores, inves-
tigando se a estrutura bidirecional do BiLSTM melhora a precisão preditiva. Utilizando dados
de séries temporais no período de 1985 a agosto de 2018, o estudo comparou a capacidade
dos modelos de capturar padrões complexos e avaliou a influência do treinamento bidirecional.
Os resultados indicaram que o BiLSTM superou o LSTM e o ARIMA, melhorando a acurácia
preditiva em 37,78%, embora com maior tempo de convergência. Conclui-se que o BiLSTM
é mais eficiente na modelagem preditiva, especialmente para séries temporais mais complexas.
No mesmo sentido, García, Guijarro e Oliver (2024) realizaram uma análise comparativa entre
modelos LSTM e BiLSTM para prever taxas de câmbio. Utilizando redes neurais recorrentes,
previram os preços de fechamento diários de diversas moedas estrangeiras e do Bitcoin, com
base em dados de 18/12/2017 a 16/01/2024. Os resultados em geral apontam evidências de su-
perioridade do BiLSTM em relação ao LSTM na previsão de séries temporais financeiras, com
redução nas métricas de erro MAE, MAPE e RMSE. Tais evidências motivaram a inclusão dos
modelos BiLSTM e BiGRU neste estudo.

Ao integrar avanços recentes da literatura à previsão da taxa de câmbio Ptax (BRL/USD)
no Brasil, este estudo amplia o escopo das pesquisas nacionais ao aplicar modelos de DL
(LSTM, GRU e variantes bidirecionais) em múltiplos horizontes de curto prazo, comparando-os
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ao modelo RW, conforme a tradição estabelecida por Meese e Rogoff (1983). A incorporação
de técnicas capazes de capturar relações não lineares e dependências temporais complexas, em
alternativa aos modelos econométricos tradicionais, aliada ao uso de métricas e de testes esta-
tísticos robustos — como os de Diebold-Mariano Modificado (1997), de racionalidade de Rossi
e Sekhposyan (2016), de flutuação de Giacomini e Rossi (2010) —, fortalece a avaliação com-
parativa ao permitir verificar a significância estatística das diferenças de desempenho entre os
modelos, inclusive ao longo do tempo. Essa abordagem evidencia o potencial superior dos mo-
delos de DL frente às abordagens tradicionais e oferece uma estrutura metodológica replicável
e relevante para economias emergentes marcadas por elevada volatilidade cambial.

Os modelos de DL ou aprendizado profundo são compostos por redes neurais avan-
çadas que possuem várias camadas de processamento, permitindo alcançar elevados níveis de
abstração. Para Ciaburro e Venkateswaran (2017, pag. 7) essas redes neurais são amplamente
aplicadas em tarefas complexas, como o reconhecimento e a classificação de imagens, além da
identificação de escrita à mão, entre outras. Assim, esses modelos computacionais, inspirados
no funcionamento do cérebro humano, são capazes de aprender e realizar tarefas complexas
através do ajuste de pesos em suas conexões internas.

No contexto de redes neurais recorrentes ou recurrent neural networks (RNN), modelos
como o LSTM e o GRU são projetados para lidar com dados sequenciais e temporais, incor-
porando mecanismos de memória de longo prazo que lhes permitem capturar dependências
históricas nas séries temporais financeiras que são especialmente úteis na atividade de previ-
são. Diante do cenário econômico atual, marcado por elevada volatilidade na taxa de câmbio,
este estudo busca avaliar a eficácia desses modelos e de suas variantes bidirecionais. Conside-
rando a relevância do modelo RW na literatura, ele será utilizado como benchmark na análise
comparativa de desempenho com os modelos baseados em DL. A seguir, serão apresentados
detalhes adicionais sobre os modelos mencionados, bem como os principais fundamentos dos
modelos de DL, métricas de erro de previsão e testes estatísticos relevantes para comparação
dos desempenhos preditivos.
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2 FUNDAMENTOS TEÓRICOS

2.1 Modelo Random Walk (Passeio Aleatório)

Rogoff e Stavrakeva (2008) revisitaram a literatura de Meese e Rogoff (1982, 1983) e
apontaram que, na prática, o modelo de RW simples é uma alternativa muito mais difícil de
vencer do que o modelo RW com drift. De acordo com o RW sem drift, o melhor preditor das
taxas de câmbio de amanhã, ou de qualquer dia no futuro (st+h), é a taxa de câmbio de hoje (st).
Portanto, as variações nas taxas de câmbio são completamente imprevisíveis, de forma que:

Et [st+h − st ] = 0, (1)

onde Et representa o valor esperado condicional às informações na data t.
Uma série Yt descreve um RW sem drift se:

Yt = Yt−1 +ut , (2)

onde ut é ruído branco com variância σ2.

2.2 Long Short-Term Memory Unit (LSTM) e Bidirectional Long Short-Term
Memory Unit (BiLSTM)

Hochreiter e Schmidhuber (1997) propuseram o modelo LSTM como uma solução para
as limitações das redes neurais recorrentes tradicionais, que enfrentavam dificuldades em apren-
der dependências de longo prazo devido ao problema do gradiente que decresce rapidamente
("vanishing gradient"). Para resolver isso, os autores introduziram unidades de memória com
um mecanismo chamado "constant error carousel" (CEC), que permite manter o fluxo do gradi-
ente ao longo do tempo. Além disso, o modelo incorporou portas multiplicativas que controlam
a entrada, saída e retenção de informações na memória. A pesquisa utilizou dados artificiais
para testar a eficácia do LSTM em comparação com métodos como "backpropagation through

time"(BPTT) e redes de Elman, demonstrando um desempenho superior do mesmo ao aprender
sequências longas de forma mais eficiente.

Joseph e Tackes (2024, p. 310) descrevem a arquitetura das redes neurais LSTM inspi-
radas em portas lógicas computacionais. Nessa arquitetura, as células de memória servem para
armazenar informações de longo prazo e contam com três portas principais que regulam o fluxo
de informação: a porta de entrada (input gate), que controla quanta informação será lida do
estado oculto (hidden state) anterior e da entrada atual; a porta de esquecimento (forget gate),
que decide quanta informação deve ser descartada da memória de longo prazo; e a porta de
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saída (output gate), que define quanto do estado da célula atual (cell state) será utilizado para
gerar o estado oculto atual, que representa a saída da célula. Essas portas são representadas
matematicamente por meio das seguintes equações:

It = σ(Wxixt +WhiHt−1 +bi), (3)

Ft = σ(Wx f xi +Wh f Ht−1 +b f ), (4)

Ot = σ(Wxoxi +WhoHt−1 +bo), (5)

em que σ representa a função sigmoide, Wxi,Wx f ,Wxo,Whi,Wh f ,Who são os pesos treinados, e
bi,b f ,bo são os vieses treinados.

Introduz-se uma nova memória de longo prazo denominada estado da célula ou cell

state (Ct), cujas informações são atualizadas e esquecidas através das três portas citadas anteri-
ormente. Considerando-se o estado da célula no instante anterior (Ct−1), então a célula LSTM
calcula um estado de célula candidato (C̃t), usando outra porta, mas desta vez com função de
ativação tangente hiperbólica:

C̃t = tanh(Wxcxt +WhcHt−1 +bc), (6)

sendo Wxc e Wxh os parâmetros de pesos treinados, e bc o parâmetro de viés treinado.

Dessa forma, a equação principal de atualização, que atualiza o estado da célula relaci-
onado à memória de longo prazo da célula fica:

Ct = Ft ⊙Ct−1 + It ⊙C̃t , (7)

onde ⊙ representa produto de Hadamard, que significa a multiplicação elemento a elemento.

Utiliza-se a porta de esquecimento para decidir quanta informação do passo anterior
será mantida, e a porta de entrada para decidir quanto do estado candidato atual será escrito na
memória de longo prazo.

Por fim, usa-se o estado atual da célula (Ct) recém-atualizado e a porta de saída para
decidir quanta informação será repassada ao preditor por meio do estado oculto atual:

Ht = Ot ⊙ tanh(Ct). (8)
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Dessa forma, a arquitetura LSTM possibilita a preservação de informações por longos
períodos sem sofrer degradação, sendo amplamente utilizada em aplicações de séries temporais
e processamento sequencial. Vale ressaltar que a função de ativação adotada neste estudo foi a
Rectified Linear Unit (ReLU), que será descrita posteriormente. No entanto, a lógica apresen-
tada para a arquitetura do modelo LSTM permanece inalterada. Para uma melhor ilustração,
observa-se, a seguir, o diagrama do modelo LSTM.

Figura 1 - Diagrama do modelo LSTM.

Nota: Representação esquemática da arquitetura do modelo LSTM.

Fonte: JOSEPH; TACKES, 2024, p. 311. Tradução do autor.

De acordo com Schuster e Paliwal (1997), as Redes Neurais Recorrentes Bidirecionais
(BRNNs) foram desenvolvidas para superar as limitações das RNNs tradicionais, permitindo
que a rede utilize informações do passado e do futuro dentro de um intervalo de tempo. Para
isso, a BRNN divide os neurônios de estado (hidden units ou hidden states) em dois conjuntos:
um responsável pelo processamento na direção do tempo (forward states) e outro na direção
oposta (backward states), sem conexões entre eles. Essa estrutura possibilita minimizar a função
objetivo sem a necessidade de atrasos explícitos para incluir informações futuras.

O treinamento da BRNN segue um processo semelhante ao das RNNs convencionais,
podendo ser realizado por meio de BPTT, sendo que a atualização dos estados forward e
backward deve ocorrer simultaneamente. Em experimentos comparativos, a BRNN demons-
trou desempenho superior a outras arquiteturas em tarefas de regressão e classificação, tendo
sido testada tanto em dados artificiais quanto em problemas reais de classificação de fonemas.

Segundo Siami-Namini, Tavakoli e Namin (2019), as redes neurais profundas BiLSTM
são uma extensão dos modelos LSTM tradicionais, onde duas LSTMs processam os dados de
entrada: uma no sentido direto e outra no sentido reverso. Essa abordagem tende a melhorar a
captura de dependências de longo prazo, aumentando a precisão do modelo.
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2.3 Gated Recurrent Unit (GRU) e Bidirectional Gated Recurrent Unit (BiGRU)

Joseph e Tackes (2024) descrevem a arquitetura das redes neurais GRU, propostas por
Cho, Merriënboer e Gulcehre (2014) como uma variação das RNN que apresenta uma estrutura
mais simples que a LSTM. A principal diferença é que a GRU elimina o componente de memó-
ria de longo prazo, utilizando apenas o estado oculto (hidden state) para propagar informações.
Assim, o próprio estado oculto funciona como uma “rodovia de gradientes”. A arquitetura da
GRU possui duas portas para regular o fluxo de informações: a porta de reinicialização e a porta
de atualização.

A porta de reinicialização (reset gate) controla a quantidade de informação do estado
oculto anterior a ser considerada na geração do estado oculto candidato no tempo atual, representando-
se matematicamente por:

Rt = σ(Wxrxt +WhrHt−1 +br) (9)

onde os parâmetros Wxr e Whr são pesos treinados, enquanto br é o viés treinado.
Por sua vez, a porta de atualização (update gate) define o quanto do estado oculto ante-

rior deve ser mantido e quanto do estado oculto candidato atual será incorporado no novo estado
oculto, descrevendo-se por:

Ut = σ(Wxuxt +WhuHt−1 +bu), (10)

onde os parâmetros Wxu e Whu são pesos treinados, enquanto bu é o viés treinado.
Dessa forma, pode-se calcular o estado oculto candidato H̃t da seguinte forma:

H̃t = tanh(Wxhxt +WhhRt ⊙Ht−1 +bh), (11)

onde Wxh e Whh são pesos treinados e bh é o viés treinado. Utiliza-se a porta de reinicialização
para regular o fluxo de informação do estado oculto anterior para o estado oculto candidato
atual.

Assim, o estado oculto atual Ht (a saída que vai para o preditor) é calculado através da
seguinte equação:

Ht =Ut ⊙Ht−1 +(1−Ut)⊙ H̃t . (12)

Basicamente, utiliza-se a porta de atualização (update gate) para determinar quanto do
estado oculto anterior e quanto do estado oculto candidato atual será transmitido para o pró-
ximo instante de tempo ou para o preditor. Dessa forma, a rede GRU reduz a complexidade
computacional em relação à LSTM, mantendo um desempenho eficiente para modelagem de
séries temporais. Para uma melhor ilustração, pode-se observar, a seguir, o diagrama do modelo
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GRU.

Figura 2 - Diagrama do modelo GRU.

Nota: Representação esquemática da arquitetura do modelo GRU.

Fonte: JOSEPH; TACKES, 2024, p. 313. Tradução do autor.

De forma equivalente ao apontando por Siami-Namini, Tavakoli e Namin (2019) para
o modelo BiLSTM, as redes neurais profundas BiGRU são uma extensão dos modelos GRU
tradicionais, onde duas GRUs processam os dados de entrada: uma no sentido direto e outra no
sentido reverso. Essa abordagem tende a melhorar a captura de dependências de longo prazo,
aumentando a precisão do modelo. Assim, valem as mesmas considerações já descritas para as
redes neurais recorrentes bidirecionais apontadas para o modelo BiLSTM.

2.4 Conceitos relevantes aplicados ao Deep Learning

2.4.1 Funções de ativação

Joseph e Tackes (2024, p. 281-283) estabelecem um paralelo entre as funções de ativação
e os neurônios biológicos em que o axônio avalia as entradas para decidir se emitirá um sinal. De
forma semelhante, as funções de ativação desempenham um papel crucial nas redes neurais, pois
são responsáveis por permitir que essas redes modelem padrões não lineares. Elas são funções
diferenciais não lineares que transformam um espaço vetorial não linearmente separável em um
espaço linearmente separável — transformação fundamental para lidar com dados complexos.

A função sigmoide, também conhecida como função logística, é uma das funções de
ativação mais antigas e amplamente utilizadas. Ela comprime os valores de entrada em um
intervalo entre 0 e 1. No entanto, apresenta um problema conhecido como saturação: quando
os neurônios operam em regiões planas da função, os gradientes tornam-se próximos de zero,
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o que compromete o processo de aprendizado. Por essa razão, a função sigmoide é raramente
utilizada em camadas ocultas de redes profundas, sendo mais comum em camadas de saída.

A função tangente hiperbólica (tanh) compartilha limitações semelhantes, pois também
pode saturar para valores de entrada grandes positivos ou negativos, levando ao problema do
vanishing gradient e dificultando o treinamento de redes neurais profundas.

Por outro lado, as funções de ativação ReLU tornaram-se um padrão para redes neurais
profundas. Definida como g(x) = max(x,0), essa função linear mantém valores positivos e anula
valores negativos. Suas principais vantagens incluem baixo custo computacional, rápida con-
vergência no treinamento e promoção da esparsidade em que uma parte dos neurônios pode ser
desativada. A função de ativação ReLU também tem desvantagens, pois pode sofrer com o pro-
blema de "neurônios mortos", nos quais gradientes nulos impedem o aprendizado. Além disso,
a média da saída tende a ser positiva, podendo introduzir viés nas camadas empilhadas. Porém,
pelas suas vantagens de não saturação em relação a função de ativação tangente hiperbólica, a
função ReLU será adotada neste estudo. Como a ReLU não tende gradualmente a um limite,
ela evita o problema do vanishing gradient, tornando o treinamento de redes neurais profundas
mais eficiente.

2.4.2 Gradiente descendente

O gradiente descendente (gradient descent) é um algoritmo de otimização usado para
minimizar uma função de custo, movendo-se iterativamente na direção do maior declive nega-
tivo. O tamanho do passo em cada iteração é regulado pela taxa de aprendizado (learning rate)
η , que equilibra a estabilidade e a velocidade de convergência do modelo. O θ é o vetor de
parâmetros e a cada iteração, atualizam-se os parâmetros pela seguinte fórmula:

θi+1 = θi −η ×∇ f (a,b), (13)

em que ∇ representa o gradiente da função.

2.4.3 Overfitting e underfitting e conceitos relacionados ao treinamento dos modelos de DL

No contexto do aprendizado de máquinas, os fenômenos de overfitting e underfitting

constituem um grande desafio a ser superado. Há a necessidade de que o modelo de DL, ao pro-
cessar novos dados, apresente uma performance adequada. Enquanto a otimização matemática
busca o máximo global nos dados disponíveis, o aprendizado de máquina visa minimizar o erro
em um novo conjunto de dados usando o erro de treinamento como referência.

A regularização é apresentada como uma técnica para reduzir a complexidade do mo-
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delo, favorecendo funções mais simples dentro do espaço de hipóteses, frequentemente por
meio do decaimento de pesos. Podem-se citar os regularizadores L1 e L2, que adicionam ter-
mos à função de perda (L) para penalizar pesos elevados, evitando o sobreajuste. Além disso,
destaca-se o uso do dropout, que consiste em desligar aleatoriamente uma fração dos neurô-
nios durante o treinamento, forçando o modelo a não depender excessivamente de unidades
específicas e, assim, contribuindo para uma melhor capacidade de generalização.

Por outro lado, o Early Stopping é uma técnica que monitora a perda na validação e in-
terrompe o treinamento quando há degradação do objetivo de minimização da função de perda.
O parâmetro patience define quantas épocas sem melhora são toleradas antes de encerrar o trei-
namento. Tal procedimento foi utilizado neste estudo empírico de forma a evitar overfitting, em
que o modelo perde a capacidade de generalização ao se ajustar demais aos dados de treino.
No treinamento de redes neurais, uma etapa de treinamento representa uma única atualização
dos parâmetros via gradiente, sendo que, no gradiente descendente estocástico em lote, essa
atualização ocorre após cada lote de dados. O lote (batch) corresponde ao número de amos-
tras processadas pelo modelo antes de calcular e atualizar os gradientes. Já uma época (epoch)
ocorre quando o modelo percorre todos os dados do conjunto de treinamento, garantindo que
todas as amostras tenham sido utilizadas para atualização dos parâmetros.

2.5 Métricas de erro

De forma geral, o erro corresponde à diferença entre o valor efetivamente observado da
variável e o valor previsto pelo modelo no período t, tal que: et = (Yt − Ŷt).

2.5.1 Erro Médio Absoluto ou Mean Absolute Error (MAE)

Mede-se a magnitude média dos erros absolutos, sendo útil para entender o tamanho
médio das discrepâncias. É ideal para comparar previsões em séries temporais na mesma escala.

MAE =
1
H

H

∑
t=1

|et |, (14)

com |et | correspondente ao valor absoluto de et .
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2.5.2 Erro Quadrado Médio ou Mean Squared Error (MSE)

O MSE penaliza os erros maiores devido ao uso do quadrado, destacando desvios signi-
ficativos. É útil especialmente quando erros grandes precisam ser minimizados.

MSE =
1
H

H

∑
t=1

e2
t . (15)

2.5.3 Raiz do Erro Quadrado Médio ou Root Mean Squared Error (RMSE)

Fornece uma interpretação mais intuitiva do erro, retornando valores na mesma unidade
dos dados originais. Assim como o MSE, penaliza erros maiores, mas é mais útil na compara-
bilidade.

RMSE =

√
1
H

H

∑
t=1

e2
t . (16)

2.5.4 Erro Médio Absoluto Percentual ou Mean Absolute Percent Error (MAPE)

Enquanto o erro absoluto e o erro quadrado são dependentes da escala, o erro percentual
é uma medida de erro independente da escala.

MAPE =
100
H

H

∑
t=1

|et |
yt

. (17)

Avalia-se o erro como uma porcentagem das observações reais, tornando-se indepen-
dente da escala. Ideal para comparar séries temporais de diferentes escalas ou unidades.

2.6 Testes estatísticos

O teste de Diebold e Mariano (1995) é amplamente utilizado para comparar previsões
de diferentes modelos, verificando se suas projeções são estatisticamente equivalentes ou apre-
sentam diferenças significativas, sem necessariamente avaliar os modelos em si. Trata-se de
uma ferramenta fundamental na análise comparativa da precisão preditiva.

Como a taxa de câmbio está sujeita a choques de diversas ordens, é essencial avaliar
não apenas a precisão das previsões, mas também sua consistência ao longo do tempo. Assim,
este estudo investiga também a racionalidade e estabilidade das previsões cambiais, aplicando
os testes de racionalidade de Rossi e Sekhposyan (2016) e o teste de flutuação de Giacomini e
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Rossi (2010).
Basicamente, o teste de flutuação de Giacomini e Rossi (2010) identifica possíveis mu-

danças na qualidade preditiva relativa ao longo do tempo entre dois modelos, detectando perío-
dos em que as previsões podem se tornar relativamente menos confiáveis. Por sua vez, o teste
de racionalidade Rossi e Sekhposyan (2016) examina a racionalidade das previsões, avaliando
se os erros de previsão são imprevisíveis no sentido de que as previsões não tenham vieses e se-
jam eficientes, o que pode indicar ausência de choques estruturais e adequação do modelo para
explicar o comportamento da taxa de câmbio em dada janela de tempo. Nesses dois últimos
testes foram definidas janelas móveis de 20 dias úteis.

Por outro lado, para garantir uma avaliação robusta, utilizamos previsões diretas h-
passos à frente, realizadas tanto no período de validação quanto no período de teste. Essa
abordagem minimiza a propagação de erros acumulados, permitindo uma análise mais precisa
da estabilidade e racionalidade das projeções ao longo do tempo.

2.6.1 Teste de Diebold-Mariano (1995)

O teste de Diebold e Mariano (1995) é utilizado para comparar previsões feitas por
diferentes modelos, embora não analise os modelos propriamente ditos. Seu objetivo é verificar
se as previsões fora da amostra de dois modelos são estatisticamente equivalentes ou apresentam
diferenças significativas. Trata-se de um método simples de aplicar, mas considerado eficaz para
realizar comparações entre projeções.

Conforme Diebold (2015), basicamente, o teste de DM avalia a igualdade de acurácia
preditiva entre dois modelos, considerando diretamente os erros de previsão. O diferencial de
perda em t entre os modelos 1 e 2 é definido como d12t = L(e1t)− L(e2t), onde L(et) repre-
senta a função de perda como, por exemplo o erro quadrático. O teste tem como condição
suficiente, mas não estritamente necessária, que d12,t seja covariante estacionário. A estatística
DM converge assintoticamente para a distribuição normal quando a suposição de estacionari-
edade é válida. Assume-se que E(d12t) = 0 sob a hipótese nula (H0) de acurácia equivalente
entre as previsões contra a hipótese alternativa (HA) de que os modelos têm diferentes acurácias
preditivas.

Pode-se testar a perda diferencial para todo o horizonte amostral T e avaliar a estatística
DM12 resultante. Seja D12 a média amostral das perdas diferenciais, tal que D12 =

1
T ∑

T
t=1 d12t ,

e σ̂D12 um estimador consistente do desvio padrão de D12, então:

DM12 =
D12

σ̂D12

d→ N (0,1). (18)

Adicionalmente, nos mesmos moldes que os trabalhos de Rossi (2013) e Saba (2015), será
adotada no teste DM o estimador de Newey-West para a variância dos erros de forma a corrigir
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possíveis problemas de heterocedasticidade e autocorrelação nos erros, o que torna o método
mais robusto. Esta versão será chamada neste estudo simplesmente de teste DM.

2.6.2 Teste de Diebold-Mariano Modificado (1997)

Harvey, Leybourne e Newbold (1997) sugerem que melhores propriedades em amostras
pequenas podem ser obtidas por meio de uma correção de viés na estatística do teste DM e de
uma comparação da estatística corrigida com uma distribuição t de Student com (T −1) graus
de liberdade, em vez da distribuição normal padrão.

Iquiapaza, Bressan e Amaral (2010) descrevem que como as propriedades do teste DM
são prejudicadas, especialmente, nos casos de não normalidade, Harvey, Leybourne e Newbold
(1997) adaptaram-o para a distribuição t de Student:

DMm =

[
T +1−2h+T−1h(h−1)

T

]1/2

DM ∼ tT−1,

onde h é o número de passos à frente utilizados na previsão, T é o tamanho da amostra e DMm
é a estatística de teste do teste Diebold-Mariano Modificado (DMM).

2.6.3 Teste de flutuação de Giacomini e Rossi (2010)

O teste de flutuação de Giacomini e Rossi (2010) investiga o desempenho preditivo
local, fundamentando-se na premissa de que a qualidade preditiva dos modelos pode variar
substancialmente ao longo do tempo. Os autores argumentam que medidas agregadas, como
o erro absoluto médio (MAE) ou erro quadrático médio (MSE), podem mascarar informações
relevantes sobre essa variação.

O teste de flutuação baseia-se na estatística de Diebold e Mariano (1995), aplicada em
janelas móveis de tamanho m. Neste estudo adotou-se m = 20, aproximadamente um mês.
A estatística de teste é calculada ao longo do tempo para detectar mudanças na capacidade
preditiva relativa entre dois modelos concorrentes.

Formalmente, conforme resumido em Castro (2023) e Castro e Aiube (2023), define-se
a perda relativa local como a sequência de diferenças de perda fora da amostra, calculadas em
janelas móveis de tamanho m. O teste avalia o desempenho preditivo relativo entre modelos
concorrentes ao longo do tempo, considerando uma função de perda L(.) escolhida pelo pes-
quisador. Seja L( j)(.) a função de perda associada ao modelo j, com j = 1,2, então a sequência
das diferenças de perda fora da amostra é dada por:

∆Lt,h = L(1)
t,h −L(2)

t,h (19)
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No caso da perda quadrática associada ao erro médio quadrático de previsão, tem-se:

L( j)
t,h = e( j)

t+h
2, (20)

onde e( j)
t+h representa os erros de previsão h passos a frente do modelo j.
A função de perda quadrada é a função de perda mais amplamente usada na prática,

sendo implementada também neste estudo conforme o procedimento descrito abaixo.
Giacomini e Rossi (2010) definiram a perda relativa local como a sequência de diferen-

ças de perda em janelas móveis de tamanho m:

m−1
t

∑
j=t−m+1

∆L j,h, t = m,m+1, . . . ,P. (21)

A hipótese nula (H0) testada é de mesma capacidade preditiva em cada período no
tempo: E(∆Lt,h) = 0, ∀t, onde a hipótese alternativa pode ser E(∆Lt,h) ̸= 0 (alternativa bi-
lateral).

Quando se considera a alternativa bilateral, a estatística do teste de flutuação é o maior
valor sobre a sequência das perdas relativas redimensionadas:

max
t

∣∣∣FOOS
t,m

∣∣∣ , onde FOOS
t,m = σ̂

−1m−1/2
t

∑
j=t−m+1

∆L j,h e t = m,m+1, . . . ,P, (22)

com σ̂2 sendo um estimador robusto de heterocedasticidade e autocorrelação (HAC) consistente
da variância de longo prazo, conforme Newey e West (1987), e P correspondente ao tamanho
da porção fora da amostra.

Dessa forma, a hipótese nula (H0) é rejeitada se:

max
t

FOOS
t,m > kα,µ , (23)

onde kα,µ é o valor crítico dependente do tamanho da janela móvel µ e do número de diferenças
de perda fora da amostra.

2.6.4 Teste de racionalidade de Rossi e Sekhposyan (2016)

O teste de racionalidade proposto por Rossi e Sekhposyan (2016) avalia a capacidade
preditiva de modelos em ambientes instáveis, expandindo a análise tradicional de viés e eficiên-
cia das previsões. Sua principal inovação reside na robustez diante de instabilidades amostrais,
permitindo a detecção de quebras de racionalidade ao longo do tempo.

O teste examina a racionalidade das previsões em janelas móveis, identificando períodos
específicos de irracionalidade dos erros de previsão que poderiam ser mascarados em análises
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agregadas. Diferenciando-se da abordagem de Giacomini e Rossi (2010), que compara o de-
sempenho relativo entre modelos sob instabilidade, o teste de Rossi e Sekhposyan avalia a
habilidade preditiva absoluta, levando em conta o erro de estimação dos parâmetros. Aplica-
ções empíricas demonstram sua eficácia, evidenciando, por exemplo, que previsões do Federal
Reserve subestimaram consistentemente a inflação nos anos 1970 e a superestimaram nos anos
1980 devido a mudanças estruturais. Embora o uso de janelas móveis possa reduzir o poder esta-
tístico em amostras pequenas, o teste demonstrou superioridade na detecção de irracionalidade
localizada dos erros de previsão, tornando-se uma ferramenta avançada para análise preditiva
sob instabilidade.

Rossi e Sekhposyan (2014), consideram o erro de previsão associado à previsão de h

passos à frente feita no tempo t, denotando-o por vt+h(γ̂t,R), em que γ̂t,R representa os parâ-
metros estimados do modelo. Descreve-se como exemplo para um modelo de regressão linear
simples com um vetor de regressores defasados de h períodos, xt , de dimensão (k× 1), onde
Et [yt+h] = x′tγ , a previsão no tempo t é dada por ŷt+h|t = x′t γ̂t,R e o erro de previsão é dado por:

vt+h(γ̂t,R) = yt+h − x′t γ̂t,R. (24)

Esse erro representa a diferença entre o valor efetivo yt+h e a previsão feita no tempo t,
sendo fundamental para avaliar a qualidade das previsões e testar sua racionalidade. O teste de
racionalidade das previsões baseia-se no trabalho de West e McCracken (1998), considerando-
se a seguinte regressão geral:

vt+h(γ̂t,R) = ĝ′t ·θ +ηt+h, t = R, . . . ,T, (25)

em que ĝt ≡ gt(γ̂t,R) é um vetor (ℓ× 1) baseado nos dados do período t, que pode ser uma
função do estimador γ̂t,R, θ é um vetor de parâmetros (ℓ×1), e vt+h(γ̂t,R) representa o erro de
previsão estimado.

West e McCracken (1998) formulam a hipótese nula do teste como: H0 : θ = θ0 vs. HA :
θ ̸= θ0, onde θ0 = 0.

Seja θ̂P a estimativa de θ na regressão, o teste de Wald correspondente é definido da
seguinte forma:

WP = P
(
θ̂P −θ0

)′
V̂−1

θ ,P

(
θ̂P −θ0

)
, (26)

onde V̂θ ,P é um estimador consistente da variância de longo prazo de
√

Pθ̂P.
Para lidar com instabilidades, adota-se uma abordagem de regressão em janelas móveis.

Seja θ̂ j a estimativa de θ na regressão no instante j sobre janelas de tamanho m. Neste traba-
lho foi adotado m=20, aproximadamente igual ao período de um mês. Assim, θ̂ j é estimado
sequencialmente para j = R+m, . . . ,T usando as observações mais recentes. O teste de Wald
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correspondente é:

W j,m = mθ̂
′
jV̂

−1
θ

θ̂ j, para j = R+m, . . . ,T. (27)

Então, o teste de racionalidade é definido como:

max
j∈{R+m,...,T}

W j,m, (28)

sendo utilizado para testar a hipótese nula:

H0 : θ j = θ0 vs. HA : θ j ̸= θ0, ∀ j = R+m, . . . ,T. (29)

onde θ0 = 0 e θ j representa o valor verdadeiro do parâmetro e V̂θ ,P é um estimador consistente
da variância assintótica de

√
Pθ̂P. Conforme West e McCracken (1998), em casos especiais

(como viés de previsão ou eficiência), V̂θ é um estimador HAC da variância assintótica das
estimativas dos parâmetros nas janelas móveis, implementado substituindo P por m na notação
original.

A hipótese nula é rejeitada se maxWt,m > κα,ℓ, sendo κα,ℓ o valor crítico no nível de
significância de 100α%, com o número de restrições igual a ℓ. O valor crítico para o teste pode
ser obtido via simulação de Monte Carlo. Neste estudo, utilizou-se uma aproximação do teste
tradicional de Mincer e Zarnowitz (1969), que conforme descrito por Rossi e Soupre (2017),
segue uma distribuição assintótica qui-quadrado com ℓ graus de liberdade. Descreve-se ainda
que, ao contrário do teste de racionalidade que considera maxWt,m, o teste tradicional não é
robusto a instabilidades pois foi projetado para avaliar a hipótese nula incondicional.
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3 METODOLOGIA

Este capítulo descreve os procedimentos metodológicos adotados para a condução do
estudo, que abrange desde a coleta e preparação dos dados até a modelagem preditiva e ava-
liação de desempenho. A pesquisa segue uma abordagem quantitativa, de natureza aplicada e
caráter empírico, com foco na avaliação da capacidade preditiva de diferentes arquiteturas de
modelos de DL para prever a taxa de câmbio Ptax de venda do Real brasileiro frente ao Dólar
americano (BRL/USD), tendo como benchmark o modelo RW. O principal objetivo deste estudo
é verificar se as previsões de algum dos modelos LSTM, BiLSTM, GRU e BiGRU, aplicados
nas arquiteturas e parâmetros especificados, conseguem superar o desempenho do modelo RW,
especialmente no período de teste.

Quanto aos procedimentos técnicos adotados, esta pesquisa é classificada como um es-
tudo de caso, por buscar avaliar se a aplicação de modelos de DL sob certas especificações,
no contexto do período analisado, é capaz de aprimorar a previsão da taxa de câmbio Ptax de
venda, considerando cenários com e sem a inclusão de variáveis econômicas e financeiras como
fatores explicativos.

Conforme Prodanov e Freitas (2013), esse procedimento objetiva orientar uma ou mais
decisões e identificar seus motivos e resultados. A pesquisa também é classificada como descri-
tiva, pois visa descrever as características de determinado fenômeno e estabelecer relações entre
as variáveis. No contexto desta pesquisa, isso se reflete na análise da relação entre as variáveis
explicativas e a taxa de câmbio Ptax de venda, além da comparação entre as previsões geradas
pelos diferentes modelos.

Para um estudo mais abrangente, adota-se tanto a abordagem univariada, que considera
apenas os valores passados da taxa de câmbio Ptax de venda, quanto a abordagem multivariada,
que incorpora variáveis econômicas e financeiras (VIX, DXY, CRY, diferencial de juros, CDS
de 5 e 10 anos, títulos do Tesouro dos EUA de 5 e 10 anos, índice Ibovespa e S&P 500), além
dos valores passados da respectiva taxa de câmbio. Os horizontes de previsão considerados
serão de 1, 10 e 20 dias à frente. Além disso, serão avaliadas duas variações de arquitetura nos
modelos de DL em cada caso: uma com uma camada recorrente (1CR) e outra com duas cama-
das recorrentes (2CR), cujas especificações correspondem aos nomes atribuídos aos respectivos
modelos de DL (LSTM, GRU, BiLSTM e BiGRU).

3.1 Coleta, preparação dos dados e treinamento

A coleta e preparação dos dados deste estudo seguiram uma abordagem quantitativa,
com a utilização do ambiente Google Colab para a implementação dos modelos preditivos e
download dos dados em formato de planilha do Microsoft Excel. Os dados históricos da taxa
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de câmbio Ptax de venda (BRL/USD) foram obtidos por meio da Interface de Programação de
Aplicações (API) do Banco Central do Brasil. Além disso, foram coletadas séries temporais de
variáveis econômicas e financeiras relacionadas à previsão cambial na plataforma Bloomberg.
A base de dados considerada abrange o período de janeiro de 2020 a dezembro de 2024, com
frequência diária.

Inicialmente, os dados foram carregados e pré-processados. O índice da série temporal
foi convertido para o formato datetime, garantindo o correto manuseio temporal. Em seguida,
foi realizada a seleção da variável-alvo, denominada "Ptax_Venda", e das variáveis preditoras a
serem utilizadas nos modelos multivariados.

A etapa de limpeza dos dados foi conduzida com rigor, mantendo valores ausentes como
NaN, de forma a preservar a integridade das séries temporais e evitar imputações que pudessem
introduzir viés. Na sequência, os registros com valores inconsistentes ou nulos foram removi-
dos, assegurando que apenas dados válidos e representativos fossem utilizados no treinamento
dos modelos.

As variáveis foram então normalizadas utilizando o método MinMaxScaler, que res-
tringe os valores à faixa entre 0 e 1, favorecendo a estabilidade e a convergência dos algoritmos
de aprendizado de máquina. Após essa etapa, os dados foram organizados em janelas móveis
para formar sequências temporais, permitindo que os modelos capturassem padrões sazonais e
de tendência relevantes para a previsão.

Para garantir uma avaliação robusta, o conjunto de dados foi dividido respeitando a
ordem cronológica, destinando-se 80% ao treinamento, 10% à validação e 10% ao teste, pro-
cedimento semelhante ao adotado em diversos estudos preditivos, como os de Petracca (2024,
p. 16) e Mbedzi (2022, p. 24). Tal procedimento está em conformidade com as recomendações
de Joseph e Tackes (2024, p. 78), que destacam a importância de manter a estrutura temporal
em problemas envolvendo séries temporais. A divisão entre validação e teste também evita o
fenômeno conhecido como data leakage, no qual o modelo tem acesso a informações que não
estariam disponíveis no momento da previsão. Um exemplo clássico de vazamento ocorre ao se
aplicar técnicas de escalonamento antes da separação dos dados em treino e teste, comprome-
tendo a avaliação realista do desempenho do modelo. O conjunto de validação permite o ajuste
dos hiperparâmetros durante o treinamento e a seleção dos modelos de DL em cada arquitetura,
enquanto o conjunto de teste, contendo dados completamente inéditos, é utilizado exclusiva-
mente para avaliar o desempenho final das previsões dos respectivos modelos, simulando-se
uma aplicação prática.

A dinâmica de treinamento dos modelos de redes neurais DL seguiu a lógica da otimiza-
ção iterativa da função de perda com base nos dados de treino, acompanhada pela verificação do
desempenho nos dados de validação para evitar o sobreajuste (overfitting). Os gráficos das fun-
ções de perda de treinamento e de validação dos modelos de DL com menores métricas de erro
no período de teste podem ser observados no Apêndice B. O conjunto de teste foi mantido iso-
lado até o momento final, servindo como referência para estimar a capacidade de generalização
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dos modelos.
As previsões foram realizadas em três horizontes distintos: 1, 10 e 20 dias úteis à frente.

Adotou-se a abordagem de previsão direta (direct forecasting), em que um modelo é treinado
especificamente para cada horizonte, estimando diretamente o valor futuro desejado, sem re-
correr a previsões intermediárias. Essa estratégia tem como objetivo minimizar o acúmulo de
erros, sobretudo em horizontes mais longos, sendo recomendada para melhorar a precisão das
previsões.

A definição do tamanho das janelas móveis para cada horizonte de previsão baseou-se
na minimização das métricas de erro no período de validação, durante os estudos preliminares,
em um procedimento voltado a simular uma aplicação prática. Para isso, foram conduzidos
testes em que os modelos foram calibrados exclusivamente com informações do conjunto de
treinamento e, em seguida, avaliados no conjunto de validação, isto é, nos dados já conheci-
dos no contexto da simulação prática. Esse critério de calibração permitiu selecionar, de forma
sistemática, a configuração de janelas mais adequada para cada horizonte de previsão, antes de
qualquer contato com os dados do período de teste. Como resultado, foram definidos tamanhos
de janelas de 5, 30 e 40 dias úteis para os horizontes de 1, 10 e 20 dias úteis à frente, respecti-
vamente. A etapa seguinte consistiu em verificar a capacidade de generalização dessa seleção,
analisando o desempenho obtido no conjunto de teste.

3.2 Modelos Preditivos

O estudo avalia a eficácia de diferentes modelos preditivos, incluindo os modelos de DL
LSTM, BiLSTM, GRU e BiGRU, bem como o modelo RW, usado como benchmark. Os mode-
los de DL foram aplicados tanto na abordagem univariada quanto multivariada. Na abordagem
univariada, foi considerada apenas a série histórica da taxa de câmbio Ptax de venda, enquanto
na abordagem multivariada, foram incorporadas variáveis econômicas e financeiras de frequên-
cia diária descritas na literatura, visando verificar sua contribuição para o aprimoramento das
previsões.

Em cada combinação de modelo de DL, abordagem e horizonte de previsão foram adota-
das duas arquiteturas distintas: a primeira com uma única camada recorrente (1CR) e a segunda
com duas camadas recorrentes empilhadas (2CR). Foram conduzidos testes empíricos prelimi-
nares com objetivo de subsidiar a definição básica das arquiteturas, especificações e parâmetros
dos modelos de DL. A estruturação dos modelos de DL foi orientada no sentido de redução
das métricas de erro de previsão RMSE, MAE e MAPE, além de uma consistência entre os
resultados obtidos nos períodos de validação e de teste, visando consistência das previsões e
capacidade de generalização. A Tabela 1 descrita na sequência apresenta as configurações es-
truturais implementadas no estudo.
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Tabela 1 - Arquiteturas e parâmetros dos modelos de DL

Arquiteturas: Modelos de DL com uma ca-
mada recorrente (1CR)

Modelos de DL com duas cama-
das recorrentes (2CR)

Camada de entrada
Primeira camada re-
corrente

Com 64 unidades, função de ati-
vação ReLU e regularizador ker-

nel L2 (0,01)

Com 64 unidades, função de ati-
vação ReLU e regularizador ker-

nel L2 (0,01)

Segunda camada re-
corrente

Não possui Com 32 unidades e função de
ativação ReLU

Dropout Após a camada recorrente (dro-

pout: taxa = 0,1)
Após a segunda camada recor-
rente (dropout: taxa = 0,1)

Camada Densa 1 Com 32 unidades, função de ati-
vação ReLU e regularizador ker-

nel L2 (0,01)

Com 16 unidades, função de ati-
vação ReLU e regularizador ker-

nel L2 (0,01)

Camada Densa 2 (Ca-
mada de saída)

1 unidade 1 unidade

Nota: A designação atribuída aos modelos de DL corresponde ao tipo de camada recorrente utilizada em cada arquitetura

(1CR ou 2CR): LSTM, GRU, BiLSTM ou BiGRU.

Fonte: O autor, 2025.

A Tabela 1 resume as arquiteturas dos modelos de DL aplicados na previsão da taxa de
câmbio Ptax de venda. Foram adotadas duas arquiteturas com o objetivo de avaliar o impacto
da profundidade da rede neural na capacidade preditiva dos modelos.

Basicamente, a Arquitetura com 1CR, após a camada de entrada, é composta por uma
única camada recorrente com 64 unidades, função de ativação ReLU e regularização kernel

L2, seguida de uma camada densa com 32 unidades, função de ativação ReLU e regularização
kernel L2, seguida por uma camada densa de saída. Já a Arquitetura com 2CR, após a camada
de entrada, conta com duas camadas recorrentes: a primeira com 64 unidades e a segunda
com 32 unidades, ambas utilizando função de ativação ReLU e regularização kernel L2. Além
disso, inclui uma camada densa intermediária com 16 unidades, função de ativação ReLU e
regularização kernel L2, antes da camada densa de saída.

Adicionalmente, cabe observar que ambas as arquiteturas utilizam a função de perda
MSE. Os modelos de DL foram treinados com os otimizadores Adam ou AdamW, mantendo
uma taxa de aprendizado (learning rate) inicial de 0,0001. Foram aplicadas técnicas de regu-
larização como o dropout (0,1) e regularização kernel L2 (0,01), visando mitigar o risco de
sobreajuste (overfitting). O dropout (0,1) significa que 10% das unidades daquela camada serão
desativados de forma aleatória em cada iteração durante o treinamento, reduzindo a dependên-
cia do modelo de combinações específicas de unidades. Já o kernel L2 (0,01) adiciona um
termo de penalização proporcional ao quadrado dos pesos da camada, incentivando o modelo a
manter pesos menores e, assim, favorecendo soluções mais simples e com maior capacidade de



41

generalização.
Por outro lado, durante o treinamento, adotou-se o critério de Early Stopping (patience

= 5 e "min_delta" = 1e-4), para interromper o treinamento quando não ocorrer melhora signifi-
cativa na perda de validação. O parâmetro "min_delta" estabelece a variação mínima necessária
na métrica monitorada para que uma melhoria seja considerada relevante. Adicionalmente,
empregou-se o método "ReduceLROnPlateau" para ajuste dinâmico da taxa de aprendizado,
configurado com fator = 0,5 (reduzindo a taxa pela metade), patience = 3 (número de épocas
sem melhoria antes da redução) e "min_lr" = 1e-5 (taxa de aprendizado mínima permitida).

O uso combinado dessas estratégias buscou promover uma estabilidade no processo
de treinamento, boa capacidade de generalização e consistência das previsão nos diferentes
horizontes temporais considerados.

3.3 Avaliação do Desempenho

A avaliação do desempenho será conduzida em duas etapas. Primeiramente, no período
de validação, será selecionado o melhor modelo de DL com base nas menores métricas de erro
desse período. Em seguida, esse modelo será comparado ao modelo RW no período de teste —
fase em que os dados são inéditos para os modelos — simulando-se uma aplicação prática. Essa
abordagem permite avaliar tanto a eficácia da seleção do modelo de DL quanto sua capacidade
de generalização fora da amostra, além de possibilitar a comparação direta com o desempenho
do modelo RW.

O desempenho preditivo dos modelos será mensurado pelas métricas de erro RMSE,
MAE e MAPE. Adicionalmente, para cada abordagem e horizonte de previsão, realizam-se
testes estatísticos entre o modelo RW e o modelo de DL selecionado, com melhor desempe-
nho no período de teste, entre as arquiteturas aplicadas. O objetivo é verificar se o modelo de
DL selecionado com melhor desempenho preditivo consegue superar, de forma estatisticamente
significativa, a capacidade preditiva do modelo RW no período de teste. Dessa forma, a combi-
nação das métricas de erro e dos testes estatísticos garantem uma análise abrangente e robusta
da eficácia das previsões dos modelos avaliados.

Na comparação das previsões dos modelos selecionados de DL com o modelo RW se-
rão utilizados quatro testes estatísticos. O teste de Diebold-Mariano (1995) será aplicado para
verificar a existência de diferenças estatisticamente significativas entre as previsões dos mode-
los. O teste de Diebold-Mariano Modificado (1997) será utilizado como uma extensão do teste
Diebold-Mariano, incorporando ajustes para o tamanho finito da amostra, tornando a compa-
ração mais robusta. O teste de flutuação de Giacomini e Rossi (2010) será empregado para
examinar se a diferença de acurácia preditiva entre os modelos varia ao longo do tempo, permi-
tindo a detecção de possíveis instabilidades no desempenho. Por fim, o teste de racionalidade
de Rossi e Sekhposyan (2016) será utilizado para avaliar se as previsões são eficientes e não
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viesadas, identificando a presença de padrões sistemáticos nos erros, o que indicaria potencial
de melhoria na capacidade preditiva.

3.4 Seleção de variáveis explicativas

A seleção das variáveis econômicas e financeiras com frequência diária enfrentou limi-
tações devido à disponibilidade de dados, o que impediu a inclusão de variáveis comumente
encontradas em modelos econômicos tradicionais, tais como: produção, inflação, agregados
monetários, balança comercial, entre outras. No entanto, a seleção foi orientada pela relevância
empírica das variáveis disponíveis e pela literatura associada à modelagem da taxa de câmbio,
geralmente relacionada às condições econômicas e financeiras externas e domésticas.

Conforme descrito na revisão da literatura, Almeida (2022) considera entre as seguintes
variáveis explicativas para a taxa de câmbio: CDS, DXY, CRY, VIX, SELIC e NTN-B; enquanto
Türkoğlu, Göçecek e Yumrukuz (2024) incluem, além do CDS e do VIX, as variáveis: overnight

interest rate, títulos do Tesouro dos EUA de 10 anos, índice S&P 500, índice da bolsa de valores
da Turquia (BIST100), entre outras. Segundo Krugman, Obstfeld e Melitz (2015), as taxas de
juros e as expectativas nacionais são fatores essenciais na determinação do câmbio. Nesse
sentido, foram realizados estudos preliminares com o objetivo de avaliar a contribuição das
variáveis explicativas na redução das métricas de erro das previsões dos modelos multivariados
durante o período de validação.

Dessa forma, as variáveis selecionadas foram: a taxa de câmbio Ptax de venda BRL/USD
(Ptax_Venda), o CDS Brasil de 5 anos (CDS_5Y), o CDS Brasil de 10 anos (CDS_10Y),
o índice DXY (DXY_INDEX), o índice de commodities (CRY_INDEX), o índice Bovespa
(IBOV), o índice S&P 500 (S&P500), o rendimento dos títulos do Tesouro dos EUA de 5 anos
(TBOND_5Y), o rendimento dos títulos do Tesouro dos EUA de 10 anos (TBOND_10Y), o di-
ferencial de juros entre Brasil e EUA (DIF_JUROS) e o índice de volatilidade (VIX_INDEX).
A série de dados abrange o período de janeiro de 2020 a dezembro de 2024.

O Credit Default Swap (CDS) é um derivativo de crédito negociado em mercado de
balcão em que investidores podem comprar ou vender proteção contra o risco de crédito so-
berano de um país ou de uma entidade corporativa. Fundamentalmente, o comprador de um
CDS adquire uma proteção, pagando um prêmio regular ao vendedor, que garante o pagamento
caso a entidade de referência entre em default. O CDS do Brasil funciona como uma proxy do
risco-país, refletindo a probabilidade atribuída pelo mercado de que o país não honre suas obri-
gações financeiras. No presente estudo, são adotados os prazos de cinco e dez anos (CDS_5Y
e CDS_10Y) por serem horizontes temporais considerados relevantes para investidores e para
capturar diferentes perspectivas sobre a sustentabilidade da dívida soberana. Um aumento nos
valores de CDS indica uma elevação da percepção de risco de crédito associada ao país em ques-
tão. Esse aumento pode ser desencadeado por diversos fatores, como deterioração das condições
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econômicas, instabilidade política, choques externos negativos ou mudanças regulatórias des-
favoráveis. A elevação do risco-país tende a pressionar o Real para uma desvalorização frente
ao Dólar por diversos mecanismos como: fuga de capitais, redução do investimento direto es-
trangeiro, impacto nas expectativas e aumento da aversão ao risco, entre outros. Assim sendo,
o sinal esperado da correlação entre o CDS Brasil e a taxa de câmbio R$/US$ é positivo.

O diferencial de juros de curto prazo entre Brasil e Estados Unidos (DIF_JUROS) reflete
a atratividade relativa dos investimentos em ativos denominados em Real em comparação aos
ativos em Dólar. Essa disparidade nas taxas de juros exerce influência significativa sobre os
fluxos de capitais internacionais e, consequentemente, sobre a taxa de câmbio (R$/US$). De
acordo com Krugman, Obstfeld e Melitz (2015, p. 285), a condição de paridade descoberta
de juros estabelece que o mercado cambial está em equilíbrio quando depósitos em moedas
diferentes oferecem o mesmo retorno esperado. Desse modo, um aumento no diferencial de
juros favorável ao Brasil, ceteris paribus, tende a tornar os ativos brasileiros mais atraentes,
induzindo um influxo de capitais e, por conseguinte, uma valorização do Real frente ao Dólar.
Portanto, o sinal esperado da correlação entre a taxa de câmbio (R$/US$) e o diferencial de
juros de curto prazo é negativo.

O índice DXY ou U.S. Dollar Index mensura a variação do valor do Dólar americano em
relação a uma cesta ponderada de moedas de economias desenvolvidas, incluindo o Euro, o Iene
Japonês, a Libra Esterlina, o Dólar Canadense, o Franco Suíço e a Coroa Sueca. Um aumento
nesse índice indica uma valorização generalizada do Dólar americano no cenário global, o que,
por sua vez, tende a estar associada a uma desvalorização do Real. Isso ocorre porque um Dólar
americano mais forte normalmente torna os ativos denominados em outras moedas, como o
Real, relativamente menos atraentes para investidores internacionais. Consequentemente, o
sinal esperado da correlação entre o índice DXY e a taxa de câmbio R$/US$ é positivo.

O índice CRY é uma sigla utilizada pela Bloomberg para se referir ao CoreCommodity

CRB Index, que acompanha uma cesta diversificada de commodities, abrangendo setores como
energia, metais, agricultura e pecuária. Dada a relevância do Brasil como exportador de diversas
dessas matérias-primas, um aumento nos preços das commodities geralmente resulta em um
fluxo maior de divisas para o país. Esse aumento na oferta de dólares tende a apreciar o Real
em relação à moeda americana. Consequentemente, o sinal esperado da correlação entre o
índice CRY e a taxa de câmbio R$/US$ é negativo.

As taxas de juros dos títulos do Tesouro dos EUA (Treasury Bonds) com vencimentos
de 5 e 10 anos, doravante denominados TBOND_5Y e TBOND_10Y, respectivamente, são
amplamente reconhecidas como o retorno de ativos de baixíssimo risco soberano. Elevações
nesses rendimentos aumentam a atratividade dos títulos americanos, incentivando fluxos de
capital para os Estados Unidos e, por conseguinte, exercendo pressão de depreciação sobre o
Real brasileiro (R$). Dessa forma, postula-se uma correlação positiva entre as variações dessas
taxas de juros e a taxa de câmbio R$/US$.

O índice VIX (Cboe Volatility Index) quantifica a volatilidade implícita nos preços de
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opções de curto prazo do índice S&P 500, sendo amplamente empregado como uma proxy da
percepção de risco dos investidores no mercado acionário americano. Um aumento no VIX
indica também uma elevação da aversão ao risco global, o que tende a impulsionar a alocação
de capital para ativos considerados mais seguros, resultando em potenciais fluxos financeiros de
saída de economias emergentes como a do Brasil. Consequentemente, espera-se uma correlação
positiva entre as variações do índice VIX e a taxa de câmbio R$/US$.

O índice Bovespa (IBOV) representa o desempenho agregado das ações de maior li-
quidez e representatividade negociadas na bolsa brasileira B3. Um aumento no IBOV, ceteris

paribus, indica um aumento da confiança dos investidores nas perspectivas da economia domés-
tica, o que pode fomentar a entrada de capital estrangeiro e, consequentemente, apreciar o Real
brasileiro (R$). Dessa forma, postula-se uma correlação negativa entre as variações do índice
IBOV e a taxa de câmbio R$/US$.

Finalmente, o índice Standard & Poor’s 500 (S&P 500) acompanha o desempenho das
ações das 500 maiores empresas de capital aberto listadas nas bolsas de valores dos Estados
Unidos, sendo amplamente reconhecido como um indicador do apetite global por risco. Uma
elevação do S&P 500 sinaliza um aumento do otimismo em mercados de renda variável, o
que pode estimular o interesse por investimentos em mercados emergentes, como o Brasil.
Consequentemente, o fluxo de capitais tende a se direcionar para ativos com maior potencial
de retorno, incluindo os brasileiros, apreciando o Real. Essa relação não é uma regra rígida e
pode ser influenciada por diversos fatores. Desse modo, sob certas condições, o sinal para a
correlação entre as variações do índice S&P 500 e a taxa de câmbio R$/US$ tende ser negativo.

Cabe ressaltar que as relações esperadas entre a taxa de câmbio Ptax de venda e as di-
versas variáveis econômicas e financeiras, conforme descrito anteriormente, não são rígidas,
estando sujeitas às influências do contexto socioeconômico e geopolítico, tanto em âmbito do-
méstico quanto internacional.
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4 DESCRIÇÃO ESTATÍSTICA DOS DADOS

As séries de dados diários das variáveis explicativas foram coletadas na plataforma Blo-
omberg, enquanto a série de dados da taxa de câmbio Ptax de venda foram obtidas por coleta
direta na API do Banco Central. A coleta das séries de dados com frequência diária compreende
o período de 01 de janeiro de 2020 a 31 de dezembro de 2024.

O conjunto de dados foi dividido sequencialmente e utilizado nos procedimentos de
treinamento, validação e teste dos modelos de DL: LSTM, BiSLTM, GRU e BiGRU.
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Figura 3 - Gráfico das séries temporais coletadas no período de 2020 a 2024.

Nota: Valores e datas das séries de dados consideradas no estudo.

Fonte: O autor, 2025.
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Tabela 2 - Métricas descritivas das séries temporais em preços

Variável Média Variância Desvio Padrão Coeficiente de variação (%) Curtose Assimetria Máximo Mínimo
PTAX_Venda 5.22 0.12 0.34 6.50 1.12 -0.38 6.20 4.02

CDS_5Y∗ 201.20 2715.89 52.11 25.90 -0.02 0.45 382.72 92.35

CDS_10Y∗∗ 291.03 2530.51 50.30 17.28 0.20 0.27 450.61 161.41

CRY_INDEX 239.23 3119.19 55.85 23.35 -0.86 -0.71 329.59 108.00

DXY_INDEX 99.98 33.01 5.75 5.75 -0.99 -0.14 114.11 89.44

IBOV 113504.46 164197621.50 12813.96 11.29 1.06 -0.83 137343.96 63569.62

S&P500 4259.75 588694.26 767.26 18.01 -0.10 0.24 6090.27 2237.40

TBOND_5Y 2.51 2.62 1.62 64.42 -1.68 -0.16 4.96 0.19

TBOND_10Y 2.68 1.94 1.39 51.94 -1.57 -0.12 4.99 0.51

DIF_JUROS 6.20 9.99 3.16 50.94 -1.19 0.13 11.75 1.75

VIX_INDEX 21.40 68.45 8.27 38.67 11.48 2.57 82.69 11.86

Nota 1: CDS_5Y∗ e CDS_10Y∗∗ em pontos base.
Nota 2: Curtose expressa em excesso de curtose.

Fonte: O autor, 2025.

A Tabela 2 apresenta as estatísticas descritivas das séries temporais econômicas e finan-
ceiras utilizadas na previsão da taxa de câmbio Ptax de venda. A média, a variância e desvio
padrão caracterizam a tendência central e a dispersão dos dados, enquanto a assimetria e a cur-
tose fornecem informações sobre a forma das distribuições e o comportamento de suas caudas.
O coeficiente de variação (%) permite avaliar a volatilidade relativa das séries em relação às
suas médias, possibilitando comparações entre variáveis com magnitudes distintas.

Observa-se que a série Ptax_Venda apresenta média de 5,22, variância de 0,12 e leve
assimetria negativa de -0,38, indicando maior concentração de valores acima da média e uma
cauda mais longa à esquerda. A curtose positiva sugere presença de caudas mais pesadas que
a distribuição normal. O coeficiente de variação relativamente baixo (6,50%) evidencia que
a dispersão da série é pequena em relação à sua média, ao passo que outras variáveis, como
TBOND_5Y e DIF_JUROS, apresentam coeficientes de variação elevados, indicando maior
volatilidade relativa.

Destaca-se, ainda, o índice de volatilidade VIX, que apresenta curtose elevada (11,48)
e assimetria positiva acentuada (2,57), refletindo episódios de elevada volatilidade nos merca-
dos financeiros, em consonância com a representação gráfica da série S&P 500 apresentada
na Figura 3. Esses resultados fundamentam a adoção de modelos de DL para captura de pa-
drões complexos e não lineares, sem a necessidade de atender às premissas rígidas de modelos
econométricos tradicionais.

Neste sentido, Joseph e Tackes (2024, p. 148, 591) apontam que nem sempre é es-
sencial corrigir ou tornar uma série temporal estacionária no paradigma do Machine Learning

(ML), que inclui o DL, pois algumas dessas situações podem ser tratadas usando o tipo certo
de recursos no modelo. A decisão de transformar ou não a série deve ser tomada com base em
experimentação, considerando que tais transformações podem trazer tanto benefícios quanto
limitações. Além disso, o uso de estratégias como a janela móvel permite mitigar os efeitos da
não estacionariedade, mantendo o modelo atualizado frente a mudanças no comportamento da
série ao longo do tempo. Essa abordagem também evita o viés introduzido por janelas expansí-
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veis, garantindo que o modelo trabalhe sempre com o mesmo comprimento da série.

Figura 4 - Matriz de correlação das variáveis (preços) no período de 2020 a 2024.

Fonte: O autor, 2025.

A matriz de correlação das variáveis consideradas no estudo, descrita na Figura 4, evi-
dencia relações lineares estáticas entre a taxa de câmbio Ptax de venda e variáveis econômicos
e financeiros no período de janeiro de 2020 a dezembro de 2024.

De modo geral, os sinais das correlações entre as variáveis tais variáveis seguem as
expectativas teóricas e empíricas esperadas nas economias emergentes, em conformidade com o
descrito por Almeida (2022). Entretanto, diante da multiplicidade de fatores socioeconômicos e
geopolíticos que influenciam a taxa de câmbio, o sinal e a intensidade das correlações esperadas
entre as variáveis não seguem padrões rígidos. Isso se observa nas séries descritas na Figura 3 e
demonstra a elevada complexidade associada às inter-relações e dinâmicas da taxa de câmbio.

Neste caso específico, as correlações negativas entre a taxa de câmbio Ptax de venda
e as variáveis explicativas índice DXY, TBOND_5Y e TBOND_10Y, bem como a correlação
positiva entre a mesma taxa e o índice S&P 500, não corresponderam aos comportamentos es-
perados. Alguns fatores podem ter atuado nesse sentido, em primeiro lugar, em decorrência da
pandemia de COVID-19, houve uma forte desvalorização do Real frente ao Dólar americano
em 2020. Por outro lado, de 2021 até meados de 2022 ocorreu um boom no preço das commo-

dities como se observa na série do índice CRY. Assim sendo, a correlação negativa e fraca entre
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a Ptax de venda do dólar no Brasil e o índice DXY entre 2020 e 2024 sugere que, nesse período,
a relação entre a força do dólar globalmente e a cotação do dólar no Brasil pode ter sido com-
pensada por outros fatores. Quanto à correlação em relação aos TBOND_5Y e TBOND_10Y,
observou-se, nesse período, um acelerado ciclo de alta das taxas de juros brasileiras, o que pode
ter compensado o efeito esperado do aumento das taxas de juros norte-americanas na taxa de
câmbio.

Por outro lado, conforme o esperado, verifica-se que a taxa de câmbio Ptax de venda
apresentou correlação positiva em relação aos CDS Brasil de 5 e de 10 anos e ao índice VIX.
Assim, há indícios de que desvalorizações da taxa de câmbio estiveram associadas, em certa
medida, ao aumento da percepção ao risco fiscal do Brasil e ao risco dos investidores no mer-
cado acionário norte-americano. Adicionalmente, observa-se uma correlação negativa da taxa
de câmbio Ptax de venda com os índices CRY e IBOV e, ainda, com o diferencial de juros de
curtíssimo prazo. Dessa forma, sugere-se que períodos de valorização dos preços das commo-

dities e do mercado acionário brasileiro, além do aumento do diferencial de juros, coincidiram,
em certa medida, com uma apreciação do Real.

No contexto das demais variáveis, destaca-se a correlação positiva entre os CDS e o
diferencial de juros, o que sugere que o aumento do risco-país esteve associado a aumentos do
diferencial de taxas de juros.



50

5 RESULTADOS

Neste Capítulo, são apresentados os resultados obtidos a partir da aplicação dos modelos
de DL em comparação ao modelo RW na previsão da taxa de câmbio Ptax de venda diária do
Real (BRL) em relação ao Dólar (USD). Basicamente, a análise comparativa será realizada em
duas etapas. Primeiro, será selecionado um modelo de DL com base nas menores métricas
de erro no período de validação. Em seguida, o desempenho das previsões do modelo de DL
selecionado será comparado ao do modelo RW no período de teste, fase em que os dados são
novos para os modelos. Assim, será possível avaliar capacidade de generalização dos modelos
de DL, simulando-se, uma aplicação prática.

Para um estudo mais abrangente, serão adotadas tanto a abordagem univariada, que
considera apenas os valores passados da taxa de câmbio Ptax de venda, quanto a abordagem
multivariada, que incorpora variáveis econômicas e financeiras (VIX, DXY, CRY, diferencial
de juros, CDS de 5 e 10 anos, títulos do Tesouro dos EUA de 5 e 10 anos, índice Ibovespa e
S&P 500), além dos valores passados da respectiva taxa de câmbio. Os horizontes de previsão
considerados serão de 1, 10 e 20 dias úteis à frente. Além disso, serão avaliadas duas variações
de arquitetura nos modelos de DL em cada caso: uma com uma camada recorrente (1CR) e
outra com duas camadas recorrentes (2CR). Ressalta-se que o nome atribuído aos modelos de
DL corresponde ao tipo de camada recorrente (LSTM, GRU, BiLSTM e BiGRU) utilizada na
respectiva arquitetura. Dessa forma, o desempenho preditivo poderá ser avaliado não só pela
incorporação de variáveis econômicas e financeiras, em relação aos modelos univariados, mas
também pela inclusão de uma camada recorrente adicional nas arquiteturas dos modelos de DL.

A análise comparativa terá como base inicial as métricas de erro RMSE, MAE e MAPE.
Adicionalmente, para cada abordagem e horizonte de previsão, realizam-se testes estatísticos
entre o modelo RW e os modelos de DL selecionados, que comparam as respectivas métricas
de erro nas duas arquiteturas adotadas em cada abordagem e horizonte de previsão. Dessa
forma, será possível verificar objetivamente se as previsões dos referidos modelos de DL, nas
configurações especificadas, conseguiram superar a acurácia das previsões do modelo RW, em
consonância com o objetivo principal definido para este estudo.

Quanto aos testes aplicados, os testes de Diebold e Mariano (1995) e Diebold-Mariano-
Modificado (1997) permitem a comparação da acurácia das previsões dos modelos de DL em
relação à do modelo RW, com a diferença de que o segundo inclui um ajuste para redução do
viés relativo ao tamanho da amostra. Além disso, o teste de flutuação de Giacomini e Rossi
(2010) permite descrever graficamente como varia a diferença de acurácia das previsões de dois
modelos comparados ao longo do tempo. Sua estatística de teste (ET) é baseada no teste DM,
aplicado em janelas móveis de 20 dias úteis neste estudo. Porém, as ET descritas nos testes
estatísticos correspondem, nesse contexto, a janela de tempo com a maior diferença de acurácia
preditiva entre os modelos comparados nos respectivos períodos analisados.
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Por sua vez, o teste de racionalidade de Rossi e Sekhposyan (2016), aplicado para cada
modelo individualmente, indica se os erros de previsão são imprevisíveis ou se apresentam pa-
drões sistemáticos, o que pode indicar viés e limitações preditivas dos modelos ou a ocorrência
de uma quebra estrutural. Nesse caso, a ET do teste em si considera a janela de tempo, também
com 20 dias úteis, de maior irracionalidade nos erros de previsão do período analisado. Esse
teste também permite descrever graficamente como varia a irracionalidade dos erros de previsão
ao longo das janelas de tempo.

Conforme descrito no capítulo de Metodologia, este ensaio empírico seguiu a seguinte
sistemática: realização do treinamento dos modelos de DL exclusivamente com o conjunto de
dados segredados para este fim; utilização do período de validação para ajuste de hiperparâme-
tros e para a seleção dos modelos com as menores métricas de erro; e, em seguida, comparação
das previsões dos modelos de DL selecionados, com melhor desempenho no período de teste,
em relação às previsões do modelo RW, o que constitui o foco principal deste estudo.

Por fim, os resultados serão discutidos à luz das evidências empíricas e das contribuições
da literatura, destacando as implicações práticas e os desafios associados ao uso de modelos de
DL na previsão da taxa de câmbio.

5.1 Resultados das previsões 1 dia à frente

5.1.1 Modelos univariados de DL vs. modelo RW nas previsões 1 dia à frente

5.1.1.1 Modelos univariados de DL com 1CR vs. modelo RW nas previsões 1 dia à frente

Tabela 3 - Métricas de erro das previsões dos modelos univariados de DL com 1CR e do modelo RW 1

dia à frente

Modelos RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.0308 0.0230 0.4476 0.0477 0.0332 0.5805
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0568 0.0429 0.8291 0.0979 0.0794 1.3795

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0577 0.0440 0.8502 0.1162 0.0945 1.6311

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0590 0.0452 0.8727 0.1311 0.1068 1.8401

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0557 0.0424 0.8208 0.1051 0.0847 1.4662

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0532 0.0405 0.7826 0.1341 0.1055 1.8116

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0543 0.0414 0.7992 0.1197 0.0949 1.6335

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0567 0.0436 0.8417 0.1133 0.0922 1.5925

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0520 0.0399 0.7706 0.1097 0.0881 1.5196

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0368 0.0299 0.5819 0.0538 0.0399 0.6978
BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0359 0.0286 0.5551 0.0552 0.0409 0.7157

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0351 0.0280 0.5454 0.0587 0.0455 0.7913

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0360 0.0283 0.5481 0.0664 0.0522 0.9045

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0387 0.0307 0.5970 0.0602 0.0455 0.7966

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0382 0.0306 0.5948 0.0621 0.0469 0.8182

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0399 0.0319 0.6202 0.0681 0.0523 0.9105

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0394 0.0309 0.5986 0.0609 0.0465 0.8140
Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.
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A Tabela 3 apresenta as métricas de erro das previsões da taxa de câmbio Ptax de venda
1 dia útil à frente realizadas pelo modelo RW e pelos modelos de DL univariados com 1CR.
No desempenho geral, observa-se que as previsões do modelo RW apresentaram as menores
métricas de erro, tanto no período de validação quanto no período de teste. Entre os modelos
de DL com 1CR, o BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) foi selecionado, pois
obteve as previsões com menores métricas de erro no período de validação. No período de teste,
o seu desempenho preditivo foi relativamente próximo ao do modelo RW e ao do modelo do
modelo de DL com as menores métricas de erro desse período, o BiLSTM (adam - LR0.0001 -
Dropout0.1 - Batch16). Verifica-se, desde já, que o melhor desempenho entre os modelos DL
no período de validação não implica necessariamente o mesmo resultado no período de teste.

As previsões dos modelos BiLSTM e BiGRU apresentaram menores métricas de erro
do que os seus pares unidirecionais LSTM e GRU nos dois períodos analisados. Apesar disso,
verifica-se que as métricas de erro das previsões dos modelos de DL unidirecionais foram su-
periores em relação às do modelo RW, especialmente no período de teste.

5.1.1.2 Modelos univariados de DL com 2CR vs. modelo RW nas previsões 1 dia à frente:

Tabela 4 - Métricas de erro das previsões 1 dia à frente dos modelos univariados de DL com 2CR e do

RW

Modelos (duas camadas recorrentes) RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.0308 0.0230 0.4476 0.0478 0.0332 0.5805
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0753 0.0545 1.0041 0.1107 0.0928 1.6293

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0571 0.0433 0.8361 0.1041 0.0860 1.4921

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0549 0.0419 0.8103 0.0944 0.0766 1.3314

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0593 0.0444 0.8539 0.1225 0.1036 1.7961

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0532 0.0408 0.7871 0.1635 0.1265 2.1643

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0549 0.0415 0.7976 0.1498 0.1172 2.0096

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0544 0.0414 0.7984 0.1316 0.1054 1.8110

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0553 0.0416 0.7995 0.1464 0.1173 2.0147

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0408 0.0336 0.6545 0.0585 0.0440 0.7692

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0375 0.0298 0.5786 0.0612 0.0474 0.8242

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0368 0.0290 0.5631 0.0556 0.0416 0.7292
BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0417 0.0320 0.6170 0.0671 0.0541 0.9464

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0384 0.0308 0.5977 0.0635 0.0484 0.8428

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0389 0.0315 0.6143 0.0652 0.0487 0.8470

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0404 0.0323 0.6262 0.0693 0.0545 0.9473

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0454 0.0337 0.6488 0.0979 0.0802 1.3853
Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 4 apresenta as métricas de erro das previsões para 1 dia à frente realizadas
pelo modelo RW e pelos modelos de DL univariados com 2CR. Verifica-se um padrão de de-
sempenho similar ao observado para os modelos univariados com 1CR. O modelo RW também
apresenta as menores métricas de erro tanto no período de validação quanto no período de teste.
Os modelos BiLSTM e BiGRU continuam se destacando em relação aos modelos de DL uni-
direcionais. O BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) foi novamente o modelo
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com menores métricas de erro no período de validação. Porém, neste caso, o mesmo modelo
também apresentou as menores métricas de erro entre os modelos de DL no período de teste.

De forma geral, o aumento da complexidade da rede neural, com a inclusão de uma
segunda camada recorrente nos modelos de DL, não resultou em uma redução das métricas de
erro. Na comparação com os modelos de DL com 1CR descritos na Tabela 3, observa-se que,
em alguns casos, como no do modelo GRU, houve um aumento das métricas de erro no período
de teste.

5.1.1.3 Modelos de DL univariados selecionados vs. modelo RW nas previsões 1 dia à
frente

Tabela 5 - Métricas de erro das previsões 1 dia à frente do modelo RW e dos modelos de DL

univariados selecionados em cada arquitetura

Arquitetura Modelos e Parâmetros RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
- RW 0.0308 0.0230 0.4476 0.0478 0.0332 0.5805
1CR BiLSTM-adamw (LR0.0001 - Dropout0.1 - Batch16) 0.0351 0.0280 0.5454 0.0587 0.0455 0.7913

2CR BiLSTM-adamw (LR0.0001 - Dropout0.1 - Batch16) 0.0368 0.0290 0.5631 0.0556 0.0416 0.7292

Nota: Os menores valores por coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 5 apresenta as métricas de erro das previsões 1 dia útil à frente do modelo RW
e dos modelos de DL univariados selecionados nas arquiteturas com 1CR e 2CR, pelo critério
de menores métricas de erro no período de validação. De forma coerente com os resultados
previamente descritos, entre todos os modelos, o RW obteve as menores métricas de erro em
termos absolutos tanto no período de validação quanto no período de teste. O modelo BiLSTM
(adamw - LR0.0001 - Dropout0.1 - Batch16) foi o modelo selecionado nas duas arquiteturas e
apresentou métricas de erros relativamente próximas às do RW nos dois períodos analisados.

Entre os dois modelos de DL univariados selecionados, o modelo com 2CR foi o que
obteve as métricas de erro mais próximas às do RW no período de teste. Dessa forma, serão
apresentados testes estatísticos com objetivo de verificar se a acurácia das respectivas previsões
são estatisticamente equivalentes ou não. Porém, antes disso, serão apresentados os gráficos
das previsões dos modelos de DL selecionados com 1CR e com 2CR em relação às previsões
do modelo RW e às taxas de câmbio Ptax de venda efetivas do período de teste.



54

Figura 5 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 1 dia útil à frente do

modelo selecionado univariado com 1CR vs RW no período de teste

Nota: Referente ao modelo de DL univariado selecionado, descrito na legenda.

Fonte: O autor, 2025.

A Figura 5 apresenta a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 1 dia útil à frente do modelo RW e as do modelo de DL selecionado
BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) com 1CR que adota uma abordagem
univariada.

Observa-se uma elevada volatilidade ao longo do período de teste, com uma tendência
de alta a partir do final da primeira metade do mesmo período. Visualmente, as previsões
dos respectivos modelos indicam um desempenho relativamente próximo. No entanto, nota-
se que o modelo selecionado BiLSTM exibe uma suavização maior em relação ao RW. No
final do período de teste, a previsão do BiLSTM parece subestimar a magnitude do movimento
ascendente da taxa de câmbio, possivelmente devido a um efeito de regularização excessiva ou
à dificuldade do modelo univariado de captar padrões altamente dinâmicos. Em contraste, o
RW, por sua natureza recursiva, ajusta-se mais rapidamente às mudanças bruscas do mercado,
mantendo um alinhamento mais próximo com a série observada.



55

Figura 6 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 1 dia útil à frente do

modelo selecionado univariado com 2CR vs RW no período de teste

Nota: Referente ao modelo de DL univariado selecionado, com 2CR, descrito na legenda.

Fonte: O autor, 2025.

A Figura 6 exibe a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 1 dia útil à frente do modelo RW e as do modelo de DL selecionado
BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) com 2CR que adota uma abordagem
univariada.

Assim como na análise anterior, observa-se uma alta volatilidade ao longo do período
de teste, com uma tendência de valorização do Dólar mais evidente na segunda metade desse
período. Dentro da sistemática adotada, a inclusão de uma segunda camada recorrente resultou
na seleção de um modelo em que a suavização observada parece ter se reduzido ligeiramente em
relação ao modelo de DL selecionado com 1CR. Nota-se uma maior proximidade das previsões
às oscilações da série temporal, embora ainda apresente uma leve defasagem em momentos de
maior volatilidade, conforme se observa no final do período de teste. Entretanto, o modelo RW
continua exibindo um ajuste mais ágil às oscilações bruscas do mercado, reforçando sua eficácia
para previsões de curtíssimo prazo em cenários de elevada instabilidade.
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5.1.1.4 Testes estatísticos entre o modelo RW e o modelo de DL univariado selecionado
com melhor desempenho no período de teste nas previsões 1 dia útil à frente

Tabela 6 - Testes estatísticos para o modelo univariado de DL selecionado com 2CR e o modelo RW nas

previsões 1 dia útil à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs BiLSTM: Estatística = -2.8114, p–valor = 0.0049*** RW vs BiLSTM: Estatística = -2.0481, p–valor = 0.0405**

Diebold-Mariano Modificado (DMM) RW vs BiLSTM: Estatística = -2.7993, p–valor = 0.0060*** RW vs BiLSTM: Estatística = -2.0394, p–valor = 0.0437**

Flutuação de Giacomini e Rossi (FGR) RW vs BiLSTM: Estatística = -3.1345, p–valor = 0.0055*** RW vs BiLSTM: Estatística = -2.3538, p–valor = 0.0295**

Racionalidade de Rossi e Sekhposyan (RS) RW: Estatística = 158.5189, p–valor = 0.0000*** RW: Estatística = 173.0916, p–valor = 0.0000***

Racionalidade de Rossi e Sekhposyan (RS) BiLSTM: Estatística = 774.1853, p–valor = 0.0000*** BiLSTM: Estatística = 444.5458, p–valor = 0.0000***

Nota 1: Refere-se ao BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16).

Nota 2: ∗∗∗, ∗∗ e ∗ indicam significância estatística ao nível de 1%, 5% e 10%, respectivamente.

Fonte: O autor, 2025.

A Tabela 6 apresenta os resultados dos testes estatísticos comparando as previsões do
modelo RW com as do modelo selecionado BiLSTM (adamw - LR 0.0001 - Dropout 0.1 - Batch
16) com 2CR, que obteve as menores métricas de erro no período de teste entre as duas arquite-
turas. Os resultados dos testes para o modelo selecionado com 1CR podem ser consultados na
Tabela 27, disponível no Apêndice A.

Os resultados dos testes Diebold-Mariano (DM) e Diebold-Mariano Modificado (DMM)
na tabela acima indicam que as previsões dos modelos comparados apresentaram acurácias es-
tatisticamente diferentes. As hipóteses nulas (H0) são rejeitadas nos dois testes ao nível de
significância de 5%, tanto no período de validação quanto no de teste. Além disso, em termos
de acurácia, os resultados sugerem que o modelo RW teve um desempenho estatisticamente su-
perior ao BiLSTM selecionado, conforme evidenciado pelas estatísticas de teste (ET) negativas
em ambos os períodos analisados.

Por outro lado, o teste de flutuação Giacomini e Rossi (GR), que avalia a diferença
de acurácia das previsões ao longo do tempo entre o modelo de DL selecionado e o modelo
RW, aponta para a rejeição da H0 de igualdade de desempenho das previsões. Neste caso, o
referido teste aponta uma superioridade da acurácia das previsões do modelo RW em relação à
do modelo de DL selecionado na janela de tempo em que a diferença de desempenho relativo foi
mais extrema. A Figura 7, apresentada na sequência, ilustrará o comportamento do desempenho
preditivo relativo ao longo das janelas de tempo dos períodos de validação e de teste.

Por sua vez, o teste de racionalidade de Rossi-Sekhposyan (RS), que é realizado para
cada modelo individualmente, indica a rejeição da H0 de imprevisibilidade nos erros de previsão
do modelo RW e do modelo de DL selecionado, tanto no período de validação quanto no de
teste. Verifica-se então a presença de eventos de irracionalidade, nos quais os erros preditivos
não são aleatórios e apresentam dependência temporal. No caso do BiLSTM, as ET são ainda
mais elevadas do que as do modelo RW, especialmente no período de teste, evidenciando-se um
maior viés em pelo menos uma janela de tempo em que os erros seguiram um padrão previsível.
Tal resultado pode estar relacionado a limitações na capacidade preditiva do modelo de DL
selecionado univariado, que utiliza apenas os preços passados da taxa de câmbio Ptax de venda
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para a previsão de valores futuros. Além disso, eventos exógenos ocorridos nos períodos de
previsão podem ter causado mudanças estruturais nos dados que resultaram em padrões nos
erros de previsão.

Figura 7 - Gráficos das estatísticas dos testes de flutuação Giacomini e Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: O "Modelo" descrito na legenda refere-se ao modelo de DL selecionado univariado, com 2CR, nas previsões 1 dia útil à

frente. As janelas móveis possuem 20 dias úteis nos dois testes.

Fonte: O autor, 2025.

Conforme ilustrado na Figura 7, a evolução das ETs do teste de flutuação de GR revela
que durante a maior parte do tempo a ET permaneceu dentro dos valores críticos, indicando uma
relativa igualdade da acurácia preditiva entre os modelos nas janelas de tempo de 20 dias úteis,
com curtos intervalos nos quais as previsões do RW apresentaram desempenho relativamente
superior.

Por outro lado, a evolução da ET no teste de racionalidade de RS revela que, no período
de validação, o modelo de DL selecionado apresentou diversas janelas de tempo em que o
comportamento dos erros de previsões foi irracional, sugerindo falta de eficiência e viés nas
previsões, com a ET superando intensamente o limite crítico. Por sua vez, a partir da segunda
metade do período de teste, observa-se um aumento acentuado na irracionalidade dos erros de
previsão do modelo de DL, seguido por uma redução também acentuada.

Uma possível explicação para esse comportamento é a influência de eventos exógenos
relevantes. Destaca-se, por exemplo, o impacto das eleições presidenciais nos Estados Unidos,
realizadas no final de 2024, que resultaram no fortalecimento global do dólar, como evidenciado
pela trajetória do índice DXY descrita na Figura 3. Além disso, podem-se observar os menores
patamares do diferencial de juros em 2024, desde meados de 2021, e o aumento dos CDS
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em 2024 em virtude do aumento das preocupações fiscais e a crescente desconfiança quanto
ao novo arcabouço fiscal brasileiro. Esses fatores podem ter provocado mudanças estruturais
temporárias no comportamento da taxa de câmbio, comprometendo a acurácia e a eficiência das
previsões dos modelos de DL.

De modo geral, os resultados obtidos com os modelos de DL univariados aplicados na
previsão 1 dia útil à frente indicam que, mesmo com as diferentes especificações e parâme-
tros adotados neste estudo, sua eficácia para previsões de curtíssimo prazo pode ser limitada,
principalmente em cenários de alta volatilidade.

5.1.2 Modelos multivariados de DL vs. modelo RW nas previsões 1 dia útil à frente

5.1.2.1 Modelos multivariados de DL com 1CR vs. modelo RW nas previsões 1 dia útil à
frente:

Tabela 7 - Métricas de erro das previsões dos modelos multivariados de DL com 1CR e do modelo RW

1 dia útil à frente

Modelos (uma camada recorrente) RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.0308 0.0230 0.4476 0.0478 0.0332 0.5805
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0550 0.0419 0.8081 0.0938 0.0727 1.2682

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0580 0.0438 0.8440 0.0995 0.0773 1.3500

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0545 0.0415 0.8017 0.0850 0.0636 1.1186

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0615 0.0464 0.8926 0.1148 0.0947 1.6442

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0561 0.0420 0.8076 0.1777 0.1421 2.4365

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0514 0.0396 0.7694 0.1316 0.1023 1.7569

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0491 0.0381 0.7392 0.0933 0.0713 1.2394

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0474 0.0361 0.7004 0.1138 0.0879 1.5147

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0333 0.0257 0.5022 0.1083 0.0856 1.4846

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0360 0.0277 0.5416 0.1289 0.1091 1.8990

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0363 0.0288 0.5615 0.0800 0.0629 1.1012
BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0375 0.0289 0.5650 0.0780 0.0636 1.1205

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0631 0.0520 1.0063 0.0858 0.0696 1.2191

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0871 0.0629 1.1992 0.1756 0.1548 2.6844

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0600 0.0462 0.8879 0.1065 0.0900 1.5658

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0912 0.0768 1.4818 0.1213 0.1045 1.8322
Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 7 descreve as métricas de erro das previsões para 1 dia útil à frente realizadas
pelo modelo RW e pelos modelos de DL multivariados com 1CR. Observa-se que, no desempe-
nho geral, assim como descrito anteriormente na abordagem univariada, o modelo RW continua
a exibir as menores métricas de erro, tanto no período de validação quanto no de teste.

Neste caso, o modelo BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) é o modelo
de DL com 1CR selecionado, visto que apresenta as menores métricas de erro no período de
validação. Nesse mesmo período suas métricas de erro foram próximas às do RW, ao contrário
do observado no período de teste em que as métricas de erro das previsões foram mais do que o
dobro do que as observadas para o modelo RW.



59

Verifica-se que as métricas de erro das previsões dos modelos de DL multivariados não
foram inferiores às apresentadas pelos modelos de DL univariados no período de teste, mesmo
com a inclusão de variáveis econômicas e financeiras em tais modelos. Ocorreu, inclusive,
um aumento nas métricas de erro das previsões do modelo BiGRU em relação à abordagem
univariada, tanto no período de validação quanto no de teste.

No período de validação, os modelos BiLSTM continuaram a obter o melhor desem-
penho entre os modelos de DL. Apesar disso, no período de teste, os resultados das métricas
de erro também foram superiores, em termos absolutos, aos obtidos nos respectivos modelos
univariados.

5.1.2.2 Modelos multivariados de DL com 2CR vs. modelo RW nas previsões 1 dia útil à
frente:

Tabela 8 - Métricas de erro das previsões dos modelos multivariados de DL com 2CR e do modelo RW

1 dia útil à frente

Modelos (duas camadas recorrentes) RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.0308 0.0230 0.4476 0.0478 0.0332 0.5805
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0564 0.0437 0.8445 0.0942 0.0735 1.2891

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0633 0.0476 0.9146 0.1040 0.0846 1.4801

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0993 0.0846 1.6379 0.1008 0.0801 1.4065

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0703 0.0555 1.0706 0.0930 0.0727 1.2715

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0855 0.0697 1.3450 0.1374 0.1179 2.0440

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0814 0.0659 1.2718 0.1814 0.1588 2.7479

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0587 0.0435 0.8359 0.1163 0.0965 1.6702

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0480 0.0365 0.7068 0.1180 0.0940 1.6180

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0391 0.0299 0.5833 0.1063 0.0872 1.5200

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0366 0.0283 0.5525 0.0971 0.0760 1.3224

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0350 0.0278 0.5394 0.0728 0.0529 0.9204

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0359 0.0279 0.5437 0.1258 0.0997 1.7295

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0517 0.0383 0.7350 0.1145 0.0991 1.7255

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.0413 0.0323 0.6299 0.0733 0.0550 0.9596

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0425 0.0330 0.6388 0.0654 0.0478 0.8395
BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.0484 0.0371 0.7173 0.1154 0.0975 1.6863

Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 8 apresenta as métricas de erro das previsões para 1 dia útil à frente realizadas
pelo modelo RW e pelos modelos de DL univariados com 2CR. Verifica-se um padrão de de-
sempenho similar ao descrito para os modelos multivariados com 1CR. As previsões do modelo
RW permanecem com as menores métricas de erro .entre as previsões de todos os modelos.
Algumas especificações de modelos BiLSTM e BiGRU resultaram em previsões com desempe-
nho relativamente próximo às previsões do RW na fase de validação, o que não se repetiu, em
geral, no período de teste.

O modelo BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16), tal como no caso uni-
variado, volta a ser o modelo de DL selecionado com as menores métricas de erro no período de
validação. Seus resultados são relativamente próximos ao modelo de DL com menores métricas
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no período de teste, destacadas em negrito na Tabela 8. De forma geral, no período de teste,
observa-se que a inclusão de uma camada adicional na arquitetura dos modelos multivariados
gerou algumas reduções pontuais, em termos de métricas de erro, especialmente nos modelos
BiGRU.

5.1.2.3 Modelos de DL multivariados selecionados vs. modelo RW nas previsões 1 dia útil
à frente

Tabela 9 - Métricas de erro das previsões 1 dia útil à frente dos modelos de DL multivariados

selecionados em cada arquitetura vs. modelo RW

Arquitetura Modelos e Parâmetros RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
- RW 0.0308 0.0230 0.4476 0.0478 0.0332 0.5805
1CR BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.0333 0.0257 0.5022 0.1083 0.0856 1.4846

2CR BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.0350 0.0278 0.5394 0.0728 0.0529 0.9204

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Tabela 9 apresenta as métricas de erro das previsões 1 dia útil à frente do modelo
RW e dos modelos de DL multivariados selecionados nas arquiteturas com 1CR e 2CR, pelo
critério de menores métricas de erro no período de validação. Assim como no caso univariado,
com o mesmo horizonte de previsão, o modelo RW apresenta as menores métricas de erro em
termos absolutos, tanto no período de validação quanto no de teste. Entre os modelos de DL
analisados, o modelo BiLSTM novamente se destaca, registrando as menores métricas de erro
no período de validação em ambas as arquiteturas. No período de validação, as métricas de
erro são ligeiramente menores do que às observadas no caso univariado. Contudo, no período
de teste, os valores das métricas de erro são mais elevados e se distanciam ainda mais daqueles
observados para o modelo RW, cujo desempenho aparenta ser o melhor entre todos os modelos
analisados no horizonte de previsão de 1 dia útil à frente.

Entre os dois modelos de DL multivariados selecionados, o modelo com 2CR foi o que
obteve as métricas de erro mais próximas às do RW no período de teste. Embora, neste caso,
as métricas de erro não pareçam próximas às do modelo RW, serão apresentados testes estatís-
ticos a fim de confirmar se os desempenhos das respectivas previsões não são estatisticamente
equivalentes. Porém, antes disso, serão apresentados os gráficos das previsões dos modelos de
DL selecionados multivariados com 1CR e com 2CR em relação às previsões do modelo RW e
às taxas de câmbio Ptax de venda efetivas do período de teste.
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Figura 8 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 1 dia útil à frente do

modelo selecionado multivariado com 1CR vs RW no período de teste

Nota: Referente ao modelo selecionado multivariado, com 1CR, BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16).

Fonte: O autor, 2025.

A Figura 8 apresenta a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 1 dia útil à frente do modelo RW e as do modelo de DL selecio-
nado BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) com 1CR que adota uma abordagem
multivariada.

Observa-se que a introdução de variáveis explicativas no modelo de DL modifica seu
comportamento em relação à versão univariada. Embora o modelo BiLSTM multivariado ainda
apresente alguma suavização das oscilações de curto prazo, ele exibe um maior afastamento da
trajetória real da taxa de câmbio Ptax de venda, especialmente em momentos de alta volatili-
dade. Esse efeito pode estar relacionado a uma maior dependência do modelo em relação às
variáveis auxiliares, o que pode resultar em um descompasso temporal na resposta às mudanças
abruptas do câmbio.

No início do período de teste, as previsões dos dois modelos comparados parecem pró-
ximas da série da taxa de câmbio Ptax de venda efetiva, com uma vantagem para as previsões
do modelo RW. Entretanto, na segunda metade desse período, quando há um movimento mais
acentuado e persistente de valorização do Dólar, nota-se um descolamento mais pronunciado
das previsões do modelo BiLSTM em relação às do modelo RW e à taxa de câmbio Ptax efetiva.
Esse comportamento pode indicar que o modelo de DL está atribuindo um peso excessivo às
variáveis explicativas, o que pode comprometer sua capacidade de capturar variações bruscas
que não estejam fortemente correlacionadas com os preditores utilizados.

Dessa forma, os resultados sugerem que, embora a abordagem multivariada possa en-
riquecer a modelagem da taxa de câmbio ao incorporar informações adicionais, sua imple-
mentação está sujeita a limitações quanto à disponibilidade de variáveis de alta frequência e
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a capacidade das mesmas de incorporarem informações a respeito do comportamento futuro
dessa variável.

Figura 9 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 1 dia útil à frente do

modelo selecionado multivariado com 2CR vs RW no período de teste

Nota: Referente ao modelo selecionado multivariado, com 2CR, BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16).

Fonte: O autor, 2025.

A Figura 9 exibe a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 1 dia útil à frente do modelo RW e as do modelo de DL selecionado
BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) com 2CR que adota uma abordagem
multivariada.

Nota-se que, em relação ao modelo selecionado BiLSTM com apenas 1CR, o modelo
selecionado com 2CR parece apresentar uma nova dinâmica das previsões. O modelo continua
apresentando uma suavização das oscilações de curto prazo, característica comum das RNN,
porém aparenta uma maior capacidade de acompanhar movimentos da taxa de câmbio Ptax
de venda ao longo do tempo. Isso sugere que, dentro da sistemática adotada de seleção de
modelo de DL, a profundidade adicional na rede pode ter contribuído para um aprendizado
mais estruturado das sequências temporais.

Em relação à abordagem univariada com 2CR, no início do período de teste, ambas
capturam de forma aproximada a respectiva taxa de câmbio, com diferenças sutis nas ampli-
tudes das variações. Entretanto, à medida que a volatilidade aumenta, especialmente no final
desse período, percebe-se que as previsões do modelo multivariado BiLSTM com 2CR exibem
um comportamento distinto, com uma aparente superestimação da série real. Porém, esse viés
parece menos acentuado do que no modelo multivariado selecionado com 1CR. Isso pode indi-
car que a maior profundidade da rede contribui para um ajuste mais refinado às dinâmicas não
lineares do câmbio.
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5.1.2.4 Testes estatísticos entre o modelo de DL multivariado selecionado com melhor
desempenho no período de teste vs. modelo RW nas previsões 1 dia útil à frente

Tabela 10 - Testes estatísticos para comparação do modelo multivariado de DL selecionado com 2CR e

do modelo RW nas previsões 1 dia útil à frente

Testes Período de Validação Período de Teste
Teste de Diebold-Mariano (DM) RW vs BiLSTM: Estatística = -2.3344, p–valor = 0.0196** RW vs BiLSTM: Estatística = -2.8423, p–valor = 0.0045***

Teste de Diebold-Mariano-Modificado (DMM) RW vs BiLSTM: Estatística = -2.3243, p–valor = 0.0219** RW vs BiLSTM: Estatística = -2.8301, p–valor = 0.0055***

Teste de flutuação de Giacomini e Rossi (2010) RW vs BiLSTM: Estatística = -2.9482, p–valor = 0.0083*** RW vs BiLSTM: Estatística = -2.6632, p–valor = 0.0154**

Teste de racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 158.5189, p–valor = 0.0000*** RW: Estatística = 173.0916, p–valor = 0.0000***

Teste de racionalidade de Rossi e Sekhposyan (2016) BiLSTM: Estatística = 374.6444, p–valor = 0.0000*** BiLSTM: Estatística = 373.6391, p–valor = 0.0000***

Nota 1: Refere-se ao BiLSTM (adamw-LR0.0001 - Dropout0.1 - Batch16).

Nota 2: ∗∗∗, ∗∗ e ∗ indicam significância estatística ao nível de 1%, 5% e 10%, respectivamente.

Fonte: O autor, 2025.

A Tabela 10 apresenta os resultados dos testes estatísticos comparando as previsões
do modelo RW com as do modelo selecionado BiLSTM (adamw - LR 0.0001 - Dropout 0.1
- Batch 16) com 2CR, que obteve as menores métricas de erro no período de teste entre as
duas arquiteturas. Os resultados dos testes para o modelo selecionado com 1CR podem ser
consultados na Tabela 28, disponível no Apêndice A.

Assim como observado no caso univariado, os testes DM e DMM na tabela acima in-
dicam que as previsões dos modelos apresentaram desempenhos, em termos de acurácia, es-
tatisticamente diferentes. As respectivas H0 foram rejeitadas em ambos os testes ao nível de
significância de 5%, tanto no período de validação quanto no de teste. Além disso, os resul-
tados sugerem que o modelo RW apresentou desempenho estatisticamente superior ao modelo
BiLSTM selecionado, conforme evidenciado pelas ET negativas e significativas.

Por outro lado, o teste de flutuação GR também indica a rejeição de H0, sugerindo que
a acurácia das previsões foi diferente em pelo menos uma janela de 20 dias úteis em ambos os
períodos analisados. As respectivas ET negativas destacam a superioridade preditiva relativa
do modelo RW nas janelas de tempo em que essa diferença preditiva foi mais pronunciada nos
respectivos períodos, corroborando os resultados obtidos nos testes DM e DMM.

Em relação ao teste de racionalidade de RS, observa-se a rejeição da H0 de imprevisibi-
lidade dos erros de previsão tanto para o modelo RW quanto para o modelo de DL multivariado
selecionado, nos dois períodos analisados. Essa presença de irracionalidade indica que os erros
preditivos podem não ser puramente aleatórios e que apresentam dependência temporal em pelo
menos uma janela de tempo. No caso do modelo BiLSTM, as ET foram ainda mais elevadas do
que as do modelo RW, especialmente no período de teste, sugerindo um viés mais acentuado em
suas previsões. Esse comportamento pode indicar a necessidade de melhoria do modelo ou es-
tar relacionado a mudanças estruturais na relação de curto prazo entre as variáveis explicativas,
possivelmente influenciadas por fatores externos, como as já citadas eleições americanas.
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Figura 10 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: O "Modelo" descrito na legenda refere-se ao modelo selecionado multivariado, com 2CR, nas previsões 1 dia útil à

frente. As janelas móveis possuem 20 dias úteis nos dois testes.

Fonte: O autor, 2025.

Conforme ilustrado na Figura 10, observa-se que, durante a maior parte do período de
validação, a ET do teste de flutuação GR permaneceu dentro dos limites críticos, indicando
uma equivalência preditiva entre os modelos nessas janelas de tempo de 20 dias úteis. Entre-
tanto, na segunda metade do período de validação, as previsões do modelo RW demonstraram
alguns episódios de acurácia relativamente superior, de forma semelhante ao observado no caso
univariado. No período de teste, a ET começa próxima ao limite crítico inferior, cruzando-o
algumas vezes e sugerindo novamente uma superioridade da acurácia das previsões do modelo
RW. Na parte intermediária das janelas de tempo do período de teste, as previsões permanecem
dentro dos limites críticos até que, no período final, as previsões do modelo RW apresentam um
desempenho estatisticamente superior.

Por outro lado, a evolução da ET no teste de racionalidade de Rossi e Sekhposyan (2016)
revela que o modelo de DL selecionado passou por diversos episódios em que os erros de pre-
visões foram irracionais, especialmente no final do período de validação e em múltiplos mo-
mentos ao longo do período de teste. Esses episódios evidenciam ineficiência e viés, com a ET
frequentemente ultrapassando de forma significativa o limite crítico. Tal comportamento pode
ser atribuído a diversos fatores externos, já mencionados na análise univariada, que aumentaram
a volatilidade da taxa de câmbio e resultaram em uma considerável depreciação do Real frente
ao Dólar ao longo de 2024.

Os resultados obtidos com os modelos de DL multivariados aplicados à previsão de 1
dia útil à frente indicam que, embora os modelos de DL tenham um grande potencial, mesmo
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com as diferentes especificações adotadas neste estudo, sua aplicabilidade para previsões de
curtíssimo prazo da taxa de câmbio continua sendo um desafio, mesmo com a inclusão de
variáveis explicativas.

5.2 Resultados das previsões 10 dias úteis à frente

5.2.1 Modelos univariados de DL vs. modelo RW nas previsões 10 dias úteis à frente:

5.2.1.1 Modelos univariados de DL com 1CR vs. modelo RW nas previsões 10 dias úteis à
frente:

Tabela 11 - Métricas de erro das previsões dos modelos univariados de DL com 1CR e do modelo RW

10 dias úteis à frente

Modelos (uma camada recorrente) RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.1140 0.0889 1.6886 0.1461 0.1251 2.1680
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1390 0.1005 1.8942 0.3462 0.2966 5.0549

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1415 0.1021 1.9238 0.3511 0.3061 5.2265

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1422 0.1012 1.9064 0.3247 0.2814 4.8018

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1353 0.1060 2.0150 0.3512 0.3086 5.2715

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1335 0.0991 1.8724 0.2879 0.2545 4.3537

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1318 0.1014 1.9246 0.2830 0.2514 4.3060

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1352 0.1023 1.9381 0.2768 0.2453 4.1992

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1251 0.0987 1.8764 0.2717 0.2388 4.0841

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1018 0.0888 1.7065 0.1554 0.1336 2.3090

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1295 0.0973 1.8391 0.3124 0.2679 4.5700

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1142 0.1024 1.9753 0.1450 0.1227 2.1356
BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1251 0.0938 1.7741 0.2771 0.2447 4.1978

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1243 0.0951 1.8036 0.2517 0.2222 3.8053

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1219 0.0932 1.7677 0.2576 0.2270 3.8842

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1207 0.0930 1.7640 0.2445 0.2158 3.6955

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1223 0.0935 1.7742 0.2571 0.2257 3.8603
Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 11 apresenta as métricas de erro das previsões 10 dias úteis à frente realiza-
das pelo modelo RW e pelos modelos de DL univariados com 1CR. Pela primeira vez, com
exceção do MAPE no período de validação, o RW não obteve as menores métricas de erro de
previsão entre todos os modelos analisados em ambos os períodos. No entanto, seus resultados
permaneceram próximos aos do modelo de DL com menores métricas de erro no período de
teste.

O modelo BiLSTM (adam - LR 0.0001 - Dropout 0.1 - Batch 16) registrou as menores
métricas de erro no período de validação, sendo, portanto, selecionado para a análise compara-
tiva com o RW no período de teste. No período de teste, os erros de previsão do modelo RW
foram ligeiramente inferiores aos do modelo selecionado.

Neste caso, com algumas exceções, os modelos bidirecionais (BiLSTM e BiGRU) de-
monstraram métricas de erro relativamente próximas às dos modelos modelos de DL unidire-
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cionais (LSTM e GRU). No período de teste, a diferença de desempenho entre os modelos de
DL e o RW tornou-se mais evidente, sugerindo que, de forma geral, os modelos de DL univari-
ados, nas diferentes especificações adotadas, tiveram dificuldades em captar o comportamento
dinâmico da taxa de câmbio.

Por fim, cabe observar que as métricas de erro apresentaram um aumento conforme o
horizonte de previsão se ampliou para 10 dias úteis à frente, como é comum de se observar na
previsão de séries temporais.

5.2.1.2 Modelos univariados de DL com 2CR vs. modelo RW nas previsões 10 dias úteis à
frente:

Tabela 12 - Métricas de erro das previsões dos modelos univariados de DL com 2CR e do modelo RW

10 dias úteis à frente

Modelos (duas camadas recorrentes) RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0,1140 0,0889 1,6886 0,1461 0,1251 2,1680
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0,1714 0,1215 2,2834 0,4538 0,4005 6,8434

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0,1563 0,1107 2,0829 0,4350 0,3918 6,7069

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0,1828 0,1329 2,5017 0,4361 0,3959 6,7841

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0,1516 0,1075 2,0215 0,3930 0,3473 5,9360

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0,1467 0,1054 1,9850 0,3156 0,2831 4,8514

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0,1264 0,0971 1,8403 0,2920 0,2577 4,4077

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0,1333 0,0986 1,8640 0,2962 0,2641 4,5228

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0,1248 0,0973 1,8476 0,2835 0,2490 4,2584

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0,1335 0,0985 1,8578 0,3588 0,3112 5,3094

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0,1397 0,1026 1,9354 0,5182 0,3950 6,6785

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0,1333 0,0989 1,8657 0,4326 0,3884 6,6448

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0,1123 0,0873 1,6613 0,4563 0,3580 6,0564

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0,1353 0,0979 1,8458 0,2961 0,2641 4,5229

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0,1253 0,0974 1,8484 0,3095 0,2699 4,6080

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0,1254 0,0928 1,7532 0,2807 0,2450 4,1846
BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0,1231 0,0928 1,7575 0,2955 0,2570 4,3886

Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 12 apresenta as métricas de erro das previsões para 10 dias úteis à frente
realizadas pelo modelo RW e pelos modelos de DL univariados com 2CR. Verifica-se que o RW
obteve as menores métricas de erro no período de teste, enquanto o modelo BiLSTM (adamw
- LR0.0001 - Dropout0.1 - Batch32) apresentou as menores métricas de erro de previsão no
período de validação, embora com valores próximos aos do RW. De forma geral, no período
de teste, as previsões dos modelos de DL univariados exibiram métricas de erro de previsão
visivelmente superiores às do RW. A inclusão de uma camada adicional nos respectivos modelos
de DL, mantidos os parâmetros da arquitetura com 1CR, não resultou em melhorias nas métricas
de erro no período de teste. Além disso, observa-se que as previsões dos modelos BiGRU
apresentaram métricas de erro relativamente próximas às do modelo GRU nos dois períodos de
análise, o que não parece se repetir para o caso dos modelos BiLSTM e LSTM.

Verifica-se que as previsões 10 dias à frente dos modelos de DL univariados com 2CR
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apresentaram métricas de erro superiores às obtidas pelos modelos de DL com 1CR. Assim,
apesar das diferentes especificações adotadas, tais modelos apresentaram limitações na captura
dos padrões cambiais do período analisado.

5.2.1.3 Modelos de DL univariados selecionados vs. modelo RW nas previsões 10 dias
úteis à frente

Tabela 13 - Métricas de erro das previsões 10 dias úteis à frente dos modelos de DL univariados

selecionados em cada arquitetura vs. modelo RW

Arquitetura Modelos e Parâmetros RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
- RW 0.1140 0.0889 1.6886 0.1461 0.1251 2.1680
1CR BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1018 0.0888 1.7065 0.1554 0.1336 2.3090

2CR BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1123 0.0874 1.66132 0.4563 0.3580 6.0564

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Tabela 13 apresenta as métricas de erro das previsões 10 dias úteis à frente do modelo
RW e dos modelos de DL univariados selecionados nas arquiteturas com 1CR e 2CR, pelo
critério de menores métricas de erro no período de validação. No período de validação, os
modelos de DL obtiveram menores métricas de erro em comparação ao modelo RW. O modelo
com 1CR apresentou o menor RMSE, enquanto o modelo com 2CR obteve os menores valores
de MAE e MAPE. Já no período de teste, o modelo RW obteve os menores erros de previsão
nas três métricas.

O RMSE mede o erro médio em unidades absolutas e é sensível a grandes desvios
(outliers). Assim, no caso do modelo de DL com 1CR, foram obtidas previsões mais precisas
em termos absolutos, reduzindo discrepâncias extremas e de forma mais robusta na média global
dos erros. O MAPE, por sua vez, mede o erro médio em termos percentuais e é mais adequado
para comparar erros relativos, especialmente em séries temporais com valores menores, onde
desvios proporcionais podem ter maior impacto. Dessa forma, o menor MAPE do modelo com
2CR sugere que ele teve um desempenho relativamente melhor na minimização de erros em
relação aos valores previstos.

Por outro lado, o MAE mede o erro médio absoluto sem penalizar tanto os desvios
extremos como o RMSE, refletindo a precisão geral das previsões. Logo, o menor MAE do
modelo com 2CR no período de validação indica que, em média, suas previsões estiveram mais
próximas dos valores reais em relação aos demais modelos.

Entre os modelos de DL selecionados, o modelo com 1CR apresentou as menores métri-
cas de erro durante o período de teste. Dado que seus resultados foram próximos aos do modelo
RW, serão realizados testes estatísticos para verificar se os desempenhos das respectivas previ-
sões podem ser considerados equivalentes em termos de acurácia preditiva. Antes disso, serão
apresentados os gráficos das previsões dos dois modelos de DL selecionados e do modelo RW.



68

Figura 11 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 10 dias úteis à frente do

modelo selecionado univariado com 1CR vs RW no período de teste

Nota: Referente ao modelo de DL univariado selecionado, com 1CR, descrito na legenda.

Fonte: O autor, 2025.

A Figura 11 apresenta a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 10 dias úteis à frente do modelo RW e as do modelo de DL selecionado
BiLSTM (adam - LR 0.0001 - Dropout 0.1 - Batch 16) com 1CR que adota uma abordagem
univariada.

Observa-se que, no período de teste, o modelo de DL apresenta um comportamento mais
suavizado em relação à trajetória efetiva da taxa de câmbio Ptax de venda. Essa suavização
parece decorrer da dificuldade do modelo univariado em captar oscilações de curto prazo. As
previsões do referido BiLSTM parecem relativamente próximas às do modelo RW, porém com
suavização e certo atraso em relação a este. Isso evidencia os desafios em lidar com reversões
abruptas, especialmente em cenários de elevada volatilidade.
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Figura 12 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 10 dias úteis à frente do

modelo selecionado univariado com 2CR vs RW no período de teste

Nota: Referente ao modelo de DL univariado selecionado, com 2CR, descrito na legenda.

Fonte: O autor, 2025.

A Figura 12 exibe a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 10 dias úteis à frente do modelo RW e as do modelo de DL selecionado
BiLSTM-adamw (LR 0.0001 - Dropout 0.1 - Batch 32) com 2CR que adota uma abordagem
univariada.

Observa-se que, diferentemente dos modelos anteriores, o BiLSTM apresenta um viés
acentuado e crescente no final do período de teste, sugerindo uma perda de estabilidade nas
previsões.

Embora as funções de perda no treinamento e na validação, disponíveis no Apêndice
B, apresentem um decaimento aparentemente normal, sem sinais evidentes de overfitting ou
underfitting, verifica-se uma inconsistência no desempenho do modelo entre os períodos de
validação e de teste. É possível que a rede neural tenha convergido para um mínimo local
subótimo, resultando em pesos que não favorecem uma generalização adequada. Além disso, o
período de teste coincidiu com choques externos, como as eleições americanas, que impactaram
as expectativas e a valorização da taxa de câmbio. Mudanças abruptas na estrutura dos dados,
incluindo tendência e volatilidade, podem não ter sido capturadas adequadamente pelo modelo
de DL durante o respectivo treinamento.

Apesar das diversas especificações dos modelos de DL com 2CR, a ausência de variáveis
exógenas pode ter limitado a capacidade da rede de capturar padrões de tendência e volatilidade,
resultando na subestimação da taxa de câmbio. Estudos futuros podem explorar calibrações
adicionais de parâmetros, arquiteturas híbridas ou estratégias de treinamento com objetivo de
aprimorar a adaptação dos modelos de DL univariados a períodos de instabilidade no mercado.
Esse exemplo evidencia que a seleção do modelo é, por si só, um grande desafio. Além das
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inúmeras combinações possíveis de arquiteturas e hiperparâmetros, um desempenho favorável
no período de validação não garante resultados satisfatórios no período de teste e nos períodos
posteriores. A comparação dos resultados das previsões dos respectivos modelo de DL com
o modelo RW (benchmark) pode ser um indicativo da inadequação dos mesmos nos casos de
afastamentos substanciais.

5.2.1.4 Testes estatísticos entre o modelo de DL univariado selecionado com melhor
desempenho no período de teste vs. modelo RW nas previsões 10 dias úteis à frente

Tabela 14 - Testes estatísticos para comparação do modelo univariado de DL selecionado com 1CR e do

modelo RW nas previsões 10 dias úteis à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs BiLSTM: Estatística = 1.1986, p–valor = 0.2307 RW vs BiLSTM: Estatística = -1.2034, p–valor = 0.2288

Teste de Diebold-Mariano-Modificado (DMM) RW vs BiLSTM: Estatística = 1.0597, p–valor = 0.2924 RW vs BiLSTM: Estatística = -1.0657, p–valor = 0.2897

Flutuação de Giacomini e Rossi (2010) RW vs BiLSTM: Estatística = 5.0494, p–valor = 0.0001*** RW vs BiLSTM: Estatística = -3.2396, p–valor = 0.0043***

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 5779.2941, p–valor = 0.0000*** RW: Estatística = 2980.7553, p–valor = 0.0000***

Racionalidade de Rossi e Sekhposyan (2016) BiLSTM: Estatística = 3707.2103, p–valor = 0.0000*** BiLSTM: Estatística = 4836.8838, p–valor = 0.0000***

Nota 1: Refere-se ao BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32).

Nota 2: ∗∗∗, ∗∗ e ∗ indicam significância estatística ao nível de 1%, 5% e 10%, respectivamente.

Fonte: O autor, 2025.

A Tabela 14 apresenta os resultados dos testes estatísticos comparando as previsões
do modelo RW com as do modelo selecionado BiLSTM (adamw - LR 0.0001 - Dropout 0.1
- Batch 16) com 1CR, que obteve as menores métricas de erro no período de teste entre as
duas arquiteturas. Os resultados dos testes para o modelo selecionado com 2CR podem ser
consultados na Tabela 29, disponível no Apêndice A.

Os resultados dos testes DM e DMM na tabela acima indicam que as previsões dos
modelos apresentaram acurácias estatisticamente equivalentes. As H0 não são rejeitadas nos
dois testes ao nível de significância de 5%, tanto no período de validação quanto no de teste.

Por outro lado, o teste de flutuação GR aponta para a rejeição da H0 de igualdade de de-
sempenho relativo das previsões. Porém, a ET considera a janela de tempo de maior diferença
de acurácia entre as previsões dos modelo RW e as do respectivo modelo de DL selecionado
com 1CR. Dessa forma, no período de validação, a ET positiva indica a superioridade da acu-
rácia das previsões do modelo de DL selecionado na janela de tempo de maior diferença de
acurácia, enquanto que a ET negativa, no período de teste, indica a superioridade da acurácia
das previsões do modelo RW também na janela de tempo de maior diferença de acurácia. A Fi-
gura 13, apresentada na sequência, ilustrará o comportamento do desempenho preditivo relativo
ao longo dos períodos de validação e de teste.

O teste de racionalidade de RS aponta a rejeição de H0 de imprevisibilidade dos erros de
previsão no modelo RW e no modelo de DL selecionado, tanto no período de validação e quanto
no de teste. Isso indica a presença de eventos de irracionalidade, nos quais os erros preditivos
não foram aleatórios e apresentaram dependência temporal. Neste caso, as ET do modelo de



71

DL são menores que as do RW no período de validação e maiores no período de teste.

Figura 13 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: O "Modelo" descrito na legenda refere-se ao modelo selecionado univariado, com 1CR, nas previsões 10 dias úteis à

frente. As janelas móveis possuem 20 dias úteis nos dois testes.

Fonte: O autor, 2025.

Conforme ilustrado na Figura 13, a evolução das ETs no teste de flutuação de GR aponta
que, durante a maior parte do tempo, a ET permaneceu dentro dos limites críticos, indicando
uma equivalência estatística entre as previsões dos dois modelos comparados. No período de
validação, observa-se uma alternância no desempenho relativo das previsões, com uma leve
superioridade inicial do modelo RW e uma superioridade do modelo de DL no período final.
Por sua vez, na segunda metade do período de teste, observam-se janelas de tempo em que as
previsões do modelo RW demonstram uma acurácia superior.

Por outro lado, a evolução da ET no teste de racionalidade de RS revela que, no período
de validação, o modelo de DL selecionado apresentou três momentos de maior irracionalidade
nos seus erros de previsão, sugerindo falta de eficiência e viés, com a ET ultrapassando signi-
ficativamente o limite crítico, especialmente no final desse período. Por sua vez, o modelo RW
exibiu erros de previsão ainda mais irracionais no final do período de validação. No período
de teste, as ETs de ambos os modelos apresentam um comportamento semelhante, com um
pico de irracionalidade dos erros de previsão nas janelas centrais, com as ET do modelo de DL
superando as ET do modelo RW.

De modo geral, os resultados obtidos nos modelos de DL univariados aplicados à pre-
visão de 10 dias úteis à frente indicam que, embora os modelos de DL tenham um grande
potencial, nas diversas variações adotadas neste estudo, sua aplicabilidade às previsões de curto
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prazo pode ser restrita, especialmente em contextos de alta volatilidade.

5.2.2 Modelos multivariados de DL vs. modelo RW nas previsões 10 dias úteis à frente

5.2.2.1 Modelos multivariados de DL com 1CR vs. modelo RW nas previsões 10 dias úteis
à frente:

Tabela 15 - Métricas de erro das previsões dos modelos multivariados de DL com 1CR e do modelo RW

10 dias úteis à frente

Modelo RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.1140 0.0889 1.6886 0.1461 0.1251 2.1680
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2259 0.1850 3.5072 0.4277 0.3934 6.7467

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.3347 0.2949 5.6180 0.6654 0.6421 11.0748

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2817 0.2446 4.6544 0.5669 0.5179 8.8736

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1705 0.1287 2.4325 0.1431 0.1109 1.8799
GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2982 0.2604 4.9567 0.7167 0.6918 11.9333

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.3039 0.2681 5.1071 0.6647 0.6361 10.9596

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2597 0.2168 4.1128 0.5439 0.5162 8.8858

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2483 0.2101 3.9901 0.5989 0.5695 9.8035

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2278 0.1948 3.7039 0.2415 0.2045 3.4928

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.2374 0.2065 3.9309 0.2628 0.2395 4.1221

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2710 0.2279 4.3278 0.5938 0.5590 9.6105

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1529 0.1388 2.6785 0.4074 0.3232 5.5089

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2405 0.2029 3.8539 0.5268 0.4934 8.4773

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.2571 0.2230 4.2439 0.5287 0.5048 8.6988

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2800 0.2441 4.6459 0.5665 0.5402 9.3036

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2396 0.1983 3.7601 0.5195 0.4947 8.5200
Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 15 apresenta as métricas de erro das previsões para 10 dias úteis à frente
realizadas pelo modelo RW e pelos modelos de DL multivariados com 1CR. No resultado geral,
as previsões do modelo RW exibiram as menores métricas de erro no período de validação.
Entre os modelos de DL, no período de validação, o BiLSTM (adamw - LR0.0001 - Dropout0.1
- Batch32) obteve o menor RMSE, enquanto o modelo LSTM (adamw - LR0.0001 - Dropout0.1
- Batch32) obteve os menores MAE e MAPE. Desse forma, ambos os modelos foram pré-
selecionados entre os modelos de DL com 1CR.

No período de teste, com exceção do modelo LSTM (adamw - LR0.0001 - Dropout0.1
- Batch32), as métricas de erro das previsões dos modelos de DL foram superiores às apresen-
tadas pelos modelos univariados com o mesmo horizonte de previsão de 10 dias úteis à frente.
Esse desempenho pode estar relacionado à maior complexidade das dinâmicas introduzidas pe-
las variáveis explicativas, bem como a eventuais mudanças no comportamento dessas variáveis
em função do choque externo ocorrido no período.

Adicionalmente, observa-se que os modelos de DL bidirecionais não apresentaram van-
tagens claras em relação aos modelos unidirecionais. O modelo LSTM (adamw - LR0.0001
- Dropout0.1 - Batch32) demonstrou consistência em suas previsões tanto no período de vali-
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dação quando no de teste, destacando-se entre os modelos de DL especialmente nesse último
período.

5.2.2.2 Modelos multivariados de DL com 2CR vs. modelo RW nas previsões 10 dias úteis
à frente:

Tabela 16 - Métricas de erro das previsões dos modelos multivariados de DL com 2CR e do modelo RW

10 dias úteis à frente

Modelo RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.1140 0.0889 1.6886 0.1461 0.1251 2.1680
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2308 0.1880 3.5637 0.3676 0.3316 5.6753

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1216 0.0901 1.7006 0.4024 0.3854 6.7879

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2370 0.2005 3.8114 0.2562 0.2114 3.5923

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2865 0.2486 4.7311 0.4009 0.3687 6.3306

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2653 0.2290 4.3561 0.5252 0.4979 8.5719

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.2591 0.2281 4.3455 0.5433 0.5192 8.9455

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2677 0.2316 4.4055 0.5432 0.5189 8.9413

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2571 0.2233 4.2516 0.5722 0.5435 9.3563

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2435 0.1940 3.6690 0.6180 0.5892 10.1452

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1125 0.0840 1.5919 0.1046 0.0808 1.4158
BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1391 0.1236 2.3861 0.2071 0.1494 2.5402

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1279 0.0949 1.7903 0.1611 0.1446 2.4944

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1695 0.1356 2.5679 0.4287 0.4013 6.8994

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1754 0.1284 2.4170 0.4087 0.3761 6.4494

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2207 0.1718 3.2460 0.5529 0.5311 9.1588

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2332 0.1914 3.6272 0.6187 0.5947 10.2517
Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 16 apresenta as métricas de erro das previsões para 10 dias úteis à frente rea-
lizadas pelo modelo RW e pelos modelos de DL multivariados com 2CR. No resultado geral, o
modelo BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) apresentou as menores métricas de
erro tanto no período de validação quanto no de teste, demonstrando consistência e capacidade
de generalização nas suas previsões.

Com algumas exceções, as métricas de erro das previsões 10 dias à frente dos modelos
de DL multivariados com 2CR foram ligeiramente inferiores às observadas na arquitetura com
1CR. Cabe observar que, enquanto na arquitetura com 1CR o modelo de DL selecionado foi
um dos LSTM, nessa arquitetura com 2CR foi um dos BiLSTM. Desse modo, na sistemática
adotada, não se identificou uma superioridade consistente dos modelos de DL bidirecionais
em relação aos unidirecionais, sendo que os resultados variaram de acordo com a arquitetura
empregada.
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5.2.2.3 Modelos de DL multivariados selecionados vs. modelo RW nas previsões 10 dias
úteis à frente

Tabela 17 - Métricas de erro das previsões 10 dias úteis à frente dos modelos de DL multivariados

selecionados em cada arquitetura vs. modelo RW

Arquitetura Modelos e Parâmetros RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
- RW 0.1140 0.0889 1.6886 0.1461 0.1251 2.1680

1CR (pelo critério RMSE) BiLSTM-adamw (LR0.0001-Dropout0.1-Batch32) 0.1529 0.1388 2.6785 0.4074 0.3232 5.5089
1CR (pelo critério MAPE) LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1705 0.1287 2.4325 0.1431 0.1109 1.8799

2CR BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1125 0.0840 1.5919 0.1046 0.0808 1.4158

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Tabela 17 apresenta as métricas de erro das previsões 10 dias úteis à frente do modelo
RW e dos modelos de DL multivariados selecionados nas arquiteturas com 1CR e 2CR, pelo
critério de menores métricas de erro no período de validação.

Seguindo a sistemática adotada, entre todos os modelos, o BiLSTM (adam - LR0.0001
- Dropout0.1 - Batch32) com 2CR obteve as menores métricas de erro em suas previsões nos
dois períodos analisados. O desempenho em relação ao modelo RW parece mais próximo no
período de validação do que no período de teste. Por outro lado, entre os modelos com 1CR,
o LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) apresentou métricas de erro de previsão
relativamente próximas às do modelo RW no período de teste.

Entre todos os modelos, o modelo de DL com 2CR apresentou as menores métricas de
erro durante o período de teste. Dado que suas métricas de erro foram inferiores às das previsões
do modelo RW, serão apresentados testes estatísticos com objetivo de verificar se as acurácias
das previsões são estatisticamente diferentes. Antes disso, serão apresentados os gráficos das
previsões dos dois modelos selecionados, com melhor desempenho no período de teste, em
relação às previsões do modelo RW e às taxas de câmbio Ptax de venda efetivas.
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Figura 14 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 10 dias úteis à frente do

modelo selecionado multivariado com 1CR vs RW no período de teste

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Figura 14 apresenta a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 10 dias úteis à frente do modelo RW e as do modelo de DL selecionado
LSTM (adamw - LR0.0001 - Dropout 0.1 - Batch 32) com 1CR que adota uma abordagem
multivariada.

Observa-se que as previsões do referido modelo LSTM multivariado apresentam uma
trajetória mais suavizada em relação à série efetiva da taxa de câmbio Ptax de venda, sugerindo
menor capacidade de captura de oscilações de curtíssimo prazo. Porém, tais previsões parecem
acompanhar a tendência da taxa de câmbio Ptax de venda no período.

Esse resultado pode estar associado ao tamanho do lote (batch size) de 32, que influen-
cia as atualizações dos pesos durante o treinamento. Em modelos recorrentes, tamanho de lotes
maiores tendem a proporcionar ajustes mais estáveis dos gradientes, reduzindo a variabilidade
nas atualizações, o que pode melhorar a generalização mas limitando a detecção de padrões
dinâmicos e de curta duração. Por outro lado, o resultado também pode estar relacionado ao
impacto das técnicas de regularização, como o dropout e a penalidade L2 aplicada aos pesos
do kernel, que atuam limitando a magnitude dos ajustes durante o treinamento, resultando em
previsões menos extremas e, consequentemente, mais suavizadas. O uso de uma taxa de apren-
dizado mais baixa (LR = 0.0001) também pode ter contribuído para uma convergência mais
estável durante o treinamento, ao reduzir o impacto das oscilações no ajuste dos pesos da rede
neural ao longo do processo de otimização.

Adicionalmente, o modelo de DL selecionado aparenta exibir uma tendência sistemá-
tica de subestimação da trajetória efetiva da taxa de câmbio Ptax de venda, especialmente na
segunda metade do período de teste, em que ocorreu uma apreciação mais acelerada da taxa de
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câmbio.
Experimentos empíricos preliminares indicaram que, mantendo-se os demais parâme-

tros constantes, o uso de taxas de aprendizado maiores resultou em um treinamento menos
estável e em modelos de DL cujo desempenho foi comparável ao do modelo RW apenas no
período de validação, evidenciando uma capacidade limitada de generalização no período de
teste. Esses resultados ressaltam a importância de buscar um equilíbrio entre os parâmetros que
favoreçam a capacidade de generalização dos modelos de DL ao se adotar uma sistemática de
escolha baseada no desempenho na validação. Contudo, recomenda-se a realização de experi-
mentos adicionais em estudos futuros para verificar se essa limitação decorre, sobretudo, das
características específicas dos dados utilizados neste estudo, e não apenas da configuração dos
parâmetros.

Figura 15 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 10 dias úteis à frente do

modelo selecionado multivariado com 2CR vs RW no período de teste

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Figura 15 apresenta a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 10 dias úteis à frente do modelo RW e as do modelo de DL selecionado
BiLSTM (adam - LR 0.0001 - Dropout 0.1 - Batch 32) com 2CR que adota uma abordagem
multivariada.

Observa-se que o respectivo modelo de DL selecionado apresenta uma trajetória que
acompanha a tendência altista observada na série efetiva da taxa de câmbio Ptax do período
de teste. Em contraste com o modelo de DL selecionado com 1CR, percebe-se que suas pre-
visões não se aproximam tanto das previsões geradas pelo modelo RW. Esse comportamento
pode indicar uma maior capacidade de retenção de tendências de curto prazo, o que reforça a
importância de se testar empiricamente diferentes configurações de modelos de DL.
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5.2.2.4 Testes estatísticos entre o modelo de DL multivariado selecionado com melhor
desempenho no período de teste vs. modelo RW nas previsões 10 dias úteis à frente

Tabela 18 - Testes estatísticos para comparação do modelo multivariado de DL selecionado com 2CR e

do modelo RW nas previsões 10 dias úteis à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs BiLSTM: Estatística = 0.1073, p–valor = 0.9146 RW vs BiLSTM: Estatística = 1.8696, p–valor = 0.0615*

Teste de Diebold-Mariano-Modificado (DMM) RW vs BiLSTM: Estatística = 0.0948, p–valor = 0.9247 RW vs BiLSTM: Estatística = 1.6456, p–valor = 0.1037

Flutuação de Giacomini e Rossi (2010) RW: Estatística = 13.3080, p–valor = 0.0000*** RW: Estatística = 18.8424, p–valor = 0.0000***

Racionalidade de Rossi e Sekhposyan (2016) BiLSTM: Estatística = 3223.8987, p–valor = 0.0000*** BiLSTM: Estatística = 1722.5386, p–valor = 0.0000***

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 5779.2941, p–valor = 0.0000*** RW: Estatística = 2980.7553, p–valor = 0.0000***

Nota 1: Refere-se ao modelo BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32).

Nota 2: ∗∗∗, ∗∗ e ∗ indicam significância estatística ao nível de 1%, 5% e 10%, respectivamente.

Fonte: O autor, 2025.

A Tabela 18 apresenta os resultados dos testes estatísticos comparando as previsões do
modelo RW com as do modelo selecionado BiLSTM (adamw - LR 0.0001 - Dropout 0.1 -
Batch 16) com 2CR, que obteve as menores métricas de erro no período de teste entre as duas
arquiteturas. Os resultados dos testes para o modelo selecionado com 1CR, com os menores
erros de previsão no período de teste nessa arquitetura, podem ser consultados na Tabela 30,
disponível no Apêndice A.

Os resultados dos testes DM e DMM apresentados na Tabela 18 indicam que as previ-
sões dos modelos apresentaram acurácias estatisticamente equivalentes. Considerando o nível
de significância de 5%, as H0 de equivalência preditiva não foram rejeitadas em ambos os testes
e nos dois períodos analisados. No período de teste, os p-valores obtidos nos testes DM e DMM
ficaram próximos aos níveis de significância de 5% e 10%, respectivamente; ainda assim, não
foram suficientes para evidenciar diferenças estatisticamente significativas de acurácia entre os
modelos. Quando comparado com os resultados obtidos no modelo de DL univariado seleci-
onado, observa-se que, nesse caso, os p-valores ficaram mais próximos da rejeição da H0, o
que dá indícios de que a inclusão de variáveis explicativas pode ter contribuído para melhorar o
desempenho preditivo.

Por outro lado, o teste de flutuação GR aponta, ao nível de significância de 5%, para a
rejeição da H0 de igualdade de acurácia das previsões dos dois modelos comparados. Tanto no
período de validação quanto no de teste, a ET positiva indica a superioridade da acurácia das
previsões do modelo de DL na janela de tempo de maior diferença de acurácia entre os modelos
comparados. A Figura 16 ilustra o comportamento das ET ao longo dos períodos de validação
e teste.

O teste de racionalidade de RS indica, ao nível de significância de 5%, a rejeição de
H0 de imprevisibilidade dos erros de previsão no modelo RW e no modelo de DL selecionado,
tanto no período de validação e quanto no de teste. O que aponta a presença de eventos de
irracionalidade, nos quais os erros preditivos não foram aleatórios e apresentaram dependência
temporal. Neste caso, as ET das previsões do RW foram maiores que as do modelo de DL sele-
cionado nos dois períodos analisados, o que descreve que as suas previsões apresentaram vieses
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ainda maiores em pelo menos uma das janelas de tempo dos respectivos períodos analisados.
Esses resultados sugerem que a inclusão de variáveis explicativas na rede neural tem

potencial para melhoria da capacidade de preditiva, em pelo menos algumas janelas de tempo,
tornando-a mais competitiva em relação ao desempenho das previsões do modelo RW. Apesar
disso, a estabilidade e a racionalidade das previsões ainda são um desafio.

Figura 16 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: O "Modelo" descrito na legenda refere-se ao modelo selecionado multivariado, com 2CR, nas previsões 10 dias úteis à

frente. As janelas móveis possuem 20 dias úteis nos dois testes.

Fonte: O autor, 2025.

A Figura 16 descreve a evolução das ETs do teste de flutuação de GR nas diferentes
janelas de tempo e mostra que, no início do período de validação, o limite crítico superior foi
ultrapassado, indicando nesses casos uma superioridade da acurácia das previsões do modelo
de DL em relação às do modelo RW. Posteriormente, a ET permaneceu dentro dos limites
críticos, sugerindo igualdade de desempenho preditivo. No período de teste, durante a maior
parte do tempo, a ET permaneceu dentro dos limites críticos. Ocorreram três intervalos em que
se apontam a superioridade da acurácia das previsões do modelo de DL e um curto intervalo em
que as previsões do modelo RW demonstraram um melhor desempenho.

A evolução da ET no teste de racionalidade de RS indica que, no período de validação, o
modelo de DL selecionado apresentou dois momentos mais visíveis de irracionalidade nos erros
de previsão, refletindo falta de eficiência e viés, com a ET ultrapassando significativamente o
limite crítico, especialmente no início da segunda metade das janelas de tempo e no final do
período. Por sua vez, o modelo RW demonstrou erros de previsão ainda mais irracionais que
os do modelo de DL no final do período de validação. No período de teste, as ETs de ambos
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os modelos exibiram dois picos de irracionalidade nos erros de previsão: as do modelo RW na
região central e no final do gráfico, e as do modelo de DL no primeiro e terceiro quartil.

Os resultados obtidos com os modelos multivariados de DL para a previsão de 10 dias
úteis à frente sugerem que, nas configurações aplicadas, sua eficácia em horizontes de curto
prazo ainda é desafiadora, especialmente quando avaliada com base em critérios estatísticos
convencionais. Embora o modelo de DL selecionado com melhor desempenho tenha apresen-
tado menores métricas de erro, não foi possível rejeitar pelo teste DMM a hipótese de equi-
valência de acurácia preditiva em relação ao modelo RW, mesmo ao nível de significância de
10%, ainda que o p-valor associado à ET tenha sido muito próximo a esse nível. Porém, con-
siderando o cenário de alta volatilidade e o fato de que o modelo não ter sido retreinado a cada
nova previsão, há indícios de que suas previsões estiveram próximas de superar a acurácia das
previsões do modelo RW. Além disso, aspectos relacionados à incerteza e a choques externos
podem ter influenciado significativamente a dinâmica da taxa de câmbio no curto prazo.

5.3 Resultados das previsões 20 dias úteis à frente

5.3.1 Modelos univariados de DL vs. modelo RW nas previsões 20 dias úteis à frente

5.3.1.1 Modelos univariados de DL com 1CR vs. modelo RW nas previsões 20 dias úteis à
frente:

Tabela 19 - Métricas de erro das previsões dos modelos univariados de DL com 1CR e do modelo RW

20 dias úteis à frente

Modelo (uma camada recorrente RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.1929 0.1612 3.0359 0.2365 0.2137 3.6417
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1539 0.1091 2.0344 0.5062 0.4748 8.0803

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1947 0.1610 3.0279 0.4714 0.4352 7.3940

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1867 0.1481 2.7771 0.4527 0.4194 7.1276

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1923 0.1545 2.8999 0.4448 0.4080 6.9265

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1456 0.1103 2.0693 0.3778 0.3344 5.6557

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1681 0.1197 2.2307 0.3760 0.3359 5.6860

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1497 0.1095 2.0480 0.3702 0.3313 5.6100

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1583 0.1145 2.1380 0.3743 0.3313 5.6030

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1767 0.1293 2.4130 0.4045 0.3622 6.1340

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1981 0.1659 3.1206 0.4712 0.4374 7.4366

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1597 0.1139 2.1244 0.3558 0.3197 5.4163

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1531 0.1119 2.0902 0.4162 0.3562 6.0071

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1516 0.1123 2.1006 0.3553 0.3138 5.3070

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1578 0.1158 2.1624 0.3768 0.3341 5.6521

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1524 0.1134 2.1207 0.3509 0.3101 5.2459
BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1556 0.1144 2.1366 0.3980 0.3579 6.0632

Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 19 apresenta as métricas de erro das previsões para 20 dias úteis à frente reali-
zadas pelo modelo RW e pelos modelos de DL univariados com 1CR. No período de validação,
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o modelo LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) apresentou os menores valores de
MAE e MAPE, o que sugere que suas previsões estiveram, em média, mais próximas dos valo-
res reais em comparação aos demais modelos, além um desempenho superior na minimização
dos erros relativos. Por sua vez, o modelo GRU (adam - LR0.0001 - Dropout0.1 - Batch16)
registrou o menor RMSE no mesmo período, destacando-se por gerar previsões mais precisas
em termos absolutos, com menor incidência de discrepâncias extremas. Dessa forma, ambos os
modelos de DL foram pré-selecionados entre os modelos de 1CR. No período de teste, entre-
tanto, as previsões do modelo RW exibiram as menores métricas de erro entre todos os modelos.
Adicionalmente, não foram observadas vantagens claras entre as previsões de nenhum dos mo-
delos de DL analisados.

5.3.1.2 Modelos univariados de DL com 2CR vs. modelo RW nas previsões 20 dias úteis à
frente:

Tabela 20 - Métricas de erro das previsões dos modelos univariados de DL com 2CR e do modelo RW

20 dias úteis à frente

Modelo (duas camadas recorrentes) RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.1929 0.1612 3.0359 0.2365 0.2137 3.6417
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2003 0.1660 3.1207 0.4519 0.4160 7.0642

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1975 0.1620 3.0427 0.4614 0.4240 7.1995

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1717 0.1323 2.4779 0.4905 0.4610 7.8451

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2386 0.2073 3.9079 0.5830 0.5511 9.3864

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1662 0.1190 2.2188 0.4214 0.3818 6.4716

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1987 0.1469 2.7410 0.4385 0.4026 6.8339

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1614 0.1168 2.1789 0.4035 0.3607 6.1051
GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1971 0.1458 2.7211 0.4249 0.3882 6.5865

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2260 0.1944 3.6648 0.5186 0.4774 8.1037

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1996 0.1610 3.0221 0.4494 0.4156 7.0603

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1915 0.1530 2.8697 0.4613 0.4124 6.9818

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2445 0.2123 4.0017 0.5268 0.4897 8.3240

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1683 0.1224 2.2837 0.4541 0.4184 7.1041

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1708 0.1263 2.3593 0.4276 0.3889 6.5935

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1703 0.1269 2.3714 0.4251 0.3804 6.4384

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2148 0.1936 3.6611 0.4730 0.4319 7.3244
Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

A Tabela 20 apresenta as métricas de erro das previsões para 20 dias úteis à frente
realizadas pelo modelo RW e pelos modelos de DL univariados com 2CR.

No período de validação, as previsões do modelo GRU (adamw - LR0.0001 - Dropout0.1
- Batch16) apresentaram as métricas de erro entre todos os modelos. No entanto, no período
de teste, foram as previsões do modelo RW que exibiram esse resultado. Nesse período, as
métricas de erro do modelo GRU foram quase o dobro das observadas para as previsões do
modelo RW. Acrescenta-se que, novamente, não foram identificadas vantagens claras entre as
previsões dos modelos de DL analisados.
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5.3.1.3 Modelos de DL univariados selecionados vs. modelo RW nas previsões 20 dias
úteis à frente

Tabela 21 - Métricas de erro das previsões 20 dias úteis à frente dos modelos de DL univariados

selecionados em cada arquitetura vs. modelo RW

Arquitetura Modelos e Parâmetros RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
- RW 0.1929 0.1612 3.0359 0.2365 0.2137 3.6417
1CR (pelo critério RMSE) GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1456 0.1103 2.0693 0.3778 0.3344 5.6557
1CR (pelo critério MAPE) LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1539 0.1091 2.0344 0.5062 0.4748 8.0803

2CR GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1614 0.1168 2.1789 0.4035 0.3607 6.1051

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Tabela 21 apresenta as métricas de erro das previsões 20 dias úteis à frente do mo-
delo RW e dos modelos de DL univariados selecionados nas duas arquiteturas (1CR e 2CR)
pelo critério de menores métricas de erro no período de validação. Entre os modelos de DL
selecionados, o modelo GRU (adam - LR0.0001 -Dropout0.1 - Batch16) com 1CR apresentou
as menores métricas de erro durante o período de teste, porém com valores superiores aos do
modelo RW. Assim, serão analisados os resultados dos testes estatísticos para verificar se a hi-
pótese de equivalência de acurácia preditiva pode ser rejeitada. No entanto, antes disso, serão
apresentados os gráficos das previsões dos dois modelos selecionados, com melhor desempenho
no período de teste, e do modelo RW.

Figura 17 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 20 dias úteis à frente do

modelo selecionado univariado com 1CR vs RW no período de teste

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Figura 17 apresenta a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 20 dias úteis à frente do modelo RW e as do modelo de DL seleci-
onado GRU (adam - LR0.0001 - Dropout0.1 - Batch16) com 1CR que adota uma abordagem
univariada.
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Observa-se um comportamento marcadamente distinto entre os modelos. O RW captura
razoavelmente as oscilações da taxa de câmbio, mantendo uma resposta às mudanças abruptas
no câmbio, apesar da defasagem inerente à sua própria característica. Em contrapartida, o
referido modelo GRU apresenta uma suavização bastante pronunciada, resultando em previsões
que subestimam significativamente a série.

A suavização excessiva do modelo GRU pode ser atribuída a uma combinação de fatores,
incluindo problemas de convergência para um mínimo local no processo de otimização dos
pesos da rede neural. Além disso, como o modelo de DL é univariado, ele só considera os
preços passados para fazer as suas previsões, o que pode limitar sua capacidade preditiva nesse
contexto de elevada volatilidade.

Figura 18 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 20 dias úteis à frente do

modelo selecionado univariado com 2CR vs RW no período de teste

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Figura 18 apresenta a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 20 dias úteis à frente do modelo RW e as do modelo de DL selecio-
nado GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) com 2CR que adota uma abordagem
univariada.

Verifica-se um comportamento muito similar ao observado nas previsões do modelo uni-
variado selecionado com 1CR descrito na Figura 17. O modelo GRU selecionado exibe uma
trajetória suavizada e com viés de subestimação ao longo do período de teste. Esse comporta-
mento sugere que, apesar da presença de 2CR e das diferentes configurações testadas, a rede
neural ainda apresentou limitações na captação de oscilações de curto prazo, especialmente em
períodos de maior volatilidade. Além disso, esse resultado pode indicar um ajuste inadequado
no processo de otimização dos pesos da rede neural durante o treinamento, somado ao impacto
de fatores externos ocorridos no período sobre a estrutura dos dados e à ausência de variáveis
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explicativas no contexto univariado.

5.3.1.4 Testes estatísticos entre o modelo de DL univariado selecionado com melhor
desempenho no período de teste vs. modelo RW nas previsões 20 dias úteis à frente

Tabela 22 - Testes estatísticos para comparação do modelo univariado de DL selecionado com 1CR e do

modelo RW nas previsões 20 dias úteis à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs GRU: Estatística = 3.8531, p–valor = 0.0001*** RW vs GRU: Estatística = -4.5324, p–valor = 0.0000***

Teste de Diebold-Mariano-Modificado (DMM) RW vs GRU: Estatística = 2.6411, p–valor = 0.0105** RW vs GRU: Estatística = -3.1293, p–valor = 0.0027***

Flutuação de Giacomini e Rossi (2010) RW vs GRU: Estatística = 20.9228, p–valor = 0.0000*** RW vs GRU: Estatística = -30.1642, p–valor = 0.0000***

Racionalidade de Rossi e Sekhposyan (2016) GRU: Estatística = 1797.0981, p–valor = 0.0000*** GRU: Estatística = 29918.5294, p–valor = 0.0000***

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 6708.8322, p–valor = 0.0000*** RW: Estatística = 7400.7754, p–valor = 0.0000***

Nota 1: Refere-se ao modelo GRU (adam - LR0.0001 - Dropout0.1 - Batch16).

Nota 2: ∗∗∗, ∗∗ e ∗ indicam significância estatística ao nível de 1%, 5% e 10%, respectivamente.

Fonte: O autor, 2025.

A Tabela 22 apresenta os resultados dos testes estatísticos comparando as previsões do
modelo RW com as do modelo de DL selecionado GRU (adam - LR0.0001 - Dropout0.1 -
Batch16) com 1CR, que obteve as menores métricas de erro no período de teste entre as duas
arquiteturas. Os resultados dos testes estatísticos referentes ao modelo de DL selecionado com
2CR podem ser consultados na Tabela 31, disponível no Apêndice A.

Os resultados dos testes DM e DMM apresentados na tabela acima indicam que as pre-
visões dos modelos não tiveram acurácias estatisticamente equivalentes. Com base no nível de
significância de 5%, as H0 foram rejeitadas em ambos os testes, tanto no período de validação
quanto no de teste. No período de validação, os p-valores dos testes DM e DMM, associados
às ETs positivas, apontam a superioridade da acurácia das previsões do modelo de DL. Por ou-
tro lado, no período de teste, as ETs negativas indicam que as previsões do modelo RW foram
superiores em termos de acurácia.

No mesmo sentido, o teste de flutuação GR também assinala a rejeição da H0 de igual-
dade de acurácia das previsões dos dois modelos comparados. Assim, no período de validação,
a ET positiva evidencia a superioridade da acurácia das previsões do modelo de DL na janela
de tempo de maior diferença de acurácia entre os modelos comparados. Já no período de teste,
a ET negativa aponta a favor da acurácia das previsões do modelo RW também na respectiva
janela de tempo de maior diferença preditiva. A Figura 19, apresentada a seguir, ilustra o com-
portamento da diferença de acurácia nas janelas de tempo ao longo dos períodos de validação e
teste.

O teste de racionalidade de RS aponta a rejeição da H0 de imprevisibilidade dos erros
de previsão no modelo RW e no modelo de DL selecionado, tanto no período de validação e
quanto no de teste. Neste caso, as ET das previsões do RW foram maiores que as do modelo de
DL selecionado no período de validação e menores no período de teste. Observa-se que a ET
do modelo de DL no período de teste foi notadamente alta, o que reflete o viés de subestimação
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já observado no gráfico das previsões.
Os resultados indicam que, embora tenham demonstrado menores métricas de erro no

período de validação, as previsões dos modelos de DL univariados selecionados entre as dife-
rentes especificações adotadas não conseguiram superar as previsões 20 dias à frente do modelo
RW no período de teste.

Figura 19 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: O "Modelo" descrito na legenda refere-se ao modelo selecionado univariado com 1CR, nas previsões 20 dias úteis à

frente. As janelas móveis possuem 20 dias úteis úteis nos dois testes.

Fonte: O autor, 2025.

Conforme evidenciado na Figura 19, a evolução das ETs no teste de flutuação de GR
revela que, no período de validação, o limite crítico superior foi ultrapassado de forma mais
expressiva na parte inicial e na parte final das janelas de tempo, evidenciando-se nessas janelas
uma superioridade da acurácia das previsões do modelo de DL. Em contraste, no período de
teste, as ETs ultrapassaram o limite crítico inferior, indicando uma superioridade da acurácia
das previsões do modelo RW, com um crescimento expressivo (em módulo) na segunda metade
das janelas de tempo.

A análise das ETs nas janelas de tempo do teste de racionalidade de RS revela que, no
período de validação, as ETs referentes às previsões do modelo de DL selecionado ultrapassa-
ram significativamente o limite crítico, sobretudo nas janelas de tempo do centro e do final desse
período. Em contraste, as previsões do modelo RW apresentaram erros de previsão ainda mais
irracionais do que as do modelo de DL no final das janelas de validação. Já no período de teste,
as ETs do modelo de DL foram consideravelmente superiores às do modelo RW, principalmente
ao final da primeira metade e ao final das janelas de tempo.
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Os resultados dos modelos de DL univariados nas diferentes configurações testadas su-
gerem que as respectivas acurácias das respectivas previsões decaem com o aumento do hori-
zonte de previsão para 20 dias úteis à frente, especialmente quando comparadas às do modelo
RW (benchmark).

Assim, em um cenário caracterizado por alta volatilidade e pela utilização apenas dos
valores passados da própria taxa de câmbio Ptax de venda, os resultados das previsões 20 dias
úteis à frente indicam que o desempenho do modelo de DL univariado esteve distante de superar
o modelo RW. Nesse sentido, será verificado se a estratégia de inclusão de variáveis explica-
tivas pode representar um caminho promissor, conforme os indícios já observados na previsão
multivariada com horizonte de 10 dias à frente.

5.3.2 Modelos multivariados de DL vs. modelo RW nas previsões 20 dias úteis à frente

5.3.2.1 Modelos multivariados de DL com 1CR vs. modelo RW nas previsões 20 dias úteis
à frente:

Tabela 23 - Métricas de erro das previsões dos modelos multivariados de DL com 1CR e do modelo RW

20 dias úteis à frente

Modelo RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.1929 0.1612 3.0359 0.2365 0.2137 3.6417
LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.3881 0.3608 6.8317 0.9339 0.9041 15.4441

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.2835 0.2265 4.2463 0.5260 0.5021 8.5593

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2850 0.2534 4.7826 0.7418 0.6992 11.8985

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1524 0.1119 2.0961 0.1480 0.1258 2.1861
GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.3439 0.3091 5.8382 0.8237 0.7954 13.5812

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.3677 0.3361 6.3575 0.8650 0.8390 14.3354

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.3158 0.2785 5.2523 0.7903 0.7577 12.9226

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.3183 0.2810 5.3002 0.7920 0.7643 13.0489

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.3096 0.2787 5.2654 0.5599 0.5278 8.9820

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1795 0.1314 2.4599 0.4684 0.4150 7.0172

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2479 0.1993 3.7357 0.5784 0.5371 9.1248

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2751 0.2192 4.1075 0.7853 0.7552 12.8888

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2377 0.1769 3.3015 0.6719 0.6457 11.0202

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1958 0.1378 2.5704 0.5374 0.5129 8.7486

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2228 0.1580 2.9418 0.6415 0.6103 10.3998

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2969 0.2383 4.4670 0.8375 0.8145 13.9252
Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

Tabela 23 apresenta as métricas de erro das previsões para 20 dias úteis à frente realiza-
das pelo modelo RW e pelos modelos de DL multivariados com 1CR. Em ambos os períodos, de
validação e de teste, o modelo LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) destacou-se
por apresentar as menores métricas de erro, demonstrando consistência e capacidade de gene-
ralização em suas previsões.

Os demais modelos de DL apresentaram métricas de erro superiores, inclusive quando
comparados ao caso univariado com o mesmo horizonte de previsão, assim como já observado
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nas previsões 10 dias à frente dos modelos de DL multivariado. Esse comportamento pode
estar relacionado à maior complexidade das dinâmicas introduzidas pelas variáveis explicativas
e à eventuais mudanças nas dinâmicas das respectivas variáveis em função do choque externo
observado no respectivo período.

5.3.2.2 Modelos multivariados de DL com 2CR vs. modelo RW nas previsões 20 dias úteis
à frente:

Tabela 24 - Métricas de erro das previsões dos modelos multivariados de DL com 2CR e do modelo RW

20 dias úteis à frente

Modelo RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
RW 0.1929 0.1612 3.0359 0.2365 0.2137 3.6417
BiGRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.2912 0.2474 4.6541 0.6904 0.6618 11.2876

BiGRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.2423 0.1944 3.6440 0.6682 0.6406 10.9273

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.2642 0.2051 3.8382 0.7870 0.7687 13.1548

BiGRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.3157 0.2642 4.9655 0.8741 0.8522 14.5746

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.1482 0.1147 2.1611 0.6612 0.6362 10.8603

BiLSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.2137 0.1637 3.0615 0.3455 0.3091 5.2321

BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1427 0.1131 2.1374 0.1937 0.1515 2.5538
BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.3993 0.3582 6.7638 0.9848 0.9626 16.4708

GRU (adam - LR0.0001 - Dropout0.1 - Batch16) 0.3282 0.2948 5.5678 0.6676 0.6345 10.8096

GRU (adam - LR0.0001 - Dropout0.1 - Batch32) 0.3082 0.2736 5.1629 0.6629 0.6298 10.7289

GRU (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.3129 0.2775 5.2358 0.6745 0.6433 10.9641

GRU (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2830 0.2449 4.6137 0.6422 0.6065 10.3247

LSTM (adam - LR0.0001 - Dropout0.1 - Batch16) 0.3247 0.3006 5.6932 0.7031 0.6662 11.3487

LSTM (adam - LR0.0001 - Dropout0.1 - Batch32) 0.1460 0.1164 2.1992 0.3294 0.2972 5.1243

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1719 0.1203 2.2414 0.2923 0.2578 4.3668

LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.2974 0.2431 4.5618 0.5516 0.5351 9.1476
Nota: Os dois menores valores de cada coluna estão destacados em negrito.

Fonte: O autor, 2025.

Tabela 24 apresenta as métricas de erro das previsões 20 dias úteis à frente realizadas
pelo modelo RW e pelos modelos de DL multivariados com 2CR. Tanto no período de validação
quanto no de teste, o modelo BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) destacou-
se por apresentar as menores métricas de erro em suas previsões, demonstrando consistência e
capacidade de generalização em suas previsões. Novamente, os demais modelos de DL apre-
sentaram métricas de erro superiores, inclusive quando comparados ao caso univariado com
o mesmo horizonte de previsão. Da mesma forma que no caso anterior com 1CR, é possível
alguns dos demais modelos de DL tenham convergido para um mínimo local subótimo no pro-
cesso de treinamento. Por outro lado, fatores externos podem ter alterado as dinâmicas de curto
prazo entre as variáveis explicativas e a taxa de câmbio, o que poderia justificar o aumento das
métricas de erro de previsão especialmente no período de teste.

No entanto, cabe salientar que, dentro da sistemática adotada, tanto os modelos DL
selecionados com 1CR quanto os com 2CR apresentaram consistência entre o desempenho
apresentado no período de validação e no período de teste.
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5.3.2.3 Modelos de DL multivariados selecionados vs. modelo RW nas previsões 20 dias
úteis à frente

Tabela 25 - Métricas de erro das previsões 20 dias úteis à frente dos modelos de DL multivariados

selecionados em cada arquitetura vs. modelo RW

Arquitetura Modelos e Parâmetros RMSE (Val.) MAE (Val.) MAPE (Val.) RMSE (Teste) MAE (Teste) MAPE (Teste)
- RW 0.1929 0.1612 3.0359 0.2365 0.2137 3.6417

1CR LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) 0.1524 0.1119 2.0961 0.1480 0.1258 2.1861
2CR BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) 0.1427 0.1131 2.1374 0.1937 0.1515 2.5538

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Tabela 25 apresenta as métricas de erro das previsões 20 dias úteis à frente realizadas
pelo modelo RW e pelos modelos de DL multivariados selecionados nas arquiteturas com 1CR
e 2CR, com base no critério de menores métricas de erro no período de validação. Entre os
modelos de DL analisados, o modelo LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32) com
1CR apresentou as menores métricas de erro no período de teste. Como os seus resultados
também foram inferiores aos do modelo RW, serão realizados testes estatísticos para avaliar se
a acurácia das respectivas previsões pode ser considerada superior a das previsões do modelo
RW. Porém, antes disso, serão realizadas as análises gráficas das previsões dos modelos de DL
selecionados nas duas arquiteturas e das previsões do modelo RW.

Figura 20 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 20 dias úteis à frente do

modelo selecionado multivariado com 1CR vs RW no período de teste

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Figura 20 apresenta a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 20 dias úteis à frente do modelo RW e as do modelo de DL sele-
cionado LSTM-adamw (LR0.0001-Dropout0.1-Batch32) com 1CR que adota uma abordagem
multivariada.
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Observa-se que, em comparação ao modelo com 2CR descrito na sequência, a previsão
gerada pelo respectivo LSTM com 1CR aparenta um comportamento mais próximo da ten-
dência de apreciação observada na série da taxa de câmbio Ptax de venda, embora exiba um
viés alternado de superestimação em determinados períodos e subestimação em outros. Dessa
forma, mesmo no caso multivariado, a capacidade dos modelos de DL adotados de captarem as
oscilações de curtíssimo e de curto prazo permanece desafiadora.

Figura 21 - Gráfico das previsões da taxa de câmbio Ptax de venda (BRL/USD) 20 dias úteis à frente do

modelo selecionado multivariado com 2CR vs RW no período de teste

Nota: Menores valores destacados em negrito.

Fonte: O autor, 2025.

A Figura 21 apresenta a taxa de câmbio Ptax de venda (BRL/USD) no período de teste,
comparando as previsões 20 dias úteis à frente do modelo RW e as do modelo de DL selecionado
BiLSTM (adamw - LR0.0001 - Dropout0.1 - Batch16) com 2CR que adota uma abordagem
multivariada.

Observa-se que o modelo BiLSTM apresenta uma suavização das previsões com maior
proximidade da taxa de câmbio Ptax de venda efetiva na primeira metade do gráfico. Por outro
lado, o modelo RW apresenta maior variabilidade, embora com maior erro em relação à traje-
tória efetiva, especialmente na primeira metade do período de teste. A suavização do BiLSTM
levou a previsões similares às do modelo RW no final do período de teste, momento em que o
câmbio apresentou uma apreciação mais acelerada.

Neste caso, o modelo de DL multivariado parece priorizar padrões de prazo mais longo
em detrimento de oscilações de curtíssimo prazo.
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5.3.2.4 Testes estatísticos entre o modelo de DL multivariado selecionado com melhor
desempenho no período de teste vs. modelo RW nas previsões 20 dias úteis à frente

Tabela 26 - Testes estatísticos para comparação do modelo multivariado de DL selecionado com 1CR e

do modelo RW nas previsões 20 dias úteis à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs LSTM: Estatística = 2.9638, p–valor = 0.0030*** RW vs LSTM: Estatística = 2.6422, p–valor = 0.0082***

Teste de Diebold-Mariano-Modificado (DMM) RW vs LSTM: Estatística = 2.0315, p–valor = 0.0466** RW vs LSTM: Estatística = 1.8242, p–valor = 0.0729*

Flutuação de Giacomini e Rossi (2010) RW vs LSTM: Estatística = 7.5445, p–valor = 0.0000*** RW vs LSTM: Estatística = 8.9324, p–valor = 0.0000***

Racionalidade de Rossi e Sekhposyan (2016) LSTM: Estatística = 2609.9446, p–valor = 0.0000*** LSTM: Estatística = 2025.6315, p–valor = 0.0000***

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 6708.8322, p–valor = 0.0000*** RW: Estatística = 7400.7754, p–valor = 0.0000***

Nota 1: Refere-se ao modelo LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32).

Nota 2: ∗∗∗, ∗∗ e ∗ indicam significância estatística ao nível de 1%, 5% e 10%, respectivamente.

Fonte: O autor, 2025.

Tabela 26 apresenta os resultados dos testes estatísticos comparando as previsões do
modelo RW com as do modelo selecionado LSTM (adamw - LR0.0001 - Dropout0.1 - Batch32)
com 1CR, que obteve as menores métricas de erro no período de teste entre as duas arquiteturas.

Os resultados dos testes DM e DMM apresentados na tabela acima indicam que as pre-
visões dos modelos não tiveram desempenhos estatisticamente equivalentes no período de va-
lidação, uma vez que as H0 foram rejeitadas em ambos os testes, considerando o nível de sig-
nificância de 5%. As ET positivas apontam que as previsões do modelo de DL apresentaram
melhor desempenho nesse período. Por outro lado, no período de teste, apenas o teste DM in-
dica a rejeição da H0 ao nível de significância de 5%. Quando realizado o ajuste pelo tamanho
da amostra com o teste DMM, não se pode rejeitar a hipótese de equivalência preditiva em um
nível mais exigente. Porém, ao nível de significância de 10%, o mesmo teste aponta a supe-
rioridade da acurácia das previsões 20 dias úteis à frente do modelo de DL selecionado com
1CR em relação às previsões do modelo RW. Ressalta-se que o mesmo resultado foi obtido nas
previsões do modelo de DL selecionado com 2CR, conforme se observa na Tabela 32 incluída
no Apêndice A.

Quando comparado com os resultados obtidos no modelo de DL univariado selecionado,
observa-se que há indícios de que a inclusão de variáveis explicativas pode ter contribuído para
melhorar o desempenho preditivo.

Adicionalmente, o teste de flutuação GR aponta a rejeição da H0 de igualdade de acu-
rácia das previsões dos dois modelos comparados. Dessa forma, tanto no período de validação
quanto no período de teste, a ET positiva evidencia a superioridade da acurácia das previsões
do modelo de DL na janela de tempo de maior diferença de desempenho entre os modelos com-
parados. A Figura 22, apresentada a seguir, ilustra o comportamento da diferença de acurácia
das respectivas previsões ao longo das janelas de tempo dos períodos de validação e teste.

O teste de racionalidade de RS indica a rejeição da H0 de imprevisibilidade dos erros de
previsão, tanto no modelo RW quanto no modelo de DL selecionado, nos períodos de validação
e de teste. Nesse caso, as ETs das previsões do modelo RW foram maiores que as do modelo
de DL selecionado em ambos os períodos, o que sugere um maior viés nas previsões em pelo
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menos uma janela de tempo.
Esses resultados reforçam a possibilidade de que a inclusão de variáveis econômicas e

financeiras de frequência diária na rede neural tenha potencial para aprimorar a capacidade de
modelagem da taxa de câmbio Ptax de venda, tornando-a mais competitiva em relação ao mo-
delo RW, embora a estabilidade e a racionalidade das previsões ainda apresentem limitações.
Destaca-se, ainda, a possibilidade de aprimorar as arquiteturas adotadas, incorporar novos mo-
delos e mecanismos avançados, bem como de replicar o estudo em períodos posteriores, de
forma a validar a robustez e a consistência dos resultados obtidos.

Figura 22 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: O "Modelo" descrito na legenda refere-se ao modelo selecionado multivariado com 2CR, nas previsões 20 dias úteis à

frente. As janelas móveis possuem 20 dias úteis nos dois testes.

Fonte: O autor, 2025.

Conforme ilustrado na Figura 22, a evolução das ET no teste de flutuação de GR mostra
que, no período de validação, o limite crítico superior foi ultrapassado tanto na parte inicial
como na parte final das janelas de tempo, indicando uma superioridade da acurácia das pre-
visões do modelo de DL. No período de teste, a ET ultrapassou o limite crítico superior duas
vezes, apontando nesses casos a superioridade da acurácia das previsões do modelo de DL, com
crescimento expressivo no final das janelas de tempo.

A evolução das ET no teste de racionalidade de RS indica que, no período de valida-
ção, as ETs referentes ao modelo de DL selecionado ultrapassaram significativamente o limite
crítico, especialmente nas janelas de tempo centrais e, com menor intensidade, nas finais. Por
outro lado, no mesmo período, o modelo RW exibiu erros de previsão ainda mais irracionais
que os do modelo de DL no final das janelas de tempo. No período de teste, as ETs do modelo
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RW foram substancialmente superiores às do modelo de DL selecionado, especialmente no iní-
cio do segundo quarto das janelas de tempo e, de forma ainda mais expressiva, ao final desse
período.

É interessante notar que, de forma geral e coerente, tanto no período de validação quanto
no de teste, as janelas de tempo que apresentaram erros de previsão mais irracionais segundo o
teste de racionalidade de RS corresponderam à perda de acurácia das previsões dos respectivos
modelos nas janelas de tempo identificadas pelo teste de GR.

Assim, os resultados obtidos revelam o potencial dos modelos de DL multivariados para
superarem o desempenho das previsões do modelo RW, mesmo em horizontes de curto prazo.
Esses resultados sugerem que a incorporação de variáveis econômicas e financeiras contribui
para capturar melhor as dinâmicas que influenciam a taxa de câmbio, ampliando a capacidade
preditiva dos modelos.

5.4 Considerações finais sobre os resultados obtidos

Em relação ao comportamento da taxa de câmbio Ptax de venda, observa-se uma ex-
pressiva valorização do Dólar norte-americano frente ao Real brasileiro nos últimos meses de
2024, período correspondente ao conjunto de teste. Com base nas séries apresentadas na Figura
3, tal movimento pode ser atribuído a um conjunto articulado de choques macroeconômicos e
financeiros, além de movimentos de preferência por liquidez. Nesse período, registrou-se um
aumento dos yields dos títulos americanos de cinco e dez anos, o que elevou a atratividade
relativa de ativos denominados em dólar e contribuiu para redirecionar fluxos internacionais
para fora dos mercados emergentes. Simultaneamente, houve um pico na volatilidade global
(medida pelo VIX) e um alargamento do prêmio de risco soberano brasileiro (CDS), ambos
indicativos clássicos de aversão ao risco, favorecendo a busca por ativos mais seguros. Ade-
mais, embora o diferencial de juros entre Brasil e Estados Unidos tenha aumentado, o mesmo
esteve em patamares inferiores a períodos anteriores, o que pode ter limitado o incentivo ao
carry trade em Real. Paralelamente, o desempenho relativo das ações brasileiras (Ibovespa em
comparação ao S&P500) apresentou variações desfavoráveis ao Brasil, deteriorando os retornos
esperados e intensificando a pressão cambial. A incerteza política associada ao calendário elei-
toral norte-americano atuou como gatilho adicional, elevando a aversão ao risco e a volatilidade.
Além disso, verificou-se uma valorização generalizada do Dólar frente a outras moedas fortes,
refletida na alta do índice DXY, o que indica que o fenômeno não foi exclusivo em relação ao
Real, mas parte de um reposicionamento global em direção ao Dólar como ativo de reserva e
proteção.

Portanto, o padrão de valorização do Dólar resulta da interação entre o aumento dos yi-

elds externos, a intensificação da aversão ao risco (VIX e CDS), a compressão do diferencial de
juros em relação a períodos anteriores, a fraqueza relativa dos ativos domésticos e a valorização
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do Dólar frente a outras moedas, além da influência das eleições americanas. Esses canais expli-
cativos também se refletem nos resultados empíricos das previsões dos modelos multivariados
de DL no horizonte de 20 dias, os quais foram capazes de capturar essas dinâmicas conjuntas
e oferecer previsões com acurácia superior à do RW. Por outro lado, no horizonte de 1 dia à
frente, o ruído associado aos choques observados pode ter limitado a capacidade dos modelos
de gerar ganhos significativos de acurácia. Já no horizonte de 10 dias à frente os resultados
foram próximos de superar o benchmark apenas no caso multivariado.

De forma mais detalhada, seguindo a sistemática descrita no início deste Capítulo, os
resultados da abordagem univariada apontaram que, no período de teste, as previsões dos mo-
delos de DL selecionados, independentemente da arquitetura (1CR ou 2CR), não superaram a
acurácia das previsões do modelo RW em nenhum dos horizontes de previsão analisados. Ape-
nas no horizonte de previsão de 10 dias úteis à frente, o teste de DMM indicou uma equivalência
estatística, ao nível de significância de 5%, entre as previsões do modelo RW e as do modelo
de DL selecionado que obteve o melhor desempenho no período de teste. Com o aumento do
horizonte de previsão para 20 dias úteis à frente, observou-se uma deterioração significativa na
acurácia dos modelos de DL univariados, cujas métricas de erro de previsão superaram em ao
menos 50% as do modelo RW no período de teste.

Na abordagem multivariada, verificou-se que, no horizonte de 1 dia útil à frente, as
previsões do modelo RW apresentaram uma acurácia superior em relação às dos modelos de DL,
segundo o teste DMM, ao nível de significância de 5%. No entanto, nas previsões 10 e 20 dias
úteis à frente, os testes indicaram uma equivalência estatística entre as previsões. Considerando-
se o nível de significância de 10%, o mesmo teste passa a indicar que a acurácia das previsões
dos modelos de DL multivariados supera a das previsões do modelo RW no horizonte de 20
dias úteis à frente. Esse resultado é corroborado pelo teste de flutuação de GR e pelo teste de
racionalidade de RS. Esses dois últimos testes indicaram, de forma coerente, um desempenho
igual ou superior dos modelos de DL selecionado e um menor viés e irracionalidade nos erros
de previsão em relação ao obtido pelo modelo RW, respectivamente, nas janelas de tempo de 20
dias úteis dos períodos de validação e de teste.

Além disso, tais evidências sugerem que a inclusão de variáveis econômicas e financei-
ras com frequência diária contribui para aprimorar a acurácia preditiva, mesmo em horizontes
tradicionalmente considerados curtos, como o de 20 dias úteis à frente (aproximadamente um
mês).

Esses resultados estão em consonância com a literatura seminal de Meese e Rogoff
(1982; 1983), que demonstrou a robustez do modelo RW como benchmark na previsão cambial,
sobretudo em horizontes curtos. Embora pesquisas posteriores, como Rogoff (2008), tenham
identificado ganhos pontuais de modelos estruturais em horizontes mais longos, a consistência
de resultados favoráveis ao modelo RW, inclusive em estudos aplicados ao Brasil, como os
de Perdomo e Botelho (2007) e Kopp (2019), reforça o desafio de superá-lo com abordagens
baseadas exclusivamente em fundamentos econômicos. Por outro lado, estudos recentes, como
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os descritos por Genin (2023) e Makika (2022), evidenciam o potencial de abordagens não
lineares e baseadas em DL na previsão da taxa de câmbio. O primeiro, por exemplo, mostra que
as previsões de modelos LSTM têm potencial de superar as do RW em determinados contextos,
o que é coerente com os resultados alcançados por este estudo.

No que tange à literatura que aborda as arquiteturas de modelos de DL na atividade de
previsão, é apontado por Siami-Namini, Tavakoli e Namin (2019) e García, Guijarro e Oliver
(2024) que modelos bidirecionais, como o BiLSTM, podem ampliar a acurácia preditiva em
séries temporais complexas. No entanto, neste estudo, não se identificou um padrão consistente
de superioridade dos modelos de DL bidirecionais, sendo que o desempenho variou em função
da inclusão de uma camada recorrente adicional na arquitetura dos modelos de DL.

Assim, ainda que as previsões dos modelos de DL não tenham apresentado desempenho
sistematicamente superior ao do modelo RW em todas as configurações testadas, os resultados
desta dissertação evidenciam ganhos relevantes e ressaltam o potencial da abordagem, sobre-
tudo na formulação multivariada e em horizontes de 20 dias úteis à frente, onde se verificaram
ganhos significativos em termos de acurácia em relação ao benchmark. Pesquisas futuras po-
dem explorar aprimoramentos como mecanismos de Attention, modelos híbridos, retreinamento
dinâmico e seleção adicional de variáveis explicativas, entre outros. Apesar de mais custosas
em termos computacionais e de implementação, tais estratégias podem aumentar a capacidade
dos modelos de DL de capturar a dinâmica complexa e não linear da taxa de câmbio.
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CONCLUSÃO

Esta dissertação investigou, por meio de um estudo aplicado, o desempenho de dife-
rentes arquiteturas e especificações de modelos de DL na previsão da taxa de câmbio Ptax de
venda do Real brasileiro em relação ao Dólar americano (BRL/USD), considerando horizontes
de 1, 10 e 20 dias úteis à frente. Foram avaliados os modelos LSTM, BiLSTM, GRU e Bi-
GRU, tanto na abordagem univariada, baseada apenas na série da respectiva taxa de câmbio,
quanto na multivariada, que inclui variáveis explicativas econômicas e financeiras. As séries
utilizadas possuem frequência diária, abrangendo o período de janeiro de 2020 a dezembro de
2024, e foram divididas sequencialmente em conjuntos de treinamento, validação e teste. Para
cada abordagem e horizonte de previsão, consideraram-se duas arquiteturas de modelos de DL:
uma com uma camada recorrente (1CR) e outra com duas camadas recorrentes (2CR). Como
referência comparativa, adotou-se o modelo RW, amplamente reconhecido na literatura desde
Meese e Rogoff (1982, 1983) como um benchmark robusto na previsão cambial, especialmente
em horizontes curtos.

Na abordagem univariada, os resultados indicaram que, no período de teste, nenhuma
das previsões dos modelos de DL selecionados superou a acurácia das do modelo RW nos
horizontes analisados. Apenas no horizonte de previsão de 10 dias úteis à frente, o teste de
Diebold-Mariano Modificado (1997), ao nível de significância de 5%, apontou equivalência
estatística entre as previsões do RW e as do modelo de DL com melhor desempenho. No
horizonte de 20 dias úteis, observou-se uma deterioração significativa da acurácia dos modelos
de DL univariados, cujas métricas de erro superaram em pelo menos 50% as do modelo RW,
independentemente da arquitetura ou das especificações adotadas.

Na abordagem multivariada, o teste de Diebold-Mariano Modificado (1997), ao nível
de significância de 5%, indicou que a acurácia das previsões do modelo de DL selecionado foi
inferior à do modelo RW no horizonte de previsão de 1 dia útil à frente. Para os horizontes
de 10 e 20 dias úteis à frente, os testes apontaram equivalência estatística entre as previsões
dos modelos comparados. No entanto, ao nível de significância de 10%, houve evidência de
superioridade da acurácia das previsões do modelo de DL no horizonte de 20 dias úteis à frente,
em ambas as arquiteturas (1CR e 2CR). Esse resultado foi corroborado pelo teste de flutuação de
Giacomini e Rossi (2010), que identificou, nas janelas de tempo, desempenho igual ou superior
das previsões dos modelos de DL em relação ao RW, e pelo teste de racionalidade de Rossi e
Sekhposyan (2016), que evidenciou menor viés e menor irracionalidade nos erros de previsão
dos modelos de DL multivariados também em relação ao benchmark.

Os resultados obtidos ressaltam a importância de se testar empiricamente diferentes
configurações de modelos de DL, bem como de incluir variáveis explicativas no processo de
modelagem, mesmo em horizontes tradicionalmente considerados curtos. Observou-se que,
conforme o horizonte de previsão se estende de 10 para 20 dias úteis à frente, as previsões
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dos modelos de DL multivariados apresentaram acurácia significativamente superior as do mo-
delo RW. Tais resultados estão em consonância com parte da literatura recente, como em Genin
(2023), que destaca o potencial das previsões de modelos LSTM para superar as previsões do
modelo RW na atividade de previsão cambial. Adicionalmente, embora estudos como Siami-
Namini, Tavakoli e Namin (2019) e García, Guijarro e Oliver (2024) indiquem que arquiteturas
bidirecionais, como o BiLSTM, podem aumentar a acurácia preditiva em séries temporais com-
plexas, neste trabalho não se identificou um padrão consistente de superioridade dessas arquite-
turas, sugerindo que tais ganhos podem depender da estrutura dos dados e da profundidade do
modelo.

Cabe ressaltar que o modelo RW mantém-se como um benchmark robusto, em conso-
nância com os achados clássicos de Meese e Rogoff (1982, 1983). Ainda assim, os avanços
recentes no campo do DL e a crescente disponibilidade de dados econômicos em alta frequên-
cia abrem perspectivas promissoras para a construção de modelos mais acurados e adaptáveis,
sobretudo em economias emergentes como a brasileira.

Resta reconhecer que o presente estudo enfrentou limitações associadas a restrições
computacionais, ao tempo disponível para implementação e à limitação de variáveis econômicas
relevantes com frequência diária, fatores que restringiram tanto a complexidade das arquiteturas
de DL quanto a aplicação de técnicas ainda mais sofisticadas e que estão em constante evolu-
ção. Isso pode ter limitado a performance dos modelos, evidenciando a importância de futuros
trabalhos explorarem arquiteturas ainda mais robustas e avançadas, maior disponibilidade de
dados em alta frequência e maior poder computacional para calibrações mais profundas. Além
disso, recomenda-se avaliar o desempenho dos modelos em diferentes períodos, dado que os
resultados aqui obtidos podem ter sido influenciados pelo contexto da pandemia de COVID-19
e seus efeitos subsequentes.

Pesquisas futuras podem ampliar esses resultados ao incluir novas variáveis explicativas,
incorporar análise de sentimento e métodos de extração de informação, adotar modelos híbridos,
realizar retreinamento contínuo após cada previsão e integrar mecanismos de Attention. Apesar
do maior custo computacional e da complexidade de implementação, tais estratégias tendem a
fortalecer a capacidade dos modelos de DL em capturar a dinâmica complexa e não linear da
taxa de câmbio.

Por fim, considera-se que esta pesquisa contribui para o avanço de um campo ainda
pouco explorado na literatura brasileira ao evidenciar, de forma empírica e metodológica, con-
dições sob as quais as previsões dos modelos de DL podem superar as do modelo RW (bench-

mark) na previsão cambial, oferecendo caminhos concretos para investigações futuras em um
campo de elevada relevância analítica e econômica.



96

REFERÊNCIAS

ALMEIDA, J. P. A. O. d. Análise sobre o comportamento do câmbio nominal brasileiro 
durante a pandemia. Dissertação (Mestrado Profissional em Economia) — Escola de Economia 
de São Paulo, Fundação Getúlio Vargas, São Paulo, 2022. Disponível em: <https://repositorio. 
fgv.br/server/api/core/bitstreams/a421d18e-dfc6-489b-98d8-bee50bea819b/content>. Acesso 
em: 22 out. 2024.

BRASIL. Banco Central do Brasil. A taxa de câmbio de referência Ptax. Estudo Especial n°
42/2019. Brasília, 2019. Disponível em: <https://www.bcb.gov.br/conteudo/relatorioinflacao/
EstudosEspeciais/EE042_A_taxa_de_cambio_de_referencia_Ptax.pdf>. Acesso em: 20 jun. 
2024.

BRASIL. Banco Central do Brasil. Resolução BCB n° 45, de 24 de novembro de 2020: 
Dispõe sobre a metodologia de apuração da taxa de câmbio real/dólar americano divulgada 
pelo banco central do brasil (ptax). Brasília: Banco Central do Brasil, 2020. Disponível em: 
<https://www.bcb.gov.br/estabilidadefinanceira/exibenormativo?tipo=Resolu%C3%A7%C3%
A3o%20BCB&numero=45>. Acesso em: 20 jun. 2024.

CASTRO, C. Previsão da série temporal da inflação usando modelos orientados
por score dinâmico e métodos de aprimoramento de acurácia preditiva: o caso do Brasil. 
Tese (Doutorado em Ciências Econômicas) — Universidade do Estado do
Rio de Janeiro, Rio de Janeiro, 2023. Disponível em: <https://www.bdtd.uerj.br:
8443/bitstream/1/20904/2/Tese%20-%20Carlos%20Henrique%20Dias%20Cordeiro%20de%
20Castro%20-%202023%20-%20Completa.pdf>. Acesso em: 15 out. 2024.

CASTRO, C. H. D. C. D.; AIUBE, F. A. L. Forecasting inflation time series using score-driven 
dynamic models and combination methods: The case of brazil. Journal of Forecasting, v. 42, 
p. 369–401, 2023. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1002/for.2908>. 
Acesso em: 25 mar. 2025.

CHO, K.; MERRIËNBOER, B. V.; GULCEHRE, C. Learning phrase representations using rnn 
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078v3 [cs.CL], 
2014. Disponível em: <https://arxiv.org/abs/1406.1078v3>. Acesso em: 10 jun. 2024.

CIABURRO, G.; VENKATESWARAN, B. Neural Networks with R: Smart Models Using 
CNN, RNN, Deep Learning, and Artificial Intelligence Principles. 1. ed. Birmingham, UK: 
Packt Publishing Ltd, 2017. ISBN 978-1-78839-787-2.

DIEBOLD, F. X. Comparing predictive accuracy, twenty years later: A personal 
perspective on the use and abuse of diebold–mariano tests. Journal of Business & 
Economic Statistics, Taylor & Francis, v. 33, n. 1, p. 1–1, 2015. Disponível em:
<https://www.tandfonline.com/doi/abs/10.1080/07350015.2014.983236>. Acesso em: 05 ago. 
2024.

DIEBOLD, F. X.; MARIANO, R. S. Comparing predictive accuracy. Journal of
Business & Economic Statistics, v. 13, n. 3, p. 253–263, July 1995. Disponível em:
<https://users.ssc.wisc.edu/~bhansen/718/DieboldMariano1995.pdf>. Acesso em: 01 out. 
2024.

https://repositorio.fgv.br/server/api/core/bitstreams/a421d18e-dfc6-489b-98d8-bee50bea819b/content
https://repositorio.fgv.br/server/api/core/bitstreams/a421d18e-dfc6-489b-98d8-bee50bea819b/content
https://www.bcb.gov.br/conteudo/relatorioinflacao/EstudosEspeciais/EE042_A_taxa_de_cambio_de_referencia_Ptax.pdf
https://www.bcb.gov.br/conteudo/relatorioinflacao/EstudosEspeciais/EE042_A_taxa_de_cambio_de_referencia_Ptax.pdf
https://www.bcb.gov.br/estabilidadefinanceira/exibenormativo?tipo=Resolu%C3%A7%C3%A3o%20BCB&numero=45
https://www.bcb.gov.br/estabilidadefinanceira/exibenormativo?tipo=Resolu%C3%A7%C3%A3o%20BCB&numero=45
https://www.bdtd.uerj.br:8443/bitstream/1/20904/2/Tese%20-%20Carlos%20Henrique%20Dias%20Cordeiro%20de%20Castro%20-%202023%20-%20Completa.pdf
https://www.bdtd.uerj.br:8443/bitstream/1/20904/2/Tese%20-%20Carlos%20Henrique%20Dias%20Cordeiro%20de%20Castro%20-%202023%20-%20Completa.pdf
https://www.bdtd.uerj.br:8443/bitstream/1/20904/2/Tese%20-%20Carlos%20Henrique%20Dias%20Cordeiro%20de%20Castro%20-%202023%20-%20Completa.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/for.2908
https://arxiv.org/abs/1406.1078v3
https://www.tandfonline.com/doi/abs/10.1080/07350015.2014.983236
https://users.ssc.wisc.edu/~bhansen/718/DieboldMariano1995.pdf


97

DORNBUSCH, R.; FISCHER, S.; STARTZ, R. Macroeconomia. 11. ed. Porto Alegre, RS,
Brasil: AMGH, 2013. Recurso eletrônico. ISBN 978-85-8055-185-3.

FAMA, E. F. The behavior of stock-market prices. The Journal of Business, v. 38, n. 1, p.
34–105, 1965. Disponível em: <http://www.jstor.org/stable/2350752>. Acesso em: 23 out.
2024.

GARCÍA, F.; GUIJARRO, F.; OLIVER, J. Foreign exchange forecasting models: Lstm
and bilstm comparison. Engineering Proceedings, v. 68, n. 1, p. 19, 2024. Disponível em:
<https://www.mdpi.com/2673-4591/68/1/19>. Acesso em: 10 dez. 2024.

GENIN, C. d. S. V. Modelos de projeção de câmbio: uma investigação múltipla com séries
de tempo, modelos estruturais e model selection. Tese (Dourorado em Admimnistração
de Empresas) — Universidade Presbiteriana Mackenzie, São Paulo, 2023. Disponível em:
<https://dspace.mackenzie.br/items/dd0a7822-1792-4402-b377-5b9ae53ccf9a>. Acesso em:
05 jan. 2025.

GIACOMINI, R.; ROSSI, B. Forecast comparisons in unstable environments. Journal of
Applied Econometrics, Wiley Online Library, v. 25, n. 4, p. 595–620, 2010. Disponível em:
<https://centreforfinance.org/researchdetail.htm?research=289>. Acesso em: 15 out. 2024.

HADAD, E. J. Projeção de taxas de câmbio: É possível superar o modelo de passeio
aleatório? Tese (Doutorado em Administração de empresas) — Universidade Presbiteriana
Mackenzie, São Paulo, 2015. Disponível em: <https://adelpha-api.mackenzie.br/server/api/
core/bitstreams/7e51c897-0d55-469c-93d7-6bd908a42f3d/content>. Acesso em: 17 dez.
2024.

HARVEY, D.; LEYBOURNE, S.; NEWBOLD, P. Testing the equality of prediction mean
squared errors. International Journal of Forecasting, Elsevier, v. 13, n. 2, p. 281–291, 1997.
Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0169207096007194>.
Acesso em: 05 dez. 2024.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Computation, MIT
Press, v. 9, n. 8, p. 1735–1780, 1997. Disponível em: <https://didawiki.cli.di.unipi.it/lib/exe/
fetch.php/magistraleinformatica/aa2/lstm.pdf>. Acesso em: 23 mai. 2024.

IQUIAPAZA, R. A.; BRESSAN, A. A.; AMARAL, H. F. Previsão não-linear de retornos
na bovespa: volume negociado em um modelo auto-regressivo de transição suave. Revista
de Administração Contemporânea, Associação Nacional de Pós-Graduação e Pesquisa
em Administração, Rio de Janeiro, v. 14, n. 1, p. 149–171, 2010. Disponível em:
<https://www.redalyc.org/pdf/840/84012377009.pdf>. Acesso em: 07 out. 2024.

JOSEPH, M.; TACKES, J. Modern Time Series Forecasting with Python: Industry-ready
Machine Learning and Deep Learning Time Series Analysis with PyTorch and pandas. 2. ed.
Birmingham, UK: Packt Publishing Ltd, 2024. ISBN 978-1-83588-318-1.

KOPP, V. A. I. Comportamento da taxa de câmbio no Brasil: evidências empíricas.
Dissertação (Mestrado Profissional em Finanças e Economia) — Escola de Economia
de São Paulo, Fundação Getulio Vargas, São Paulo, 2019. Disponível em: <https:
//repositorio.fgv.br/items/1dc7369b-4743-424d-a883-9a71e019a607>. Acesso em: 19 nov.
2024.

http://www.jstor.org/stable/2350752
https://www.mdpi.com/2673-4591/68/1/19
https://dspace.mackenzie.br/items/dd0a7822-1792-4402-b377-5b9ae53ccf9a
https://centreforfinance.org/researchdetail.htm?research=289
https://adelpha-api.mackenzie.br/server/api/core/bitstreams/7e51c897-0d55-469c-93d7-6bd908a42f3d/content
https://adelpha-api.mackenzie.br/server/api/core/bitstreams/7e51c897-0d55-469c-93d7-6bd908a42f3d/content
https://www.sciencedirect.com/science/article/abs/pii/S0169207096007194
https://didawiki.cli.di.unipi.it/lib/exe/fetch.php/magistraleinformatica/aa2/lstm.pdf
https://didawiki.cli.di.unipi.it/lib/exe/fetch.php/magistraleinformatica/aa2/lstm.pdf
https://www.redalyc.org/pdf/840/84012377009.pdf
https://repositorio.fgv.br/items/1dc7369b-4743-424d-a883-9a71e019a607
https://repositorio.fgv.br/items/1dc7369b-4743-424d-a883-9a71e019a607


98

KRUGMAN, P. R.; OBSTFELD, M.; MELITZ, M. J. Economia Internacional. 10. ed. São
Paulo: Pearson Education do Brasil, 2015. Tradução de Ana Julia Perrotti-Garcia. ISBN
978-85-4301-506-4.

MAKIKA, H. Previsão de séries temporais com aprendizagem profunda: uma aplicação para
taxa de câmbio. Dissertação (Mestrado em Engenharia Elétrica) — Universidade Estadual de
Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, 2022. Disponível
em: <https://repositorio.unicamp.br/acervo/detalhe/1259464>. Acesso em: 11 dez. 2024.

MARINS, J. T. M. Predictability of Exchange Rate Density Forecasts for Emerging Economies
in the Short Run. Brasília, 2024. 3–53 p. Disponível em: <https://www.bcb.gov.br/content/
publicacoes/WorkingPaperSeries/WP588v2.pdf>. Acesso em: 28 nov. 2024.

MBEDZI, T. A. Share Price Prediction for Increasing Market Efficiency using Random Forest.
Dissertação (Master of Science Degree in e-Science) — University of Venda, Department of
Mathematical and Computational Sciences, Faculty of Science, Engineering and Agriculture,
Thohoyandou, Limpopo Province, South Africa, 2022. Disponível em: <https://univendspace.
univen.ac.za/server/api/core/bitstreams/06b74889-c9fa-4a24-9bf6-35b3a22756b8/content>.
Acesso em: 15 jan. 2025.

MEESE, R.; ROGOFF, K. S. The Out-of-Sample Failure of Empirical Exchange Rate Models:
Sampling Error or Misspecification? Cambridge, MA, USA, 1982. (International Finance
Discussion Papers, 204). Disponível em: <https://www.federalreserve.gov/pubs/ifdp/1982/
204/ifdp204.pdf>. Acesso em: 26 mai. 2024.

MEESE, R. A.; ROGOFF, K. Empirical exchange rate models of the seventies: Do they fit
out of sample? Journal of International Economics, Elsevier, v. 14, n. 1-2, p. 3–24, 1983.
Disponível em: <https://rogoff.scholars.harvard.edu/sites/g/files/omnuum5901/files/rogoff/
files/51_jie1983.pdf>. Acesso em: 26 mai. 2024.

MINCER, J. A.; ZARNOWITZ, V. The evaluation of economic forecasts. Cambridge, MA,
USA, 1969. 3–46 p. Disponível em: <https://www.nber.org/system/files/chapters/c1214/c1214.
pdf>. Acesso em: 29 out. 2024.

NEWEY, W. K.; WEST, K. D. A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica, v. 55, n. 3, p. 703–708, 1987.
Disponível em: <https://www.jstor.org/stable/1913610>. Acesso em: 25 jan. 2025.

PERDOMO, J. P. J.; BOTELHO, F. B. Messe-rogoff revisitados: uma análise empírica das
projeções para a taxa de câmbio no brasil. Encontro Nacional de Economia da Associação
Nacional dos Centros de Pós-Graduação em Economia–ANPEC, v. 35, 2007. Disponível em:
<https://www.anpec.org.br/encontro2007/artigos/A07A038.pdf>. Acesso em: 10 jun. 2024.

PETRACCA, L. Time Series Forecasting using Transformers with Sentiment Analysis on
Financial Data. Dissertação (Master in Digital Innovation) — Universidad Politécnica de
Madrid, E.T.S. de Ingenieros Informáticos, Dpto. Lenguajes y Sistemas Informáticos e
Ingeniería de Software, Madrid, Spain, 2024. Disponível em: <https://oa.upm.es/82874/1/
TFM_LUCA_PETRACCA.pdf>. Acesso em: 20 jan. 2025.

PRODANOV, C. C.; FREITAS, E. C. d. Metodologia do trabalho científico: métodos e
técnicas da pesquisa e do trabalho acadêmico. 2. ed. Novo Hamburgo, RS, Brasil: Editora
Feevale, 2013. ISBN 978-85-7717-158-3.

https://repositorio.unicamp.br/acervo/detalhe/1259464
https://www.bcb.gov.br/content/publicacoes/WorkingPaperSeries/WP588v2.pdf
https://www.bcb.gov.br/content/publicacoes/WorkingPaperSeries/WP588v2.pdf
https://univendspace.univen.ac.za/server/api/core/bitstreams/06b74889-c9fa-4a24-9bf6-35b3a22756b8/content
https://univendspace.univen.ac.za/server/api/core/bitstreams/06b74889-c9fa-4a24-9bf6-35b3a22756b8/content
https://www.federalreserve.gov/pubs/ifdp/1982/204/ifdp204.pdf
https://www.federalreserve.gov/pubs/ifdp/1982/204/ifdp204.pdf
https://rogoff.scholars.harvard.edu/sites/g/files/omnuum5901/files/rogoff/files/51_jie1983.pdf
https://rogoff.scholars.harvard.edu/sites/g/files/omnuum5901/files/rogoff/files/51_jie1983.pdf
https://www.nber.org/system/files/chapters/c1214/c1214.pdf
https://www.nber.org/system/files/chapters/c1214/c1214.pdf
https://www.jstor.org/stable/1913610
https://www.anpec.org.br/encontro2007/artigos/A07A038.pdf
https://oa.upm.es/82874/1/TFM_LUCA_PETRACCA.pdf
https://oa.upm.es/82874/1/TFM_LUCA_PETRACCA.pdf


99

ROGOFF, K. Comment on "exchange rate models are not as bad as you think". In:
ACEMOGLU, D.; WOODFORD, M.; ROGOFF, K. (Ed.). NBER Macroeconomics Annual
2007, Volume 22. Chicago: University of Chicago Press, 2008. p. 443–452. Disponível em:
<http://www.nber.org/chapters/c4076>. Acesso em: 16 nov. 2024.

ROGOFF, K.; STAVRAKEVA, V. The Continuing Puzzle of Short-Horizon Exchange
Rate Forecasting. Cambridge: Harvard University, 2008. Disponível em: <http:
//www.nber.org/papers/w14071>. Acesso em: 16 nov. 2024.

ROSSI, B. Exchange rate predictability. Journal of Economic Literature, American Economic
Association, Nashville, TN, USA, v. 51, n. 4, p. 1063–1119, 2013. Disponível em:
<https://www.aeaweb.org/articles?id=10.1257/jel.51.4.1063>. Acesso em: 10 jan. 2025.

ROSSI, B.; SEKHPOSYAN, T. Forecast Rationality Tests in the Presence of Instabilities, with
Applications to Federal Reserve and Survey Forecasts. Barcelona, Spain, 2014. Disponível em:
<https://bw.bse.eu/wp-content/uploads/2015/09/765-file.pdf>. Acesso em: 27 dez. 2024.

ROSSI, B.; SEKHPOSYAN, T. Forecast rationality tests in the presence of instabilities, with
applications to federal reserve and survey forecasts. Journal of Applied Econometrics, v. 31,
n. 3, p. 507–532, 2016. Disponível em: <https://onlinelibrary.wiley.com/doi/epdf/10.1002/jae.
2440>. Acesso em: 27 dez. 2024.

ROSSI, B.; SOUPRE, M. Implementing tests for forecast evaluation in the presence
of instabilities. The Stata Journal, SAGE Publications, Los Angeles, CA, USA, v. 17,
n. 4, p. 850–865, 2017. Disponível em: <https://journals.sagepub.com/doi/pdf/10.1177/
1536867X1801700405>. Acesso em: 10 jan. 2025.

SABA, N. d. M. Avaliando o desempenho preditivo de modelos de taxa de câmbio real efetiva:
análise do caso brasileiro. Dissertação (Mestrado em Economia) — Escola de Economia de São
Paulo, Fundação Getulio Vargas, São Paulo, Brasil, 2015. Disponível em: <https://repositorio.
fgv.br/server/api/core/bitstreams/b4716efa-0691-4bd1-8494-c192eaa579f3/content>. Acesso
em: 30 nov. 2024.

SCHUSTER, M.; PALIWAL, K. K. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, v. 45, n. 11, p. 2673–2681, 1997. Disponível em:
<https://www.cin.ufpe.br/~fnj/RNA/bibliografia/BRNN.pdf>. Acesso em: 03 out. 2024.

SIAMI-NAMINI, S.; TAVAKOLI, N.; NAMIN, A. S. The performance of lstm and bilstm in
forecasting time series. 2019 IEEE International Conference on Big Data, p. 3285–3292, 2019.
Disponível em: <https://par.nsf.gov/servlets/purl/10186554>. Acesso em: 19 nov. 2024.
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APÊNDICE A – Testes estatísticos para comparação do desempenho das previsões do modelo
RW e dos modelos de DL selecionados com segundo menor valor nas métricas de erro no
período de teste

Tabela 27 - Testes estatísticos para comparação do modelo univariado de DL selecionado com 1CR e do

modelo RW nas previsões 1 dia à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (1995) RW vs BiLSTM: Estatística = -2.2474, p–valor = 0.0246 RW vs BiLSTM: Estatística = -2.7020, p–valor = 0.0069

Diebold-Mariano Modificado (1997) RW vs BiLSTM: Estatística = -2.2376, p–valor = 0.0272 RW vs BiLSTM: Estatística = -2.6904, p–valor = 0.0082

Flutuação de Giacomini e Rossi (2010) RW vs BiLSTM: Estatística = -3.0298, p–valor = 0.0069 RW vs BiLSTM: Estatística = -3.9080, p–valor = 0.0009

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 158.5189, p–valor = 0.0000 RW: Estatística = 173.0916, p–valor = 0.0000

Racionalidade de Rossi e Sekhposyan (2016) BiLSTM: Estatística = 418.5315, p–valor = 0.0000 BiLSTM: Estatística = 1061.9670, p–valor = 0.0000

Nota: Refere-se ao modelo BiLSTM (adamw-LR0.0001 - Dropout0.1 - Batch16)

Fonte: O autor, 2025.

Figura 23 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação nas

previsões 1 dia à frente

Nota: Referente ao modelo selecionado univariado com 1CR, nas previsões 1 dia útil à frente. As janelas móveis possuem 20

dias úteis nos dois testes.

Fonte: O autor, 2025.
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Tabela 28 - Testes estatísticos para comparação do modelo multivariado de DL selecionado com 1CR e

do modelo RW nas previsões 1 dia à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs BiLSTM: Estatística = -1.3222, p–valor = 0.1861 RW vs BiLSTM: Estatística = -3.6847, p–valor = 0.0002

Teste de Diebold-Mariano-Modificado (DMM) RW vs BiLSTM: Estatística = -1.3165, p–valor = 0.1906 RW vs BiLSTM: Estatística = -3.6689, p–valor = 0.0004

Flutuação de Giacomini e Rossi (2010) RW vs BiLSTM: Estatística = -3.7007, p–valor = 0.0073 RW vs BiLSTM: Estatística = -3.6689, p–valor = 0.0005

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 158.5189, p–valor = 0.0000 RW: Estatística = 173.0916, p–valor = 0.0000

Racionalidade de Rossi e Sekhposyan (2016) BiLSTM: Estatística = 198.3556, p–valor = 0.0000 BiLSTM: Estatística = 1982.2648, p–valor = 0.0000

Nota: Refere-se ao modelo BiLSTM (adam-LR0.0001 - Dropout0.1 - Batch16).

Fonte: O autor, 2025.

Figura 24 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: Referente ao modelo selecionado multivariado com 1CR, nas previsões 1 dia útil à frente. As janelas móveis possuem

20 dias úteis nos dois testes.

Fonte: O autor, 2025.
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Tabela 29 - Testes estatísticos para comparação do modelo univariado de DL selecionado com 2CR e do

modelo RW nas previsões 10 dias úteis à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs BiLSTM: Estatística = 0.3266, p–valor = 0.7440 RW vs BiLSTM: Estatística = -3.1469, p–valor = 0.0017

Teste de Diebold-Mariano-Modificado (DMM) RW vs BiLSTM: Estatística = 0.2887, p–valor = 0.7735 RW vs BiLSTM: Estatística = -2.7866, p–valor = 0.0066

Flutuação de Giacomini e Rossi (2010) RW vs BiLSTM: Estatística = 3.5232, p–valor = 0.0000 RW vs BiLSTM: Estatística =-8.8055, p–valor = 0.0000

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 5779.2941, p–valor = 0.0000 RW: Estatística = 2980.7553, p–valor = 0.0000

Racionalidade de Rossi e Sekhposyan (2016) BiLSTM: Estatística = 7263.5454, p–valor = 0.0000 BiLSTM: Estatística = 15451.7924, p–valor = 0.0000

Nota: Refere-se ao modelo BiLSTM-adamw (LR0.0001-Dropout0.1-Batch32).

Fonte: O autor, 2025.

Figura 25 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: Referente ao modelo selecionado univariado com 2CR, nas previsões 10 dias úteis à frente. As janelas móveis possuem

20 dias úteis nos dois testes.

Fonte: O autor, 2025.
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Tabela 30 - Testes estatísticos para comparação do modelo multivariado de DL selecionado com 1CR e

do modelo RW nas previsões 10 dias úteis à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs LSTM: Estatística = -2.3417, p–valor = 0.0192 RW vs LSTM: Estatística = 0.1469, p–valor = 0.8832

Teste de Diebold-Mariano-Modificado (DMM) RW vs LSTM: Estatística = -2.0704, p–valor = 0.0416 RW vs LSTM: Estatística = 0.1300, p–valor = 0.8968

Flutuação de Giacomini e Rossi (2010) RW vs LSTM: Estatística = -6.4545, p–valor = 0.0000 RW vs LSTM: Estatística = 4.5054, p–valor = 0.0007

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 5779.2941, p–valor = 0.0000 RW: Estatística = 2980.7553, p–valor = 0.0000

Racionalidade de Rossi e Sekhposyan (2016) LSTM: Estatística = 5388.9182, p–valor = 0.0000 LSTM: Estatística = 9139.8267, p–valor = 0.0000

Nota: Refere-se ao modelo LSTM-adamw (LR0.0001 - Dropout0.1 - Batch32) com duas camadas recorrentes.

Fonte: O autor, 2025.

Figura 26 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: Referente ao modelo selecionado multivariado com 1CR, nas previsões 10 dias úteis à frente. As janelas móveis

possuem 20 dias úteis nos dois testes.

Fonte: O autor, 2025.
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Tabela 31 - Testes estatísticos para comparação do modelo univariado de DL selecionado com 2CR e do

modelo RW nas previsões 20 dias úteis à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs GRU: Estatística = 3.7469, p–valor = 0.0002 RW vs GRU: Estatística = -5.0249, p–valor = 0.0000

Teste de Diebold-Mariano-Modificado (DMM) RW vs GRU: Estatística = 2.5683, p–valor = 0.0127 RW vs GRU: Estatística = -3.4694, p–valor = 0.0010

Flutuação de Giacomini e Rossi (2010) RW vs GRU: Estatística = 18.0825, p–valor = 0.0000 RW vs GRU: Estatística = -34.0440, p–valor = 0.0000

Racionalidade de Rossi e Sekhposyan (2016) GRU: Estatística = 2245.1203, p–valor = 0.0000 GRU: Estatística = 31505.8133, p–valor = 0.0000

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 6708.8322, p–valor = 0.0000 RW: Estatística = 7400.7754, p–valor = 0.0000

Nota: Refere-se ao modelo GRU-adamw (LR0.0001 - Dropout0.1 - Batch16) com 20 dias úteis de intervalo para validação e

teste.

Fonte: O autor, 2025.

Figura 27 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: Referente ao modelo selecionado univariado com 2CR, nas previsões 20 dias úteis à frente. As janelas móveis possuem

20 dias úteis nos dois testes.

Fonte: O autor, 2025.
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Tabela 32 - Testes estatísticos para comparação do modelo multivariado de DL selecionado com 2CR e

do modelo RW nas previsões 20 dias úteis à frente

Testes Período de Validação Período de Teste
Diebold-Mariano (DM) RW vs BiLSTM: Estatística = 2.7615, p–valor = 0.0058 RW vs BiLSTM: Estatística = 2.5029, p–valor = 0.0123

Teste de Diebold-Mariano-Modificado (DMM) RW vs BiLSTM: Estatística = 1.8928, p–valor = 0.0631 RW vs BiLSTM: Estatística = 1.7281, p–valor = 0.0890

Flutuação de Giacomini e Rossi (2010) RW vs BiLSTM: Estatística = 27.7071, p–valor = 0.0000 RW vs BiLSTM: Estatística = 9.3324, p–valor = 0.0000

Racionalidade de Rossi e Sekhposyan (2016) BiLSTM: Estatística = 4891.8103, p–valor = 0.0000 BiLSTM: Estatística = 10032.5969, p–valor = 0.0000

Racionalidade de Rossi e Sekhposyan (2016) RW: Estatística = 6708.8322, p–valor = 0.0000 RW: Estatística = 7400.7754, p–valor = 0.0000

Nota: Refere-se ao modelo BiLSTM-adamw (LR0.0001 - Dropout0.1 - Batch16) com 20 dias úteis de intervalo para

validação e teste.

Fonte: O autor, 2025.

Figura 28 - Gráficos das estatísticas dos testes de flutuação Giacomini-Rossi (2010) e testes de

racionalidade de Rossi-Sekhposyan (2016) ao longo dos períodos de teste e de validação

Nota: Referente ao modelo selecionado multivariado com 2CR, nas previsões 20 dias úteis à frente. As janelas móveis

possuem 20 dias úteis nos dois testes.

Fonte: O autor, 2025.
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APÊNDICE B – Gráficos obtidos no treinamento dos modelos de DL selecionados com as
menores métricas de erro no período de teste referente ao comportamento das funções de perda
de treino e de validação

Figura 29 - Funções de perda dos períodos de treino e de validação do modelo de DL univariado com

1CR 1 dia à frente

Fonte: O autor, 2025.

Figura 30 - Funções de perda dos períodos de treino e de validação do modelo de DL univariado com

2CR 1 dia à frente

Fonte: O autor, 2025.
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Figura 31 - Funções de perda dos períodos de treino e de validação do modelo de DL multivariado com

1CR 1 dia à frente

Fonte: O autor, 2025.

Figura 32 - Funções de perda dos períodos de treino e de validação do modelo de DL multivariado com

2CR 1 dia à frente

Fonte: O autor, 2025.
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Figura 33 - Funções de perda dos períodos de treino e de validação do modelo de DL univariado de

1CR com previsão 10 dias úteis à frente

Fonte: O autor, 2025.

Figura 34 - Funções de perda dos períodos de treino e de validação do modelo de DL univariado de

2CR com previsão 10 dias úteis à frente

Fonte: O autor, 2025.
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Figura 35 - Funções de perda dos períodos de treino e de validação do modelo de DL multivariado de

1CR com previsão 10 dias úteis à frente

Fonte: O autor, 2025.

Figura 36 - Funções de perda dos períodos de treino e de validação do modelo de DL multivariado de

2CR com previsão 10 dias úteis à frente

Fonte: O autor, 2025.
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Figura 37 - Funções de perda dos períodos de treino e de validação do modelo de DL univariado de

1CR com previsão 20 dias úteis à frente

Fonte: O autor, 2025.

Figura 38 - Funções de perda dos períodos de treino e de validação do modelo de DL univariado de

2CR com previsão 20 dias úteis à frente

Fonte: O autor, 2025.
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Figura 39 - Funções de perda dos períodos de treino e de validação do modelo de DL multivariado de

1CR com previsão 20 dias úteis à frente

Fonte: O autor, 2025.

Figura 40 - Funções de perda dos períodos de treino e de validação do modelo de DL multivariado de

2CR com previsão 20 dias úteis à frente

Fonte: O autor, 2025.
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